multipleNCC: Inverse Probability Weighting of Nested Case-Control Data

Reuse of controls from nested case-control designs can increase efficiency in many situations, for instance with competing risks or in other multiple endpoints situations. The matching between cases and controls must be broken when controls are to be used for other endpoints. A weighted analysis can then be performed to take care of the biased sampling from the cohort. We present the R package multipleNCC for reuse of controls in nested case-control studies by inverse probability weighting of the partial likelihood. The package handles right-censored, left-truncated and additionally matched data, and varying numbers of sampled controls and the whole analysis is carried out using one simple command. Four weight estimators are presented and variance estimation is explained. The package is illustrated by analyzing health survey data from three counties in Norway for two causes of death: cardiovascular disease and death from alcohol abuse, liver disease, and accidents and violence. The data set is included in the package.

Nathalie C. Støer , Sven Ove Samuelsen

CRAN packages used

multipleNCC, survival, mgcv, ipw, MatchIt, NestedCohort, survey, Epi, gam

CRAN Task Views implied by cited packages

SocialSciences, Survival, Econometrics, Environmetrics, OfficialStatistics, Bayesian, ClinicalTrials


Text and figures are licensed under Creative Commons Attribution CC BY 4.0. The figures that have been reused from other sources don't fall under this license and can be recognized by a note in their caption: "Figure from ...".


For attribution, please cite this work as

Støer & Samuelsen, "The R Journal: multipleNCC: Inverse Probability Weighting of Nested Case-Control Data", The R Journal, 2016

BibTeX citation

  author = {Støer, Nathalie C. and Samuelsen, Sven Ove},
  title = {The R Journal: multipleNCC: Inverse Probability Weighting of Nested Case-Control Data},
  journal = {The R Journal},
  year = {2016},
  note = {},
  doi = {10.32614/RJ-2016-030},
  volume = {8},
  issue = {2},
  issn = {2073-4859},
  pages = {5-18}