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Editorial

by Rob | Hyndman

Editorial changes

At the start of each year, one of the Executive Editors of the R Journal steps down and a new
Executive Editor is appointed. This year, we say farewell to Simon Urbanek, and thank him
for his service as Executive Editor over the period 2021-2024, including being Editor-in-Chief
in 2023. And we welcome Emily Zabor, who joins the team of Executive Editors. Emily is an
Associate Professor of Medicine at the Cleveland Clinic in Ohio, and is an active contributor
to the R community responsible for several CRAN packages. She has been an Associate
Editor of the R Journal since 2020, and has also been on the editorial boards of the Journal of
Urology, European Urology, and the Journal of Clinical Oncology. We are delighted to have
her step up to the role of Executive Editor for the next four years.

The other change at the start of each year is that the Editor-in-Chief changes. We thank Mark
van der Loo for his service as Editor-in-Chief for 2024; he will continue as an Executive
Editor for one more year. I will be the Editor-in-Chief for 2025, and I look forward to working
with the editorial team to continue the development of the R Journal. The other continuing
Executive Editor is Emi Tanaka.

We also welcome some new Associate Editors: Tomasz Wozniak, Alexander Kowarik,
Thomas Nagler, Robin Lovelace, Valentin Todorov, Julia Wrobel, and David Ardia. We
are grateful to them for their willingness to contribute to the R Journal. Several Associate
Editors have stepped down, and we thank them for their contributions: Nicholas Tierney,
Chris Brunsdon, Ivan Svetunkov and Romain Lesur. We also thank the many Associate
Editors who continue to contribute to the R Journal.

Mitchell O'Hara-Wild has been providing valuable technical assistance to the R Journal for
several years, and we have decided to formalize his role as Technical Editor of the journal
for 2025. We are grateful to him for his ongoing contributions to the R Journal.

In this issue

On behalf of the editorial board, I am pleased to present Volume 17 Issue 1 of the R Journal.
This issue features ten research articles, plus news from CRAN and the R Foundation.

The ten articles relate to R packages on the following diverse range of topics.

Forests and trees

* Random Forests for Time-Fixed and Time-Dependent Predictors: The DynForest R
Package

* Structured Bayesian Regression Tree Models for Estimating Distributed Lag Effects:
The R Package dlmtree

Longitudinal and panel data

¢ latrend: A Framework for Clustering Longitudinal Data
* panelPomp: Analysis of Panel Data via Partially Observed Markov Processes in R

Sampling tools

¢ CDsampling: An R Package for Constrained D-Optimal Sampling in Paid Research
Studies

¢ LCCR: An R package for inference on latent class models for capture-recapture data
with covariates
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Spatial smoothing

¢ spheresmooth: An R Package for Penalized Piecewise Geodesic Curve Fitting on a
Sphere
* Space-Time Smoothing of Survey Outcomes using the R Package SUMMER

Statistical simulation

¢ SimEngine: A Modular Framework for Statistical Simulations in R

Factor analysis

¢ SIREN: An Hybrid CFA-EFA R Package for Controlling Acquiescence in Restricted
Factorial

All packages discussed are available on CRAN. Supplementary material with fully repro-
ducible code is available for download from the Journal website.

Rob ] Hyndman
Monash University

https://journal.r-project.org
r-journal@r-project.org
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SIREN: A Hybrid CFA-EFA R Package for
Controlling Acquiescence in Restricted
Factorial Solutions

by David Navarro-Gonzalez, Pere ]. Ferrando, Fabia Morales-Vives, Ana Hernandez-Dorado

Abstract The siren package implements a two-step procedure that allows restricted (confir-
matory) factor analytic (FA) solutions to be fitted in data matrices that have been previously
‘cleaned’ of the biasing effects of acquiescent responding (AR) by using an unrestricted
(exploratory) FA specification. So, the procedure which is implemented is hybrid: i.e. (a)
an unrestricted acquiescence (ACQ) factor is first fitted to the data, (b) the residual data
(or covariance) matrix after the impact of ACQ has been partialled-out is obtained, and
(c) a restricted FA solution is fitted to the residual matrix. Although the basic foundations
of the procedure are known, it contains new methodological developments that are, all of
them, implemented in the package. So, provided that fully or partially balanced scales are
available, the researcher will be able to: (a) calibrate a multidimensional CFA solution which
is free from AR, (b) assess the goodness of model-data fit of this solution, and (c) obtain
individual score estimates in the content as well as in the ACQ factors. The functioning of
the program is assessed by means of a simulation study, and illustrated with a toy example.
Its usefulness is also demonstrated by using an illustrative example in the personality do-
main. siren is submitted to be a valuable tool for use in item CFA applications when AR is
expected to be operating.

1 Introduction

Valid interpretation of typical-response or non-cognitive (personality, attitude, interest, etc.)
test scores requires that the item responses that are to be calibrated and scored meet a
series of conditions. Of these, one of the more basic is that the responses truly reflect the
influence of the content variables intended to be measured and are not affected by other
systematic determinants unrelated to this content. In particular, this article is concerned
with Acquiescent Responding (AR): the tendency to agree or endorse an item regardless
of its content (Messick, 1966) as a response determinant. When AR is operating and is not
properly controlled, a series of invalidating effects can be expected, both at the calibration
level (biased item parameter estimates and spurious evidence of multidimensionality) and
at the scoring level (scores that reflect a mixture of content and AR and so they cannot be
univocally interpreted).

Test designers and practitioners are generally aware of the potential invalidating effects
of AR, and use procedures for controlling them. Of these, the most common is to develop
balanced scales. Provided that the content variables can be considered as continuous
dimensions with two end poles, in a fully balanced scale half of the items are keyed toward
one of the poles while the other half are keyed toward the opposite pole (Savalei and Falk,
2014; Vigil-Colet et al., 2020).

Statistical control of AR in test designs that use balanced scales is generally based
on factor analytic (FA) procedures, and essentially entails explicitly modeling AR as an
additional non-content factor. This FA-based control operates at two levels (see Ferrando
et al., 2003): first, at the level of the factor structure obtained in the calibration stage (thus
avoiding or minimizing the invalidating effects mentioned above); and second, at the level
of the factor score estimates derived from the calibration structure (thus, providing “cleaner”
content score estimates that have a more univocal interpretation).

Within the general FA modeling, two main approaches exist at present (Savalei and
Falk, 2014; de la Fuente and Abad, 2020). The first is fully confirmatory, and the solution
is identified by restricting all the loadings on the additional Acquiescence (ACQ) factor to
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have the same unit value (Billiet and McClendon, 2000). The second is exploratory or semi-
confirmatory ( (Ferrando et al., 2003)): First, (a) an unrestricted ACQ factor with (possibly)
different loadings and (b) an also unrestricted (EFA) direct “content” solution are obtained.
Second, the direct content solution is either analytically rotated (fully exploratory solution)
or rotated against a specified or semi-specified target (semi-confirmatory solution). The pros
and cons of both approaches have been discussed and compared by Savalei and Falk (2014)
and de la Fuente and Abad (2020). Both studies concluded that the confirmatory approach
is more robust and user-friendly than the EFA with target rotation. However, it is also more
sensitive to violation of the unit-weight loading assumption for the ACQ factor.

Within the general FA-based controlling procedure, two main approaches exist at present
(Savalei and Falk, 2014; de la Fuente and Abad, 2020). The first is fully confirmatory, and, in
it, the structural FA solution is identified by restricting all the loadings on the additional
Acquiescence (ACQ) factor to have the same unit value (Billiet and McClendon, 2000). The
second is exploratory or semi-confirmatory (Ferrando et al., 2003): First, an unrestricted
ACQ factor with (possibly) different loadings together with a direct (i.e. non-rotated)
unrestricted or exploratory (EFA) “content” solution are obtained. Second, the direct content
solution is either analytically rotated (in a fully exploratory solution) or rotated against
a specified or semi-specified target (in a semi-confirmatory solution). The pros and cons
of both approaches have been discussed by Savalei and Falk (2014) and de la Fuente and
Abad (2020). Both studies concluded that the confirmatory approach is more robust and
user-friendly than the semi-confirmatory EFA with target rotation. However, it is also more
sensitive to violation of the unit-weight loading assumption for the ACQ factor.

The aim of this paper is to propose and implement a “hybrid” approach, named SIREN,
that combines features of both the CFA and EFA approaches. Furthermore, the procedure
is comprehensive in that it is intended for fitting multiple content solutions and can also
be used with scales that are not fully balanced (see below). Because we are using the same
name for the proposed procedure and the package that implements it, in the remainder
of the paper, we shall use the distinction “SIREN procedure” and “siren package” when
necessary so as to avoid confusion.

Most of the basic foundations of SIREN have been discussed in the FA literature (e.g.
Nunnally, 1978). Furthermore, the approach we shall propose is multi-step (see below),
and the first step: estimating an unrestricted ACQ factor, is, essentially, the same as that
used in the exploratory/semi-confirmatory approaches summarized below. So, this part
of the proposal will not be discussed in detail but relevant references will be provided to
the interested reader. On the other hand, the full proposal contains new developments, and
these are the ones that will be discussed here in more detail.

1.1 Basic general results and rationale of the proposal

Consider a set of 1 items intended to measure p common content factors (e.g. personality
dimensions). The basic FA model equation in the population is:

Z=A0+YE 1)

where Z is an n x 1 random vector of observed item scores; A is an n x p factor pattern
matrix; 0 is an p x 1 random vector of ‘true’ common factor scores; ¥ is an n x n diagonal
matrix of unique-factor loadings, and E is an n x 1 random vector of unique factor scores.
With regards to scaling and assumed relations, the observed item scores are in reduced
form (centered around the mean), the common factor scores and the unique scores are in
standard scale (zero mean and unit variance), and, finally, the unique scores are assumed
to be uncorrelated with the common factors and among them. In these conditions, the
reproduced covariance matrix among the # item scores as implied by model (1) is given by
the structural equation:

L = A®A + ¥? 2)
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where ® is p x p correlation matrix containing the correlations between the ‘true” common
factor scores. Generally, in the applications considered here, the Z scores will not only be
mean-centered, but standardized scores, and so, the implied covariance matrix Z in (2) will
be a correlation matrix.

The main difference between an unrestricted (exploratory) and a restricted (confirmatory)
solution within the general model (2) is in the constraints that are imposed to the pattern
matrix A. In an unrestricted solution, only minimal identification constraints are imposed,
so that the common space: A®A’ in (2) is not restricted and multiple solutions of the same
type, that fit all equally well, can be obtained from each other by rotation. In a restricted
solution, the number of imposed restrictions makes the specified solution A®A’ unique,
in the sense that it cannot be obtained by rotation of another solution (see Joreskog, 1969).
Although a restricted solution can be obtained by using different sets of constraints, the
most usual consist of imposing an independent-cluster structure (e.g. McDonald, 2000): each
item has only a non-zero loading in one factor, having zero loadings in all the others.

At this point, we will start to develop a small, artificial toy example to help clarify the
explanations that will follow. Suppose a questionnaire made up of 8 factorially simple items
that measure two moderately correlated factors, so that the independent-cluster structure in
the population is:

Table 1: Toy example: restricted CFA solution with two correlated content factors.

T 07 007
—07 00
0.7 00
07 00 1.0 03
A=1 00 06 ‘I’_[o.s 1.0}
0.0 —0.6
0.0 06
0.0 —0.6 |

A CFA estimation of this structure can be specified by constraining to zero the 8 elements
of A that should be zero and freely estimating the remaining 8 loadings and the interfactor
correlation based on the sample correlation matrix R. Note that, for a solution of this type to
be defined, the practitioner must be able to specify first, the number of content factors that
the questionnaire intends to measure (two in the example), and second, the specific items
that define each factor. Furthermore, the items are supposed to be all factorially simple,
so that each item is a marker of the factor it measures and has negligible loadings on the
remaining factors. These conditions are not easy to achieve, but can be feasible at advanced
stages of test development.

Suppose now that the content structure of our example is that in table 1 but, at the same
time, the item responses are also partly affected by AR, conceptualized as an additional non-
content factor (see table 2 below). Now, even though the content structure was correct, if the
specified two-factor structure above was directly fitted to R, two types of distorted results
would be expected. First, the goodness of model-data fit would not be good. Second, the
loading and inter-factor correlation estimates would be biased with respect to the parameter
values in (2) (see e.g. DeMars, 2014; Ferrando and Lorenzo-Seva, 2010).

The rationale of SIREN can now be explained from the results above. At the calibration
level, the basic idea is to obtain a corrected or cleaned covariance/correlation matrix Reoyr
in which the impact of the ACQ factor has been partialled-out. If this is done correctly, a
specified restricted CFA solution can be next fitted to Rco+ instead of R. This solution will
now fit well, and the ‘true’ content parameters in table 1 will be well recovered. At the
scoring level, once the ACQ and the content structures have been properly estimated, ACQ
and content individual score estimates (i.e. factor scores) can be next obtained based on the
unrestricted ACQ pattern and the restricted, CFA content solution.

As mentioned above, in order to control for the impact of AR, the items of the question-
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naire have to be fully or partially balanced. In the present scenario, the condition of full
balance implies that, within each factor, half of the items that define this factor are positively
keyed and the other half are negatively keyed. The condition of partial balance implies here
that all the factors contain positively and negatively keyed items, but that the number of
positive and negative items is not the same at least in one factor (e.g. Lorenzo-Seva and
Ferrando, 2009).

We shall now illustrate the points so far discussed with our toy example. Suppose now
that the full content plus ACQ structure in the population is that in table 2. As the content
pattern loadings show, however, the practitioner has done her work well and, within each
factor, the items are fully balanced: within each content factor, half of the loadings are
positive and half negative. As for the ACQ factor, (a) all the loadings are positive, and
(b) they are smaller in magnitude than the content loadings. Both features are expected
in empirical applications. First, AR is the tendency to agree with the item regardless of
the direction in content (hence all loadings are expected to be positive). Second, in a well-
designed measure, the item responses are expected to be far more determined by the content
they measure than by ACQ.

Table 2: Toy example: complete solution when ACQ is operating. Balanced items.

0.7 0.0 0.1 7
-0.7 0.0 02
07 00 03 10 03 00
A= ®=1| 03 1.0 00
00 06 03 00 00 1.0
00 —06 03 A
0.0 0.6 0.2
L 00 —-06 01 ]

Once a complete solution such as that in table 2 has been estimated, it can be next
taken as a basis for obtaining ACQ and content score estimates (i.e. factor scores) for each
individual. As discussed above, these scores will now be cleaner and have a more univocal
interpretation.

1.2 General description of the procedure and relation with previous approaches

We propose a general multi-stage procedure in which the number of stages depends on
whether the test is fully or only partially balanced. So, within each of the two conditions (full
balance or partial balance), the stages will be described separately. Conceptually, however,
it is useful to view the overall procedure as based on three general stages that are common
in both conditions. In the first stage, an ACQ factor is estimated from the properties of
the (partially or fully) balanced set of items, and the impact of this factor on the inter-item
correlation matrix is partialled-out. In the second stage, a specified CFA solution is fitted
to the ‘cleaned’ correlation matrix. Finally, in the third stage, individual score estimates
are obtained from the hybrid solution (i.e. the unrestricted ACQ factor and the restricted
content-factor solution).

Although the sequential rationale just described is conceptually the clearest, the struc-
tural solution at the second stage above can actually be specified and fitted in two ways.
The first way directly follows from the corrected-correlation-matrix concept: to fit a CFA
solution to a reduced correlation matrix which is free from ACQ. In the siren package, this
way of fitting the model corresponds to the ‘resid” method option (i.e. use the residual or
corrected matrix as input for the CFA) as defined below. The second way is to take the
estimated ACQ loadings obtained at the first stage as if they were fixed and known, and
next to specify a full CFA solution that includes an additional ACQ factor with loadings
fixed at the obtained values. In the siren package, this second choice corresponds to the
‘fixed” method option defined below. As we shall see, the results from both approaches must
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be the same. In either case, the corrected or residual correlation matrix is provided in the
output of the SIREN package under the heading “rresidmatrix”.

The explanation above allows the relation between SIREN and previous approaches to
be discussed in more detail. If the solution is specified in the first way above (‘resid” method
option), SIREN can be viewed as a particular application of a residual covariance analysis
approach, i.e. to initially correct a covariance or a correlation matrix for unwanted effects
before it is used as input for further structural analyses (e.g. Andrews, 1984; Asparouhov
and Muthen, 1984; DeCastellarnau and Saris, 2021; ten Berge, 2020).

If the second equivalent specification above: full CFA solution that includes the addi-
tional fixed ACQ factor (‘fixed” method option), is used instead, then SIREN can be regarded
as a modification of the CFA approach initially proposed by Billiet and McClendon (2000).
In effect, in the latter, the ACQ loadings are fixed all of them to unity for identification
purposes (which is generally unrealistic). In contrast, in SIREN these loadings are fixed at
the (possibly different) values estimated at the first stage.

1.3 Background results and required general conditions

Consider again a fully-balanced questionnaire made up of n items (where n is even) that
measure a set of (possibly related) traits 6;...6;...0,,, so that each item is a factorially pure
measure of one of the m content factors plus of an acquiescence factor 6, which is unrelated
to the content factors. For an individual 7 that responds to an item j that measures content
factor I, the structural model in a z-score metric (mean 0 and variance 1) is

zij = Ajiblii + ajabia + € ®)

This is a scalar specification of matrix equation (1) based on an independent-cluster
pattern. Only a single content loading per item is specified because the remaining content
loadings are zero. The aj, loading is the loading item j has on the ACQ factor. Finally, the
residual terms ¢s have zero means, and are uncorrelated with the factors or with one another.

The z item responses in (3) can be treated as categorical or (approximately) continuous.
In the first case, the standardized scores would correspond to the continuous-unbounded
“strength” latent variable that are assumed to underlie the observed scores and generate
them according to a threshold mechanism (see Muthen, 1993). In the second case, they
are directly the standardized item scores. From this general modeling, it follows that the
inter-item correlations are polychoric correlations in the first case, and product-moment
correlations in the second case (see e.g. Ferrando and Lorenzo-Seva, 2013, for further details).
In the siren package, the user decides how the item responses are to be treated by using
the ‘corr’” argument defined below, which has two options: "Pearson" (product-moment
correlations) or “Polychoric” (Polychoric/Tetrachoric correlations). Once the correlation
matrix has been obtained, the results that follow are common for both treatments.

Consider now the (polychoric or product-moment) reduced inter-item correlation matrix
with communalities in the main diagonal (see Ferrando and Lorenzo-Seva, 2010). If (a) all
the assumptions so far (independent-cluster structure, full balance within factors) were met,
(b) the specified FA model was correct, and (c) the item communalities were known, then
the first centroid loading (e.g. Lawley, 1960) for item j would correspond to the loading
this item has on the ACQ factor (i.e. aj;) in the population. In the unidimensional content
case, further details on this result can be obtained from Ferrando et al. (2003), and, provided
that full within-factor balance applies, the result also holds directly in the multidimensional
case. Indeed, the conditions above are only approximately met at best (in particular, true
communalities as assumed in the centroid method, are never known; (see McDonald, 1978).
And, furthermore, the first centroid loading is a sample estimate. For these reasons, our
choice in SIREN is to first obtain the first principal-axis or canonical factor by using an
efficient EFA estimation procedure: Minimum Rank Factor Analysis (MRFA, ten Berge and
Kiers, 1991), and next rotate this factor against the centroid vector that is used as a criterion
(see Eysenck, 1950). The final factor so obtained is taken in SIREN as an estimate of the
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ACQ factor. As for the MRFA choice, it is because of its robustness and because it provides
estimates of the proportion of common variance accounted for by the different factors, and
this information is useful for assessing the relevance of the ACQ factor in terms of explained
common variance. The proportion of ACQ explained common variance is provided under
the heading ‘rACQvariance’ in the SIREN package output.

Provided that the preliminary general conditions discussed above are met, the correct
functioning of the SIREN procedure once the ACQ factor has been partialled-out depends
on two main points. The first point is of a mathematical nature, and is critical if unbiased
loadings (especially those of content factors) are to be obtained. The second is of a statistical
nature, and is important if the goodness-of-fit assessment needs to be correct.

Obtaining unbiased loading estimates in SIREN mainly depends on achieving full
balance (either for the total test or for a core balanced set), in principle, within each factor. In
more detail, what is required is that the sum of content loadings within each factor be equal
to zero. If it is, then the first centroid (or MRFA factor) will reflect only AR, so partializing it
from the correlation matrix will remove only this response bias and leave a ‘clean’ corrected
correlation that will reflect only content. However, if balance is not achieved, then, to a

greater or lesser extent, the first centroid factor will reflect a mixture of ACQ and content.

So, some content will be removed by partializing, and the resulting content loadings will be
biased (see ten Berge, 2020). Having said that, however, we also note that the strict condition

of full balance within each factor (or the core set within each factor) is probably too strong.

Preliminary results by the writers suggest that, provided that the content CFA solution is
correct and full balance holds for the entire set (or core set) of items, but not necessarily for
each factor, then SIREN would still perform correctly in most cases. The extent to which
the content loading estimates will degrade as imbalance increases is best addressed using
simulation, and this will be done in the next section.

We turn now to the second, statistical point. Our proposal can be viewed as a particular
application of what (Nunnally, 1978) called an ad-lib factorial process, in which successive
factors are fitted to residual matrices by using different methods. We consider our proposal to
be indeed legitimate, however, its multi-stage nature necessarily entails a loss of information
and efficiency, because the successive estimates are taken as fixed and known, and their
uncertainty is not taken into account. In agreement with authors such as (DeCastellarnau
and Saris, 2021; Nunnally, 1978; ten Berge, 2020) and the empirical results provided by
(Oberski and Satorra, 2013), however, we believe that the impact of the loss of efficiency
discussed above on the point estimates and indices of goodness of fit will be relatively
minor in practice provided that the proposed solution is correct and the basis conditions are

reasonably met. The issue, however, needs to be, and will be, assessed by using simulation.

1.4 Multi-stage approach with fully balanced scales

The fulfillment of the full balance condition is checked automatically by the siren package
by using the information provided in the ‘target” argument (described below), in which the
content pattern matrix with the signed dominant loading of each item on its corresponding
factor is provided as input by the user. An example of a target would be the first two
columns of A in table 2. The specific stages in this case are:

Stage 1: for the n test items, the ACQ factor loadings are estimated by: (a) obtaining the
direct (canonical) MRFA solution from the inter-item correlation matrix, by specifying m + 1
factors (b) obtaining the first centroid from the inter-item correlation matrix (to be used as
criterion), and (c) rotating the MRFA solution to the position in which the first canonical
MRFA factor has maximal congruence with respect to the criterion. Essentially, the process
is a target rotation against a single target vector (the first centroid). However, because
the canonical MRFA solution is orthogonal, the rotation is univocally defined. Finally, the
criterion of maximal congruence is defined in least squares terms: i.e. the first rotated MRFA
factor is that is the closest to the target centroid in the least-squares sense.

Stage 2: obtain the corrected (i.e. ACQ free) inter-item residual matrix as R¢orr = R —aa.
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The Ry matrix is, and should be treated as, a residual covariance matrix (not a correlation
matrix).

Stage 3: The prescribed CFA solution can be specified and fitted in two alternative ways.
The first is to input R, specified as a covariance matrix to the SEM program, and request
a standardized solution. The output will consist of the standardized content pattern with
loadings that are free of ACQ. The second way is to input the raw data to the SEM program,
by specifying the prescribed CFA content solution, plus an additional ACQ factor in which
all the loadings are specified as fixed and known. In this second specification, the ACQ
loadings « obtained in stage 2 cannot be imputed directly because R+ is a covariance
matrix (i.e. unstandardized) while the loadings on « are standardized. The correct values
to be imputed are thus those obtained by multiplying each standardized loading on & by
the corresponding item standard deviation: ay(scaled)= a,sx. This scaling transforms the
standardized loadings & into unstandardized loadings (e.g. Bollen, 1989). As in the first
approach, a standardized solution will next be requested in the output. If this is done, the
output will now provide the standardized content pattern with loadings free from ACQ and
an additional column containing the standardized ACQ loadings. Indeed, the standardized
content pattern must be the same in both specifications. In the pkg siren programming, the
CFA in stage 3 is done by using the cfa function from the lavaan and one of the two options
described above. However, of the multiple choices that the program allows for estimating
the structural item content parameters, we have chosen the one that is most congruent
with the previous stages. Thus, whether the variables are treated as continuous or discrete,
the estimation procedure is robust ULS, in agreement with the choice of MRFA-ULS for
obtaining the ACQ estimates.

Stage 4: testing model-data fit at the structural level. Again, we have made choices
within lavaan that are in accordance with the limited-information nature of the procedure
as well as with the results of the simulation study. The chosen indices are: (a) the RMSR and
GFI as overall measures of misfit (McDonald and Mok, 1995), (b) the RMSEA as a measure
of relative fit with respect to the degrees of freedom (i.e. model complexity), and (c) the CFI
as a measure of comparative fit with respect to the null independence model (see Tanaka,
1993, for points b and c). These indices are provided in the SIREN package output under the
heading ‘rfit_indices’.

Stage 5: obtaining individual score estimates. In the basic FA equation discussed above,
the factor score estimates for each individual are the estimates of the ‘true’ scores 0 in (1),
which, of course, are unknown. For both, the linear and the nonlinear models, the factor
score estimates are Bayes Modal a Posteriori (MAP), which, in the continuous (linear) model,
are known as regression estimates. In both cases, Bayesian scoring provides finite and
plausible estimates for all the respondents under study (see Ferrando and Lorenzo-Seva,
2016). For each participant, the output information consists of the point estimate of his/her
level on the content factors plus his/her factor score estimate on the ACQ factor. This last
estimate can be interpreted as the predisposition of the individual to engage in AR. The
factor score estimates are provided under the heading 'rp_factors’ (see below).

Stages 1 to 4 in the fully-balanced procedure will be now illustrated with our toy example.
Furthermore, the effects of ignoring the secondary ACQ factor will be illustrated by fitting
directly the content solution in table 1 to the uncorrected (i.e observed) correlation matrix.
To perform the illustration, we generated a random sample of N = 500 simulees from a
population in which the complete solution in table 2 holds. The results are in table 3.

When an operating common factor is left unmodeled, both, biased structural estimates
of the remaining parameters and deterioration of the GOF indicators are expected. So, in
general terms, results in table 3 are predictable. Ferrando and Lorenzo-Seva (2010) and
DeMars (2014) can be summarized as follows. With regards to bias, SIREN does a good job,
and recovers quite acceptably (given both the sample and model size) all the parameters in
the toy solution: content loadings, ACQ loadings, and inter-factor correlation. On the other
hand, the loading estimates in the uncontrolled solution tend to be slightly more biased,
and the inter-factor correlation slightly over-estimated. In terms of GOF, that of the SIREN
solution is almost perfect by all standards, which is only to be expected, as the specified
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solution is correct. The GOF of the uncorrected solution, however, clearly deteriorates. The
amount of misfit is not terribly bad here, which is also expected in such a small model. In a
larger-sized example, however, the deterioration of fit would have been much stronger.

Table 3: Toy Example Results

Siren Loadings Direct Loadings
[ 0.758 0.000 0.118 T r 0.761 0.000 T
—0.664 0.000 0.175 —0.693 0.000
0.620 0.000 0.311 0.631 0.000
A= —0.723 0.000 0.257 A= —0.727 0.000
- 0.000 0.605 0.382 o 0.000 0.549
0.000 —0.583 0.272 0.000 —0.552
0.000 0.681 0.137 0.000 0.720
0.000 —0.582 0.165 | | 0.000 —0.586 |
Siren Phi Matrix Direct Phi Matrix
1 33 0
®=(33 1 0 o = [;5 315]
0 0 1 ’
Siren GOF Direct GOF
CFl=1 CFI = .922
GFI = .998 GFI = 974
RMSEA =0 RMSEA = .088
SRMR =.024 SRMR = .049

Note: GOF=Goodness of Fit Indices

1.5 Multi-stage approach with partially balanced scales

The basic idea in this case is to first obtain a fully balanced sub-set of items, which we shall
denote as the core set, and estimate the ACQ loadings of the items belonging to this core by
using the procedure described above. Next, the ACQ loadings of the remaining items are
estimated by using a type of extension analysis based on the method of moments. Once the
ACQ loading estimates are available for all the test items, the rest of the procedure can be
carried out exactly as in the fully balanced case. So, the only two points that require specific
discussion are: first, how to determine which items will be included in the core set, and
second, how the ACQ loadings of the remaining items will be determined.

Stage 1: Choosing the core set. Within each specified factor, the positive and negative
items, as specified in the ‘target’ argument are separated into two groups, and a centroid
FA is performed separately in each of the two resulting inter-item correlation matrices. The
loadings in the smaller set (usually that containing the negative items) are taken as fixed,
and each of them is paired with the positive loading with the most similar value. The aim is
for the absolute value of the sums of the positive and negative loadings to be as similar as
possible. The rationale is that the effect of ACQ will be in the same direction if items are
all worded in the same direction (i. e. both the positive and the negative loadings will be
upwardly biased).

Stage 2: For the n. items in the core subset, the loadings on the ACQ factor are estimated
using the procedure described in the fully balanced case.

Stage 3: Denote by X, an item outside the core set, and let j = 1, - - - n. be the items in
the core. Let 27;1 toj be the sum of the correlations of item X, with the remaining items in
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the core set (see (5) for deriving these correlations). If the core items are balanced, all the
terms involving the sum of content loadings will vanish, and it will then follow that then

follows that ; .
Z Toj = Qoa Z Xjg 4)
j=1 j=1
So ,
Z‘il Toj
j=1"0]
os = " 5)
o 27;1 Xja

In words, if full balance holds for the core set, then the quotient between (a) the sum
of correlations of item X, with the remaining items in the core set, and (b) the sum of
ACQ loadings in the core set provides a simple estimate of the loading of item X, on the
ACQ factor. Note that the sum in the denominator of (5) is taken as fixed and known and
has been obtained in Stage 2 above. The estimate described above can be viewed as an
extension-analysis estimate (e.g. McDonald, 1978) obtained by the method of moments.

The extension estimate (5) is computed on an item-by-item basis for each of the items
outside the core set in Stage 3. So, at the end of this stage, ACQ loading estimates are
available for all the test items under study. This is the same situation as at the end of Stage
1 in the fully-balanced-case approach. Therefore, from this point on, the procedure is the
same in both cases.

In closing this section, it is important to note that the siren package automatically detects
if the scales are only partially balanced through the information provided by the ‘target’
argument, and, if so, also automatically carries out the three-step procedure described in
this section.

2 The siren package details

Available through CRAN, the siren package contains one main function (and additional
internal functions) called acquihybrid, which implements the procedures described in the
sections above.

The function usage is the following:

acquihybrid(x, content_factors, target, corr = "Pearson”, raw_data=TRUE,
method="fixed", display = TRUE)

in which the arguments are:

x, raw sample item scores or a covariance/correlation matrix, as a data.frame or a
numerical matrix,

content_factors, the number of content factors in the CFA solution. Each factor has to
be defined by at least 3 items,

target, the pattern loading target matrix, which provides the signed dominant loading
(higher in absolute value) of each item on its corresponding factor. The target is only used
as a reference for assessing which items have significant loadings on which factors. The
specific loading estimates are not used,

corr, determines the type of matrices to be used in the factor analysis. "Pearson:
Computes Pearson inter-item correlation matrices (linear FA model); "Polychoric": Computes
Polychoric/Tetrachoric inter-item correlation matrices (non-linear FA /graded model),

raw_data, logical argument, if TRUE, the entered data will be treated as raw item scores
(default). If FALSE, the entered data will be treated as an inter-item covariance/correlation
matrix,

method, two choices are provided: fixed, which uses the ACQ loadings obtained in the
first step to specify the ACQ factor in the CFA solution based on the raw scores, and resid,
which uses the ACQ-free corrected covariance matrix as input for the CFA,
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display, determines if the output will be displayed in the console, TRUE by default. If
it is TRUE, the output is printed in the console and if it is FALSE, the output is returned
silently to the output variable.

The data provided should be a data frame or a numerical matrix for input vectors
and matrices, character variables for corr and method arguments, and logical values for
raw_data and display arguments.

The acquihybrid function returns a list variable, containing the following variables:
rloadings, the factor loadings for each content factor and acquiescence factor.
rfactor_cor, content factor correlations.

rfit_indices, a sub-list including a variety of popular fit indices as described above.
rACQ_variance, the amount of common variance explained by ACQ.

rresid_matrix, residual matrix after partialling-out for ACQ.

rpfactors, factor scores for each participant.

The package includes a detailed vignette titled “siren-vignette”, which provides step-
by-step explanations of how to use the package, as well as guidance on interpreting the
data. The vignette uses the same dataset as the illustrative example below. The vignette is
accessible through:

vignette("siren-vignette")

3 Simulation studies

To assess the behavior of the proposal under favorable conditions (correct population model)
and its robustness against slight misspecifications, we conducted a simulation study which
focused on both the recovery of the ‘true’ loadings in the ACQ and the content factors, and
the goodness of fit results.

3.1 Method

A bidimensional content model with an additional ACQ factor (see Equation 1) was gen-
erated under the following specifications: (a) all the factors were orthogonal (this choice
was made for simplicity); (b) the content factors contained positive and negative loadings
(representing the positively and negatively keyed items); and (c) the loadings on the ACQ
factor were all positive. Referring to Equation 1, the structure of the simulated model can be
understood, as it defines how the observed scores are reproduced from the common factors
and unique loadings, facilitating the interpretation of the factor analysis results. The number
of items per factor was 10, and the sample size was fixed to 300, a value slightly higher than
recommended to find accurate factor loadings estimates (Fabrigar et al., 1999). To help the
reader to visually understand the design of the simulation study, we provide a simplified
version of the path diagram in fig. 1.

In the content factors, the simulated loadings had an average value of .6 (in absolute
value) and a standard deviation of 0.1. For the ACQ factor the mean loading value was .2.
The behavior of siren was assessed under three general conditions: (1) type of item: ordinal
(four categories; FA based on polychoric correlations), or continuous (FA based on Pearson
correlations); (2) pattern of substantive loadings at three levels: (a) completely balanced, (b)
60% of positive items, and (c) 70% of positive items; and (3) ACQ pattern at three levels:
(a) equal ACQ loadings, (b) low heterogeneity (standard deviation of .01), and (c) high
heterogeneity (standard deviation of .1). Thus, a factorial design with 18 experimental
conditions (2 x 3 x 3) was used. These conditions were chosen according to (a) the most
problematic conditions for the alternative method discussed above, and (b) the degree of
realism in the applied context.

For each experimental condition, 200 replicas were generated. A higher number of
replicas would simply increase the estimation time without changing the results. All
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Figure 1: Simplified version of the path diagram of the simulated model.

analyses were conducted with R (R Core Team, 2024). The quality of the estimates was
assessed using the average bias (6)

1& A
Average Bias = . 2(01- —0)) (6)
i=1

where 0; are the observed or true values, éi are the predicted or estimated values, and n
is the total number of observations; and the consistency of the model-data fit results was
assessed using an analysis of variance (ANOVA) for each fit index considered in the study
(CFI, GFI, RMSR and RMSEA).

3.2 Results

The results for the average bias were very stable in all conditions (see Tables 4 and 5). The
loadings on content factors are recovered more accurately than the loadings on the ACQ
factor. In the content factors, the bias is evenly distributed across both factors, and never
exceeds .05 (continuous condition) or .04 (ordinal condition) in absolute value. In contrast,
the average bias in the ACQ factor is greater in the ordinal case.

No significant changes are observed when imbalance increases. However, a slight
increase in bias can be noticed in those conditions in which the ACQ pattern is more
heterogeneous. This increase, however, does not substantially impact the average bias of the
ACQ factor (table 5). The bias in ACQ remains at around .06, with a maximum of .077.

With regards to the model-data fit ANOVA results, finally, no significant effects were
observed. However, when the ACQ patterns are very heterogeneous, the fit of the model
tends to worsen, which suggests that siren is more sensitive to the pattern of ACQ loadings.

In closing, it should be noted that the simulated data are very favorable: each content
factor is strong and well-defined, without the presence of correlated residuals or cross-
loadings. In this framework, siren barely suffers from a lack of specification or bias when
evaluated conditions are degraded. As ACQ loadings are not set to 1 (unlike the confirmatory
method of Billiet and McClendon, 2000), these loadings are freely estimated, which is why
the heterogeneity of the acquiescence pattern does not affect the estimation results.
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4 TIllustrative example usage

To illustrate how the SIREN program works, we have used an existing dataset of 1309
participants (55.8% females) between 14 and 19 years old (M = 16.4, S.D. = 1.1) from three
previous studies (Morales-Vives and Duefias, 2018; Morales-Vives et al., 2020, in press).
Therefore, further details about this data can be obtained from the original studies. Those
participants with missing data were not included in the present illustrative analyses. All
participants answered the Psychological Maturity Assessment Scale questionnaire (Morales-
Vives et al., 2013, PSYMAS), which assesses the psychological maturity of adolescents,
understood as the ability to take responsibility for one’s own obligations, taking into account
one’s own characteristics and needs, without showing excessive dependence on others.
It consists of 27 items with a five-point response format (1 = Completely disagree, 5 =
Completely agree) and it assesses the following factors: work orientation, self-reliance, and
identity. The study carried out by Morales-Vives et al. (2013), shows that (a) the content
factors are correlated, and (b) some of the items are affected by the acquiescence response
bias. This second feature is the reason why we chose the data from this questionnaire as an
illustration of how siren works and how its outcomes are to be interpreted. In the current
analysis, we have only used ten items from two of the subscales of this questionnaire (four
items of self-reliance subscale and six items of identity subscale) so that within each subscale
half of the items were in one direction (lack of maturity) and the other half in the opposite
direction (high maturity). Self-reliance refers to willingness to take the initiative without
allowing others to exercise excessive control, and Identity refers to knowledge about one’s
characteristics and needs. table 6 shows the contents of the used items. We would note
that the dataset is available in the siren package, so that the interested reader can run the
program and verify the results that are presented below.

The code required for running this illustrative example is the following;:

psymas_target=cbind(c(-9,-9,0,0,0,9,0,0,9,0),c(0,0,-9,9,-9,0,9,-9,0,9))

acquihybrid(psymas, content_factors = 2, target = psymas_target,
corr = “Polychoric”, raw_data = TRUE, method = “fixed”, display = TRUE)

Following the procedure explained above, the first step was to estimate the ACQ factor
from the fully balanced set of items, in this case treating the variables as discrete (i.e. using
the nonlinear model). As can be seen in table 7, the ACQ loading estimates ranged between
.001 and .566, and the items with higher ACQ loadings were 3, 9 and 10. These results
suggest that several items are affected by ACQ), as was expected, and justify the need to
control for this response bias.

Table 6: Loading estimates in the Acquiescence factor obtained in the first step

ACQ
Item 1. Consult the peer group before buying clothes .001
Item 2. Friends’ opinions determine what is considered wrong  .001
Item 6. Doesn’t mind doing different things than friends 231
Item 9. Facing consequences of one’s own mistakes 206
Item 3. Not showing the true self .380
Item 4. Feeling accepted and valued .079
Item 5. Feeling empty .070
Item 7. Good self-knowledge 156
Item 8. Others do not really know him /her 338
Item 10. Feeling capable of doing many things well .566

Note: ACQ = Acquiescence

We next fitted a CFA solution consisting of two correlated content factors with a full
IC structure, in which each item only had a non-zero loading on its own factor, and an
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additional ACQ factor in which the corresponding loading was fixed at the estimate obtained
in table A (in the ordinal case there is no need to multiply this loading by the standard
deviation as this has a unit value). The final ULS estimates for the full solution are in creftab8.
As expected, the four items of self-reliance subscale loaded in one factor, and the six items
of the identity subscale loaded in the other factor. Inspection of the signs of the loadings
suggests that the full condition of balance within each factor is achieved. As for the strength
of the content solution, items 2, 6, 9 had loadings of .40 or higher (in absolute value) on
the self-reliance factor, while item 1 had the lowest loading, the same result obtained in the
study carried out by Morales-Vives et al. (2013). All the items of identity had loadings on
this factor higher than .40, being item 5 the item with the highest loading, which, again,
agrees with the results by Morales-Vives et al. (2013). Overall, the procedures included in
the siren program provide the expected results, which are congruent with those reported
in the previous study, even though the latter included a greater number of items than in
the present study. Furthermore, the correlation between the two factors is .436, as was
expected, because the study carried out by Morales-Vives et al. (2013) already showed that
these factors are positively correlated.

Table 7: Estimated loadings in the CFA solution

Factor1 Factor2 ACQ

Item 1. Consult the peer group before buying clothes 29 .00 .001
Item 2. Friends’ opinions determine what is considered wrong .53 .00 .001
Item 6. Doesn’t mind doing different things than friends -.56 00 231
Item 9. Facing consequences of one’s own mistakes -40 .00 206
Item 3. Not showing the true self .00 54 380
Item 4. Feeling accepted and valued .00 -57 .079
Item 5. Feeling empty .00 .66 .070
Item 7. Good self-knowledge .00 -53 156
Item 8. Others do not really know him/her .00 43 338
Item 10. Feeling capable of doing many things well .00 -47 566

Note: ACQ = Acquiescence

The fit of the solution on table 7 was quite acceptable: GFI=.99, RMSR=.04, RMSEA=0.04,
and CFI=0.96. This good fit suggests that, once ACQ is controlled, the structure of the
PSYMAS item pool assessed here is remarkably simple and strong.

5 Concluding remarks

There are at present two factor-analytic approaches for calibrating and scoring typical-
response measures after controlling for the biasing effects of AR. One of them is fully
confirmatory, and the complete solution is identified by fixing all the ACQ loadings to the
same value. The other is unrestricted (i.e. exploratory or semi-confirmatory). According to
the literature, each of the two approaches has its pros and cons (Savalei and Falk, 2014; de la
Fuente and Abad, 2020).

In this article we have proposed a hybrid EFA-CFA procedure, called SIREN, that tries to
combine the best features of the two approaches above. Thus, in SIREN, the ACQ factor can
be identified in a first step without the need to constrain all its loadings to have the same
value. Next, once the ACQ factor is identified, a fully confirmatory (restricted) solution can
be specified for the content factors at the second step. Finally, for both types of factors (ACQ
and content), our proposed procedure allows factor score estimates for each individual to be
obtained at the third step. The flexibility of what we propose widens the available options
for assessing the structural properties of the typical-response measure under scrutiny, and
also, for obtaining accurate score estimates for each individual. Regarding this last point,
we would note that most existing factor-analytical developments designed for controlling
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ACQ tend to focus solely on the structural properties of the instrument. However, accurate
and “clean” individual score estimates might be highly relevant in further validity studies
or if clinical decisions have to be taken on the basis of this instrument.

Apart from increased flexibility, the proposal has many features that considerably in-
crease its range of application. To start with, it allows solutions to be fitted with the standard
linear FA model or with the non-linear graded-response model. Second, the solution can be
fitted using a “cleaned” residual covariance matrix (the standard approach to this type of
problems) or directly fitted to the raw data using the ACQ loading estimates as fixed and
known. This second option makes it possible to use a wide range of estimation procedures
and goodness of fit measures for estimating and assessing model data fit.

The main theoretical and potential shortcoming of SIREN is the loss of efficiency caused
by the sequential limited-information procedure which it uses. So far, the results of the
simulation study suggest that this loss has little impact in practice. However, more extensive
simulation is warranted. Although SIREN controls acquiescence bias, it is necessary to
assess to what extent null or close-to-zero biases are detected.

The R program that implements SIREN (and which has the same name) has been de-
signed to be as user-friendly as possible, and requires very few specifications from the user:
essentially, the FA model of choice (linear or nonlinear) and a target matrix, which specifies
the content factor on which each item is expected to load together with the expected sign
of this loading. So, the program can be used by practitioners with minimal proficiency
in FA. Furthermore, siren is extremely versatile, and provides a considerable amount of
information in an output that is simple and clear to interpret. Even so, we plan to extend
the calibration and the scoring choices of the program in future developments.
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Random Forests for Time-Fixed and
Time-Dependent Predictors: The
DynForest R Package

by Anthony Devaux, Cécile Proust-Lima, and Robin Genuer

Abstract The R package DynForest implements random forests for predicting a continuous,
a categorical, or a (multiple causes) time-to-event outcome based on time-fixed and time-
dependent predictors. The main originality of DynForest is that it handles time-dependent
predictors that can be endogenous (i.e., impacted by the outcome process), measured with
error, and measured at subject-specific times. At each recursive step of the tree building
process, the time-dependent predictors are internally summarized into individual features
on which the split can be done. This is achieved using flexible linear mixed models (thanks to
the R package lemm), whose specification is pre-specified by the user. DynForest returns the
mean for a continuous outcome, the category with a majority vote for a categorical outcome,
or the cumulative incidence function over time for a survival outcome. DynForest also
computes variable importance and minimal depth to inform on the most predictive variables
or groups of variables. This paper aims to guide the user with step-by-step examples for
fitting random forests using DynForest.

1 Introduction

Random forests are a non-parametric, powerful method for prediction purposes. Introduced
by Breiman (Breiman, 2001) for classification (categorical outcome) and regression (contin-
uous outcome) frameworks, random forests are particularly designed to tackle modeling
issues in high-dimensional contexts (n << p). They can also easily take into account com-
plex associations between the outcome and the predictors without any pre-specification,
where regression models are rapidly limited.

Recently, this methodology was extended to survival data (Ishwaran et al., 2008) and
competing events (Ishwaran et al., 2014). Random forests were implemented in several R (R
Core Team, 2019) packages such as randomForestSRC (Ishwaran and Kogalur, 2022), ranger
(Wright and Ziegler, 2017) or xgboost (Chen and Guestrin, 2016), among others. However,
these packages are all limited to time-fixed predictors. Yet, in many applications, it may be
relevant to include predictors that are repeatedly measured at multiple occasions (regular or
irregular times) with measurement errors to more accurately predict the outcome. This is the
case, in particular, in health research where a health outcome is to be predicted according to
the history of individual information.

We developed an original random forests methodology to tackle this issue and incorpo-
rate longitudinal predictors that may be prone to error and possibly intermittently measured
(Devaux et al., 2023). The present paper aims to describe the DynForest R package associated
with this methodology, allowing the prediction of a continuous, categorical, or survival
outcome using multivariate time-dependent predictors.

In section 2, we briefly present DynForest methodology through its algorithm. In section
3, we present the different functions of DynForest, and we illustrate them in section 4 for a
survival outcome and in section 5 for a categorical outcome. An illustration for a continuous
outcome can be found in the DynForest vignette. To conclude, we discuss in section 6 the
limitations and future improvements.

2 DynForest principle

DynForest is a random forest methodology which can include both time-fixed predictors
of any nature and time-dependent predictors possibly measured at irregular times. The
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Figure 1: Overall scheme of the tree building in DynForest with (A) the tree structure, (B) the node-
specific treatment of time-dependent predictors to obtain time-fixed features, (C) the dichotomization
of the time-fixed features, (D) the splitting rule.

purpose of DynForest is to predict an outcome which can be categorical, continuous or
survival (with possibly competing events).

The random forest should first be built on a learning dataset of N subjects including;:
Y the outcome; M, an ensemble of P time-fixed predictors; M, an ensemble of Q time-
dependent predictors. The random forest consists of an ensemble of B trees which are grown
as detailed below.

2.1 The tree building

The tree building process, summarized in figure 1, aims to recursively partition the subjects
into groups/nodes that are the most homogeneous regarding the outcome Y.

For each tree b (b = 1, ..., B), we first draw a bootstrap sample from the original dataset
of N subjects (N draws among the N subjects with replacement). The subjects excluded by
the bootstrap constitute the out-of-bag (OOB) sample, noted OOB? for tree b. At each node
d € DY of the tree, we recursively repeat the following steps using the N(@) subjects located
atnode d:

1. An ensemble of M@ = {M;(Cd) ,Mﬁ’”} candidate predictors is randomly selected
among { My, M} (see figure 1B). The size of M(?) is defined by the hyperparameter
mtry.

2. For each time-dependent predictor in M ,Sf’):

a. We independently model the trajectory of the predictor using a flexible linear
mixed model (Laird and Ware, 1982) according to time (the specification of the
model is defined by the user). It is defined as: Z;; = X1;;(t;)B + X2;j(t;;)b; + €
where Z;; is the value of predictor Z for subject i at occasion j, X1;; and X2;; are
vectors of time functions and covariates to be specified by the user and ¢;; is the
time at occasion j for subject i. § are population effects, and b; individual random
effects which follow a multivariate normal distribution. €;; are the zero-mean
independent Gaussian errors of measurement.

b. We predict the vector of random-effects b; using the available information of
individual i = 1,...,N (@), Predictions Ei constitute time-independent features
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summarizing each time-dependent predictor. We thus derive the ensemble M 2‘?

for all the variables in M gd).

3. We define Mid) = { /\/lid), M gi)} as our new ensemble of time-independent candidate
features.

4. For each candidate feature W &€ Mid):
a. We build a series of splits c%) according to the feature values if continuous, or

subsets of categories otherwise (see figure 1C), leading each time to two groups.
b. We quantify the distance between the two groups according to the nature of Y:

e If Y continuous: we compute the weighted within-group variance with the
proportion of subjects in each group as weights

¢ If Y categorical: we compute the weighted within-group Shannon entropy
(Shannon, 1948) (i.e., the amount of uncertainty) with the proportion of
subjects in each group as weights

¢ If Y survival without competing events: we compute the log-rank statistic
test (Peto and Peto, 1972)

e If Y survival with competing events: we compute the Fine & Gray statistic
test (Gray, 1988)

5. We split the subjects into the two groups that minimize (for continuous and categorical
outcome) or maximize (for survival outcome) the quantity defined previously. We
denote {W¢, c} as the optimal couple used to split the subjects and assign them to
the left and right daughter nodes 2d and 2d + 1, respectively (see figure 1D and A).

6. Step 1 to 5 are iterated on the daughter nodes until stopping criteria are met.

We define two stopping criteria: nodesize, the minimal number of subjects in a node
required to reiterate the split, and minsplit, the minimal number of events required to split
the node. minsplit is only defined with a survival outcome. In the following, we call leaves
the terminal nodes.

In each leaf i € 1’ of tree b, a summary " s computed using the individuals belonging
to the leaf. The leaf summary is defined according to the outcome:

¢ the mean, for Y continuous

¢ the category with the highest probability, for Y categorical

¢ the cumulative incidence function over time computed using the Nelson-Aalen cu-
mulative hazard function estimator (Nelson, 1969; Aalen, 1976), for Y single cause
time-to-event

¢ the cumulative incidence function over time computed using the non-parametric
Aalen-Johansen estimator (Aalen and Johansen, 1978), for Y time-to-event with multi-
ple causes

NOTE: Step 2 involves the estimation of a parametric mixed model for each time-
dependent predictor. The specification of this model should be carefully determined in
preliminary analyses by the user, keeping in mind that there should be a trade-off between
goodness-of-fit and parameter parsimony. The critical point is to adequately specify the
trajectory shape over time at the population and individual levels. Different bases of time
functions can be considered (e.g., fractional polynomials, splines, adhoc) and compared in
terms of fit.
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2.2 Individual prediction of the outcome
Out-Of-Bag individual prediction

The overall OOB prediction 7%, for a subject * can be computed by averaging the tree-based
predictions of x over the random forest as follows:

1 hb
= A 1)
AR

where O, is the ensemble of trees where * is OOB and |O,| denotes its cardinality. The
prediction A is obtained by dropping down subject x along tree b. Ateach node d € D?, the
subject « is assigned to the left or right node according to his/her data and the optimal couple
{(wd, cg}. Wg is a random-effect feature, its value for x is predicted from the individual
repeated measures using the estimated parameters from the linear mixed model.

Individual dynamic prediction from a landmark time

With a survival outcome, the OOB prediction described in the previous paragraph can
be extended to compute the individual probability of event from a landmark time s by
exploiting the repeated measures of subject  only until s. For a new subject x, we thus define
the individual probability of event, noted 7, (s, s + t), as the probability of experiencing the
event by time s + t given the information prior to landmark time s:

1 B
+(s,s+1) E; “(s,s+t) 2)

where A/ (s s+ t) is the tree-based probability of event at time s + t computed by dropping
down * along the tree by considering longitudinal predictors collected until s and time-fixed
predictors. Note that any horizon ¢ can be considered provided s + ¢ remains in the time
window on which the random forest was trained. In the DynForest package, by default, the
probability is computed at all the observed event times after the landmark time.

2.3 Out-Of-Bag prediction error

Using the OOB individual predictions, an OOB prediction error can be internally assessed.
The OOB prediction error quantifies the difference between the observed and the predicted
values. It is defined according to the nature of Y as:

 for Y continuous, the mean square error (MSE) defined by:

N
errOOB = N ;(ﬁ — )2 3)

e for Y categorical, the misclassification error defined by:

1 N
errO0B = < 21 Lz 20) @)
1=
* for Y survival, the Integrated Brier Score (IBS) (Sene et al., 2016) between 7 and 1
defined by:
1 N R . 2
errOOB = /T < L @O I(T < 66 =) — () } ®)

1 i

Il
_
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with T the time-to-event, k the cause of interest and @ (t) the estimated weights using Inverse
Probability of Censoring Weights (IPCW) technique that accounts for censoring (Gerds and
Schumacher, 2006).

The OOB error of prediction is used, in particular, to tune the random forest by determin-
ing the hyperparameters (i.e., mtry, nodesize and minsplit) which give the smallest OOB
prediction error.

2.4 Explore the most predictive variables
Variable importance

The variable importance (VIMP) measures the loss of predictive performance (Ishwaran
et al.,, 2008) when removing the link between a predictor and the outcome. The link is
removed by permuting the predictor values at the subject level for time-fixed predictors or
at the observation level for time-dependent predictors. A large VIMP value indicates a good
predictive ability for the predictor.

However, in the case of correlated predictors, the VIMP may not properly quantify the
variable importance (Gregorutti et al., 2017) as the information of the predictor may still be
present. To better handle situations with highly correlated predictors, the grouped variable
importance (gVIMP) can be computed indirectly. It consists of simultaneously evaluating
the importance of a group of predictors defined by the user. The computation is the same
as for the VIMP except the permutation is performed simultaneously on all the predictors
of the group. A large gVIMP value indicates a good predictive ability for the group of
predictors.

Minimal depth

The minimal depth is another statistic to quantify the importance of a variable. It assesses
the distance between the root node and the first node for which the predictor is used to split
the subjects (1 for first level, 2 for second level, 3 for third level, ...). This statistic can be
computed at the predictor level or at the feature level, allowing us to fully understand the
tree building process.

We strongly advise computing the minimal depth with the mtry hyperparameter chosen
at its maximum to ensure that all predictors are systematically among candidate predictors
for splitting the subjects.

3 The DynForest R package

DynForest methodology was implemented in the R package DynForest (Devaux, 2024)
freely available on The Comprehensive R Archive Network (CRAN) to users.

The package includes two main functions: dynforest() and predict() for the learning
and the prediction steps. These functions are fully described in section 3.1 and 3.2. Other
functions available are briefly described in the table below. These functions are illustrated in
examples, one for a survival outcome and one for a categorical outcome.

Function Description

Learning and prediction steps

dynforest() Function that builds the random forest

predict() Function for S3 class dynforest predicting
the outcome on new subjects using the
individual-specific information

Assessment function
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Function

Description

compute_ooberror()
Exploring functions
compute_vimp()
compute_gvimp()
compute_vardepth()

plot() functions for S3 class:
dynforest

dynforestpred
dynforestvimp
dynforestgvimp
dynforestvardepth

Other functions
summary ()

print()

get_tree()

get_treenode()

Function that computes the Out-Of-Bag
error to be minimized to tune the random
forest

Function that computes the importance of
variables

Function that computes the importance of a
group of variables

Function that extracts information about the
tree building process

Plot the estimated CIF for given tree nodes
or subjects

Plot the predicted CIF for the cause of
interest for given subjects

Plot the importance of variables by value or
percentage

Plot the importance of a group of variables
by value or percentage

Plot the minimal depth by predictors or
features

Function for class S3 dynforest or
dynforestoob displaying information about
the type of random forest, predictors
included, parameters used, Out-Of-Bag
error (only for dynforestoob class) and brief
summaries about the leaves

Function to print object of class dynforest,
dynforestoob, dynforestvimp,
dynforestgvimp, dynforestvardepth and
dynforestpred

Function that extracts the tree structure for a
given tree

Function that extracts the terminal node
identifiers for a given tree

3.1 dynforest() function

dynforest() is the function to build the random forest. The call of this function is:

dynforest(

timeData = NULL, fixedData = NULL, idVar = NULL,
timeVar = NULL, timeVarModel = NULL, Y = NULL,

ntree = 200, mtry = NULL, nodesize

1, minsplit = 2, cause =1,

nsplit_option = "quantile”, ncores = NULL,

seed = 1234, verbose = TRUE

Arguments

timeDatais an optional argument that contains the dataframe in longitudinal format (i.e., one
observation per row) for the time-dependent predictors. In addition to time-dependent pre-
dictors, this dataframe should include a unique identifier and the measurement times. This
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argument is set to NULL if no time-dependent predictor is included. Argument fixedData
contains the dataframe in wide format (i.e., one subject per row) for the time-fixed predictors.
In addition to time-fixed predictors, this dataframe should also include the same identifier
as used in timeData. This argument is set to NULL if no time-fixed predictor is included.
Argument idVar provides the name of the identifier variable included in timeData and
fixedData dataframes. Argument timeVar provides the name of the time variable included
in timeData dataframe. Argument timeVarModel contains as many lists as time-dependent
predictors defined in timeData to specify the structure of the mixed models assumed for
each predictor. For each time-dependent predictor, the list should contain a fixed and
a random argument to define the formula of a mixed model to be estimated with lcmm
R package (Proust-Lima et al., 2017). fixed defines the formula for the fixed-effects and
random for the random-effects (e.g., 1ist(Y1 = list(fixed = Y1 ~ time, random = ~
time)). Argument Y contains a list of two elements type and Y. Element type defines the
nature of the outcome (surv for survival outcome with possibly competing causes, numeric
for continuous outcome and factor for categorical outcome) and element Y defines the
dataframe which includes the identifier (same as in timeData and fixedData dataframes)
and outcome variables.

Arguments ntree, mtry, nodesize and minsplit are the hyperparameters of the random
forest. Argument ntree controls the number of trees in the random forest (200 by default).
Argument mtry indicates the number of variables randomly drawn at each node (square
root of the total number of predictors by default). Argument nodesize indicates the minimal
number of subjects allowed in the leaves (1 by default). Argument minsplit controls the
minimal number of events required to split the node (2 by default).

For a survival outcome, argument cause indicates the event of interest. Argument
nsplit_option indicates the method to build the two groups of individuals at each node.
By default, we build the groups according to deciles (quantile option) but they could be
built according to random values (sample option).

Argument ncores indicates the number of cores used to grow the trees in parallel mode.
By default, we set the number of cores of the computer minus 1. Argument seed specifies
the random seed. It can be fixed to replicate the results. Argument verbose allows to display
a progression bar during the execution of the function.

Values

dynforest() function returns an object of class dynforest containing several elements:

* data alist with longitudinal predictors (Longitudinal element), continuous predictors
(Numeric element) and categorical predictors (Factor element)

e rf is a dataframe with one column per tree containing a list with several elements,
which includes:

leaves the leaf identifier for each subject used to grow the tree

idY the identifiers for each subject used to grow the tree

V_split the split summary (more detailed below)

Y_pred the estimated outcome in each leaf

model_param the estimated parameters of the mixed model for the longitudinal
predictors used to split the subjects at each node

— Ytype, hist_nodes, Y, boot and Ylevels internal information used in other func-
tions

¢ type the nature of the outcome

* times the event times (only for survival outcome)

* cause the cause of interest (only for survival outcome)

* causes the unique causes (only for survival outcome)

e Inputs the list of predictors names for Longitudinal (longitudinal predictor),
Continuous (continuous predictor) and Factor (categorical predictor)

The R Journal Vol. 17/1, March 2025 ISSN 2073-4859


https://CRAN.R-project.org/package=lcmm

CONTRIBUTED RESEARCH ARTICLE

31

* Longitudinal.model the mixed model specification for each longitudinal predictor
* param a list of hyperparameters used to grow the random forest
¢ comput.time the computation time

The main information returned by rf is the V_split element which can also be extracted
using the get_tree() function. This element contains a table sorted by the node/leaf
identifier (id_node column) with each row representing a node/leaf. Each column provides
information about the splits:

* type: the nature of the predictor (Longitudinal for longitudinal predictor, Numeric for
continuous predictor or Factor for categorical predictor) if the node was split, Leaf
otherwise;

e var_split: the predictor used for the split defined by its order in timeData and
fixedData;

* feature: the feature used for the split defined by its position in random statistic;

* threshold: the threshold used for the split (only with Longitudinal and Numeric). No
information is returned for Factor;

* N: the number of subjects in the node/leaf;

* Nevent: the number of events of interest in the node/leaf (only with survival outcome);

 depth: the depth level of the node/leaf.

Additional information about the dependencies

dynforest() function internally calls other functions from related packages to build the
random forest:

* hlme() function (from lcmm package (Proust-Lima et al., 2017)) to fit the mixed models
for the time-dependent predictors defined in timeData and timeVarModel arguments

* Entropy() function (from base package) to compute the Shannon entropy

e survdiff () function (from survival package (Therneau, 2022)) to compute the log-rank
statistic test

e crr() function (from cmprsk package (Gray, 2020)) to compute the Fine & Gray
statistic test

3.2 predict() function

predict() is the S3 function for class dynforest to predict the outcome on new subjects.
Landmark time can be specified to consider only longitudinal data collected up to this time
to compute the prediction. The call of this function is:

predict(object, timeData = NULL, fixedData = NULL, idVar, timeVar, t@ = NULL)

Arguments

Argument object contains a dynforest object resulting from the dynforest() function.
Argument timeData contains the dataframe in longitudinal format (i.e., one observation
per row) for the time-dependent predictors of new subjects. In addition to time-dependent
predictors, this dataframe should also include a unique identifier and the time measurements.
This argument can be set to NULL if no time-dependent predictor is included. Argument
fixedData contains the dataframe in wide format (i.e., one subject per row) for the time-fixed
predictors of new subjects. In addition to time-fixed predictors, this dataframe should also
include a unique identifier. This argument can be set to NULL if no time-fixed predictor is
included. Argument idVar provides the name of the identifier variable included in timeData
and fixedData dataframes. Argument timeVar provides the name of the time-measurement
variable included in timeData dataframe. Argument t@ defines the landmark time; only the
longitudinal data collected up to this time are to be considered. This argument should be set
to NULL to include all longitudinal data.
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Values

predict() function returns several elements:

* t0 the landmark time defined in the argument (NULL by default)

¢ times times used to compute the individual predictions (only with survival outcome).
The times are defined according to the time-to-event subjects used to build the random
forest.

¢ pred_indiv the predicted outcome for the new subject. With survival outcome, predic-
tions are provided for each time defined in the times element.

¢ pred_leaf a table giving for each tree (in column) the leaf in which each subject is
assigned (in row)

¢ pred_indiv_proba the proportion of the trees leading to the category prediction for
each subject (only with categorical outcome)

4 How to use DynForest R package with a survival outcome?

4.1 Tllustrative dataset: pbc2 dataset

The pbc2 dataset (Murtaugh et al., 1994) is loaded with the package DynForest to illustrate
its functionalities. pbc2 data come from a clinical trial conducted by the Mayo Clinic between
1974 and 1984 to treat primary biliary cholangitis (PBC), a chronic liver disease. A total of
312 patients were enrolled in a clinical trial to evaluate the effectiveness of D-penicillamine
compared to a placebo to treat PBC and were followed until the clinical trial ended, leading
to a total of 1945 observations. During the follow-up, several clinical continuous markers
were collected over time such as: the level of serum bilirubin (serBilir), the level of serum
cholesterol (serChol), the level of albumin (albumin), the level of alkaline (alkaline), the
level of aspartate aminotransferase (SGOT), platelets count (platelets), and the prothrombin
time (prothrombin). Four non-continuous time-dependent predictors were also collected:
the presence of ascites (ascites), the presence of hepatomegaly (hepatomegaly), the presence
of blood vessel malformations in the skin (spiders), and the edema levels (edema). These
time-dependent predictors were recorded according to the time variable. In addition to
these time-dependent predictors, a few predictors were collected at enrollment: sex (sex),
age (age), and the drug treatment (drug). During the follow-up, 140 patients died before
transplantation, 29 patients were transplanted, and 143 patients were censored alive (event).
The time of the first event (censored alive or any event) was considered as the event time
(years)

library("DynForest”)

data(pbc2)
pbc2[1:5, c(

"id", "time", "serBilir"”, "SGOT", "albumin”, "alkaline”,

"age"”, "drug", "sex", "years", "event”
)]
#> id time serBilir SGOT albumin alkaline age drug sex
#> 1 1 0.0000000 14.5 138.0 2.60 1718 58.76684 D-penicil female
#> 2 1 0.5256817 21.3 6.2 2.94 1612 58.76684 D-penicil female
#> 3 10 0.0000000 12.6 147.3 2.74 918 70.56182 placebo female
#> 4 100 0.0000000 2.3 178.3 3.00 746 51.47027 placebo male
#> 5 100 0.4681853 2.5 189.1 2.94 836 51.47027 placebo male
#> years event
#> 1 1.0951703 2
#> 2 1.0951703 2
#> 3 0.1396342 2
#> 4 1.5113350 2
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#> 5 1.5113350 2

For the illustration, 4 time-dependent predictors (serBilir, SGOT, albumin and alkaline)
and 3 predictors measured at enrollment (sex, age and drug) were considered. We aim to
predict death without transplantation in patients suffering from primary biliary cholangitis
(PBC) using clinical and socio-demographic predictors, considering transplantation as a
competing event.

4.2 Data management

To begin, we split the subjects into two datasets: (i) one dataset to train the random forest
using 2/3 of patients; (ii) one dataset to predict on the other 1/3 of patients. The random
seed is set to 1234 for replication purposes.

set.seed(1234)

id <- unique(pbc2$id)

id_sample <- sample(id, length(id) * 2 / 3)
id_row <- which(pbc2%$id %in% id_sample)
pbc2_train <- pbc2[id_row, ]

pbc2_pred <- pbc2[-id_row, ]

Then, we build the dataframe timeData_train in the longitudinal format (i.e., one obser-
vation per row) for the longitudinal predictors including: id the unique patient identifier;
time the observed time measurements; serBilir, SGOT, albumin and alkaline the longitudi-
nal predictors. We also build the dataframe fixedData_train with the time-fixed predictors
including: id the unique patient identifier; age, drug and sex predictors measured at en-
rollment. The nature of each predictor needs to be properly defined with the as.factor ()
function for categorical predictors (e.g., drug and sex).

timeData_train <- pbc2_train[,
c(”id”, "time”, "serBilir”, "SGOT”, "albumin”, "alkaline")
]

fixedData_train <- unique(pbc2_train[, c("id",

n

age”, ”drug“, Ilsexll):l)

4.3 Specification of the models for the time-dependent predictors

The first step of the random forest building consists of specifying the mixed model of
each longitudinal predictor through a list containing the fixed and random formula for
the fixed effect and random effects of the mixed models, respectively. Here, we assume a
linear trajectory for serBilir, albumin and alkaline, and a quadratic trajectory for SGOT.
Although we restricted this example to linear and quadratic functions of time, we note that
any function can be considered, including splines.

timeVarModel <- list(

serBilir = list(fixed = serBilir ~ time, random = ~time),

SGOT = list(fixed = SGOT ~ time + I(time”2), random = ~ time + I(time*2)),
albumin = list(fixed = albumin ~ time, random = ~time),

alkaline = list(fixed = alkaline ~ time, random = ~time)

For this illustration, the outcome object contains a list with type set to surv (for survival
data) and Y contains a dataframe in wide format (one subject per row) with: id the unique
patient identifier; years the time-to-event data; event the event indicator.

Y <- list(type = "surv", Y = unique(pbc2_train[, c("id", "years”, "event"”)]))
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4.4 Random forest building

We build the random forest using dynforest () function with the following code:

res_dyn <- dynforest(
timeData = timeData_train,
fixedData = fixedData_train,
timeVar = "time", idVar = "id",
timeVarModel = timeVarModel, Y =Y,
ntree = 200, mtry = 3, nodesize = 2, minsplit = 3,
cause = 2, ncores = 7, seed = 1234

In a survival context with multiple events, it is necessary to specify the event of interest
with the argument cause. We thus fix cause = 2 to specify the event of interest (i.e., the
death event). For the hyperparameters, we arbitrarily chose mtry = 3, nodesize = 2, and
minsplit = 3, and we will discuss this point in section 4.8.

Overall information about the random forest can be output with the summary () function
as displayed below for our example:

summary (res_dyn)

#> dynforest executed for survival (competing risk) outcome
#> Splitting rule: Fine & Gray statistic test

#> Out-of-bag error type: Integrated Brier Score

#> Leaf statistic: Cumulative incidence function

#> —mmmmmmmmmmmmeo

#> Input

#> Number of subjects: 208

#> Longitudinal: 4 predictor(s)

#> Numeric: 1 predictor(s)

#> Factor: 2 predictor(s)

#H> —mmm e
#> Tuning parameters
#> mtry: 3

#> nodesize: 2

#> minsplit: 3

#> ntree: 200

#> —mmmmmmmmmmmem -

#> ——mmmmmmmmm oo

#> dynforest summary

#> Average depth per tree: 6.62

#> Average number of leaves per tree: 27.68
#> Average number of subjects per leaf: 4.78
#> Average number of events of interest per leaf: 1.95
#> —mmmmmm oo

#> Computation time

#> Number of cores used: 7

#> Time difference of 3.18191 mins

#> ——mmmmmmmmmmmeo

We executed the dynforest () function for a survival outcome with competing events.

In this mode, we use the Fine & Gray statistic test as the splitting rule and the cumulative
incidence function (CIF) as the leaf statistic. To build the random forest, we included
208 subjects with 4 longitudinal (Longitudinal), 1 continuous (Numeric) and 2 categorical
(Factor) predictors. The summary() function returns some statistics about the trees. For
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instance, we have on average 4.8 subjects and 1.9 death events per leaf. The number of
subjects per leaf should always be higher than the nodesize hyperparameter. OOB error
should first be computed using the compute_ooberror() function (see section 4.5) to be
displayed on summary output.

To further investigate the tree structure, the split details can be output using the
get_tree() function with the following code (for tree 1):

head(get_tree(dynforest_obj = res_dyn, tree = 1))

#> type id_node var_split feature threshold N Nevent depth
#> 1 Longitudinal 1 3 1 -1.272629e-01 129 51 1
#> 2 Numeric 2 1 NA 4.138210e+01 39 27 2
#> 3 Longitudinal 3 4 1 1.459346e+02 90 24 2
#> 4 Longitudinal 4 3 1 3.608271e-11 8 3 3
#> 5 Longitudinal 5 2 1 5.924123e+01 31 24 3
#> 6 Longitudinal 6 1 1 2.786575e-01 63 12 3

tail(get_tree(dynforest_obj = res_dyn, tree = 1))

#> type id_node var_split feature threshold N Nevent depth
#> 50 Leaf 174 NA NA NA 2 2 8
#> 51 Longitudinal 175 2 1 -1.850322e-10 4 4 8
#> 52 Leaf 250 NA NA NA 5 1 8
#> 53 Leaf 251 NA NA NA 4 2 8
#> 54 Leaf 350 NA NA NA 2 2 9
#> 55 Leaf 351 NA NA NA 2 2 9

Looking at the head of the get_tree() function output, we see that subjects were split
at node 1 (id_node) using the first random-effect (feature = 1) of the third Longitudinal
predictor (var_split = 3) with threshold =-0.1273. var_split = 3 corresponds to albumin,
so subjects at node 1 with albumin values below -0.1273 are assigned to node 2, otherwise to
node 3. The last rows of the random forest given by the tail of get_tree() function output
provide the leaves descriptions. For instance, in row 53, 4 subjects are included in leaf 251,
and 2 subjects have the event of interest.

Estimated cumulative incidence function (CIF) within each leaf of a tree can be displayed
using the plot () function. For instance, the CIF of the cause of interest for leaf 251 in tree 1
can be displayed using the following code:

CIF of a single tree is not meant to be interpreted alone. The CIF should be averaged
over all trees of the random forest. For a subject, the estimated CIF over the random forest is
obtained by averaging all the tree-specific CIFs of the tree-leaf where the subject belongs.
This can be done with the plot () function such as:

plot(res_dyn, id = 104, max_tree = 9)

In this example, we display in figure 2 for subject 104 the tree-specific CIFs for the first 9
trees where this subject is used to grow the trees. This figure shows how the estimated CIF
can differ across the trees and requires to be averaged as each is calculated from information
of the few subjects belonging to a leaf.

4.5 Out-Of-Bag error

The Out-Of-Bag error (OOB) aims at assessing the predictive abilities of the random forest.
With a survival outcome, the OOB error is evaluated using the Integrated Brier Score (IBS)
(Gerds and Schumacher, 2006). It is computed using the compute_ooberror () function with
an object of class dynforest as the main argument, such as:
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Figure 2: Estimated cumulative incidence functions for subject 104 over 9 trees.

res_dyn_00B <- compute_ooberror(dynforest_obj = res_dyn)

compute_ooberror() returns the OOB errors by individual. The overall OOB error for
the random forest is obtained by averaging the individual specific OOB errors, and can be
displayed using print() or directly by calling the object.

res_dyn_0OB
#> [1] 0.1265053

We obtain an IBS of 0.127 computed from time O to the maximum event time. The
time range can be modified using IBS.min and IBS.max arguments to define the minimum
and maximum, respectively. To maximize the predictive ability of the random forest, the
hyperparameters can be tuned, that is, chosen as those that minimize the OOB error (see
section 4.8).

4.6 Individual prediction of the outcome

The predict () function allows prediction of the outcome for a new subject using the trained
random forest. The function requires the individual data: time-dependent predictors
in timeData and time-fixed predictors in fixedData. For a survival outcome, dynamic
predictions can be computed by fixing a prediction time (called landmark time, argument
t0) from which the prediction is made. In this case, only the history of the individual up to
this landmark time (including the longitudinal and time-fixed predictors) will be used. In
particular, if the landmark time is fixed to 0, only the information at time 0 will be considered
for predicting the outcome.

For the illustration, we only select the subjects still at risk at the landmark time of 4 years.

We build the dataframe for those subjects and we predict the individual-specific CIF using
the predict() function as follows:

id_pred <- unique(pbc2_pred$id[which(pbc2_pred$years > 4)])
pbc2_pred_tLM <- pbc2_pred[which(pbc2_pred$id %in% id_pred), ]
timeData_pred <- pbc2_pred_tLM[,

c("id”, "time", "serBilir"”, "SGOT", "albumin”, "alkaline")
]
fixedData_pred <- unique(pbc2_pred_tLM[, c("id", "age

n

, “drug“, "SEX”)])
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Figure 3: Predicted cumulative incidence function for subjects 102 and 260 from landmark time of 4
years (represented by the dashed vertical line)

pred_dyn <- predict(
object = res_dyn,
timeData = timeData_pred,
fixedData = fixedData_pred,
idvar = "id",
timeVar = "time",
to = 4

The predict () function provides several elements as described in section 3.2. In addition,
the plot() function can be used to display the CIF of the outcome (here death before
transplantation) for subjects indicated with argument id. For instance, we compute the CIF
for subjects 102 and 260 with the following code and display them in figure 3.

In the first year after the landmark time (at 4 years), we observe a rapid increase in the
risk of death for subject 260 compared to subject 102. We also notice that after 10 years from
the landmark time, subject 260 has a probability of death almost three times higher than that
of subject 102.

4.7 Predictiveness of the variables
Variable importance

The main objective of the random forest is to predict an outcome. But usually, we are
interested in identifying which predictors are the most predictive. The VIMP statistic
(Ishwaran et al., 2008) can be computed using the compute_vimp() function. This function
returns the VIMP statistic for each predictor with the $Importance element. These results
can also be displayed using the plot() function, either in absolute value by default or in
percentage with the PCT argument set to TRUE.

res_dyn_VIMP <- compute_vimp(dynforest_obj = res_dyn, seed = 123)
pl <- plot(res_dyn_VIMP, PCT = TRUE)

The VIMP results are displayed in figure 4A. The most predictive variables are serBilir,
albumin and age with the largest VIMP percentage. By removing the association between
serBilir and the event, the OOB error was increased by 30%.
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Figure 4: (A) VIMP statistic and (B) grouped-VIMP statistic displayed as a percentage of loss in OOB
error of prediction. groupl includes serBilir and SGOT; group2 includes albumin and alkaline.

In the case of correlated predictors, the predictors can be regrouped into dimensions
and the VIMP can be computed at the dimension group level with the gVIMP statistic.
Permutation is done for each variable of the group simultaneously. The gVIMP is computed
with the compute_gvimp() function in which the group argument defines the group of
predictors as a list. For instance, with two groups of predictors (named group1 and group2),
the gVIMP statistic is computed using the following code:

group <- list(
groupl = c("serBilir"”, "SGOT"),
group2 = c("albumin”, "alkaline")
)
res_dyn_gVIMP <- compute_gvimp(dynforest_obj = res_dyn, group = group, seed = 123)

p2 <- plot(res_dyn_gVIMP, PCT = TRUE)

Similar to the VIMP statistic, the gVIMP results can be displayed using the plot()
function. The figure 4B shows that group1 has the highest gVIMP percentage with 34%.

plot_grid(p1, p2, labels = c("A", "B"))

To compute the gVIMP statistic, the groups can be defined regardless of the number of
predictors. However, the comparison between the groups may be harder when group sizes
are very different.

Minimal depth

To go further into the understanding of the tree building process, the compute_vardepth()
function extracts information about the average minimal depth by feature ($min_depth), the
minimal depth for each feature and each tree ($var_node_depth), and the number of times
that the feature is used for splitting for each feature and each tree ($var_count).

Using an object from the compute_vardepth() function, the plot() function allows us
to plot the distribution of the average minimal depth across the trees. The plot_level
argument defines how the average minimal depth is plotted, by predictor or feature.

The distribution of the minimal depth level is displayed in figure 5 by predictor and
feature. Note that the minimal depth level should always be interpreted with the number of
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Figure 5: Average minimal depth level by predictor (A) and feature (B).

trees where the predictor/feature is found. Indeed, to accurately appreciate the importance
of a variable’s minimal depth, the variable has to be systematically part of the candidates
at each node. This is why we strongly advise computing the minimal depth on a random
forest with the mtry hyperparameter chosen at its maximum (as done below).

res_dyn_max <- dynforest(
timeData = timeData_train,
fixedData = fixedData_train,
timeVar = "time", idVar = "id",
timeVarModel = timeVarModel, Y =Y,
ntree = 200, mtry = 7, nodesize = 2, minsplit = 3,
cause = 2, ncores = 7, seed = 1234

depth_dyn <- compute_vardepth(dynforest_obj = res_dyn_max)
pl <- plot(depth_dyn, plot_level = "predictor”)

p2 <- plot(depth_dyn, plot_level = "feature")
plot_grid(p1, p2, labels = c("A", "B"))

In our example, we ran a random forest with the mtry hyperparameter set to its maxi-
mum (i.e., mtry = 7) and we computed the minimal depth on this random forest. We observe
that serBilir, albumin and age have the lowest minimal depth, indicating these predictors
are used to split the subjects at early stages in 200 out of 200 trees, i.e., 100% for serBilir,
age and in 199 out of 200 for albumin (figure 5A). The minimal depth level by feature (figure
5B) provides more advanced details about the tree building process. For instance, we can see
that the random effects of serBilir (indicated by bi0 and bil in the graph) are the earliest
features used on 199 and 197 out of 200 trees, respectively.

4.8 Guidelines to tune the hyperparameters

The predictive performance of the random forest strongly depends on the hyperparameters
mtry, nodesize and minsplit. They should therefore be chosen carefully. The nodesize
and minsplit hyperparameters control the tree depth. The trees need to be deep enough
to ensure that the predictions are accurate. By default, we fixed nodesize and minsplit at
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Figure 6: OOB error according to mtry hyperparameter. The optimal value was found for the maximum
value mtry =7.

the minimum, that is nodesize = 1 and minsplit = 2. However, with a large number of
individuals, the tree depth could be slightly decreased by increasing these hyperparameters
in order to reduce the computation time.

The mtry hyperparameter defines the number of predictors randomly drawn at each
node. By default, we chose mtry equal to the square root of the number of predictors as
usually recommended (Bernard et al., 2009). However, this hyperparameter should be
carefully tuned with possible values between 1 and the number of predictors. Indeed, the
predictive performance of the random forest is highly related to this hyperparameter.

In the illustration, we tuned mtry for every possible value (1 to 7). Figure 6 displays the
OOB error according to the mtry hyperparameter.

We can see in this figure large OOB error differences according to the mtry hyperpa-
rameter. In particular, we observe the worst predictive performance for mtry = 1. The
minimum OOB error value is obtained for mtry = 7 although differences from mtry =3 to
mtry = 7 seem relatively minimal. Moreover, a larger mtry value has a significant impact
on the computation time. Using 7 cores in this example, the dynforest () function has been
executed in 1.7, 2.8, 3.8, 4.7, 5.4, 6.2 and 7.2 minutes, for mtry values ranging from 1 to 7,
respectively. The number of subjects, time measurements, trees, and their depths may also
contribute to longer computation time.

5 How to use DynForest R package with a categorical outcome?

In this section, we use DynForest in a classification perspective using pbc2 data. For
illustration purposes, we want to predict death between 4 and 10 years on subjects still at
risk at 4 years from the repeated data up to 4 years. Note that this is only for illustrative
purposes as this technique does not handle the censoring of death times correctly.

5.1 Data management

For the illustration, we select patients still at risk at 4 years and we recode the event variable
with event =1 for subjects who died between 4 years and 10 years, whereas subjects with
transplantation were recoded event = 0, as were the subjects still alive. We split the subjects
into two datasets: (i) one dataset to train the random forest using 2/3 of patients; (ii) one
dataset to predict on the other 1/3 of patients.
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pbc2 <- pbc2[which(pbc2$years > 4 & pbc2$time <= 4), ]
pbc2%$event <- ifelse(pbc2$event == 2, 1, 0)
pbc2$event[which(pbc2$years > 10)] <- @

set.seed(1234)

id <- unique(pbc2$id)

id_sample <- sample(id, length(id) * 2 / 3)

id_row <- which(pbc2$id %in% id_sample)

pbc2_train <- pbc2[id_row, ]

pbc2_pred <- pbc2[-id_row, ]

We use the same strategy as in the survival context (section 4) to build the random forest,
with the same predictors and the same association for time-dependent predictors.

timeData_train <- pbc2_train[,
c(”id”, "time”, "serBilir”, "SGOT", "albumin”, "alkaline")

]
timeVarModel <- list(
serBilir = list(fixed = serBilir ~ time, random = ~time),
SGOT = list(fixed = SGOT ~ time + I(time”2), random = ~ time + I(time*2)),
albumin = list(fixed = albumin ~ time, random = ~time),
alkaline = list(fixed = alkaline ~ time, random = ~time)
)
fixedData_train <- unique(pbc2_train[, c("id", "age", "drug”, "sex")1])

With a categorical outcome, the definition of the output object is slightly different. We
should specify type="factor” to define the outcome as categorical, and the dataframe in Y
should contain only 2 columns, the variable identifier id and the outcome event.

Y <- list(
type = "factor”,
Y = unique(pbc2_train[, c("id"”, "event")])

5.2 The random forest building

We executed the dynforest () function to build the random forest with hyperparameters
mtry =7 and nodesize = 2 as follows:

res_dyn <- dynforest(
timeData = timeData_train,
fixedData = fixedData_train,
timeVar = "time", idVar = "id",
timeVarModel = timeVarModel,
mtry = 7, nodesize = 2,
Y =Y, ncores = 7, seed = 1234

5.3 Out-Of-Bag error

With a categorical outcome, the OOB prediction error is evaluated using a misclassification
criterion. This criterion can be computed with the compute_ooberror() function and the
results of the random forest can be displayed using summary ():

res_dyn_0O0B <- compute_ooberror(dynforest_obj = res_dyn)

summary (res_dyn_00B)
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#> dynforest executed for categorical outcome

#> Splitting rule: Minimize weighted within-group Shannon entropy
#> Out-of-bag error type: Missclassification

#> Leaf statistic: Majority vote

#> —mmmmmm oo

#> Input

#> Number of subjects: 150

#> Longitudinal: 4 predictor(s)

#> Numeric: 1 predictor(s)

#> Factor: 2 predictor(s)

#> —mmmmmm -
#> Tuning parameters
#> mtry: 7

#> nodesize: 2

#> ntree: 200

#> ——mmmmmmmmmeo

#> —mmm oo

#> dynforest summary

#> Average depth per tree: 5.89

#> Average number of leaves per tree: 16.81
#> Average number of subjects per leaf: 5.72
#> —mmmmmmmmmmmeo

#> Out-of-bag error based on Missclassification
#> Out-of-bag error: 0.2333

#> —mmmmmmmmmmm oo

#> Computation time

#> Number of cores used: 7

#> Time difference of 2.87888 mins

In this illustration, we built the random forest using 150 subjects because we only kept
the subjects still at risk at the landmark time at 4 years and split the dataset in 2/3 for
training and 1/3 for testing. We have on average 5.7 subjects per leaf, and the average
depth level per tree is 5.9. This random forest predicted the wrong outcome for 23% of
the subjects. The random forest performance can be optimized by choosing the mtry and
nodesize hyperparameters that minimize the OOB misclassification.

5.4 Prediction of the outcome

We can predict the probability of death between 4 and 10 years for subjects still at risk at the
landmark time at 4 years. In classification mode, the predictions are performed using the
majority vote. The prediction over the trees is thus a category of the outcome along with
the proportion of the trees that lead to this category. Predictions are computed using the
predict() function, then a dataframe can be easily built from the returning object to get the
prediction and probability of the outcome for each subject:

timeData_pred <- pbc2_pred[,
c("id", "time", "serBilir", "SGOT”, "albumin”, "alkaline")
]
fixedData_pred <- unique(pbc2_pred[, c("id", "age", "drug"”, "sex")1)
pred_dyn <- predict(
object = res_dyn,
timeData = timeData_pred,
fixedData = fixedData_pred,
idvar = "id", timeVar = "time",
to = 4
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)

head(data. frame(
pred = pred_dyn$pred_indiv,
proba = pred_dyn$pred_indiv_proba

)

#> pred proba
#> 101 0 0.945
#> 104 0 0.790
#> 106 1 0.600
#> 108 0 0.945
#> 112 1 0.575
#> 114 0 0.650

As shown in this example, some predictions are made with varying confidence from
57.5% for subject 112 to 94.5% for subject 101. We predict, for instance, no event for subject
101 with a probability of 94.5% and an event for subject 106 with a probability of 60.0%.

5.5 Predictiveness variables
Variable importance

The most predictive variables can be identified using the compute_vimp() function and
displayed using the plot() function as follows:

res_dyn_VIMP <- compute_vimp(dynforest_obj = res_dyn_00B, seed = 123)
plot(res_dyn_VIMP, PCT = TRUE)

Again, we found that the most predictive variable is serBilir. When perturbing
serBilir, the OOB prediction error was increased by 15%.

Minimal depth

The minimal depth is computed using the compute_vardepth() function and is displayed at
predictor and feature levels using the plot() function. The results are displayed in figure
7 using the random forest with maximal mtry hyperparameter value (i.e., mtry = 7) for a
better understanding.

depth_dyn <- compute_vardepth(dynforest_obj = res_dyn_0O0B)
pl <- plot(depth_dyn, plot_level = "predictor”)

p2 <- plot(depth_dyn, plot_level = "feature")
plot_grid(pl, p2, labels = c("A", "B"))

We observe that serBilir and albumin have the lowest minimal depth and are used to
split the subjects in almost all the trees (199 and 196 out of 200 trees, respectively) (figure
7A). Figure 7B provides further results. In particular, this graph shows that the random

intercept (indicated by bi0) of serBilir and albumin are the earliest predictors used to split
the subjects and are present in 192 and 191 out of 200 trees, respectively.

6 Discussion

The DynForest R package provides an easy-to-use random forests methodology for predic-
tors that may contain longitudinal variables possibly measured irregularly with error. Note
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Figure 7: Average minimal depth by predictor (A) and feature (B).

that the method can also be used without any longitudinal predictors, as in other random
forests packages.

We implemented several statistics to identify the predictive ability of each variable with
the VIMP, gVIMP and average minimal depth. For the survival outcome, compared to the
randomForestSRC R package, we considered two different stopping criteria nodesize and
minsplit to favor the deepest forests possible and avoid suboptimal splits. We designed
DynForest to be as user-friendly as possible. To achieve that, we implemented various
functions to summarize and display the results, and provided a step-by-step analysis in
survival and categorical modes. As DynForest involves mixed models to be updated
within each tree building, the program can be numerically demanding despite efforts to
speed up computations (parallel computing, history of previous estimations). A substantial
computational burden is especially expected when the sample is very large and/or a very
large set of time-dependent predictors is considered.

Several improvements could be considered in the future. We used linear mixed models
for longitudinal continuous outcomes, but alternative strategies could be considered such
as the PACE algorithm (Yao et al., 2005) based on functional data analysis. We could also
consider different natures of longitudinal predictors (e.g., binary) for which generalized
linear mixed models could be used. DynForest currently handles continuous, categorical
and survival (with possibly competing events) outcomes. But other outcomes could be
envisaged such as curves, recurrent events or interval-censored time-to-events. We leave
these perspectives for future releases.

Computational details

The results in this paper were obtained using R 4.4.1 with the DynForest 1.2.0 package on
a virtualized Windows Server 2016 Remote Desktop Server with 48GB RAM. R itself and
all packages used are available from the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/.
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LCCR: An R Package for Inference on
Latent Class Models for
Capture-Recapture Data with Covariates

by Francesco Bartolucci and Antonio Forcina

Abstract A detailed description of the R package LCCR for the analysis of capture-recapture
data relating to a closed population is provided. The data that can be analyzed consist of the
full capture history for each sample unit and may possibly include individual covariates.
The package allows the specification and estimation of latent class models in which the
distribution of the capture history conditional on the latent class and covariates follows
either a log-linear model in which bivariate interactions are allowed, or a logit model for
the conditional probability of capture at each occasion given the previous capture history.
Alternatively, the conditional distribution of each capture occasion can be formulated
by a logit model that may account for the effect of previous capture occasions. Apart
from the conditional distribution of the capture history, the covariates can also affect the
distribution of the class weights. Estimation is based on the unconditional maximum
likelihood method, suitably extended to account for the presence of covariates by including
unit-specific weights, which are commonly used in empirical likelihood methods. The
package also allows simulation of capture-recapture data from a specified model and the
computation of the profile confidence interval for the population size. For illustration, we
use a data set about meningitis cases in an Italian region.

1 Introduction

In the statistical literature on capture-recapture data relating to closed populations, see
Bohning et al. (2018) for a recent overview, several models are now available, which represent
a development of traditional models such as those illustrated in Otis et al. (1978). Here we
focus on the typical case in which, for each unit captured at least once, the full capture history
is available. In this case, the most recent model formulations can address both observed
heterogeneity, accounted for by individual covariates, and unobserved heterogeneity, using
random effects or latent variables having a continuous or discrete distribution. Moreover,
maximum likelihood estimation may be formulated in two different ways; see Sanathanan
(1972) for a fundamental contribution in this regard. The simplest method is based on
maximizing the conditional likelihood function of the observed data given that sample units
have been captured at least once. This function depends on the model parameters only,
which are estimated prior to the population size. In contrast, the unconditional maximum
likelihood (UML) method is based on a target function which is jointly maximized with
respect to the population size and model parameters.

In this paper, we focus on a class of models that may address both observed and unob-
served heterogeneity, by the inclusion of individual covariates and latent variables having a
discrete distribution, and which are described in Bartolucci and Forcina (2024); this class of
models is closely related to the one proposed in Bartolucci and Forcina (2006) and Bartolucci
and Pennoni (2007). In particular, we describe the R package LCCR (Bartolucci and Forcina,
2025) that contains functions to formulate and estimate these models. Estimation is based
on the UML method described in Bartolucci and Forcina (2024) that takes inspiration from
the formulation based on empirical likelihood (Owen, 2001), developed by Liu et al. (2017).
The functions in package LCCR may also be used to simulate data from an assumed model
and to obtain a profile confidence interval for the population size, which has interesting
properties with respect to standard confidence intervals based on the standard error for this
parameter.

In R, other packages are available to deal with capture-recapture data. Here we mention
two among the most popular packages which are available in CRAN and are related to the
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present package LCCR. Package Rcapture (Baillargeon and Rivest, 2007) provides functions
to fit log-linear models for capture-recapture data for closed and open populations, together
with tools for preliminary analysis of these data based on descriptive statistics and for model
selection and diagnostics. For closed populations, in particular, the models considered
may be specified in different ways to also include behavioral and heterogeneity effects (see
also Rivest and Baillargeon, 2007), while parameter estimation is based on a conditional
maximum likelihood method. Inference on the population size is also based on the profile
likelihood method of Cormack (1992). Another R package that may be used to fit capture-
recapture models for closed populations is BBRecapture. The models considered in the
package allow for accounting for behavioral effects in a flexible way; see also Alunni Fegatelli
and Tardella (2016). The inference on these models is based on a Bayesian approach under a
set of prior distributions on the parameters, although the package also contains functions
for UML estimation. A related package is LCMCR (Manrique-Vallier, 2023) that, by a
Markov chain Monte Carlo algorithm, fits a Bayesian non-parametric latent class model
for capture-recapture data that does not require specifying the number of classes because
it relies on a Dirichlet process, as described in Manrique-Vallier (2016). It is worth noting
that, differently from the previous packages, the LCCR package described here allows for
individual covariates conditionally on the latent class, apart from permitting the formulation
of models with a variety of effects of the type conceptualized by Otis et al. (1978).

The remainder of the paper is organized as follows. In the next section, we provide an
overview of the statistical approach in terms of model assumptions and inferential methods,
summarizing some concepts introduced in Bartolucci and Forcina (2024). Then, we describe
a set of preliminary functions of package LCCR to formulate models, simulate data from
the assumed model, and manipulate the available data. A further section is devoted to the
main R functions to estimate model parameters and the population size, also by a profile
confidence interval. The paper concludes with an example based on Italian meningitis data
and a brief summary.

2 Approach overview

Let ] denote the number of capture occasions generating configurations denoted by r =
(r1,...,rp)/, with ri=0,1j€J, where J = {1,...,]}. The set of all possible capture
configurations r apart from 0 is denoted by R, where in general 0 denotes a column vector of
zeros of a suitable dimension; when this set includes the 0 configuration, it is denoted by K.
In the present framework, the units captured at least once, whose number is denoted by n,
may be collected in I strata with each stratumi € Z,Z = {1,..., I}, having a corresponding
vector of ¢ covariates w;. We also consider the possible presence of vectors of covariates
Xi js of dimension d, which are also specific to the capture occasion. The observed capture-
recapture configurations are represented by the column vectors y; having 2/ — 1 elements
Yir ¥ € R, corresponding to the frequency of the capture configuration r in stratum i. The
sum of these frequencies is denoted by n;, with all the #; collected in the vector n. Note that,
with individual data, each vector y; has only one element equal to 1 and all other elements
equal to 0, so that n; = 1 for all 7.

2.1 Model assumptions

The approach proposed in Bartolucci and Forcina (2024) is based on a latent class (LC) model
with H classes and in which the class weights 71j,;, h € H,i € Z, with H = {1,..., H}, may
depend on the vectors of covariates w;. The class weights for the same stratum i are collected
in the column vector 7r;. Moreover, the conditional probability of the capture configuration r
given the latent class & and that the individual is in stratum 7, denoted by g, ; ., may depend
on the vectors of covariates x; ;. These probabilities are collected in the column vector gy, ;
for all » € R in lexicographical order. When also the capture-recapture configuration 0 is
included, the probability vector at issue will be denoted by 4y, ; that then has elements g, ; ,
for all r € R. Two different approaches are adopted to model this vector of probabilities:
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the first is based on a log-linear parametrization and the second is based on a recursive logit
parametrization.

Finally, we recall that the probability of capture configuration r for stratum # is equal to

Pir = 2 T0h,iqh,irs
heH

a related expression may be used to compute the overall vector of such probabilities, p; (or
p; when also the elements corresponding to » = 0 are included), on the basis of vectors gy, ;
(or §y,;) and ;.

Before describing in detail the single model components, it is worth recalling that the
LC approach to dealing with unobserved heterogeneity is rather common in the capture-
recapture literature. Among the most recent papers dealing with this approach, that by
Aleshin-Guendel et al. (2024) focuses on identifiability issues, although with reference to
simpler models than the ones presented here.

Distribution of the latent classes

For the conditional distribution of the latent classes given the covariates, we assume a
multinomial logit model based on the assumption that

1 1, h=1,
exp(ay +wiBp), heH,

i =
P T4 e exp(ag + wlpy)

where H = {2, ..., H } Using matrix notation, the overall vector of class weights may be
expressed as

_ _exp(Wip)

© Vexp(WiB)’
for a suitable design matrix W; depending on w; and where 1 denotes a column vector of
ones of a suitable dimension, while B is the vector of all previous parameters.

Conditional response probabilities

The user can choose between two ways of modeling capture probabilities conditionally on
the latent class. The first model formulation is based on a log-linear parametrization and
assumes that

exp (Ejej 'ivnj + Lieg r]'x;,jt?h,j + Z(]’] ja)eB T 1’]‘277h,j1,j2) O

Anir =
/
Luer P (Zjej Ui+ Yjeg wiXi Onj + Lijy ) Uil Wh,jl,jz)

where 7, ; are main effects, J), ; are regression coefficients for the covariates in each vector
x;j, and 7y ;, i, are bivariate interactions. Moreover, B is a set of pairs of indices of type
(j1, j2) of the bivariate interactions, which is possibly empty when these interactions are not
used and then the third sum at the numerator and denominator of equation (1) disappears.
The number of these interactions is denoted by b = |B|. Obviously, when covariates are not
included, even the second sum disappears from the previous equation. All the parameters
in (1) are collected in the vector A and suitable constraints, corresponding to the linear
form A = LA for a suitable matrix L, can be defined in order to make the model more
parsimonious. The types of constraint will be discussed in the following when the package
is illustrated.

For the overall vector of probabilities we have

exp(Mj,;A)

qni = W/ (2
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based on design matrices M, ; depending on L and having a number of rows equal to 2/ and

a number of columns equal to that of parameters in (1), which are collected in A. In practice,

M, ;A contains the terms of the exponential function at the numerator of (1) for all r € R.

The second model formulation is based on a recursive logit model according to which

exp(rj(yn1 +x;0n1)] L explri(vn; + ] 0n; + f(ri—1)mn,)]

T+ exp(rns + ¥, 901) ﬂ1+exp<vh]+x”5h]+f<r] D)’

®)

Inir =

where f(r;_1) is a function of the past capture history. In particular, we consider the case
in which th1s function is equal to I(1'rj_1 > 0), so that it is equal to 1 if the individual has
already been marked and 0 otherwise, or simply f(rj_1) = 1'rj_1. We also consider the case
f(rj—1) = rj_1, so that only the previous response variable is relevant. Also in this case, we
can assume specific constraints that will be described in the following. The parameters in (3)
are still collected in the vector A on which the constraint A = LA is assumed, so that the free
parameter vector is A.

A convenient way to express this parameterization is as
Gni = exp{AM;, ;A — Blog[1 + exp(Mj,;A)]}, 4)

where A and B are suitable matrices having dimension 2/ x (2/ — 1) and with all elements
equal to 0 or 1. Moreover, the M, ; are design matrices such that M, ;A is a vector containing
the logits corresponding to the single terms in (3).

2.2 Unconditional maximum likelihood inference

Inference on the models described above follows the approach proposed by Liu et al. (2017)
and further developed in Bartolucci and Forcina (2024). In summary, we associate a weight
T; to each stratum i under the constraint that } ;.7 7; = 1, so that the probability of not being
captured is equal to
¢ =) i
i€l

where ¢; = p; 9. All such probabilities will be collected in vector ¢.

We base inference on the log-likelihood function

I'(N+1
() = 10gr(1\§_n+)1) + (N —n)log(¢ ZZ; y;log p; +log 1),
1S

where 3 denotes the overall vector of parameters including N. In order to maximize this
function, we rely on an algorithm that is based on the following steps:

1. for fixed T and N, maximize ¢(3p) with respect to  and A. This amounts to maximizing

(1(B,A) = (N - n) log(@) + éy; log(p) ©)

with respect to these parameters, as will be clarified below;

2. for fixed B, A, and N, maximize /(1) with respect to T. This amounts to maximizing
S
f2(7) = (N = n)log(9) + Y logT,
i=1

and may be based on a simple updating rule consisting in computing

N-n .
T=g |t p diag(¢)T
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where the previous T and ¢ are included at the right-hand side; see Bartolucci and
Forcina (2024) for details;

3. for fixed B, A, and T, maximize /(1) with respect to N. This amounts to maximizing

£3(N) = log i+ (N =) log(g)

with respect to N, which may be accomplished by simple Newton-Raphson steps.

Maximization of /1 (B, A) in (5) is based on an Expectation-Maximization (EM) algorithm
(Dempster et al., 1977) that has a different implementation according to whether a log-linear
or a recursive logit parametrization is adopted, while in Bartolucci and Forcina (2024) a
Fisher-scoring maximization algorithm is suggested. The EM algorithm alternates two steps
until convergence:

* E-step: for each stratum i, the expected value of the missing frequency y; o is computed
given the current value of the parameters and the observed data as

A T
Gip = (N — n)%.
Then, all observed and predicted frequencies are split among classes, obtaining
T in i -
gh,i,r = yi,rml heH,ieZ reR,

ir

with y;9 = 79, so that N, = Vio + n; is the predicted size for this stratum at the
population level.

* M-step: the parameters f are updated by maximizing the log-likelihood

h(p) = ) fijlog mi,

i€l

where ii; is the column vector with elements 7i, ; = Y. 7 ;,, h = 1,..., H. Within this
step, the parameters A are updated by maximizing

LA) =Y ) F,ilogdn,
heH iel

where 7y, ; is the column vector with elements 7, ; , for all r € R. The derivatives of
functions /1 (B) and 7,(A) are provided in Appendix depending on the type of model
adopted.

The EM algorithm must be properly initialized in order to increase the chance of getting
the global maximum of the overall log-likelihood function. As will be illustrated in
the following, this may be based on the joint use of deterministic and random starting
values; more details are provided in Appendix. We also warn the reader that, as is well
known, the EM algorithm may require many iterations as a counterpart to its stability.

Within package LCCR, the estimation function also computes the standard errors
for the parameter estimates, including the population size N. This is based on first
obtaining the observed information matrix as minus the numerical derivative of the
score vector with respect to all model parameters, with the exception of parameters T
that are updated on the basis of the value of the other parameters and are treated as
nuisance parameters. Then, this information matrix is dealt with in the usual way to
obtain the standard errors. We refer to Bartolucci and Forcina (2024) for details about
the computation of the score.
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3 Preliminary functions in the package

The approach discussed in this paper is based on a variety of parametrizations regarding
the conditional response probabilities given the latent class. Before illustrating the functions
in package LCCR that may be used for estimation, it is then important to illustrate how to
specify the model of interest and the functions that build the design matrices used to define
the log-linear and recursive logit parametrizations in (2) and (4). We also illustrate other
functions for data simulation and for data manipulation. In this regard, it is important to
recall that we consider two possible data formats. The first is adopted with individual data,
so that n; = 1,i € Z, and then the observed capture configurations may be equivalently rep-
resented by the vectors r; specified for all individuals. The second format is with aggregated
data in which every n; may be greater than 1 and the observed capture configurations are
represented by the frequency vectors y;.

3.1 Model specification

We consider first the log-linear parametrization. The model is formulated by specifying the
constraints regarding the intercepts 1, ;, the vector of regression coefficients Jj, ;, and the
bivariate interaction parameters 7y, ;, ;,. The possible constraints are listed below.

1. Regarding the intercepts 7y, , it is possible to formulate the following assumptions:
e standard LC model with a separate intercept 1 ; for each class and capture
occasion (overall H] parameters);

¢ an LC model with the same intercept for each capture occasion, so that 7y, ; does
not depend on j (overall H parameters);

* a Rasch LC model in which v, ; is decomposed as the sum of a parameter for
each latent class, measuring the tendency to be captured, and a parameter for the
capture occasion (overall H — 1 + | parameters taking identifiability constraints
into account).

2. Regarding the regression coefficients, the following restrictions are considered:

* same regression coefficients across classes and capture occasions, that is, dj ;
does not depend either on & or j (overall d parameters, where d is the number of
covariates in xl-,]-) ;

* regression coefficients that are class specific, that is, §;,; does not depend on j
(overall dH parameters);

* regression coefficients that are occasion specific, that is, Jh,j does not depend on h
(overall d] parameters);

e free regression coefficients for each latent class and capture occasion (overall dHJ
parameters).
3. Regarding the bivariate interactions, the possible constraints are:
* same interaction for all latent classes, that is, 77y, j, ;, is constant with respect to j
and j, (overall 1 parameter);

* interactions that are latent class specific, that is, 77, ;, ;, depends only on & (overall
H parameters);

¢ interactions that are specific for each element in B, that is, Mh,ju jo does not depend
on h (overall b parameters);

e free interactions 77y, j, j, (overall bH parameters).

The function that builds matrices M, ; in (2) depending on the specified model is
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design_matrix_loglin(J, H = 1, main = c("LC", "same”, "Rasch”), X = NULL,
free_cov = c("no", "class"”, "resp”, "both"),
biv = NULL, free_biv = c("no"”, "class”, "int", "both"))

with the following input arguments:

¢ J:number of capture occasions;
* H: number of latent classes;

* main to specify the constraints on the intercepts with possible values: LC for the LC
specification; same for the same effect for each capture occasion; and Rasch for additive
effect of class and capture occasion;

* X:array containing covariate vectors x;, ; with dimension S x d X J;

* free_cov to specify the constraints on the regression parameters &, ; with possible
values: no for the constant effect with respect to class and capture occasion; class for
free effects with respect to the class; resp for free effects with respect to the capture
occasion; both for free effect with respect to the class and capture occasion;

* biv: matrix of dimension b x 2 containing the list of bivariate interactions;

* free_biv to specify the constraint on the interaction parameters J, j, ;, with possible
values: no for constant effect with respect to the class and interaction; class for free
effect with respect to the class; int for free effect with respect to interaction; and both
for free effects with respect to the class and interaction.

Just to clarify the use of this function, suppose that there are 3 capture occasions and a
single group covariate equal to 0 and 1. Then, by the following commands we can obtain
the design matrices for an LC model with two classes and the effect of the covariate:

X
M

array(c(e,1),c(2,1,3))
design_matrix_loglin(3,2,X=X)$M

In this way we obtain an array M having dimension 8 X 7 x 2 x 2, where 8 is the number
of response configurations, 7 is the number of parameters involved in the conditional
distribution of the capture configurations given the latent class, and 2 is both the number of
strata and classes.

Regarding the logit recursive model parameters in (3), we may assume similar constraints
as above for the parameters Jy, ; and 7, ;. Regarding these parameters, we may assume:

* the same parameter for all latent classes, that is, 6, ; is constant with respect to # and j
(overall d parameters);

* lagged effect that is latent class specific, that is, 77,,; is independent of j (overall H
parameters);

* lagged effect that is capture occasion specific, that is, #,; = #; depends only on j
(overall | — 1 parameters);

* free lagged effect parameters 77;, ; (overall H(] — 1) parameters).

In this way, we also properly account for behavioral effects; see also Alunni Fegatelli and
Tardella (2016).

Regarding the covariates, it is important to note that when there is only one covariate
affecting the class weights, the I values of this covariate in the input argument X can be given
as a vector, a matrix, or an array, whereas when there are more covariates X can be a matrix
or an array. When X is a vector rather than an array, then it is interpreted as containing the
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values of a single covariate that are replicated for all capture occasions. Similarly, when X is
a matrix of dimension I x d, then its rows are replicated for all capture occasions.

The function in the package that builds the design matrices A, B, and M}, ; used in (4) is
the following:

design_matrix_logit(J, H = 1, main = c("LC", "same"”, "Rasch"”), X = NULL,
free_cov = c("no", "class", "resp”, "both"),
flag = c("no”, "prev”, "sum", "atleast"),
free_flag = c("no"”, "class", "resp”, "both"))

with the same input arguments as function design_matrix_loglin() defined above, apart
from the following:

* flag to specify the dependence on the lagged responses: no for absence of dependence;
prev for dependence on the previous response; sum for dependence on the sum of the
previous response variables; and atleast to introduce a dummy variable equal to 1 if
there is at least one capture in the past;

* free_flag to specify the constraints on the parameters for the lagged responses with
values: no for using only one parameter; class when these parameters are free with
respect to the latent class; resp when they are free with respect to the capture occasion;
and both when they are free with respect to the class and capture occasion.

3.2 Simulation

The following function may be used to simulate data from one of the models formulated in
the section about model assumptions:

simLCCR(H, J, be, la, N, model = c("loglin”, "logit"), Wc = NULL, Xc = NULL, biv = NULL,

flag = c("no”, "prev”, "sum”, "atleast"),
main = c("LC", "same", "Rasch"),

free_cov = c("no", "class"”, "resp”, "both"),
free_biv = c("no", "class", "int", "both"),

free_flag = c("no", "class"”, "resp”, "both"))
The input arguments are the following:

¢ H: number of latent classes;

* J:number of capture occasions;

* be: parameter vector on the class weights;

* la: parameter vector on the conditional response probabilities;

* N: population size (with individual data) or vector of the size of every stratum in the
population (with aggregated data);

¢ model: to specify the model formulation with options loglin or logit;

* Wc: matrix with rows corresponding to the vectors w; for all sampled individuals;

* Xc: array of covariates in x;, ; organized as in the input of functions design_matrix_loglin()

and design_matrix_logit() for all sampled individuals;

* biv,main, free_cov, free_biv: see the same arguments of function design_matrix_loglin()

when the log-linear parametrization is adopted;

e flag,main, free_cov, free_flag: see the same arguments of function design_matrix_logit()

when the recursive logit parametrization is adopted.
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3.3 Data manipulation

Typically, individual data are available in the form of vectors r; collected in the matrix R. To
use the estimation function that will be illustrated below, it is then necessary to transform
each of these capture configurations into a frequency vector of type y; having dimension 2/.
For this aim, with package LCCR it is possible to use function

freg_data(R, count=rep(1,nrow(R)))

that accepts as input the matrix of individual capture configurations and, as an optional
argument, a vector of counts for each of these configurations, and provides the matrix of the
corresponding frequencies.

Furthermore, it may be convenient to transform individual data into aggregated data,
and for this aim it is possible to use function

aggr_data(Y,W=NULL,X=NULL)
with the following input arguments:

* Y: matrix of capture configurations in frequency format;
* W: matrix of covariates affecting the class weights;

* X:array of covariates affecting the conditional response probabilities given the latent
class.

The same arguments are provided in output in aggregated form and called as Ya, Wa, and

Xa.

4 Model estimation within the package

4.1 Point estimation
Within the package, the estimation function is

estLCCR(Y, H, model = c("loglin", "logit"), W= NULL, X = NULL, N = NULL, biv = NULL,

flag = c("no”, "prev”, "sum”, "atleast"),
main = c("LC", "same", "Rasch"),

free_cov = c("no", "class"”, "resp”, "both"),
free_biv = c¢("no", "class”, "int", "both"),
free_flag = c("no", "class"”, "resp”, "both"),

NO = NULL, be@® = NULL, 1a@ = NULL, control = list(),
verb = TRUE, init_rand = FALSE, se_out = FALSE)

The main input arguments are:

* Y: matrix of dimension I x (2/ — 1) with rows corresponding to the observed vectors
Yis
* H:number of latent classes;

e model: to specify the type of parametrization of the capture probabilities given the
latent class;

* W: matrix with rows corresponding to the vectors w;;

* X:array of covariates in xy, ; organized as in the input of functions design_matrix_loglin()
and design_matrix_logit();

* N: fixed population size;
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* biv,main, free_cov, free_biv: see the same arguments of function design_matrix_loglin()
when the log-linear parametrization is adopted;

* flag,main, free_cov, free_flag: see the same arguments of function design_matrix_logit()
when the recursive logit parametrization is adopted.

The main output arguments are:

* be: estimate of the parameters in f;

* la: estimate of the parameters in A;

¢ lk: final log-likelihood;

* N: estimate of N;

e AIC:value of the Akaike Information Criterion (AIC) for model selection Akaike (1973);

* BIC: value of the Bayesian Information Criterion (BIC) for model selection Schwarz
(1978);

* tauv: estimate of the vector of weights of each stratum;
* phiv: estimate of the vector probabilities of being never captured for each stratum;
* Piv: matrix of the probabilities 77, ; of the latent classes for each stratum;

* Q: array of the conditional probabilities g, ; , of the capture configurations given each
latent class and stratum;

¢ seN: standard error for the estimate of N;
* sebe: vector of standard errors for the estimate of f3;

e sela: vector of standard errors for the estimate of A.

4.2 Confidence interval on N

One interesting feature of package LCCR is the possibility to obtain a profile confidence
interval for the population size that is based on the asymptotic results proposed in Liu et al.
(2017) and Bartolucci and Forcina (2024). For this aim, it is possible to use the method

confint(object, parm = list(), level = 0.95, ...)
where:

* object: output from function estLCCR;

* parm: a list containing control arguments for the step length of the N values, range of
N values in terms of distance of the log-likelihood from its maximum, and maximum
value of this grid as a multiple of the estimate of this parameter;

¢ level: required confidence level.

The output of this function can be suitably represented as will be shown in the following
section about an illustrative example. We warn the user that, given the approach followed
to obtain confidence intervals, this function could require a long computing time. However,
by suitably setting the arguments in parm, it is possible to speed up the process to obtain the
confidence interval.
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5 Example about victims of trafficking

For the first illustration of the package, which is more focused on data preparation, we
make use of data taken from Silverman (2020) about victims of trafficking in the UK in 2013;
see also Silverman (2014) for details. Five lists are considered: LA (local authorities); NG
(non-government organizations); PFNCA (police forces and National Crime Agency); GO
(government organizations); GP (general public).

In the format reporting the frequency of every observed capture configuration r, the data
can be entered as follows:

UKdat5 = data.frame(LA = c(1, 0, 0, @, @, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1),
NG =c(o, 1,0,0,0, 1,0,0,1,1,1,0,0,0,1,1,1, 1),
PFNCA = c(@, ©, 1, 0, 0, 0, 1,0, 1, 0,0, 1, 1, 0, 1, 0, 1, 1),
GO =c(0, 0,0, 1,0,0,0, 1,0, 1,0,1,0, 1,0, 1,1, 1),
GP =c(0,0,0,0,1,0,0,0,001,0,1,1,0, 0,0, 0),
count = c(54, 463, 995, 695, 316, 15, 19, 3, 62, 19,

1, 76, 11, 8, 1, 1, 4, 1))

Note that the resulting data frame has 18 rows, corresponding to the number of distinct
configurations, and 6 columns, as the last column is that of the frequencies. In order to
convert these data into the format used in package LCCR, based on vectors of type y; having
as elements the frequencies of all possible capture configurations for stratum i, we can
proceed as follows:

# load package
require(LCCR)

# prepare data
Y = freq_data(as.matrix(UKdat5[,1:5]1),UKdat5[,6])
Ya = aggr_data(Y)$Ya

In this way we obtain the following matrix of a single row, as there is only one stratum,
and 32 columns equal to the number of capture configurations, that is, 2°:

> Ya
(,11C0,21C,31C,41C,51C,61LC,71¢C,81LC,91¢LC,1e1¢(,111¢LC,12]1¢[,131¢L[,141¢L,15]1¢L,16]
(1,1 @ 316 695 8 995 11 76 0 463 1 19 0 62 0 4 0
[,b171 C,18]1 [,19]1 [,20]1 [,211 [,22]1[,23]1[,24]11[,25]11C[,26][,27]11L[,28]L,29]7L,30]
(1,1 54 0 3 0 19 0 0 0 15 0 1 0 1 0
[,311 [,32]
[1,] 1 0

These configurations are arranged in lexicographical order, and then, for instance, 316 is the
frequency of the second configuration equal to r = (0,0,0,0,1)’.

To fit the simple independence model M; on these data, we can use the following
command:

estl = estLCCR(Ya,H=1,se_out=TRUE)
obtaining the following output:
> summary(est1)

Estimation of latent class models for capture-recapture data

Call:
estLCCR(Y = Ya, H = 1, se_out = TRUE)
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Available objects:

[1] "beta” "lambda” "1k" "N" "np" "AIC"
[71 "BIC" "M" "tauv"” "phiv" "Piv" "Q"
[13] "1k1" "1k2" "1k3" "1k4" "call” "y
[19] "H" "model” "W "X "biv" "flag”
[25] "main” "free_cov"” "free_biv" "free_flag" "se_out” "seN"

[31] "selambda”

LogLik np AIC BIC
14278.46 5.00 -28546.93 -28517.34

Population size:
est. s.e.
N 13435.07 805.6171

Parameters affecting the conditional capture probabilities given the latent class:

est. s.e. t-test p-value
mainl -4.955289 0.11983134 -41.35219
main2 -3.122125 0.07590029 -41.13456
main3 -2.350668 0.07246115 -32.44038
main4 -2.750334 0.07340456 -37.46816
main5 -3.663166 0.08267378 -44.30868

S OO0

The output contains the maximum likelihood at convergence, number of parameters, and
AIC and BIC values. Moreover, it reports the estimate of the population size, with standard
error, and each probability of capture on the logit scale together with other statistics.

To estimate, on the same data, a simple model with two classes, it is possible to use the
command

est2 = estLCCR(Ya,H=2,se_out=TRUE)

The output of the function can be obtained by the method summary () as usual. This output
will be illustrated in more detail in the following example about meningitis data. Here, it is
important to note that the EM algorithm requires a large number of iterations for both the
independence model and the LC model with 2 classes, equal to 134 and 3,926, respectively,
with the default tolerance level. However, the computing time is not excessive, being less
than 1 second for the first model and 1 minute for the second. Finally, it is also possible to
estimate these models using as input the matrix Y having dimension 18 and provided by
function freq_data() as shown above. In this case, however, the computing time is slightly
higher.

6 Example based on meningitis data

In order to illustrate the use of the package, we also describe an application about meningitis
data collected in an Italian region from 2001 to 2005; we refer to Rossi et al. (2009) for
a detailed description and some analyses of the data. Further analyses are reported in
Bartolucci and Forcina (2018) and Bartolucci and Forcina (2024) by latent class models for
capture-recapture data.

The data are collected in the file ‘meningits_data.rda’ that we make available through the
journal site. The capture occasions are four corresponding to: HSS (hospital surveillance of
bacterial meningitis); NDS (mandatory infectious diseases notifications); LIS (the laboratory
information system); and HIS (hospital information system). There are also some individual
covariates: Age (binary variable equal to 1 for up to 1 year old and 0 otherwise); Aez
(binary variable for the recorded type of bacteria, which is equal to 1 for Pneumococcus,
Meningococcus, or Tuberculosis and 0 otherwise); Year (year of first appearance in a list).
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The overall sample size is n = 944 with the overall number of captures by list, and also by
covariate, shown in Table 1.

HSS NDS LIS HIS samplesize

overall 355 644 178 826 944
Age=0 261 527 130 689 785
Age=1 94 117 48 137 159
Aez=0 118 290 15 437 516
Aez=1 237 354 163 389 428
Year=2001 46 113 50 149 175
Year=2002 68 112 37 154 175
Year=2003 58 130 34 152 179
Year=2004 66 120 24 182 191
Year=2005 117 169 33 189 224

Table 1: Frequency of captures by list and covariate.

6.1 Analysis without covariates

In the following we show the code to organize the data and estimate the model without
covariates from 1 to 3 latent classes, summarizing the main results in an output matrix:

# load package
require(LCCR)

# load data
load("meningits_data.rda”)
Y = freq_data(D[,1:4])

# estimate with model with 1 to 3 latent classes
estl = estLCCR(Y,H=1,se_out=TRUE)
est2 = estLCCR(Y,H=2,se_out=TRUE)
est3 = estLCCR(Y,H=3,se_out=TRUE)

# table of results

Tab = rbind(c(k=1,Loglik=est1$1lk,np=est1$np,BIC=est1$BIC,N=est1$N),
c(2,est2%lk,est2%$np,est2$BIC,est2$N),
c(3,est3%1k,est3$np,est3$BIC,est3$N))

The output matrix, reporting for each model the value of the maximum log-likelihood, the
number of free parameters, the value of BIC, and the estimate of N is as follows:

> Tab

k Loglik np BIC N
[1,] 1 -2948.504 4 5924.409 968.0993
[2,] 2 -2759.193 9 5580.037 1089.0081
[3,] 3 -2754.930 14 5605.762 1234.9012

According to the BIC, we select the model with k = 2 latent classes. On the other hand,
the model with a greater number of classes might not be identifiable. In order to check
for the presence of different local maxima, we can also repeat the estimation starting from
different parameter values that are randomly generated. For example, with 2 latent classes,
we can use the following code:
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# check starting values

est2r = est2

for(it in 1:5){
tmp = estLCCR(Y,H=2,init_rand=TRUE)
if(est2r$lk>est2$1k) est2r = tmp

}

According to this analysis, it emerges that the found values of the maximum log-likelihood
starting with the deterministic initialization rule are not surpassed by those found starting
with the random initialization rule.

In order to obtain a profile confidence interval for the population size, we can simply
use command CI2 = confint(est2) and then we can show the parameter estimates and
the confidence interval by command summary () obtaining the output below. The confidence
interval can also be represented by command plot(CI2), obtaining the plot in Figure 1. The
estimation output is as follows:

> summary(est2)
Estimation of latent class models for capture-recapture data

Call:
estLCCR(Y = Y, H = 2, se_out = TRUE)

Available objects:

[1] "beta” "lambda” "1k" "N" "np" "AIC"
[7] "BIC" "M" "tauv” "phiv” "Piv" "Q"
[13] "1k1" "1k2" "1k3" "1k4" "call” "y
[19] "H" "model” "W "X "biv" "flag"
[25] "main” "free_cov" "free_biv" "free_flag" "se_out” "seN"
[31] "sebeta” "selambda”
LoglLik np AIC BIC

-2759.193 9.000 5536.386 5580.037

Population size:
est. s.e.
N 1089.005 32.57444

Parameters affecting the class weights:
est. s.e. t-test p-value
class2.int -0.3655014 ©.1029695 -3.549609 0.0003858038

Parameters affecting the conditional capture probabilities given the latent class:
est. s.e. t-test p-value
class1.mainl -3.7318944 0.4999153 -7.465054 8.326673e-14
class1.main2 -0.7065195 0.1887566 -3.743019 1.818222e-04
class1.main3 -3.1788471 0.2634316 -12.067068 0.000000e+00
class1.main4 ©0.5757279 ©0.1988735  2.894946 3.792242e-03
class2.mainl 1.1642476 0.2489039 4.677498 2.903962e-06
class2.main2 3.3943767 0.4367170 7.772486 7.771561e-15
class2.main3 -0.6569705 ©0.1209995 -5.429531 5.650224e-08
class2.main4 2.5736757 ©0.2194706 11.726744 0.000000e+00

[ NG I G I I S BN

> summary (CI2)

Confidence interval for the population size based on latent class models
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Figure 1: Confidence interval for the latent class model with k = 2 classes without covariates.

for capture-recapture data

Call:
confint.estLCCR(object = est2, parm = 0.5)

Available objects:
[1] Ilconf‘ll HNVII lllkvll lllevelll HNhH lllkhll Hlk‘l n 1I1k2” ”C&ll”

Level:
[1] @.95

Interval limits:
[1] 1038.005 1181.005

Comparing the parameter estimates on the logit scale for the first class (named as class1.main1
to class1.main4) with those for the second class (named as class2.main1 to class2.main4),
we note that the latter corresponds to a lower tendency to be captured for all lists. More-
over, considering the intercept of the logit model for the class weights, which is posi-
tive, the second class has a higher probability than the first that may be obtained as
exp(est2$be)/(1+exp(est2$be)) and is equal to 0.590. Regarding the estimation of the
population size, we have a point estimate of 1,089 with a 95% profile confidence interval
equal to (1,037, 1,181).

6.2 Analysis with covariates

In order to illustrate the package for the data with covariates, we consider the model
selected for the same data in Bartolucci and Forcina (2018) and also considered in Bartolucci
and Forcina (2024). The model, based again on k = 2 latent classes, follows a log-linear
formulation for the conditional distribution of the capture history given the latent class,
with (i) main effects depending on the covariate Year (centered on 2003) in a way that varies
with the latent class and the specific list and (ii) bivariate interactions between lists (1,2) and
(2,4) that do not depend on the latent class. Moreover, the class weights are affected by the
covariates Age and Aez.

The following commands are used to prepare the data, which are suitably aggregated

so as to speed up the routines, and to estimate the model and build the profile confidence
interval for the population size.
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# build covariate matrices

Age = D[, 5]
Aez = D[, 6]
Year = D[,7]

W = cbind(Age,Aez)

X = Year-2003

agg = aggr_data(Y,W=W, X=X)

Wa = agg$Wa; Xa = cbind(agg$Xa); Ya = agg$Ya
colnames(Xa) = "Year"

# estimate model with covariates

biv = rbind(c(1,2),c(2,4))

est2cov = estLCCR(Ya,model ="loglin" H=2,W=Wa,X=Xa,biv=biv,free_cov="both",
free_biv="int", se_out=TRUE)

# estimate model without covariates and aggregated data
est2aggr = estLCCR(Ya,H=2)

# build confidence interval
CI2cov = confint(est2cov,parm=1ist(step=0.5))

In this example, data aggregation is effective because there are I = 20 distinct strata despite
an overall sample size close to one thousand. Also note that to estimate the model of interest,
apart from using arguments W and X, we use argument biv that contains the list of the
bivariate interactions, free_cov="both" to require that the effect of the covariate Year on
the main log-linear parameters varies with list and the latent class, and free_biv="int"
to require that the two interactions are distinct. Finally, the model without covariates
is estimated on the aggregated data in order to make a fair comparison in terms of log-
likelihood and BIC.

To better understand the model structure, for the model with 2 classes it is also possible
to obtain the design matrices used to parametrize the conditional distribution of the capture
configurations given the covariates and the latent class as follows:

2, X = Xa, biv = biv, free_cov= "both",
"int")$M

M = design_matrix_loglin(J = 4, H
free_biv

obtaining an array of dimension 16 x 18 x 2, where 16 is the number of capture configura-
tions, 18 is the number of parameters, 2 is the number of classes, and 20 is the number of
strata. Note that these design matrices are directly provided among the output arguments
of the estimation function.

By the usual command summary (), applied to the previous output objects, it is possible
to obtain the main estimation results; by command plot(est2cov) it is also possible to
represent the profile log-likelihood function with respect to N, which is reported in Figure 2.

> summary(est2cov)

Estimation of latent class models for capture-recapture data

Call:

estLCCR(Y = Ya, H = 2, model = "loglin", W = Wa, X = Xa, biv = biv,

free_cov = "both", free_biv = "int", se_out = TRUE)

Available objects:

[-I:l nbetan nlambdau nlkn nNn unpu HAICH
[7] IIBICH HMH utauvu nphivu nPiVH HQH
[13] nlk—ln nlkzn nlk3n nlk4n llcalln nYll
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[19:] IIH” Ilmodelll IIWH IIX” ”bivll Hf’lag”
[25] "main” "free_cov"” "free_biv"” "free_flag" "se_out” "seN"
[31] "sebeta” "selambda”

LoglLik np AIC BIC

1298.696 21.000 -2555.392 -2453.540

Population size:
est. s.e.
N 1358.617 164.8137

Parameters affecting the class weights:

est. s.e. t-test p-value
class2.int -3.396401 0.3559948 -9.540592 0.000000000
class2.Age 1.196301 0.4632977 2.582143 0.009818901
class2.Aez 3.881855 0.3764615 10.311426 0.000000000

Parameters affecting the conditional capture probabilities given the latent class:
est. s.e. t-test p-value

class1.mainl -3.97671435 0.33631698 -11.8243045 0.000000e+00

class1.main2 -1.88968786 0.37771864 -5.0028981 5.647479%e-07

class1.main3 -7.63620950 4.54854883 -1.6788232 9.318650e-02

class1.main4 -0.50990995 0.38807709 -1.3139398 1.888665e-01

class2.maini -1.70265877 0.32081373 -5.3073127 1.112532e-07

class2.main2 -0.64344325 0.44667633 -1.4405134 1.497222e-01

class2.main3 -0.10490127 0.16023619 -0.6546665 5.126825e-01

class2.main4 1.27829624 0.37543619  3.4048296 6.620536e-04

class1.respl.Year ©.47673522 ©.12227804  3.8987805 9.667837e-05

class1.resp2.Year 0.09851558 0.07392841 1.3325809 1.826694e-01

classl.resp3.Year -1.38492913 2.08737446 -0.6634790 5.070238e-01

classl.resp4.Year 0.17408169 0 7

class2.respl.Year ©.31957031 @ 3

class2.resp2.Year ©.02815591 @ 8

class2.resp3.Year -0.16880741 0@ 5

class2.resp4.Year 0.09128870 0 6

bivi-2 2.82970526 0 0

biv2-4 1.51790409 @ 3

.09860628  1.7654219
.10915597  2.9276486
.15996829  ©.1760093
.08695542 -1.9413098
.17884609  ©.5104316
.29756256  9.5096146
.36899015 4.1136710

.749288e-02
.415358e-03
.602866e-01
.222072e-02
.097491e-01
.000000e+00
.894163e-05

> summary (CI2cov)

Confidence interval for the population size based on latent class models
for capture-recapture data

Call:
confint.estLCCR(object = est2cov, parm = 0.5)

Available objects:
[1] Ilconfll HNVH Hlkvlﬁ lllevelll HNhII Illkh“ Hlk1 n “1k2” Ilcallll

Level:
[1] @0.95

Interval limits:
[1] 1127.617 1827.117

From this output, first of all we note that the BIC of the model with covariates is -2,553.5,
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Figure 2: Confidence interval for the latent class model with k = 2 classes without covariates.

a value much lower than that of the model without covariates, which is equal to -2,336.7.
Moreover, the estimated population size is equal to 1,359 with a 95% confidence interval
equal to (1,128, 1,827).

Appendix

Score vector and information matrix

The score vector and the information matrix for 7;(B) are

51B) = ) W/(# — Niy),
i€l
Z Ni"vi/ﬂ(”i)"vix
i€l

s
=
I

where, in general, Q(v) = diag(v) — vo’ for any probability vector v.

Under the log-linear parametrization, the score vector and information matrix for 7 ()
are

$280) = ) My (Fni — iiqn,i),
i€l

E(A) =Y iy iMy ,Q(qp) My,
icz

Under the recursive logit parametrization, first of all note that on the basis of expression (4)
we can reformulate ¢, (B) as

0O(B) =Y. Y. 9, {AM) A — Blog[1 + exp(My,;A)]}.
heH ieZ

Consequently, we have the following expression for the score vector and observed informa-
tion matrix

$2(8) = ) Y My [A"—diag(ppi)B |7,
heH ieZ

E(B) = Y. Y M, diag(py,)diag(1— py)diag(B'ty;) M,
heHiel
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where
py,i = diag[1+ exp(Mj,;A)] " exp(Mj,;A).

Initialization of the EM algorithm

As already mentioned, the EM algorithm can be initialized by a deterministic rule, based on
the observed data, or a random rule. These rules consist in choosing the starting values as
follows:

e N is initialized as 1.25n with the deterministic rule and as un, where u ~ Unif(0,1),
with the random rule;

e with the deterministic rule, A is initialized as a vector of zeros of suitable dimension
when H = 1 and by a suitable transformation of the estimates obtained under this
model when H > 1; with the random rule, the elements of the initial A are drawn from
a standard Normal distribution;

* B isinitialized from a vector of zeros of suitable dimension with the deterministic rule
and as a vector of random numbers drawn from a standard Normal distribution with
the random rule.
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spheresmooth: An R Package for
Penalized Piecewise Geodesic Curve
Fitting on a Sphere

by Jae-Hwan Jhong, Seyoung Lee, Ja-Yong Koo, and Kwan-Young Bak

Abstract This paper introduces an R package spheresmooth, which implements a penalized
piecewise geodesic curve fitting method on a sphere. Spherical data observed over a contin-
uum arise frequently in various fields including cardiology, computer vision, physiology,
and geophysics. We propose an adaptive smoothing method by extending the linear spline
approach to spherical data. Penalization based on differences of velocity vectors endows
sparsity among control points of the spherical curve, which enables data-adaptive curve
fitting. The proposed method is implemented with a Riemannian block coordinate descent
algorithm. Illustrations on Triassic and Jurassic polar wander data and tropical cyclone
data demonstrate practicality of the proposed method and the associated spheresmooth
package.

1 Introduction

This paper aims to introduce an R package spheresmooth, which implements a penalization
method for fitting piecewise geodesic curves to spherical data. Spherical data observed
over a continuum arise frequently in various fields including cardiology, computer vision,
physiology, and geophysics; see, for example, Gould (1969), Jupp and Kent (1987), Kume
et al. (2007), Su et al. (2012), Thompson and Clark (1982), and the references therein. We
propose an adaptive curve fitting method based on sparsity-inducing penalization, and
develop an R package to enable researchers from various fields to easily utilize it for their
applications.

Smoothing methods for data observed on a manifold can be broadly categorized into
two categories. The methods falling into the first category utilize conventional techniques
applied to Euclidean data after mapping the data to the tangent space. Examples include the
smoothing spline method based on the rolling and wrapping procedures introduced by Jupp
and Kent (1987) and related works employing parallel transport as in Kume et al. (2007) and
Kim et al. (2021). The second category involves performing intrinsic optimization on the
manifold without explicitly mapping the data to a plane. Approaches based on variational
calculus with regularizing constraints fall into this category; for details, refer to Camarinha
et al. (1995), Noakes et al. (1989), Samir et al. (2012), Su et al. (2012), Machado et al. (2006).
More recently, Bak et al. (2023) introduced an intrinsic curve fitting method based on the
generalized Bézier curve and a local penalization scheme on the unit sphere.

The penalized intrinsic Bézier curve fitting method proposed by Bak et al. (2023) has
the advantage of adaptively detecting local trends in the data. Furthermore, it takes a
form that is easily understandable for researchers in applied fields, akin to an extension of
polynomial regression models to the sphere. Spherical spline smoothing methods provide
a natural extension of Bézier curve-based approaches. By utilizing spherical splines, one
can flexibly model local changes in the data without compromising the overall smoothness.
Developing intrinsic spline methods for smoothing spherical data is expected to facilitate the
easy understanding and analysis of intricate and dynamically changing patterns of spherical
data.

Spherical coordinates and the analysis of spherical data are also highly relevant in
astronomy. Many methods and tools for spherical data analysis have been developed
and motivated by astronomical observations, such as the Cosmic Microwave Background
(CMB) maps produced by the Wilkinson Microwave Anisotropy Probe (WMAP) and Planck
satellites. The popular HEALPix (Hierarchical Equal Area isoLatitude Pixelization) scheme
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was specifically developed by astronomers for the analysis of CMB data from WMAP
(Gorski et al., 2005). Such tools have been foundational in handling all-sky observations and
have inspired further developments in the field of spherical data analysis. The methods
introduced in this paper can be viewed as contributing to this broader context of spherical
data applications in fields including astronomy.

In this paper, we consider an intrinsic curve fitting method based on the piecewise
geodesic curve and a local penalization scheme on a sphere. The proposed method can be
understood as an extension of the linear spline method for spherical data. The performance
of the spline-type method is determined by the number and location of the control points.
We develop a penalization scheme based on the velocity of the curve to ensure sparsity
among the corresponding control points. This allows for the data-adaptive selection of
the control points, which guarantees that the curve fits the given spherical data well and
identifies the change points on the sphere. The proposed method is implemented with a
Riemannian block coordinate descent algorithm.

To the best of our knowledge, no available R packages offer methods for fitting a smooth
path to a given set of noisy spherical data observed at known times. We introduce the
spheresmooth package that implements the proposed piecewise geodesic curve fitting
method. This package includes a main function for smoothing spherical data along with
several auxiliary functions necessary for data processing. The usages of these functions
are explained with examples in detail. Piecewise geodesic curves can be understood as
piecewise linear methods on manifolds, making them intuitive and easily applicable for
researchers in various fields. Moreover, all processes including the selection of complexity
parameters are automatically handled so that users can readily apply the method to data
even in exploratory stages. To illustrate the practical utility of the spheresmooth package,
we provide examples of applying the proposed methodology to Triassic and Jurassic polar
wander data for North America (Kent and Irving, 2010) and tropical cyclone data provided
by the Regional Specialized Meteorological Center (RSMC) Tokyo Typhoon Center.

Visualization of the generated curve requires loading sphereplot (Robotham, 2022),
which includes the packages rgl (Murdoch and Adler, 2024). These packages are used for
generating and manipulating 3D graphics for spherical data. To visualize the fitted curve
on a map, we load the packages rworldmap (South, 2011) and ggplot2 (Wickham, 2016).
The sf package provides a standardized and efficient way to handle spatial data using
simple features, making it easy to perform geographic operations and analyses within the R
environment.

library(spheresmooth)
library(sphereplot)
library(rworldmap)
library(ggplot2)
library(sf)

The remainder of this paper is organized as follows. Section 2 collects mathematical
preliminaries related to the spherical geometry. Section 3 defines the penalized piecewise
curve fitting method and summarizes the implementation scheme based on the Riemannian
block coordinate descent algorithm. Section 4 outlines the structure and usage of the
spheresmooth package, followed by practical application examples in Section 5. Section 6
provides a summary of the results presented in this paper.

2 Preliminaries

This section reviews some basic concepts of Riemannian geometry used in this paper. One
may refer to, for example, do Carmo (1976) and do Carmo (1992) for a detailed overview of
the relevant mathematical backgrounds.
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Figure 1: Illustration of geodesic segment between u and v and spherical distance.

Spherical distance and geodesic segment

In this work, the term ‘geodesic segment’ is equivalent to a ‘great circle segment’ on a
sphere. This distinction is made due to differences in terminology preferences across various
academic disciplines.
Let u and v be points on the unit sphere and 6,0 < 8 < 7, be the angle formed by u and
v relative to the origin of the sphere. Define the spherical distance between two points u
and v as
d(u,v) = arccos(u ' v).

Observe d(u,v) = 6 on the unit sphere.

Let S be the two-dimensional unit sphere embedded in R3. A geodesic segment & : [ =
[0,1] — S between two points u and v on S is defined as

sin((1 —£)0) sin(t0)

sin(6) et sin(6) v tel

a(t;u,v) =

where 6 = d(u,v). Figure 1 illustrates a geodesic segment between u and v on S in the red
line. Here, the length of the red line represents the spherical distance between u and v.

Piecewise geodesic curve

The methodology proposed in this paper aims to fit a linear spherical spline or piecewise
geodesic curve to spherical data observed over time in a data-adaptive way. To define
a piecewise geodesic curve, the time interval needs to be divided into subintervals, and
corresponding control points on the sphere should be determined. Given a time interval I,
we consider a sequence of knots 9 < 71 < T» < - -+ < 7; that defines subintervals

Iy=[wmn) h=[tmwn), - , I1=[1-1T7).

Let & = (Co,...,&y) be a set of control points in S corresponding to the knot sequence
7, ..., Tj. The associated piecewise geodesic (linear spherical spline) curve is defined as

]

J-1 t—1
V(tigl,.. .rf:]) = Z o (1_Tj;é‘j,§j+1> ind(t S 1]-),

=0 \ U+

where ind(-) denotes the indicator function. The sequence of points on the sphere need
not necessarily correspond to different time instances. Rather, they represent a collection
of spatial locations that may or may not be observed sequentially in time. This is further
discussed in Section 4.
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Figure 2: Illustration of (left) Riemannian gradient and (right) exponential map.

Riemannian gradient and exponential map

A blockwise gradient descent algorithm is employed as the algorithm for implementing the
spherical smoothing method. The key elements in deriving the algorithm are the Riemannian
gradient and the exponential map. The Riemannian gradient is a projection of the Euclidean
gradient onto the tangent space. Define the Euclidean gradient as

afl(x)(x)] for xe5, j<]J
Xj

oxh(x) =

where h : S — R and # is a differentiable extension of & to R3. Denote P, = [ — xx ' asa

projection operation onto the tangent space at x. The Riemannian gradient of & with respect
to x is defined as
grad h(x) = Pyd h(x).

The exponential map is a map from a subset of a tangent space T,,(S), u € S to S itself.
If w € T,(S) is a nonzero vector, a point on S corresponding to w is denoted as Exp, (w).
When w = 0, then Exp, (w) = u. The exponential map is a distance-preserving map in the
sense that |u — w| = d(u, Exp, (w)) for u,w € S, where |-| is the Euclidean ¢, norm. Figure 2
illustrates the Riemannian gradient and exponential map.

3 Penalized piecewise geodesic curve fitting

Penalized piecewise geodesic curve

Let {(t4, )}, be a set of data, where t, € I are the given time points and y, are the
associated data points on S. Our goal is to find a piecewise geodesic curve that fits the data
well. To this end, we adopt the squared distance loss function

N
0E) =Y. d(yn,v(tn;€)) for &es/H
n=1

where /1 is the | + 1 product of S.

The most important aspect of fitting a piecewise curve is selecting the appropriate
number of pieces. The number of pieces is determined by the number of knots and the
corresponding control points. To avoid the issues of oversmoothing and undersmoothing,
we propose a penalty function that allows us to select the number of control points in a
data-adaptive way. This enables the fitted spherical curve to capture local trends in the data

The R Journal Vol. 17/1, March 2025 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE

71

/]
-

(a) (b) (c)

Figure 3: Example of elimination process of the piecewise geodesic curve with three control points.
Blue arrow vector indicates tangent vector of ¢, in consecutive geodesic segments. The left plot shows
the spline curve with small value of complexity parameter. As the complexity parameter A increases,
¢» moves into the geodesic between ¢; and {3 and the difference between tangent vectors becomes
zero. The middle plot shows that step. When the difference between tangent vectors is zero, control
point is removed. The right plot shows the resulting curve after control point is removed in the middle
plot.

without compromising the overall smoothness. We introduce a smoothness penalty function

71
p(&) = Y.D;(@)] for Dj<c>=;a<o;¢j,¢j+1>—fj L

—0'((1‘4;‘",1,(:),
= T+l =T -

]

which regularizes the number of geodesic segments needed to fit the data. Here, - above a
curve denotes its derivative with respect to t and | - | denotes the Euclidean ¢;-norm of a
vector.

The velocity-based penalty function induces sparsity on the control points. As A increases,
the difference |D;(¢)| in the penalty term tends to zero. Suppose that |D;(¢)| = 0 for some
1 <j<]J-—1and A. This implies that the geodesic segments vc(-;{;’j,l,(fj) and tx(-;(;’j, §j+1)
are on the same great circle. Then, we eliminate the inactive control point ¢; and replace the
two geodesic segments with a(+;&;_1,;11). The elimination process reduces the number of
the control points by one. Figure 3 illustrates the elimination process that starts with two
geodesic segments.

The objective function to minimize is given by
MG) = L&) +Ap(g) for §est,

where A > 0 is the complexity parameter. For a fixed A, the penalized piecewise geodesic
(linear spherical spline) curve is defined as

A

Y1(5580),

where

&, = argmin/*(¢).
ces/

Block coordinate descent algorithm

To obtain 6 A, we adopt a block coordinate descent method, where each block consists of
the three-dimensional coordinates of each control point. First, we set the initial values of
¢ by ] + 1 number of data points y, associated with (j/])th quantiles of the time points ¢,

forj=0,1,...,]. Denote the initial values by ¢ 0 = ([;'(()0), ... ,gf}o)). Then, we obtain the
Riemannian gradient of /* with respect to & j and apply the gradient descent algorithm to
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update the control points. Since the updated points belong to a tangent space of S, we apply
the exponential function to map the points into S.

Let 6](1) denote the current values of the control point ¢; in the [-th iteration forj = 0,... ., J.
Forl =1,2,- -, the update formula has the following form:
l [ -1 -1 -1 -1
5(()) — Expg[()l—n _—Pl,ogradgofA (C(() ),d ),Cé ), ... ,CE )ﬂ

gy) <~ Expdlfl) -_pl,lgrad@']g)\ ( (()l)/ C%l_l)/ gél_l)/‘ . '/ggl_l))}

1 - 1) Z(l) (-1 -1

Cé) — Engél—]) _—plrzgradgzg/\ (C(() )/ gi )/ Cé )’ e ’§§ )):|
| r D () =0 -1

ér} ) — Eng}l‘l) _fpl,]gradélf)‘ (':(() )r ':::g )/ é(é )/ e ’é’r} )):| !

where p; ; denotes a specified step size for the update of ¢; in the /th cycle. The specific form
of the update formula is derived below.

As a line search strategy, we adopt the step-halving method to determine the step size
p1j to guarantee the stable convergence of the proposed algorithm. When the objective
function does not decrease with the current step size, the step size is halved. The step-
halving procedure is repeated until the objective function decreases with the reduced step
size. The iteration stops when the difference between the current and the updated values of
the objective function ¢* is less than e = 1075.

Derivation of the coordinate-wise update formula

The derivation of the update formula is based on the result in Bak et al. (2023). For notational
convenience, denote

C(z) =cos(z), S(z) =sin(z) and R4(z) =

for s € I and z € R. With this notation, the parametrized geodesic segment between control
points u and v is expressed as

a(t;u,v) = Ri_4(0)u + R¢(0)v, tel,

with 8 = d(u,v). We first obtain the Euclidean derivative of the geodesic segment with
respect to each endpoint.

Theorem 3.1 in Bak et al. (2023) implies that the derivatives of o with respect to the
control points are given by

J T
(7(15; u, v)) =Ry (O)+Q1_+()vu’ +Qi(0)vv',

du
and
d ! T T
(FHrEw)) = RO+ Qe + (oo,
where

Ss(2)C(z) — sCs(z)S(2)

Qs(z) £ e for s€l and zeR.

Consider now a piecewise geodesic curve (-, ) defined by a set of control points
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¢ = (C1,...,¢y)- Since the spline curve consists of connected geodesic segments, we have

f '['1 TO 60/ 61) for ]: 0
d d

g

d

, for j=
d(:] ( g) 1;] T]T]11 g] 1 g]) or ]t T]]l

dé“(f; T G) e (56 G) o

Combining the results, we are able to obtain the derivatives of (-, {) with respect to each
control point. This enables us to compute the Riemannian gradient of the squared distance

loss:
N T
(Pn d')’(tn} 6)
g = - nrs
gradg, () ng‘l 5(¢n)P§k ( gy > Y

where ¢y = d(y, 7(tn; €))-

In addition to the result above, the Riemannian gradient of the velocity difference penalty
is needed to derive a coordinate-wise update formula. Following Theorem 3.4 in Bak et al.
(2023), forafixed 1 < j < J —1, we have

1 C(0j-1)0j-1 — S(6;-1) 0 Dj(¢)

orad, IDj0)| = B o e | ) S s | D@
1 C(8;)6; — S(6;) j D;(¢)
92D = T [T em) S T sm) | DT

and
1 C(6))0; —S) ., .+ _ 6C0) | Dj(§)
grad§j|D](§)| - T — T G 53(9]) §]+1§]+1 5(6]> |D](§)|
1, C(9j71)9j71—5(9j71)§‘ o 0;-1C(0;-1) | D;j(¢)
o $3(6;1) TR S0 | D@1

Combining the derivatives of the loss function and the penalty function yields the required
Riemannian gradient of the objective function with respect to the control points.

Selection of optimal tuning parameter

The procedure for finding the optimal complexity parameter is as follows. The piecewise
geodesic curves that minimize the objective function are computed for an increasing se-
quence of the complexity parameters A1 < - -- < Ak, where Ay is sufficiently large. As the
complexity parameter increases, we eliminate the control points that are no longer active.

In general, the choice of the control points plays a crucial role in the spline-type curve
fitting problem. We begin by setting A to a sufficiently large value and A; to a value close
to zero, ensuring the flexibility of the model. As the complexity parameter increases, the
elimination process leads to data-adaptive control point selection. Then, we determine the
optimal complexity parameter and the corresponding optimal curve whose control points
are adaptively determined by the given set of data.

To choose an optimal complexity parameter, we use a modified version of the Bayes
information criterion (BIC); see Schwarz (1978). The BIC for a sequence of the complexity
parameters is defined as

BIC, = Nlog/(¢y,) +3JxlogN for k=1,...,K

where ] denotes the number of control points for A;. The optimal value for A is chosen as
A;, where

k= argminBICy.
1<k<K
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4 The spheresmooth package: structure and functionality

Overall structure and available functions

The spheresmooth package is a versatile toolkit designed for performing mathematical
and geometric operations on the sphere, with a primary focus on smoothing spherical data
observed at known time points. It finds applications across various fields such as geography,
geometry, physics, and computer graphics. Table 1 contains a compact summary of the
available functions. When the name of a function is in uppercase, it means it computes
the output for multiple points simultaneously except for exp_map() function. The package
includes a corresponding internal function for a single point calculation. For example, the
geodesic() function computes the coordinates of a geodesic curve at multiple time points,
which is the result of multiple internal executions of the geodesic_lower () function for a
single time point. These functions take arguments in the form of numeric matrices.

Spherical data may be given in the form of spherical coordinates or Cartesian coordinates
depending on the case. We may need to switch between the two coordinate systems as nec-
essary. The cartesian_to_spherical () function converts Cartesian coordinates to spherical
coordinates, which is crucial for representing points on a spherical surface accurately. The
spherical_to_cartesian() function performs the opposite operation. The input data for
the main function must be in the form of Cartesian coordinates. Therefore, if the data
is given in spherical coordinates, one can use the spherical_to_cartesian() function to
perform coordinate transformation before applying the proposed method.

The proposed method is based on the calculation of piecewise geodesic paths. To this end,
we need functions that compute the geodesic segments and partition the given time interval.
The geodesic() function computes the value of the geodesic curve connecting two points
p and g on the sphere at specified time points. On the other hand, the knots_quantile()
function generates a sequence of knots for a given set of time points based on the quantile
values, thereby offering support for interpolating and approximating time-series data using
spherical spline curves. The piecewise_geodesic() function is one of the core functions in
the package. It computes the coordinates of the piecewise geodesic curve at the input time
point for the given knots in the time interval and the corresponding control points on the
sphere.

To evaluate the goodness-of-fit of the fitted curve, a distance-based loss function is
needed. The spherical_dist() function calculates the geodesic distance between two
input points. Based on this function, the calculate_loss() calculates the loss function
based on the squared spherical distances between observed values and predicted values
on the curve. Finally, the main function penalized_linear_spherical_spline() fits the
penalized piecewise geodesic curve to the given data. In summary, the spheresmooth
package provides core functions for smoothing spherical data, along with several useful
functions for handling spherical data.

Basic functions for handling spherical data

Before delving into the main functions of the package, we introduce several useful functions
for handling spherical data within the package. These functions are essential for performing
core functionalities of the package but can also be applied to other spherical data analysis
tasks. Only a subset of the functions listed in Table 1 is illustrated based on their frequency
of use.

The spherical_dist() function is used to compute the geodesic distance between two
points on the unit sphere. For example, the distance along the geodesic segment between
(1,0,0) and (0, 1,0) is one-fourth of the circumference of a great circle containing two points,
which is 271, and it is calculated as follows in code:

x <- c(1, 0, 0)
y <-c(o, 1, 0)
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Table 1: Summary of the functions in the spheresmooth package.

Function

Description

calculate_loss

cartesian_to_spherical
cross
dot

edp

exp_map

geodesic

knots_quantile
norm2

normalize

penalized_linear_spherical_spline
piecewise_geodesic
spherical_dist

spherical_to_cartesian

Calculates the loss function based on the
squared spherical distances between
observed values and predicted values on the
curve.

Converts Cartesian coordinates to spherical
coordinates.

Computes the cross product of two input
vectors

Computes the dot product of two input
vectors u and v.

Computes the equal-distance projection of a
point p onto the xy plane.

Computes the exponential map on the unit
sphere given a base point x and a vector v.
Computes the value of the geodesic curve
connecting two points p and g on the unit
sphere at specified time points.

Generates a sequence of knots for a given set
of time points based on the quantiles.
Computes the L2 norm (Euclidean norm) of
the input vector.

Normalizes the rows of the input matrix x by
dividing each row by its L2 norm (Euclidean
norm).

Fits a penalized linear spherical spline
(piecewise geodesic) curve to the given data.
Computes a piecewise geodesic path between
control points.

Calculates the spherical distance between two
vectors.

converts spherical coordinates (8, ¢) to
Cartesian coordinates.
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spherical_dist(x, y)
#> [1] 1.570796

Consider another example involving the point (1/ V3,1/V/3,1/ \/5) The antipodal point
to this given point is (=1/ V3,-1//3,—-1/ ﬁ), which traverses half the circumference of
the associated great circle, resulting in a length of 7. This can be checked with the following
code.

x <= c(1/sqrt(3), 1/sqrt(3), 1/sart(3))
y <= c(-1/sqrt(3), -1/sqrt(3), -1/sqrt(3))
spherical_dist(x, y)

#> [1] 3.141593

Another useful function is the cross function with normalize = TRUE argument used
to obtain a unit vector orthogonal to a pair of given vectors. For example, we can use this
function to obtain a unit vector (0,0,1) orthogonal to the plane spanned by (1,0,0) and
(0,1,0).

x <= ¢c(1, 0, 0)
y <~ c(o, 1, @)
cross(x, y, normalize = TRUE)

#> [1]1 0 0 1

Besides standard utility functions, there are two crucial auxiliary functions in spherical
data analysis: cartesian_to_spherical() and spherical_to_cartesian(). These transfor-
mations have already been discussed earlier in this section. For basic spherical operations,
it is utilized as described previously. When data is given in Cartesian coordinates, the
cartesian_to_spherical() function computes spherical coordinates, enabling visualiza-
tion and other analyses. On the other hand, when the data is given in spherical coordinates,
the main function of the spheresmooth package, penalized_linear_spherical_spline(),
cannot be directly applied. In such cases, the spherical_to_cartesian() function allows
the transformation of data into the required format. The following code demonstrates
examples implementing these transformations.

# example: cartesian_to_spherical
cartesian_points <- matrix(c(1, @, @, @, 1, @, @, @, 1), ncol = 3, byrow = TRUE)
cartesian_to_spherical(cartesian_points)

#> theta phi
#> [1,] 1.570796 0.000000
#> [2,] 1.570796 1.570796
#> [3,] 0.000000 0.000000

# example: spherical_to_cartesian

theta_phi <- matrix(c(pi/4, pi/3, pi/6, pi/4), ncol = 2, byrow = TRUE)
spherical_to_cartesian(theta_phi)

#> [,1] [,2] [,3]

#> [1,] 0.3535534 0.6123724 0.7071068

#> [2,] 0.3535534 0.3535534 0.8660254

The following code demonstrates that these two functions perform inverse operations.
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theta_phi <- matrix(c(pi/4, pi/3, pi/6, pi/4), ncol = 2, byrow = TRUE)
theta_phi

#> [,1] [,2]
#> [1,] 0.7853982 1.0471976
#> [2,] 0.5235988 0.7853982

cartesian_to_spherical (spherical_to_cartesian(theta_phi))

#> theta phi
#> [1,] 0.7853982 1.0471976
#> [2,] 0.5235988 ©.7853982

Piecewise geodesic curve

As illustrated in Section 2, we need to provide a sequence of knots and associated control
points to define a piecewise geodesic curve. Although we introduce our methodology
targeting data observed over time, it is important to note that the argument of a parametrized
curve, denoted as ¢, does not necessarily imply physical time. This methodology can be
applied to the smoothing problem of any directional data evolving over a continuous
domain. The only requirements for computing a piecewise geodesic curve are the knots and
their corresponding control points. The function that returns the coordinates of the curve at
a given f point is the piecewise_geodesic() function. Table 2 summarizes the arguments of
the function.

Table 2: Summary of the arguments of the piecewise_geodesic() function.

Argument Description

t A numeric vector representing the time or location.

control_points A matrix of control points where each row represents a control
point.

knots A numeric vector of knot values.

Here, the control_points is a matrix where each row represents a point in Cartesian
coordinates that determines the geodesic segments. Since a pair of points defines a geodesic
segment, this function can be used to compute the geodesic curve between two points if the
knots is given as two endpoints. The knots is a vector of points separating the curve in the
time domain. The piecewise_geodesic() function performs the following steps. First, it
initializes an empty matrix to store the generated points on the curve. Second, it iterates over
the separated geodesic segments to find the segment to which the t values belong. Then,
it internally calls the geodesic() function for the corresponding segment to compute the
coordinates of those points on the curve and appends the generated points to the initialized
matrix. Finally, it returns the matrix containing all the points corresponding to the given t
values.

In the Figure 4, the left plot depicts a piecewise geodesic curve determined by the
control points (1, 0, 0), (1/v2,1/v2,0), (=1/+/3,1/+/3,1/4/3), and (0, 0, 1). The func-
tion piecewise_geodesic() is used to compute the coordinates of the curve at given time
points. The piecewise_geodesic function presented here is roughly equivalent to the
rgl.sphline() function from the sphereplot package, which also generates great circle
line segments. However, piecewise_geodesic provides additional flexibility for handling
complex geometries and segmentations, making it a suitable choice for a broader range of
applications. In the following code, we create a variable called control_points, which is a
matrix containing four control points. The control points are used to determine the curve on
the sphere while the knots indicate the points where transitions occur in the time domain.
To obtain a smooth curve for visualization, we generate t_example by slicing the interval
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Figure 4: Plot of (left) piecewise geodesic curve with the control points at (1, 0, 0), (1/ Vv2,1/v/2,0),
(-1/+/3,1/+/3,1/+/3), and (0, 0, 1) and (right) piecewise geodesic curve with the control points at
(1/v3,1/V/3,1/v/3),(1/v/3,1/+/3,-1/+/3), (-1/V/3,1//3,1/+/3),and (-1/+/3,1/+/3,-1//3).

from 0 to 4 into increments of 0.01, and evaluate the coordinates of the curve at those points
using the piecewise_geodesic() function. The following code yields the left plot of Figure
4.

control_points <- matrix(c(1, @, 0, # Control point 1
1/sqrt(2), 1/sqrt(2), 0, # Control point 2

-1/sqrt(3), 1/sqrt(3), 1/sqrt(3), # Control point 3

0, 0, 1), # Control point 4

nrow = 4, byrow = TRUE)
knots <- c(1, 2, 3, 3.5) # Knots indicating transitions
# Example of generating piecewise geodesic curve
t_example <- seq(@, 4, by = 0.01)
gamma_example <- piecewise_geodesic(t_example, control_points, knots)
# Plotting the piecewise geodesic curve
rgl.sphgrid(deggap = 15, col.long = "skyblue”, col.lat = "skyblue")
spheres3d(x = @, y =0, z = 0, radius = 1, col = "grey”, alpha = 0.05)
pch3d(control_points, col = "blue”, cex = 0.2, pch = 19)
lines3d(gamma_example, col = "red”, 1ty = 1, 1lwd = 2)

The right plot of Figure 4 is an example of the curve with control points located at (1/+/3,
1/v/3,1/v/3), (1/V/3,1//3, -1/¥/3), (1/v/3,1/+/3,1/V/3), and (-1/V/3, 1/V/3, -1/V3).

Below is the code that computes the curve and draws the corresponding plot.

control_points <- matrix(c(1/sqrt(3), 1/sqrt(3), 1/sqrt(3), # Control point 1
1/sqrt(3), 1/sqrt(3), -1/sqrt(3), # Control point 2
-1/sqrt(3), 1/sqrt(3), 1/sqrt(3), # Control point 3

-1/sqrt(3), 1/sqrt(3), -1/sqrt(3)), # Control point 4

nrow = 4, byrow = TRUE)
knots <- c(1, 2, 3, 3.5) # Knots indicating transitions
# Example of generating piecewise geodesic curve
t_example <- seq(@, 4, by = 0.01)
gamma_example <- piecewise_geodesic(t_example, control_points, knots)
# Plotting the piecewise geodesic curve
rgl.sphgrid(deggap = 15, col.long = "skyblue”, col.lat = "skyblue")
spheres3d(x = @, y = 0, z = 0, radius = 1, col = "grey”, alpha = 0.05)
pch3d(control_points, col = "blue”, cex = 0.2, pch = 19)
lines3d(gamma_example, col = "red”, 1ty = 1, 1lwd = 2)
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Penalized piecewise geodesic curve fitting

The main function penalized_linear_spherical_spline() fits a penalized piecewise
geodesic curve to the given spherical data as illustrated in Section 3. As implied by the name
of the function, this approach can also be understood as using a penalized linear spline
method on the sphere. The crucial aspect here is the selection of knots that capture the
points of change within the given time domain. The strategy proposed in this paper involves
generating a sufficient number of initial knots using the knots_quantile() function and
then adaptively selecting knots and control points based on penalization. The initial control
points corresponding to the generated knots are determined by the corresponding data
points y; on the given spherical surface.

After ensuring the flexibility of the model by setting the number of initial knots and
control points sufficiently large, piecewise geodesic curves are computed for an increasing
sequence of the complexity parameters A; < --- < Amax. As the complexity parameter
increases, we prune or delete the knots that are no longer active. If A is small, then so is
the amount of penalization, resulting in a wiggly fit. On the other hand, the fitted curve
gets smoother as A gets larger. If one wishes to consider as many possibilities as possible
to find the optimal curve, it is possible to generate complexity parameters densely starting
from very small values, and ensuring that Amax is sufficiently large to yield a least squares
geodesic curve. Among the fitted curves, we can select the optimal curve based on the BIC,
thus obtaining a data-adaptive piecewise geodesic curve.

The penalized_linear_spherical_spline() function is designed to automatically per-
form all these steps when initial knots and initial control points are not specified, aiming
to enhance convenience for researchers. If there are valid numbers of knots determined
through exploratory data analysis and preliminary research, along with coordinates for
initial control points, they can be used as arguments. Table 3 summarizes the arguments of
the function.

Table 3: Summary of the arguments of the penalized_linear_spherical_spline() function.

Argument Description

t A numeric vector representing the time or location.

y A matrix where each row represents a data point.

initial_control_points An optional matrix specifying initial control points. Default is
NULL.

dimension An integer specifying the dimension of the spline.

initial_knots An optional numeric vector specifying initial knots. Default is
NULL.

lambdas A numeric vector specifying the penalization parameters.

step_size A numeric value specifying the step size for optimization.
Default is 0.01.

maxiter An integer specifying the maximum number of iterations.
Default is 1000.

epsilon_iter A numeric value specifying the convergence criterion for
iterations. Default is 1e-05.

jump_eps A numeric value specifying the threshold for pruning control
points based on jump size. Default is 1e-02.

verbose A logical value indicating whether to print progress information.
Default is FALSE.

The function returns a list containing the fitted result for each complexity parameter, the
dimension and BIC values associated with the complexity parameters required for model
selection. The BIC values are stored in the last element of the list. It is possible to directly
examine the BIC values and their corresponding fitted curves. Unless there is a specific
reason, it is recommended to consider the A that attains the minimum BIC value as the
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optimal complexity parameter and select the corresponding fitted curve as the final fitted
model. The usage of the function and the model selection process are illustrated in Section 5.

5 Applications

APW Data

The data considered in this section is the polar wander dataset presented in Kent and
Irving (2010). They argued that previous estimates of Triassic and Jurassic paleolatitudes for
North America tend to be biased because of inclination error in sedimentary rocks. They
constructed a new composite APW path for Triassic through Paleogene based on igneous
rocks. The 17 Triassic/Jurassic cratonic poles from other major cratons are rotated into North
American coordinates and combined with the 14 observations from North America. We
apply the proposed method to these 31 observations ranging in age from 243 to 144 Ma
(millions of years ago), which covers the late Triassic and Jurassic periods.

The APW dataset is included in the spheresmooth. The data consists of the time,
longitude, and latitude values for 31 observations. It can be loaded as follows.

dim(apw_spherical)
# [1]1 31 3

The APW data is represented in spherical coordinates. To apply the main func-
tion, it is necessary to convert the given data into Cartesian coordinates. We apply the
spherical_to_cartesian() function to the second and third columns of the datasets, since
the first column represents the time points.

apw_cartesian = spherical_to_cartesian(apw_sphericall, 2:31)

To ensure sufficient flexibility of the model, we set the initial dimension to 15, where the
dimension refers to the number of knots or the corresponding number of control points. The
knot sequence corresponding to the specified dimension is created using the knots_quantile()
function. The grid for tuning the complexity parameter is determined as a sequence of 40
values ranging from 10~ to 1 on a logarithmic scale. We compute the fitted curves using
the penalized_linear_spherical_spline() function.

t = apw_sphericall, 1]

dimension = 15

initial_knots = knots_quantile(t, dimension = dimension)

lambda_seq = exp(seq(log(1e-07), log(1), length = 40))

fit = penalized_linear_spherical_spline(t = t, y = apw_cartesian,
dimension = dimension,
initial_knots = initial_knots,
lambdas = lambda_seq)

As explained in the previous section, the returned result is a list containing the informa-
tion about 40 fitted curves and the dimension and BIC values for model selection.

class(fit)
#> [1] "list”
length(fit)

# [1] 42
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fit$dimension_list

# [1]1 1515151515 15151515 15 1515 15 15 15 15 15 15 15 15 15 15 15 15 15
#> [26] 1513131010 9 9 8 8 8 8 8 8 8 8

fit$bic_list

#> [1] 95.27152 95.22637 95.19061 95.12282 95.08984 95.05878 95.02849 95.00298
#> [9] 94.97865 94.96560 94.95472 80.58414 80.58430 80.58470 80.58565 80.58750
#> [17] 80.59240 80.60174 80.62544 80.68245 80.77479 80.96411 81.44382 82.18175
#> [25] 83.45483 85.39508 66.62308 67.99973 38.50011 39.57477 29.76234 30.82627
#> [33] 21.74930 32.81671 37.56793 46.46920 47.62672 51.38727 54.17926 54.60989

The best model according to the BIC can be selected as follows.
# choose a curve that minimizes the BIC
best_index = which.min(fit$bic_list)
best_index

#> [1] 33

# obtained control points for the piecewise geodesic curve
fit[[best_index]]$control_points

#> [,1] [,2] [,3]
#> [1,] -0.48039447 -0.2266981 0.8472480
#> [2,] -0.11927705 0.1300343 0.9843089
#> [3,] -0.06869155 ©.1967739 0.9780396
#> [4,] 0.01640654 0.2026538 0.9791130
#> [5,] ©.03231127 0.3512434 0.9357265
#> [6,] -0.03372888 0.5085848 0.8603510
#> [7,] -0.08310953 0.5246722 0.8472378
#> [8,] -0.45295783 ©.3987197 0.7974032

The optimal complexity parameter is determined as
lambda_seq[best_index]
#> [1] 0.0554102

and the corresponding dimension is 8. Since we started with the initial dimension 15, the
result illustrates the sparsity-inducing property of the proposed method.

The code begins by retrieving a world map using the getMap() function, which is then
converted to an sf object (worldMap_sf) using st_as_sf () for easier handling in spatial
analyses. Control points are transformed from Cartesian coordinates to spherical coordinates
using the cartesian_to_spherical function, with the resulting coordinates converted to
degrees (latitude and longitude) to create cp_long_lat_df. The latitude values are adjusted
to range from 0 to 90 degrees instead of being measured from the center. The apw_spherical
data is also converted into a data frame (apw_spherical_df), where the latitude and longi-
tude values are transformed from radians to degrees, making them suitable for mapping.
Then, a geodesic curve is fitted using the piecewise_geodesic function, generating a fitted
curve (fitted_geodesic_curve). This fitted curve is converted from Cartesian to spherical
coordinates (fitted_cs), and then transformed into a data frame (fitted_cs_long_lat_df)
with latitude and longitude values in degrees. Finally, three data frames (apw_spherical_df,
cp_long_lat_df, fitted_cs_long_lat_df) are converted to sf objects for further geospatial
analysis, specifying the appropriate coordinate reference system (EPSG:4326) to facilitate
geographic visualizations and operations.
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worldMap = getMap()
worldMap_sf = st_as_sf(worldMap)

cp_best = cartesian_to_spherical (fit[[best_index]]$control_points)

cp_long_lat = cp_best * 180 / pi

cp_long_lat_df = data.frame(latitude = 90-cp_long_lat[, 11,
longitude = cp_long_lat[,2])

apw_spherical_df = data.frame(apw_spherical)
apw_spherical_df$latitude = 90 - apw_spherical_df$latitude x 180 / pi
apw_spherical_df$longitude = apw_spherical_df$longitude * 180 / pi

fitted_geodesic_curve = piecewise_geodesic(seq(@, 1, length = 2000),
fit[[best_index]]$control_points,
fit[[best_index]]$knots)

fitted_cs = cartesian_to_spherical (fitted_geodesic_curve)

fitted_cs_long_lat = fitted_cs * 180 / pi

fitted_cs_long_lat_df = data.frame(latitude = 90 - fitted_cs_long_lat[, 1],

longitude = fitted_cs_long_lat[, 21)

apw_spherical_df_sf = st_as_sf(apw_spherical_df,
coords = c("longitude”, "latitude"), crs = 4326)
cp_long_lat_df_sf = st_as_sf(cp_long_lat_df,
coords = c("longitude”, "latitude"), crs = 4326)
fitted_cs_long_lat_df_sf = st_as_sf(fitted_cs_long_lat_df,
coords = c("longitude”, "latitude"), crs = 4326)

The optimal fitted curve is visualized in the left plot of Figure 5 using the following
code. It presents the obtained APW path (red line) and the associated control points
(blue rhombus-shaped points) with the observations in the geographic coordinates. The
visualization was generated using the coord_sf () function with the +proj=ortho option,
providing an orthographic projection of the spherical data. The fitted curve shows that the
obtained APW path has a clockwise rotational trend.

worldmap = ggplot() +
geom_sf(data = worldMap_sf, color = "grey”, fill = "antiquewhite") +
geom_sf(data = apw_spherical_df_sf, size = 0.8) +
geom_sf(data = cp_long_lat_df_sf, color = "blue”, shape = 23, size = 4) +
geom_sf(data = fitted_cs_long_lat_df_sf, color = "red"”, size = 0.5) +
xlab("longitude”) +
ylab("latitude") +
scale_y_continuous(breaks (-2:2) * 30) +
scale_x_continuous(breaks (-4:4) % 45) +
coord_sf(crs = "+proj=ortho +lat_0=38 +1lon_0=120 +y_0=0 +ellps=WGS84 +no_defs")
worldmap

A zoomed version of the plot obtained from the following code is presented in the right
panel of Figure 5.

mar = 20

zoommap = ggplot() +
geom_sf(data = worldMap_sf, color = "grey”, fill = "antiquewhite") +
geom_sf(data = apw_spherical_df_sf, size = 0.8) +
geom_sf(data = cp_long_lat_df_sf, color = "blue”, shape = 23, size = 4) +
geom_sf(data = fitted_cs_long_lat_df_sf, color = "red", size = 0.5) +
xlab("longitude”) +
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Figure 5: Plots of the APW path (red line) and the associated control points (blue points) obtained
from the proposed method. The path goes from left to right in the plots. The left plot displays the path
on the globe, and the right plot is a zoomed in version of the left plot on the projection map.

ylab("latitude") +
scale_y_continuous(breaks = (-2:2) * 30) +
scale_x_continuous(breaks (-4:4) x 45) +
coord_sf(xlim = c(min(cp_long_lat_df$longitude) - mar,
max (cp_long_lat_df$longitude) + mar),
ylim = c(min(cp_long_lat_df$latitude) - mar,
max(cp_long_lat_df$latitude) + mar))

Zzoommap

Goni Data

This section considers the tropical cyclone (TC) data provided by the Regional Specialized
Meteorological Center (RSMC) Tokyo Typhoon Center. This data consists of the variables
TC name, time, latitude, longitude, TC central pressure, and maximum sustained wind
speed. To illustrate the proposed method and the spheresmooth package, we select the data
concerning a cyclone named Goni observed from August 13th, 2015, to August 29th, 2015.
The number of data points for Goni is 69, corresponding to each time point.

The Goni dataset is also included in the spheresmooth and can be loaded as follows.
goni_cartesian = spherical_to_cartesian(goni_sphericall, 2:3])

The code used for analysis is very similar to that used for computing the APW path.
It involves transforming the data given in spherical coordinates to Cartesian coordinates,
setting the initial dimension to 15, and fitting it with a sequence of complexity parame-
ters. Subsequently, the optimal curve is selected using the BIC, and the coordinates of the
corresponding control points are determined.

t = goni_sphericall[, 1]
dimension = 15
initial_knots = knots_quantile(t, dimension = dimension)

lambda_seq = exp(seq(log(1e-07), log(1), length = 40))

fit = penalized_linear_spherical_spline(t = t, y = goni_cartesian,
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dimension = dimension,
initial_knots = initial_knots,
lambdas = lambda_seq)

# choose a curve that minimizes the BIC

best_index = which.min(fit$bic_list)

best_index

#> [1] 23
fit$dimension_list[best_index]
#> [1] 12

fit[[best_index]J$control_points

#> [,1] [,2] [,3]
#> [1,] -0.8572250 0.4708035 ©.2085888
#> [2,] -0.8205531 0.5235703 0.2292744
#> [3,] -0.7429817 0.6032236 0.2899991
#> [4,] -0.6430559 0.6947774 ©.3221234
#> [5,] -0.5554791 0.7659919 0.3235729
# [6,] -0.5088629 0.7970417 0.3252431
#> [7,] -0.5041307 0.7884991 @.3523087
#> [8,] -0.5073276 ©.7575879 0.4107058
# [9,] -0.5258286 0.7266336 0.4421627
#> [10,] -0.5470298 0.6626324 0.5115434
#> [11,] -0.5418227 0.5904786 ©.5981331
#> [12,] -0.4863508 0.5146343 0.7061263

The index of the curve that minimizes BIC is 23 with the corresponding dimension 12.
The optimal complexity parameter is determined as

lambda_seq[best_index]
#> [1] 0.0008886238

We can visualize the fitted curve and obtain Figure 6 by executing code similar to that
used in the previous section. The obtained path for Goni (red line) and the corresponding
control points (blue rhombus-shaped points) are visualized along with the observations in
Figure 6. Although the remaining control points may appear somewhat dense, in reality,
these points are not redundant. The proposed penalization method utilizes the difference
in velocity vectors to induce sparsity. Therefore, even control points that do not appear
visually active on a map can provide valuable information for further analysis when viewed
alongside time points, as they represent points where the velocity changes.

6 Summary

This paper introduced the spheresmooth package. We proposed a piecewise geodesic
curve fitting method based on a velocity-based penalization scheme. The spheresmooth
package implements the proposed method with the Riemannian block coordinate descent
algorithm. It provides an automatic procedure for fitting a smooth path to a given set of noisy
spherical data at known times. The spheresmooth package demonstrated its usefulness
by applying the functions to the polar wander path data and tropical cyclone data. The
methods presented in this paper not only advance spherical data analysis in general but also
hold significant potential for application in astronomy, where spherical coordinate systems
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Figure 6: Plots of the Goni path (red line) and the associated control points (blue points) obtained from
the proposed method. The path goes from left to right in the plots. The left plot displays the path on
the globe, and the right plot is a zoomed in version of the left plot on the projection map.

and data are foundational. For example, these methods could be effectively utilized in
analyzing celestial data, similar to the work conducted with CMB maps by the WMAP and
Planck missions, demonstrating the versatility and applicability of our approach in handling
complex, all-sky astronomical observations. We expect that the spheresmooth package
will be helpful for applications in various fields, including statistics, machine learning,
astronomy, cardiology, computer vision, physiology, and geophysics.
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Space-Time Smoothing of Survey
Outcomes using the R Package SUMMER

by Zehang Richard Li, Bryan D Martin, Tracy Qi Dong, Geir-Arne Fuglstad, Jessica Godwin, John
Paige, Andrea Riebler, Samuel | Clark, and Jon Wakefield

Abstract The increasing availability of complex survey data, and the continued need for
estimates of demographic and health indicators at a fine spatial and temporal scale, has
led to the need for spatio-temporal smoothing methods that acknowledge the manner in
which the data were collected. The open source R package SUMMER implements a variety
of methods for spatial or spatio-temporal smoothing of survey outcomes. In this paper, we
focus primarily on demographic and health indicators. Our methods are particularly useful
for data from Demographic Health Surveys (DHS) and Multiple Indicator Cluster Surveys
(MICS). We build upon functions within the survey package, and use INLA for fast Bayesian
computation. This paper includes a brief overview of these methods and illustrates the
workflow of processing surveys, fitting space-time smoothing models for both binary and
composite indicators, and visualizing results with both simulated data and DHS surveys.

1 Introduction

A wealth of health and demographic indicators are now collected across the world, and
interest often focuses on patterns in space and time. Spatial patterns indicate potential
disparities, while temporal trends are important for determining the impact of interventions
and to assess whether targets, such as the sustainable development goals (SDGs), are being
met (MacFeely, 2020). In low- and middle-income countries (LMIC), the most reliable
data with sufficient spatial resolution are often collected under complex sampling designs.
Common sources of data include the Demographic Health Surveys (DHS) and Multiple
Indicator Cluster Surveys (MICS), both of which use multi-stage cluster sampling. A two-
stage cluster design is most common for these surveys. A sampling frame of clusters (for
example, enumeration areas) is constructed, often from a census, and then strata are formed.
The strata consist of some administrative geographical partition crossed with urban/rural
(with countries having their own definitions of this dichotomy). Then a pre-specified number
of clusters are sampled from these strata under some probabilistic scheme, for example,
with probability proportional to size (PPS). Different surveys are powered to different
geographical levels. Then, within the selected clusters, households are randomly sampled
and individuals are sampled within these households, and asked questions on a range of
health and demographic variables. This data collection process must be acknowledged
in the analysis to reduce bias and obtain proper uncertainty measures in the prevalence
estimates.

Various packages are available within R for small area estimation (SAE) of prevalence,
including the sae package (Molina and Marhuenda, 2015) that supports the popular book of
Rao and Molina (2015) and includes the famous Fay and Herriot (1979) model and spatial
smoothing options. Other packages include rsae (Schoch, 2014), hbsae (Boonstra, 2012),
BayesSAE (Shi, 2018) and msae (Permatasari and Ubaidillah, 2021). A more comprehensive
list of related packages is described at OfficialStatistics. Most of the existing packages focus
on classical SAE models and provide very limited options for fitting spatial and space-time
smoothing models.

In this paper we introduce the R package, SUMMER'. This package and its details
are available on CRAN. SUMMER provides a computational framework and a collection
of tools for smoothing and mapping the prevalence of indicators with complex survey
data over space and time, with a special focus on estimating mortality rates. Smoothing
is important to avoid unstable estimates and combine information from multiple surveys

!The name originally arises from ‘Spatio-temporal Under-five Mortality Methods for Estimation in R’. As the
package becomes a more general toolkit, it now stands for ‘Sae Unit/area Models and Methods for Estimation in R’
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over time. Originally developed for small area estimation of the under-5 child mortality rate
(USMR), the SUMMER package has been extended to broader mortality rate estimation
and more general tasks in SAE. The implemented methods have already been successfully
applied to a range of data, e.g., subnational estimates of mortality rates (Mercer et al., 2015; Li
et al., 2019; Schliiter and Masquelier, 2021; Fuglstad et al., 2021), HIV prevalence (Wakefield
et al., 2020) and vaccination coverage (Dong and Wakefield, 2021). Recently, the SUMMER
package was used to obtain the official United Nations Inter-Agency Group for Mortality
Estimation (UN IGME) yearly estimates (1990-2021) of USMR at administrative level 2
below the national level (admin-2 estimates) for 31 countries in Africa and Asia (United
Nations Inter-agency Group for Child Mortality Estimation, 2023). Previously, the UN IGME
only produced national estimates using the B3 model (Alkema and New, 2014). The results
of these endeavors are available online at https://childmortality.org.

The main focus of this paper is to provide an overview of the different prevalence models
using survey data and how they can be implemented in SUMMER. The rest of the paper
is organized as follows. We first briefly describe different methods to estimate prevalence
using survey data. We start with a generic binary indicator and proceed with estimating
mortality rates. We then provide an overview of the SUMMER package and the workflows
of using SUMMER for prevalence mapping. We then discuss three examples for spatial
and space-time smoothing of binary and composite indicators with increasing complexity.
The first two examples use simulated data that are included in the SUMMER package. The
last example uses the most recent DHS survey from Malawi. Then we illustrate various
visualization and model checking tools in the SUMMER package. Finally, we conclude with
future work.

2 Space-time smoothing using complex survey data

In this section we review different methods to estimate the prevalence of a health outcome
from complex survey data. We begin by discussing design-based, direct estimates (Rao and
Molina, 2015) which are based on response data from that area only. Next, we describe space-
time smoothing of the direct estimates using a Fay-Herriot model (Fay and Herriot, 1979).
We discuss both estimating the prevalence of a single binary indicator and the composite
indicators such as USMR. We then describe a cluster-level model to estimate prevalence at
finer spatial and temporal resolutions.

2.1 Estimating the prevalence of a generic binary indicator

Consider a study region that is partitioned into n areas, with interest focusing on estimating
the prevalence of a binary indicator in each area, possibly over time. The data are collected
via some complex survey design. For each individual j, let y; denote the individual’s
outcome, and w; denote the design weight associated with this individual. Further, let s;;
represent the indexes of individuals sampled in area i and in time period ¢. The design-based
estimator (Horvitz and Thompson, 1952; Héjek, 1971) is

AHT ZJ'ESu wjyj
it T N o
Ljes, Wj

: @

This is an example of a direct estimate. The variance of il can be calculated using standard

methods (Wolter, 2007) and can be easily computed using the survey package. Let V}T
denote the design-based variance of logit(p'i"), obtained from the design-based variance of
pil via linearization (the delta method). We take the logit transformed direct estimates as
input data and estimate the true prevalence with the random effects model,

logit(ﬁlHtT) |Ait ~ Normal(A;, Vi';'T), ()
Ait = x B+ o +e 4+ S+ e+ 6y 3)
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In this model, which is a space-time smoothing extension of the Fay and Herriot (1979)
model, expit(Aj) is the true prevalence we aim to estimate, and x;; are area-level covariates.
The rest of the terms are normally distributed random effects including structured time
trends «;, unstructured, independent and identically distributed (iid), temporal terms €,
structured spatial trends S;, unstructured spatial terms e;, and space-time interaction terms
0it. The terms e; + S; are implemented via the BYM2 parameterization (Riebler et al., 2016),
a reparameterization of the classical BYM model (Besag et al., 1991) that combines iid error
terms with intrinsic conditional autoregressive (ICAR) random effects. Several different
temporal models are implemented in SUMMER for the structured temporal trends and
space-time interaction effects, including random walks of order 1 and 2, and autoregressive
models (Rue and Held, 2005) with additional linear trends. The interaction term d;; can
be one of the type I to IV interactions of the chosen temporal model and the ICAR model
in space, as described in Knorr-Held (2000). In order for the model to be identifiable, we
impose sum-to-zero constraints on each group of random effects. More details on the prior
choices are provided in the supplementary materials.

2.2 Estimating mortality rates using area-level models

For composite indicators such as mortality rates, the direct estimates require additional
modeling. Here we focus on the estimation of the USMR, one of the most critical and widely
available population health indicators. The methodology and the functions in SUMMER are
readily applicable to mortality rates of other age groups as well, but we note that modeling
mortality beyond age 5 is usually more challenging in practice because death becomes rarer,
and survey data alone are not sufficient for reliable inference.

The SUMMER package implements the discrete hazards model described in Mercer et al.
(2015). We use discrete time survival analysis to estimate age-specific monthly probabilities
of dying in user-defined age groups. We assume constant hazards within the age bands.
The default choice uses the monthly age bands

[0,1),[1,12), [12,24), [24,36), [36,48), [48,60)

for USMR and they can be easily specified by the user. The USMR for area i and time f can

be calculated as,
6

P =e0dy =1-11] (1 - naﬁ?ﬂ) ’ )
a=1

where x, and 7, are the start and end of the a-th age group, and ,,4% is the probability
of death in age group [x4,x; + 11,) in area i and time #, with 4! the estimate of this
quantity. This calculation follows the synthetic cohort life table approach in which mortality
probabilities for each age segment based on real cohort mortality experience are combined.
This allows the full use of the most recent data, which is especially useful when survey data
are sparse and is the default approach that The DHS Program (2020) uses.

The constant one-month hazards in each age band can be estimated by a weighted
logistic regression model (Binder, 1983):

logit (1%2) = Bujm) ®)

where a[m] is the age band indicator for the m-th month, i.e.

1 ifm=0,
2 ifm=1,... 11,
3 ifm=12,...,23,
am =934 itm—24. 35 ©)
5 ifm=236,...47,
6 ifm=—48,...,59.
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The design-based variance of logit(f}) may then be estimated using the delta method or
resampling methods such as the jackknife (Pedersen and Liu, 2012). The smoothing of the
direct estimates can then proceed using the model described in equations (2) — (3). When
multiple surveys exist, one may choose to either model the survey-specific effects as fixed or
random (Mercer et al., 2015) or first aggregate the direct estimates from multiple surveys
to obtain a “meta-analysis” estimate in each area and time period (Li et al., 2019), i.e., at
each time t, we combine the K; available direct estimates from multiple surveys to form the
estimate

ﬁ?"fta:eXpit(Z—ZKt e logit(pl]l)),

N -1
and the associated design-based variance on the logit scale is (th: 1(Vl.';'Tk,)_1) . To

mitigate the sparsity of available data in each year, Li et al. (2019) also considers a temporal
model defined at the yearly level while the direct estimates are calculated at multi-year
periods. All these variations can be fit using the SUMMER package.

2.3 Estimating mortality rates with cluster-level models

The space-time Fay-Herriot estimates are useful when there are enough observations at the
spatial and temporal unit of the analysis. When the target of inference is at finer resolution,
e.g., on a yearly time scale with admin-2 areas and surveys stratified at admin-1 levels,
the direct estimates may contain many Os or 1s and the design-based variance cannot be
calculated reliably. In this case, we can consider unit-level models where the individual
survey responses are modeled. In the rest of this section, we describe a model for the
cluster-level risk, where we account for the additional within-cluster variation by allowing
overdispersion in the likelihood. More detailed comparisons of this modeling choice were
examined in (Dong and Wakefield, 2021). In a two-stage cluster design, the clusters are
referred to as primary sampling units (PSUs) and the households are referred to as secondary
sampling units (5SUs). Thus we refer to such models as cluster-level model to avoid
confusion. We describe the model for the mortality estimation problem below, while the
same formulation applies to the case of any generic binary indicators as well.

In the most general setting, we consider multiple surveys over time, indexed by k. The
sampling frame that was used for survey k, will be denoted by r[k]. We assume a discrete
hazards model as before. We consider a beta-binomial model for the probability (hazard)
of death from month m to m + 1 in survey k and at cluster c in year ¢. This model allows
for overdispersion relative to the binomial model. Assuming constant hazards within age
bands, we assume the number of deaths occurring within age band a[m], in cluster ¢, time ¢,
and survey k follow the beta-binomial distribution,

Ya[m],k,c,t | pa[m],k,c,t ~ BetaBinomial ( na[m],k,c,t 7 Pmjk,c,t ,d ) ’ (7)

where p,, i . + is the monthly hazard at m-th month of age, in cluster c, time ¢, and survey k
and d is the overdispersion parameter. The latent logistic model we use is,

Pk, t :expit(o‘m,c,k,t + e+ bk)r (8)
Cm ket =Pafm)rik,t1(Sc € rural ) + ¥, 4,1 (sc € urban )
+ Si[sc] + €ifsc] + 5i[sc],t + BIASk,t. 9)

This form consists of a collection of terms that are used for prediction and a number
that are not, as we now describe. We include a survey fixed effect by with the constraint
Yk b1y x)—r = 0 for each sampling frame 7, so that the main temporal trends are identifiable
for each sampling frame. The by terms are not included in the prediction, i.e., they are set to
zero. The €; are unstructured temporal effects that allow for perturbations over time. It is
a contextual choice whether they are used in predictions. We include terms in (9) that are
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analogous to those in equations (2)—(3), in particular the spatial main effects S; and e; and
the space-time interactions Jj;.

For the temporal main effects B[, 1k, and V[ [x),+» We have stratum-specific distinct
trends for each age group a[m] in surveys from each sampling frame. We include separate
urban and rural temporal terms to acknowledge the sampling design; often urban clusters
are oversampled and have different risk from rural clusters, and so it is important to
acknowledge this aspect in the model (Paige et al., 2020). The urban-rural stratification
effects may also be parameterized as time-invariant fixed effects, i.e., restricting B, )+ =
Yafm],r[k],t T Dafm] r[x)- For a detailed discussion of the parameterization of stratification effects,
we refer readers to Wu et al. (2021). In addition, it is usually reasonable to assume shared
temporal trends up to a constant shift across some age groups. For example, we may let

Bapm], vkt = Balm), k1,0 + Bl ] (i

where 'BZ*[m],r[k],t is a collection of temporal random effects with sum-to-zero constraint
Xt Boe ) piig,¢ = 0 and a” [m] is a reduced set of age bands. The default choice for USMR in
the package is
1 ifm=0,
a*fml={ 2 ifm=1,...,11, (10)
3 ifm=12,...,59.

That is, we assume the temporal trends for logit hazards in the last four age groups are
parallel and only differ by the intercept term B, (] 0-

In situations where biases are known for particular surveys and/or years, we can
adjust for bias following Wakefield et al. (2019) by including the bias ratio term, BIAS; ; =

USMR; / mk,t, where USMRT is the expected USMR in year t and mkrt is the biased
version. This approach has been used to adjust for mothers who have died from AIDS
(Walker et al., 2012); such mothers cannot be surveyed, and their children are more likely to
have died, so the missingness is informative.

The predicted USMRs in urban and rural regions of area i and at time t according to
sampling frame r are,

. z[a]
1
U5SMR; = 1- H
it Ur 111:[1 {1 +exp(Bart + Si+ei+0it) } v
6 1 z[al
USMR; = 1- ’ 2
it,R,r aI;Il {1 + eXp(’)/a,r,t +S;+e + 5i,t)} (12)

where z[a] = 1,11,12,12,12,12, for the default choice of age bands. The aggregate risk in
area i and in year f according to sampling frame r is

pitr = qitr X USMR; 11, + (1 = gity) X USMR; 1 g, (13)

where g;;, and 1 — g4, are the proportions of the under-5 population in area i that are urban
and rural in year t according to the classification of sampling frame r. The final aggregation
over different sampling frames can be done using meta-analysis combination, so that,

mit = expit (Z Wity X logit(pitr)> ,
T

where w;;, = Ui?rl /Y U;rl, is the scaled inverse of Uj;,, which is the posterior variance

of logit(mg )). Beyond point estimates, we obtain the full posterior of USMR;;, and
various summaries can be reported or mapped. The estimate constructed for USMR is not
relevant to any child, because that child would have to experience the hazards for each
age group simultaneously in time period ¢, rather than moving through age groups over
multiple time periods. Nevertheless, the resultant USMR is a useful summary and the

The R Journal Vol. 17/1, March 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE

93

conventional measure that is used to inform on child mortality.

3 Overview of SUMMER

The SUMMER package provides a collection of functions for SAE with complex survey
data. The package can be installed in R directly by

install.packages("SUMMER")

The SUMMER package requires the INLA package (Rue et al., 2009) to be installed. All
analyses in this package are conducted with SUMMER package version 1.4.0 and INLA
version 24.03.09. INLA can be installed with

install.packages("INLA", repos=c(getOption("repos”),
INLA="https://inla.r-inla-download.org/R/stable"”), dep=TRUE)

The SUMMER package implements a variety of space-time smoothing models using
survey data. There are three main functions to implement these models, discussed below
and in the three examples in the following sections.

e smoothSurvey() produces direct and Fay-Herriot estimates for a generic binary indi-
cator from raw survey data.

* smoothDirect() takes direct estimates as input and produces the Fay-Herriot estimates
for mortality estimation discussed in Li et al. (2019).

¢ smoothCluster() performs cluster-level smoothing using the Beta-Binomial model
discussed in the previous section, and with more details discussed in Wu et al. (2021)
and Fuglstad et al. (2021).

We note that smoothDirect() and smoothCluster() include many more features in
modeling composite indicators such as child mortality. In comparison, smoothSurvey() can
only model generic binary indicators, but it has a simpler interface and workflow, which is
appealing for broader communities of practitioners.

The main sources of data required for these methods are the survey data and the cor-
responding spatial adjacency matrix, which can be derived from spatial polygons data
describing region boundaries. For cluster-level modeling, we also need to know which
region each cluster belongs to. In the context of modeling DHS data, the survey data and
cluster locations are usually recorded in separate files. Figure 1 shows schematically the
workflow of data processing and smoothing for generic binary indicators and mortality
estimates using the SUMMER package. In this paper, our workflow starts with the birth
records and GPS files in .dta files as an example. Such files can be directly downloaded from
the DHS data portal. It is also straightforward to load data in other formats and supply the R
objects into the functions. The entire pipeline of analysis can be carried out using functions
in SUMMER. The analysis of the main paper can be reproduced without registering for data
access. We include a more extensive analysis of DHS data in the supplementary materials,
which requires registration with DHS program for data access.

Before demonstrating the utilities of these functions in the following examples, we first
load the packages for the analysis, data processing and visualization. For the analysis
presented in this paper, we use the ggplot2 package (Wickham, 2016) and patchwork
package (Pedersen, 2019) to make further customizations to the visualization produced by
SUMMER.

library (SUMMER)

library(ggplot2)
library(patchwork)
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Figure 1: Workflow of the SUMMER package. Rounded blocks represent data types and rectangular
blocks represent functions in the SUMMER package. Output estimates are highlighted in the boxes
with red borders. The dotted yellow arrows represent the workflow using smoothSurvey() to estimate
the prevalence of a generic binary indicator. The black solid arrows represent the workflow using
smoothDirect () to perform area-level smoothing of mortality rates. The blue solid arrows represent
the workflow using smoothCluster () to perform cluster-level smoothing of mortality rates.

4 Example 1: prevalence estimation for a binary indicator

We start by considering the simplest scenario of estimating the prevalence of a binary
indicator using a dataset from the Behavioral Risk Factor Surveillance System (BRFSS)
survey. BRFSS is an annual telephone health survey conducted by the Centers for Disease
Control and Prevention (CDC) that tracks health conditions and risk behaviors in the United
States and its territories since 1984. The BRFSS sampling scheme is complex, with high
variability in the sampling weights. In this example, we estimate the prevalence of Type Il
diabetes in health reporting areas (HRAs) in the King County of Washington using BRFSS
data. We will compare the direct estimates and the Fay-Herriot estimates.

The BRFSS dataset in SUMMER contains the full BRFSS dataset with 16,283 observations.
The diab2 variable is the binary indicator of Type II diabetes, strata is the strata indicator,
and rwt_l1cp is the final design weight. For the purpose of this analysis, we first remove
records with missing HRA codes or diabetes status from this dataset.

data(BRFSS)
data <- subset(BRFSS, !is.na(diab2) & !is.na(hracode))

The KingCounty dataset in SUMMER contains the map of the HRAs in the King County.
We first extract the spatial adjacency matrix for the HRAs using the getAmat () function.

data(KingCounty)
KingGraph <- getAmat(KingCounty, KingCounty$HRA2010v2_)
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We then use the smoothSurvey() function to obtain both the direct and Fay-Herriot
estimates by HRA. The function requires specifications of the variables that determine the
survey design, including sampling weights (weightVar), strata indicator (strataVar), and
cluster identifiers (clusterVar). In this dataset, there are no clusters so we use the formula
~1 in this situation (Lumley, 2004). We also need to specify region indicators (regionvar) in
the data frame that match the column and row names of the spatial adjacency matrix.

fit.BRFSS <- smoothSurvey(data = data, Amat = KingGraph,

response.type = "binary”, responseVar = "diab2",
strataVar="strata", weightVar="rwt_l1lcp”,
regionVar="hracode”, clusterVar = "~1")

head(fit.BRFSS$direct, n = 3)

#> region direct.est direct.var direct.logit.est direct.logit.var direct.logit.prec
#> 1 Auburn-North 0.10 0.00046 -2.2 0.053 18.8
#> 2 Auburn-South 0.23 0.00240 -1.2 0.075 13.3
#> 3 Ballard 0.07 ©.00050 -2.6 0.115 8.7

head(fit.BRFSS$smooth, n = 3)

#> region mean var median lower upper logit.mean logit.var logit.median
#> 1 Auburn-North 0.102 0.00026 ©.101 0.074 0.137 -2.2 0.031 -2.2
#> 2 Auburn-South 0.160 ©0.00092 0.157 0.108 0.226 -1.7 0.051 -1.7
#> 3 Ballard 0.059 0.00018 ©.057 0.037 0.089 -2.8 0.057 -2.8
#>  logit.lower logit.upper
#> 1 -2.5 -2.5
#> 2 -2.1 -2.1
#> 3 -3.3 -3.3

The fitted object is of class SUMMERmodel . svy, and the direct ($direct) and Fay-Herriot
estimates ($smooth) are saved as data frames in the fitted objects. Notice that since the
analysis is performed on the logit of the prevalence, estimates on both the logit and the
probability scales are returned in the output. We use the mapPlot () function in SUMMER
to show the estimates on a map. In essence, the mapPlot() function takes a data frame,
a SpatialPolygonsDataFrame object, the column names indexing regions in both the data
frame and the polygons, and returns a ggplot object. Additional function arguments are
available to more easily customize the visualizations. Figure 2 compares the point estimates
on the map and the effect of spatial smoothing can be easily seen.

gl <- mapPlot(fit.BRFSS$direct, geo = KingCounty,
by.data = "region”, by.geo = "HRA2010v2_",
variables = "direct.est”, label = "Direct Estimates”,
legend.label = "Prevalence”, ylim = c(0, 0.24))

g2 <- mapPlot(fit.BRFSS$smooth, geo = KingCounty,
by.data = "region”, by.geo = "HRA2010v2_",
variables = "median”, label = "Fay Herriot Estimates”,
legend.label = "Prevalence”, ylim = c(@, 0.24))

gl + g2

Similar analysis can be implemented for Gaussian observations, and can include tempo-
ral smoothing or covariates in the smoothing model. The hyperpriors can also be further
customized. For more details and examples, we refer the readers to the package documenta-
tion under the smoothSurvey() section.

5 Example 2: area-level model of NMR and U5MR using simulated data

In the second example, we consider estimating mortality rates using multiple surveys. We
use the NMR and U5MR as two examples, but the implementation in the SUMMER package

The R Journal Vol. 17/1, March 2020 ISSN 2073-4859


https://CRAN.R-project.org/package=SUMMER
https://CRAN.R-project.org/package=SUMMER

CONTRIBUTED RESEARCH ARTICLE

96

Direct Estimates Fay Herriot Estimates

Prevalence Prevalence

0.20
0.15
0.10
0.05
0.00

0.20
0.15
0.10
0.05
0.00

f

Figure 2: Direct and Fay-Herriot estimates of the prevalence of Type II diabetes in King county HRAs.

allows straightforward extensions to other age groups. We use a simulated survey dataset
in this example. A more detailed case study using cluster-level models is provided in the
supplementary materials.

We load the DemoData dataset from the SUMMER package. The DemoData is a list that
contains full birth history data from simulated surveys with stratified cluster sampling
design, similar to most of the DHS surveys. It has been pre-processed into the person-month
format, where for each list entry, each row represents one person-month record. Each
record contains columns for the cluster ID (clustid), household ID (id), strata membership
(strata) and survey weights (weights). The region and time period associated with each
person-month record has also been pre-computed. The age variable in this data frame is
in the form of a1-ay, i.e., 1-11 corresponds to age group with 1 to 11 completed months,
whereas age groups with only one month are stored using a single number representation,
e.g., age group 0. This is also the data structure in the output of the getBirths function
in the SUMMER package. In all the analyses of this paper, we use the default age bands
as described before. If a different set of age bands is desired, they can be specified by the
month.cut argument in the getBirths function.

data(DemoData)

head(DemoDatal[[1]]1)

#> clustid id region time age weights strata died
#> 1 1 1 eastern 00-04 0 1.1 eastern.rural 0
#> 2 1 1 eastern 00-04 1-11 1.1 eastern.rural 0
#> 3 1 1 eastern 00-04 1-11 1.1 eastern.rural 0
#> 4 1 1 eastern 00-04 1-11 1.1 eastern.rural 0
#> 5 1 1 eastern 00-04 1-11 1.1 eastern.rural 0
#> 6 1 1 eastern 00-04 1-11 1.1 eastern.rural 0

In order to compute NMR, we create a new list of surveys with only deaths within age
group 0.

DemoDataNMR <- DemoData
for(i in 1:length(DemoData)){
DemoDataNMR[[i]] <- subset(DemoDatal[[i]], age == "0")

We now turn to the estimation of NMR and U5MR using four simulated surveys in
DemoData. For multiple surveys, we combine the person-month records into a list and use
the getDirectList() function to obtain the survey-specific direct estimates. When there are
no deaths in a given area and time period, or when more than half of the age groups do
not exist in the person-month data, the direct estimates cannot be reliably computed and
are set to NA. When only a small fraction of the age groups are not observed, they will be
combined with the previous age groups when fitting the discrete hazard model.
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periods <- c("85-89", "90-94", "95-99" ) "Q0-04", "05-09", "10-14")
directNMR <- getDirectList(births = DemoDataNMR, years = periods,
regionVar = "region"”, timeVar = "time",
clusterVar = "~clustid + id”, ageVar = "age",
weightsVar = "weights")
directU5 <- getDirectList(births = DemoData, years = periods,
regionVar = "region”, timeVar = "time",
clustervVar = "~clustid + id", ageVar = "age",
weightsVar = "weights")

The direct estimates from multiple surveys can be combined to produce a “meta-analysis”
estimator using the aggregateSurvey () function.

directNMR.comb <- aggregateSurvey(directNMR)
directU5.comb <- aggregateSurvey(directU5)

Once the direct estimates are calculated, we fit the space-time Fay-Herriot model in the
same fashion as in the previous example. The argument year. label specifies the order of
the years column in the direct estimates, so that it does not have to be integer valued, and
can easily allow extensions to future and past time periods not in the data. We can also
fit the temporal model at the yearly level even though the direct estimates are in five year
periods (Li et al., 2019). In this case, we need to specify the proper range of the time periods
(year_range) encoded by the time periods in year.label, and the number of years in each
period (m). Unequal periods are not supported at this time. The smoothDirect() function
returns a fitted object of class SUMMERmodel.

fhNMR <- smoothDirect(data = directNMR.comb, Amat = DemoMap$Amat,
year.label = c(periods, "15-19"), year.range = c(1985, 2019),
time.model = "rw2", type.st = 4, is.yearly = TRUE, m = 5)
fhU5 <- smoothDirect(data = directU5.comb, Amat = DemoMap$Amat,
year.label = c(periods, "15-19"), year.range = c(1985, 2019),
time.model = "rw2", type.st = 4, is.yearly = TRUE, m = 5)

The Fay-Herriot estimates can be summarized by the getSmoothed() function. The
desired posterior credible intervals are specified by the CI argument. It organizes the
estimates into a data frame of class SUMMERproj, which can be directly viewed or plotted
using the plot method. Additional customization can be added using the syntax of ggplot2,
as shown in Figure 3.

est.NMR <- getSmoothed(fhNMR, CI = 0.95)

est.U5 <- getSmoothed(fhU5, CI = 0.95)

g3 <- plot(est.NMR, per1000 = TRUE) + ggtitle(”"NMR")

g4 <- plot(est.NMR, per1000 = TRUE, plot.CI=TRUE) + facet_wrap(~region)
g5 <- plot(est.U5, per1000 = TRUE) + ggtitle("U5MR")

g6 <- plot(est.U5, per1000 = TRUE, plot.CI=TRUE) + facet_wrap(~region)
(g3 + g4) / (g5 + g6)

6 Example 3: cluster-level model of USMR using Malawi DHS data

We now consider a more realistic example of estimating USMR at the admin-2 level using
the 2015-2016 Malawi DHS survey. The full dataset is available on the DHS website
athttps://dhsprogram.com/data/available-datasets.cfm?ctryid=24. Access to the full
micro-level data requires registration with the DHS. Once access is approved, the rdhs
(Watson and Eaton, 2019) package can be used to load data directly from the DHS API in
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Figure 3: Smoothed direct estimates of NMR (top row) and U5MR (bottom row) on the yearly scale
(dots) and 5-year period scale (triangles) in the simulated dataset. The vertical error bars correspond
to 95% credible interval of the 5-year estimates. The plots on the left are from the default plot function.
The plots on the right show simple customization of the default plots.

R. We document the process to read the raw DHS files and process the birth records in the
supplementary materials.

For reproducibility of the examples in this paper, we start with the aggregated count data
from the 2015 Malawi DHS. The pre-processed count data is available in the supplementary
materials. This aggregated dataset consists of the counts of deaths occurring within each
age band and the total number of person-months by cluster and year. This aggregated
dataset and the full data acquisition and cleaning steps to obtain this dataset are described
in the supplementary materials. The processing steps involve primarily the getBirths()
and getCounts() functions and some data cleaning in region names. The supplementary
materials also include workflows and results on fitting several other smoothing models on
the Malawi DHS data.

Subnational spatial polygon files can usually be found on the DHS spatial data repository
(The DHS Program, 2020) or the GADM database of global administrative areas (Global
Administrative Areas, 2012). The admin-2 region polygon of Malawi is included in the
SUMMER package already and can be directly loaded.

data(MalawiMap)
MalawiGraph = getAmat(MalawiMap, names=MalawiMap$ADM2_EN)
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We then load the pre-processed count data and fit the cluster-level model using the
smoothCluster () function. We consider the observations from 2007 to 2015 and project the
mortality rates to 2019. To simplify results, we fit the unstratified model in this example by
removing the strata variable from the data frame or setting it to NA. The supplementary
materials contain additional details to fit stratified cluster-level models.

load("Data/DHS_counts.rda")
agg.counts$strata <- NA
head(agg.counts)

#> v001 v025 admin2 time age v@05 died total survey cluster strata region years Y
#> 55427 696 urban Likoma 2000 © 12778 0@ 3 DHS2015 696 NA Likoma 2000 0
#> 55428 696 urban Likoma 2001 0 12778 4 DHS2015 696 NA Likoma 2001 @
#> 55429 696 urban Likoma 2002 © 12778 2 DHS2015 696  NA Likoma 2002 @
#> 55430 696 urban Likoma 2003 © 12778 4 DHS2015 696 NA Likoma 2003 0
#> 55431 696 urban Likoma 2004 0 12778 3 DHS2015 696 NA Likoma 2004 0
#> 55432 696 urban Likoma 2005 © 12778 2 DHS2015 696  NA Likoma 2005 0

[ CSRN S RNCS EN]

Sometimes, additional information is available to adjust the estimates from the surveys.
For example, in countries with high prevalence of HIV, estimates of USMR can be biased,
particularly before ART treatment became widely available. Pre-treatment, HIV positive
women had a high risk of dying, and such women who had given birth were therefore less
likely to appear in surveys. The children of HIV positive women are also more likely to have
a higher probability of dying compared to those born to HIV negative women. Hence, we
expect that the USMR is underestimated if we do not adjust for the missing women. For the
two surveys in Malawi, the calculated HIV adjustment ratios as described in Walker et al.
(2012) are stored in the SUMMER as MalawiData$HIV.yearly. The unstratified cluster-level
model can be fitted using the smoothCluster() function.

fit.bb <- smoothCluster(data = agg.counts, Amat = MalawiGraph,
family = "betabinomial”, year.label = 2000:2019,
time.model = "rw2", st.time.model = "ar1",
age.group = c("@", "1-11", "12-23", "24-35", "36-47", "48-59"),
age.n = c(1, 11, 12, 12, 12, 12),
age.time.group = c(1, 2, 3, 3, 3, 3),
pc.st.slope.u = 2, pc.st.slope.alpha = 0.1,
bias.adj = MalawiData$HIV.yearly,
bias.adj.by = c("years"”, "survey"),
survey.effect = FALSE)

When not specified explicitly, the space-time interaction term inherits the same tem-
poral dependency structure defined by time.model. We can use different models for the
interaction term by specifying the st.time.model argument. For example, in the model
above, we can model the main temporal trends using random walks of order 2, and model
the space-time interaction using the interaction of a temporal AR(1) process and an ICAR
process in space. To allow each region to have more flexible temporal trends, we add region-
specific random slopes to the interaction terms by specifying the priors pc.st.slope.u and
pc.st.slope.alpha. These arguments specify that the probability of the absolute temporal
change from the shared temporal trend (on the logit scale) over the entire time period ex-
ceeding pc.st.slope.uis pc.st.slope.alpha. The age.group, age.n and age. time.group
specify the age groups, their corresponding length (in months), and how they are grouped
when modeling the temporal trends, i.e., the a*[m] term defined before.

After we fit the model, we use the getSmoothed() function to obtain the posterior
summaries of the prevalence by taking nsim draws from the posterior distribution. Since
for the cluster-level models, the estimates may not be a linear combination of the random
effect terms in the case of a composite indicator, the posterior summaries are obtained via
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posterior samples. For the cluster-level model, the getSmoothed() function returns an object
of class SUMMERprojlist, which includes potentially multiple projections for each stratum
($stratified), sampling frame ($overall), and aggregated over different sampling frames
($final) if applicable. In this example, since we fit an unstratified model with only one
sampling frame, the estimates stored in est.bb$stratified and est.bb$overall are the
same. In addition, by specifying save.draws = TRUE, the full posterior draws are stored,
which can be re-used to speed up other functions that require access to posterior samples of
internal model parameters.

est.bb <- getSmoothed(fit.bb, nsim = 1000, save.draws = TRUE)

7 Visualization and model checking

In addition to the plots shown in the previous sections, the SUMMER package provides
a collection of visualization tools to assess model fit and uncertainty in the estimates.
Assessment of uncertainty is a key step in analysis as maps of point estimates can be
intoxicating, but often hide huge uncertainty, which should temper initial enthusiasm. Most
of the visualization options return a ggplot2 object, which can be further customized. In this
section, we use the fitted models for Malawi 2015 — 2016 DHS as an example.

The first set of visualizations are the line plots that we have shown before. Figure 4
shows subnational posterior median USMR estimates over time for the five northern regions.
We also scale the estimates to be deaths per 1, 000 live births using the per1000 argument.

select <- c("Chitipa”, "Karonga”, "Rumphi”, "Mzimba")
plot(subset(est.bb$overall, region %in% select), per1000 = TRUE, year.proj = 2016)

region
Chiipa
+ Karonga
+ Mzimba

Rumphi

deaths per 1000 live births.

2000 2005 2010 2015
Year

Figure 4: Subnational temporal trends of USMR using the 2015-2016 DHS in Malawi in four regions.

By default, subnational estimates do not show the intervals to avoid many overlapping
vertical bars, but they can be added back with the plot.CI option as illustrated in previous
examples. We also compare the smoothed estimates with the pre-computed direct estimates
in Figure 5, where the shrinkage in point estimates and the reduction in uncertainty intervals
can be easily seen. The direct estimate computation is detailed in the supplementary
materials.

load("Data/DHS_direct_hiv_adj.rda")
plot(subset(est.bb$overall, region %in% select), per1000 = TRUE,

year.proj = 2016, plot.CI = TRUE,

data.add = direct.2015.hiv, label.add = "Direct Estimates”,

option.add = list(point = "mean”, lower = "lower", upper = "upper")) +
facet_wrap(~region, ncol = 4)

The mapPlot () function visualizes the estimates on a map. The estimates, est.bb$overall,
are in the long format where estimates of each year and period are stacked. This is specified
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Figure 5: Comparing subnational temporal trends of USMR under cluster-level model and direct
estimates, using the 2015-2016 DHS in Malawi in four regions.

with the is.long argument. Figure 6 maps the changes over time. The drops in USMR in all
regions are apparent, though there is great spatial heterogeneity.

year.plot <- c("2007", "2010", "2013", "2016", "2019")
mapPlot (subset(est.bb$overall, years %in% year.plot),
geo = MalawiMap, by.data = "region”, by.geo = "ADM2_EN",
is.long = TRUE, variables = "years"”, values = "median",
ncol = 5, direction = -1, per1000 = TRUE, legend.label = "U5MR")

2007 2010 2013 2016 2019

USMR

" " 120
100
80
60
40

Figure 6: Spatial distribution of USMR using the 2015-2016 DHS in Malawi over selected years.

The hatchPlot() function plots additional hatching lines on the map indicating the
width of the uncertainty intervals. Denser hatching lines represent higher uncertainty.
Usually, estimates of the early years have higher uncertainty, as shown in Figure 7. It also
clearly shows the increase in uncertainty in the projections. We also note that both mapPlot ()
and hatchPlot() functions can be used in broader cases as they provide a general tool to
visualize rectangular data on a map.

hatchPlot(subset(est.bb$overall, years %in% year.plot),
geo = MalawiMap, by.data = "region”, by.geo = "ADM2_EN",
is.long = TRUE, variables = "years”, values = "median”,
lower = "lower"”, upper = "upper”, hatch = "red",
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ncol = 5, direction = -1, per1000 = TRUE, legend.label = "U5MR")
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Figure 7: Subnational estimates of USMR using the 2015-2016 DHS in Malawi over selected years,
with hatching lines indicating the width of the 95% credible intervals of the estimates. Denser hatching
correspond to higher uncertainty. Estimates for 2019 in the last column are from the model projection
and thus have higher uncertainty.

The ridgePlot () function provides another visual comparison of the estimates and their
associated uncertainty. Figure 8 shows one such example where the marginal posterior
densities of the estimates in the selected years are plotted with regions sorted by their
posterior medians in the last plotted period. The posterior densities can also be grouped
with all estimates in each region plotted in the same panel using the by.year = FALSE
argument in the ridgePlot () function. These plots are particularly useful to quickly identify
regions with high and low estimates, while also showing the uncertainties associated with
the rankings as well. The ranking of areas is often an important endeavor, since it can inform
interventions in areas that are performing poorly or, more optimistically, allow areas with
better outcomes to be examined to see if covariates (for example) are explaining their more
positive performance.

ridgePlot(draws = est.bb, Amat = MalawiGraph, year.plot = year.plot,
ncol = 5, per1000 = TRUE, order = -1, direction = -1) + xlim(c(@, 200))
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Figure 8: Posterior densities of the subnational estimates of USMR using the 2015-2016 DHS in Malawi
over selected years. Admin-2 regions are ordered by their median estimates in 2019. Estimates for
2019 in the last column are from the model projection and thus have higher uncertainty.

Finally, as models get more complicated, it becomes increasingly important to examine
the estimated random effects for idiosyncratic behavior that may be evidence of model
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misspecification. The SUMMER package provides tools to easily extract and plot posterior
marginal distributions for each of the random effect components. We can use the getDiag()
function to extract the posterior marginal distributions of the spatial, temporal, and space-
time interaction terms from the fitted models, which can then be plotted in a similar fashion
as the estimates. The space-time interaction term in the fitted model contains a sum of a
region-specific linear trend and an AR(1) random effect. Thus, we need posterior samples
to compute their marginal distributions. We can feed the saved posterior draws from the
est.bb here to speed up the computation.

r.time <- getDiag(fit.bb, field = "time")
r.space <- getDiag(fit.bb, field = "space")
r.interact <- getDiag(fit.bb, field = "spacetime”, draws = est.bb$draws)

The extracted posterior summaries of the random effects can then be examined and
visualized. Figure 9 shows the posterior summaries of the temporal, spatial, and interaction
terms in the model.

g.time <- ggplot(r.time, aes(x = years, y = median, ymin=lower, ymax=upper)) +
geom_line() +
geom_ribbon(color=NA, aes(fill = label), alpha = 0.3) +
facet_wrap(~group, ncol = 3) +
theme_bw() +
ggtitle("Age-specific Temporal effects"”)
g.space <- mapPlot(subset(r.space, label = "Total"),
geo=MalawiMap, by.data="region", by.geo = "ADM2_EN",
direction = -1, variables="median",
removetab=TRUE, legend.label = "Effect”) +
ggtitle("Spatial effects”)
g.interact <- ggplot(r.interact, aes(x = years, y = median, group=region)) +
geom_line() + ggtitle("Interaction effects"”)
g.time + g.space + g.interact + plot_layout(widths = c(3, 2, 3))

Age-specific Temporal effects Spatial effects Interaction effects

0 [ 111 [ 1223

NN

2435 [ 3647 [ 48.50

1
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0 1D

1 Structured

200520102015 2000 2005 2010 2015

median

2000 2005 2010 2015 2000 2005 2010 2015
years years

Figure 9: Posterior medians for the random effect terms in the cluster-level model using Malawi
2015-2016 DHS. Left: posterior medians and 95% credible intervals of the age-specific temporal effects

and the IID temporal shocks. Middle: posterior medians of the spatial effects. Right: posterior medians
of the space-time interaction effects.

8 Discussion

The present paper aims to provide a general overview of the R package SUMMER for
space-time smoothing of demographic and health indicators. The particular focus of this
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paper is on mortality estimation and the demonstration of the workflow for practitioners to
fit flexible Bayesian smoothing models with DHS data. The implementation using INLA
allows fast computation of these smoothing models. The Fay-Herriot estimates can usually
be fit within seconds to minutes depending on the number of regions and time period. The
cluster-level model may require longer computation time, especially with surveys containing
many samples. We leave the fitting of more time-consuming models in the supplementary
materials.

The SUMMER package is in constant development. This paper introduces the core
functionalities of the package. There are many more functionalities to tackle application-
specific issues, such as different age-time interactions, aggregation over urban/rural strata,
benchmarking to external national estimates, etc. We are also expanding the package to
include more options for the traditional SAE models with fast implementations built on our
current computational framework. Recent extensions built on SUMMER functionalities
include the recent addition of SAE methods in the survey package (Lumley, 2024) and the
surveyPrev package (Dong et al., 2024) which provides a general pipeline to download,
process, and map a broad variety of DHS indicators.

In the future, we have several plans to improve the functionality of SUMMER. In the
cluster-level model, we would like to allow different overdispersion parameters for different
age groups. We plan to incorporate methods for child mortality estimation using summary
birth history data (Hill et al., 2015; Wilson and Wakefield, 2021) in which women provide
only information on the number of children born, and number died, without the dates of
these events. We also expect to extend the core functionalities to model other demographic
and health indicators such as fertility. In our examples in this paper, we did not include
covariates. In both the area-level and the cluster-level models, covariates can be included;
see Wakefield et al. (2020) for an example in the context of HIV prevalence mapping in
Malawi. Finally, in the long term, we would like to incorporate continuous spatial models
as well.
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latrend: A Framework for Clustering
Longitudinal Data

by , Steffen Pauws, and Edwin van den Heuvel

Abstract Clustering of longitudinal data is used to explore common trends among subjects
over time. In this paper, we focus on cases where the sole repeated measurement of interest
is numeric. Various R packages have been introduced throughout the years for identifying
clusters of longitudinal patterns, summarizing the variability in trajectories between subjects
in terms of one or more trends. We introduce the R package latrend as a framework for the
unified application of methods for longitudinal clustering, enabling comparisons between
methods with minimal coding. The package also serves as an interface to commonly used
packages for clustering longitudinal data, including dtwclust, flexmix, kml, lemm, mclust,
mixAK, and mixtools. This enables researchers to easily compare different approaches,
implementations, and method specifications. Furthermore, researchers can build upon
the standard tools provided by the framework to quickly implement new cluster methods,
enabling rapid prototyping.

1 Introduction

In this work, we consider the case where subjects are repeatedly measured on the same
variable over a period of time. This type of data is referred to as longitudinal data. In this
paper, we focus on the repeated measurement of a single numeric variable, although in other
applications, longitudinal measurements may be ordinal or even categorical (e.g., sequence
analysis), and comprise multiple variables. No two subjects are identical, and therefore
observations made across subjects may develop differently over time. Usually, longitudinal
datasets are represented by a single general trend, i.e., an average representative trajectory
indicating the expected change and variability over time. However, there may be structural
deviations from the trend caused by observed and unobserved factors, or the distribution of
random deviations is difficult to model parametrically.

Clustering longitudinal data is a practical approach for exploring or representing the vari-
ability between subjects in more detail (Hamaker, 2012). Here, the variability is summarized
in terms of a manageable number of common trends, which are identified in an unsuper-
vised manner from the data using a cluster algorithm. The approach is especially useful
for exploring datasets involving a large number of trajectories, where a visual inspection of
the trajectories would be impractical. In essence, the data are assumed to comprise several
groups, each with a different longitudinal data generating mechanism. It differs from cross-
sectional clustering due to the need to account for the dependency between observations
within subjects, and the possible temporal correlation in the repeated measurements.

The exploration of subgroups in longitudinal studies is of interest in many domains.
Examples include recidivism behavior in criminology, the development of adolescent an-
tisocial behavior or substance use in psychology, and medication adherence in medicine.
An example application that we will demonstrate further in this paper is the exploration of
the different ways in which patients with sleep apnea adhere to positive airway pressure
(PAP) therapy over time. Here, therapy adherence is measured in terms of the number of
hours of sleep during which the therapy is used, recorded daily. Patients exhibit different
levels of adherence to the therapy, depending on many factors such as their sleep schedule,
motivation, self-efficacy, and the perceived importance of therapy (Cayanan et al., 2019).
Moreover, patients may exhibit a different level of change over time, depending on their
initial usage and their ability to adjust to the therapy. To account for the many possibly un-
observed factors involved, researchers have used longitudinal clustering to summarize the
between-subject variability in terms of longitudinal patterns of therapy adherence (Babbin
et al., 2015; Den Teuling et al., 2021a; Yi et al., 2022).
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A number of packages have been created in R (R Core Team, 2024) that can be used
for clustering longitudinal data. However, for researchers analyzing a novel case study,
choosing the best method or implementation is not straightforward due to the inherent
exploratory nature of such an analysis. Considering that each of these packages has been
created to fulfill a gap in the capabilities of other existing implementations or approaches,
there is value in comparing the results for new case studies at hand. In any case, the
evaluation of different approaches across packages is an activity of considerable effort, as the
methods, inputs, estimation procedure, and cluster representations differ greatly between
packages.

The aim of the latrend package is to facilitate the exploration of heterogeneity in a longitu-
dinal dataset on a numeric variable of interest, through a variety of cluster methods from vari-
ous fields of research in a standardized manner. The package provides a unifying framework,
enabling users to specify, estimate, select, compare, and evaluate any supported longitudinal
cluster method in an easy and consistent way, with minimal coding. Most importantly,
users can easily compare results between different approaches, or run a simulation study. A
second aim of latrend is to enable users to extend the framework with new methods or add
support for other existing methods. The latrend package is available from the Comprehen-
sive R Archive Network (CRAN) at (https://CRAN.R-project.org/package=latrend) and
on GitHub at (https://github.com/niekdt/latrend).

Currently, a total of 18 methods for longitudinal clustering are supported. To provide
support for such a variety of approaches, the latrend package interfaces with an extensive
set of packages that provide methods that are applicable for clustering longitudinal data,
including akmedoids (Adepeju et al., 2020), crimCV (Nielsen, 2023), dtwclust (Sarda-
Espinosa, 2019), flexmix (Griin and Leisch, 2008), funFEM (Bouveyron, 2021), kml (Genolini
et al., 2015), lemm (Proust-Lima et al., 2017), mclust (Scrucca et al., 2016), mixAK (Komarek,
2009), and mixtools (Benaglia et al., 2009). In this way, we build upon the cluster packages
created by the R community. Support has also been added for MixXTVEM; a mixture model
proposed and implemented as an R script by Dziak et al. (2015).

To the best of our knowledge, such a comprehensive package does not yet exist in the
context of clustering longitudinal data. The latrend package has similar aspirations as the
flexmix package (Griin and Leisch, 2008), which also provides an extensible framework
for (multilevel) clustering. However, the scope of our package is purposefully broader,
to facilitate users to apply approaches from various fields of research. Our framework is
agnostic to the specification, estimation, and representation used by the methods.

The paper is organized as follows. A short overview of different approaches to clustering
longitudinal data is given in Section 2. In Section 3, the design principles and high-level
structure of the framework are described. The usage of the package is demonstrated in
Section 4. Section 5 describes three ways in which users can implement their own cluster
methods. Lastly, a summary and future steps are presented in Section 6.

2 Methods

We will briefly describe common general approaches to clustering longitudinal data, and
the main strengths of these approaches. For brevity, we do not go into the specifics of any of
the packages. We refer to the accompanying articles of these packages for further details.
Starting with the aspects that all approaches have in common, let the repeated observations
of the trajectory from subject i be denoted by

yi = (Yir Yz, - Yif;)s

where Yij is a numerical value of some variable of interest, tij is the measurement time, and
J; is the number of observations of trajectory y; for subject i.

Regardless of the approach, any method for clustering longitudinal data approximates
the dataset heterogeneity in terms of a set of K clusters, with each cluster representing
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a proportion 71y of the population, with 77; > 0 and YK , ;; = 1. The clusters may be
discovered by identifying groupings of similar subjects, based on their trajectory. Typically,
a cluster method is estimated for a given number of clusters, specified by the user. By
applying a cluster method for a different number of clusters, the most appropriate number
of clusters can then be determined for the respective data.

Subjects are generally assumed to belong to a single cluster. Therefore, many cluster
methods partition the subjects into k mutually exclusive sets Iy, I, ..., Ix, where I; denotes
the set of subjects to belong to cluster k, with UkK:1 Iy = 1. Depending on the application, it
may be desirable to identify a representation for each cluster, also referred to as the cluster
center, which provides a summary of the cluster. This representation may be obtained
from the averaged representation of all the subjects assigned to the respective cluster, by
designating a representative subject, or through the cluster representation defined by the
method, if applicable.

Other cluster methods allow for overlapping clusters, commonly referred to as soft or
fuzzy clustering. Here, subjects may belong to multiple clusters, with a certain degree
or weight to which subjects belong to each cluster. In the case of model-based clustering
(McNicholas and Murphy, 2010), the clusters are represented by a mixture of statistical
models, for which cluster membership is expressed as a probability. In applications where
each subject is assumed to belong to one cluster, subjects are typically assigned to the cluster
with the highest subject-specific posterior probability, referred to as modal assignment.

2.1 Cross-sectional clustering

In a cross-sectional cluster approach, also referred to as a raw-data-based approach (Liao,
2005), the different observation moments are treated as separate features for a standard
cluster algorithm, i.e., as if we are conducting a cross-sectional cluster analysis. In standard
cluster algorithms such as k-means, the features are assumed to be independent, although
this is generally not a strict requirement. The temporal independence assumption made
in this approach yields a non-parametric representation of the trajectories. This makes it a
useful approach for an exploratory analysis without any prior assumptions on the shape of
the trajectories. The main limitation of this approach is that observations must be aligned
between trajectories, i.e., measured at the same respective moments in time. Consequently,
missing observations should be imputed.

An example of a cross-sectional approach is longitudinal k-means (KmL). KmL applies
the k-means cluster algorithm directly to the observations. The cluster trajectories are
determined by the averaged observations of trajectories assigned to the respective cluster.
The method is implemented in the kml package by Genolini et al. (2015).

A model-based cross-sectional approach is seen in longitudinal latent profile analy-
sis (LLPA), otherwise known as longitudinal latent class analysis (Muthén, 2004). Here,
Gaussian mixture modeling is used to describe each moment in time as a normally dis-
tributed random variable. A dataset with trajectories each comprising | observations is thus
described by ] random variables, each modeling the response distribution at a different
moment in time. Gaussian mixture models can be estimated using, for example, the mclust
package by Scrucca et al. (2016). In the simplest case, the | observations are modeled as being
independent and the variance is shared between clusters, but by relaxing constraints on the
covariance matrix, temporal correlations and different cluster shapes can be accounted for.

2.2 Distance-based clustering

Distance-based cluster algorithms operate on the pairwise distance between trajectories.
These methods take a distance matrix of pairwise trajectory distances as input, where the
choice of the distance metric, i.e., the dissimilarity measure, is left to the user. Examples of
cluster algorithms that use this approach include k-medoids and agglomerative hierarchical
clustering.
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Given the trajectories of subject a and b, the distance metric is denoted by d(y,, y;). As
an example, the Euclidean distance

A(ya, y5) = |3 (Ybj — Yaj)?-

]

may be used as the distance metric. Cross-sectional clustering is a special case of distance-
based clustering where a raw-data distance metric is used.

The approach is commonly used for time series clustering', and the list of available
distance metrics that have been proposed over the past decades is extensive (Aghabozorgi
et al.,, 2015). A distance function can be specified to account for one or more temporal
aspects of interest, e.g., mean level, changes over time, variability, autocorrelation, spectral
components, and entropy. Many dissimilarity metrics are implemented in the dtwclust
package (Sarda-Espinosa, 2019).

2.3 Regression-based clustering

In regression-based clustering, the longitudinal dataset is modeled by a regression model
comprising a mixture of submodels (de la Cruz-Mesia et al., 2008). It is also referred to
as latent-class trajectory modeling. This approach comprises a versatile class of (semi-
)parametric methods. Most importantly, the shape of the trajectories can be represented
using a parametric model, requiring fewer parameters compared to a non-parametric
approach. Measurements can be taken at different times between subjects, and covariates
can be accounted for. Moreover, users can incorporate assumptions into the modeling of the
trajectories and clusters, such as the distribution of the response variable, the within-cluster
variability, and heteroskedasticity.

A straightforward example of regression-based clustering involves modeling the popula-
tion as a mixture of cluster trajectory models. This is referred to as group-based trajectory
modeling (GBTM) or latent-class growth analysis (LCGA). It is essentially a mixture of linear
regression models, with

Yij = xijﬁk + &jjk fori € I, 1
where x;; is the N X B design matrix of B covariates, fiy are the B group-specific coefficients,
and ¢;j is the normally distributed residual error with zero mean and constant variance 0']%
which may be specified to differ between clusters. The design matrix contains covariates of
time, enabling the model to describe the change in response over time. External covariates
can be included to further explain the dependent variable. The expected values of a trajectory,
assuming the trajectory belongs to cluster k, is given by

E(yl]|Cl = k) = Xijﬁk- (2)

GBTM is available, for example, in the packages lemm (Proust-Lima et al., 2017) and crimCV
(Nielsen, 2023).

A popular form of regression-based clustering that does consider within-cluster vari-
ability is growth mixture modeling (GMM) (Muthén, 2004), which represents a mixture of
multilevel models. Here, the within-cluster variability is modeled by allowing for subject-
specific deviations from the cluster center, e.g., a deviation in the intercept. Using a linear
mixed modeling approach, the trajectories for cluster k are given by

yij = xiffix + zijug; + e fori € . 3)

Here, z;; is the N x U design matrix for the U random effects, and uy; are the subject-specific
random coefficients for cluster k. The random effects are assumed to be normally distributed
with mean zero and variance-covariance matrix X;. The expected values of a trajectory,

Clustering longitudinal data can be regarded as a special case of time series clustering where the time series
have a common starting point.
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assuming the trajectory belongs to cluster , is given by
E(y;|Ci = k,w;) = x;{fix + z;uy;. 4)

GMM is available in packages such as lemm (Proust-Lima et al., 2017), mixtools (Benaglia
et al., 2009), and mixAK (Komarek, 2009).

2.4 Feature-based clustering

In a feature-based approach, each trajectory is independently represented by a set of tem-
poral characteristics (i.e., features, coefficients), for example, the mean, variability, and
change over time (Liao, 2005). The trajectories are then clustered based on the features or
coefficients using a cross-sectional cluster algorithm. This can be regarded as a special case
of distance-based clustering, but with a domain-tailored distance function. This approach
has the advantage of allowing users to easily combine arbitrary features of interest. The
approach is used, for example, by the anchored k-medoids algorithm provided by the akme-
doids package (Adepeju et al., 2020). Here, the trajectories are represented using linear
regression models, and are clustered based on the model coefficients.

Compared to the rather time-intensive regression-based clustering approach, the trajec-
tory models only need to be estimated once. A disadvantage compared to regression-based
clustering is that the reliability of the trajectory coefficients depends on the available data
per trajectory. This approach therefore generally requires a greater number of observations
per subject to yield similar results.

2.5 Identifying the number of clusters

Due to the exploratory nature of clustering, the number of clusters is typically not known
in advance. Moreover, most of the cluster methods require the user to specify the number
of clusters. The preferred number of clusters for the respective method can be determined
by estimating the method for an increasing number of clusters, followed by comparing the
solutions by means of an evaluation metric. In such a comparison for a particular method,
the interpretation of the metric is consistent across the solutions, as they all originate from
the same method specification.

Many metrics are available, although they may not be defined for each type of method.
For example, in distance-based methods, the solutions are typically evaluated in terms of the
separation between clusters. Cluster separation is measured by the distance between trajecto-
ries or cluster trajectories, e.g., using the average Silhouette width (ASW) (Rousseeuw, 1987)
or the Dunn index (Arbelaitz et al., 2013). In contrast, a regression-based approach typically
has no notion of the distance between trajectories, but instead measures the likelihood of the
overall regression model on the given data, enabling the use of likelihood-based evaluation
such as the Bayesian information criterion (BIC), Akaike information criterion (AIC), or
likelihood ratio test (der Nest et al., 2020). Specific to cluster regression methods where the
longitudinal observations are modeled at the subject level, assessing the solution in terms of
the residual errors of the trajectories may be of interest. Examples of such metrics include
the mean absolute error (MAE) and root mean squared error (RMSE). For probabilistic
assignments these metrics may be weighted by the posterior probability of the trajectories,
denoted as WMAE and WRMSE, respectively.

Overall, the preferred metric depends on the type of method under consideration and
the case study domain. In the case of evaluation between different types of methods, a
metric should be selected which is defined for both types of method, which may rule out
many of the options. Users are advised to follow recommendations from literature for the
respective method. Moreover, it is advisable to use the evaluation metric merely as guidance
in identifying the preferred solution, as a trade-off between the number of clusters and the
interpretability of the solution. Lastly, it is worthwhile to factor in domain knowledge into
the selection of cluster solutions (Nagin et al., 2018).

The R Journal Vol. 17/1, March 2025 ISSN 2073-4859


https://CRAN.R-project.org/package=lcmm
https://CRAN.R-project.org/package=mixtools
https://CRAN.R-project.org/package=mixAK
https://CRAN.R-project.org/package=akmedoids
https://CRAN.R-project.org/package=akmedoids

CONTRIBUTED RESEARCH ARTICLE 113

2.6 Comparing methods

The approaches may yield considerably different results, arising from fundamental differ-
ences in the temporal representation and similarity criterion of the methods. Moreover,
some approaches are more applicable to certain measurement moments, sample sizes, tra-
jectory shapes and cluster sizes than others. To guide users towards an initial choice for
a suitable approach, we have listed some of the general strengths and limitations of the
different approaches in Table 1. Note that even for methods of the same type of approach,
results may differ depending on how the trajectories are represented, trajectory similarity
is measured, or how clusters are formed. Considering that the most suitable approach or
method is typically not known in advance, it is advisable to evaluate and compare the
solutions between methods to identify the most suitable method for the respective case
study. The resulting solutions can then be compared using an external evaluation metric.

A useful starting point in comparing the preferred solutions between methods is to
evaluate the similarity between the cluster partitions. After all, if both candidate methods
find a similar cluster partition, this would indicate that both methods find the same grouping
despite representational differences. In contrast, if the cluster partitions are dissimilar, it may
suggest that either a hybrid approach could be of interest, or that one method is preferred
over the other.

The similarity between cluster partitions of two methods can be assessed using partition
similarity metrics such as the adjusted Rand index (ARI) (Hubert and Arabie, 1985), variance
of information, or the splitjoin index. These metrics are applicable to any method and
are even applicable when the solutions have a mismatching number of clusters. In some
case studies, a ground truth may be available in the form of a reference cluster partition.
Partition similarity metrics such as the ARI may then be used to identify the solution that
most closely resembles the ground truth. Alternatively, one may obtain a partial ground
truth by manually annotating a subset of the trajectories based on domain knowledge.

Solutions may be compared further by assessing the compactness of the clusters or the
separation between clusters on a common distance metric, for example using the average
Silhouette width or the Dunn index. This is useful to identify the method that is best at
identifying distinct subgroups.

Table 1: Summary of the general strengths and limitations of the different approaches to longitudinal

clustering.
Approach Strengths Limitations
Cross- e Suitable for initial exploration due to ® Requires time-aligned
sectional no assumptions on the shape of the trajectories of equal length
cluster trajectories * Requires complete data
* Low sample size requirement * Does not account for the
* Very fast to estimate temporal relation of
observations
Distance- @ Flexible in the choice of distance ¢ Distance matrix
based metric(s) computation is not practical
¢ Trajectory distance matrix only needs for a large number of
to be computed once trajectories
¢ Fast to estimate ¢ Pairwise comparison of
trajectories is more sensitive
to noise

* Many distance metrics
require time-aligned
trajectories
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Approach Strengths Limitations
Regression- ® Low sample size requirements due to * May be challenging to
based inclusion of parametric assumptions estimate (convergence
(Martin and von Oertzen, 2015) problems) (Den Teuling
¢ Can handle missing data etal., 2021b)
¢ Can handle trajectories of unequal ¢ Computationally intensive
length and variable time to estimate

¢ Can account for covariates
* Relatively robust to trajectories that do
not fit the representation

Feature- ¢ Temporal features only needs to be * Sensitive to trajectories that
based computed once do not fit the representation
* Very fast to estimate ¢ Trajectory-independent
* Fast alternative to regression-based feature estimation is more
approach given a sufficiently large sensitive to observational
sample size (Den Teuling et al., 2021b) outliers

3 Software design

We begin by providing a high-level description of the framework, outlining the main
functionality of the classes. A step-by-step demonstration of the framework is given in
the next section. The software is built on an object-oriented paradigm using the 54 system,
available in the methods package (R Core Team, 2024). The framework is designed to provide
a standardized way of specifying, estimating, and evaluating different longitudinal cluster
methods. This is achieved by defining two interfaces: the 1cMethod interface is used for
defining the specification and estimation logic of a method. The 1cModel interface represents
the result of an estimated method. Using these two interfaces, we can then define method-
agnostic estimation procedures for applying a specified method to a given dataset, yielding
a method result. This estimation procedure is implemented by the latrend() function. For
example, users can specify a growth mixture model (GMM) through a 1cMethodLcmmGMM
object, specifying the GMM and the estimation settings. The resulting estimated GMM is
represented by a 1cModell.cmmGMM object.

A key advantage of having stand-alone estimation procedures is that it ensures all meth-
ods take the same data format as input, and allows for more procedures to be implemented
which automatically support all implemented methods. There are additional procedures im-
plemented in the package, including repeated estimation via latrendRep (), batch estimation
via latrendBatch(), and standard non-parametric bootstrap sampling via latrendBoot().

3.1 Dataset input

We have selected the data. frame in long format as the preferred representation for longi-
tudinal datasets. Here, each row represents an observation for a trajectory at a given time,
possibly for multiple covariates. The trajectory and time of an observation are indicated in
separate columns. This format can represent irregularly timed measurements, a variable
number of observations per trajectory, and an arbitrary number of covariates of different
types. Since not all datasets are readily available in this format, the latrend() estimation
procedures handle data input by calling the generic transformLatrendData() function. Cur-
rently, this transformation is only defined for matrix input. Users can implement the method
to add support for other longitudinal data types.

3.2 The 1cMethod class

The 1cMethod class has two purposes. The first purpose is to record the method specification,
defined by the method parameters and other settings, referred to as the method arguments.
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The second purpose is to provide the logic for estimating the method for the specified
arguments and given data. lcMethod objects are immutable. Users only interact with a
1cMethod object for retrieving method arguments, or for creating a new specification with
modified arguments. This functionality is provided by the base 1cMethod class.

The base class also stores the method arguments in a list, inside the arguments slot. The
method arguments can be of any type. The names of subclasses are prefixed by “IcMethod”.
Subclasses can validate the model arguments against the data by overriding the validate()
function. Due to the specific internal structure of a 1cMethod object, constructors are defined
for creating 1cMethod objects of a specific class for a given set of arguments. In 1cMethod
implementations that are a wrapper around an existing cluster package function, the method
arguments are simply passed to the package function. The required arguments and their
default values are obtained from the formal function arguments of the package function at
runtime.

The evaluation of the method arguments is delayed until the method estimation process.
This enables a 1cMethod object to be printed in an easily readable way, where the original
argument expressions or calls are shown, instead of the evaluation result. This is useful
when an argument takes on a function or complex data structure, and it reduces the memory
footprint when a large set of method permutations is generated and serialized, such as in a
simulation study.

The method estimation process is implemented through six generic functions:
prepareData(), compose(), validate(), preFit(), fit(), and postFit(). The purpose
of each step is explained in Section 5. There are several advantages to this design. Firstly,
the structure enables the method estimation process to be checked at each step. Secondly,
splitting the estimation logic into processing steps encourages shorter functions with clearer
functionality, resulting in more readable code. Thirdly, the steps enable optimizations in the
case of repeated method estimation, for which the prepareData() function only needs to be
called once. Lastly, in case of an update to the 1cModel post-processing step, the postFit()
function can be applied to previously obtained 1cModel objects.

Supported methods

An overview of the currently available methods that can be specified is given in Table 2.
The 1cMethodGCKM class implements a feature-based approach, based on representing the
trajectories through a linear mixed model specified in the Ime4 package (Bates et al., 2015).

Table 2: The list of currently supported methods for clustering longitudinal data, in alphabetical order.
The methods in the bottom row represent generic approaches which can be adapted. Class names are
prefixed by “lcMethod”.

Class
(1cMethod) Method Package
Akmedoids Anchored k-medoids akmedoids (Adepeju et al.,
2020)
CrimCV Group-based trajectory modeling of count  crimCV (Nielsen, 2023)
data
Dtwclust Dynamic time warping dtwclust (Sarda-Espinosa,
2019)
Flexmix Interface to FlexMix framework flexmix (Griin and Leisch,
2008)
FlexmixGBTM  Group-based trajectory modeling flexmix (Griin and Leisch,
2008)
FunFEM funFEM funFEM (Bouveyron, 2021)
GCKM Feature-based clustering using growth Ime4 (Bates et al., 2015)
curve modeling and k-means
KML longitudinal k-means kml (Genolini et al., 2015)
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Class
(1cMethod) Method Package
LcmmGBTM Group-based trajectory modeling Iemm (Proust-Lima et al.,
2017)
LcmmGMM Growth mixture modeling Iemm (Proust-Lima et al.,
2017)
LMKM Feature-based clustering using linear
regression and k-means
MclustLLPA Longitudinal latent profile analysis mclust (Scrucca et al., 2016)
MixAK_GLMM Mixture of generalized linear mixed mixAK (Komaérek, 2009)
models
MixtoolsGMM  Growth mixture modeling mixtools (Benaglia et al.,
2009)
MixtoolsNPRM Non-parametric repeated measures mixtools (Benaglia et al.,
clustering 2009)
MixTVEM Mixture of time-varying effects models
Random Random partitioning
Stratify Stratification rule
Feature Feature-based clustering

Additionally, a partitioning of trajectories can be specified without an estimation step
through the 1cModelPartition and lcModelWeightedPartition classes, providing trajecto-
ries with a cluster membership or membership weight, respectively.

3.3 The 1cModel class

The 1cModel class represents the estimated cluster solution. It is designed to function as any
other model fitted in R. Here, the word “model” should be taken in the broadest sense of the
word, where any resulting cluster partitioning represents the data, and thereby is regarded
as a model of said data. Users can apply the familiar functions from the stats package (R
Core Team, 2024) where applicable, including the predict(), plot(), summary(), fitted(),
and residuals() functions. Furthermore, 1cModel objects support functions for obtaining
the cluster representation, such as the cluster proportions, sizes, names, and trajectories.

The base 1cModel class facilitates basic functionality such as providing a solution sum-
mary and providing functionality for computing predictions or fitted values. The two most
important functions that characterize the class are the predict() and postprob() functions.
These functions are used to derive the cluster trajectories, the posterior probabilities of the
trajectories, and cluster proportions.

The base class stores information regarding the model, including the estimated 1cMethod
object, the call that was used to estimate the method, the date and time when the method
was estimated, the total estimation time, and a text label for differentiating solutions. Users
should not update the slots of the base class directly, except for the tag slot, which is
intended as a convenient way of assigning custom meta data to the 1cModel.

The names of subclasses are prefixed by “IcModel”. Subclasses generally have little need
for adding new slots, as most of the functionality resides inside the class functions, such
that results and statistics are computed dynamically. This enables fitted 1cModel objects to
be modified retroactively, e.g., for correcting implementation errors that are discovered at a
later stage.

In the 1cModel subclass implementations that are based on an underlying R package, the
subclass serves as a wrapper around the underlying package model. The underlying model
is exposed via the getModel () function so that users can still benefit from the specialized
functionality provided by the underlying package.
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3.4 The metric interfaces

There is a vast number of metrics available in literature. To provide access to as many metrics
as possible, and to enable users to add missing metrics as needed, we define an interface for
the computation of metrics. Users can replace or extend the metrics with custom implemen-
tations. To ensure a consistent output across all metrics, the output of metric functions must
be scalar. Note that some metrics may be undefined for certain types of methods, in which
case NA is returned (e.g., likelihood-based metrics such as the AIC and BIC are only defined
for model-based methods). Currently, the framework supports any of the applicable metrics
from the packages clusterCrit (Desgraupes, 2023) and mclustcomp (You, 2021). The list of
supported internal and external metrics is obtained via the getInternalMetricNames() and
getExternalMetricNames() functions, respectively. Metrics can be added or updated via
the defineInternalMetric() and defineExternalMetric() functions.

4 Using the package

We illustrate the main capabilities of the package through a step-by-step exploratory cluster
analysis on the longitudinal dataset named PAP.adh which is included with the package.
This synthetic dataset was simulated based on the real-world study reported by Yi et al.
(2022), who investigated the longitudinal CPAP therapy usage patterns of patients with
obstructive sleep apnea since the start of their treatment. They identified three distinct
patterns of therapy adherence: patients who were adherent to the therapy and stable in their
usage (“Adherent”), patients who were consistently non-adherent (“Non-adherent”), and
patients who improved their usage over time (“Improvers”). We used the growth mixture
model fit reported by the authors to simulate new patients, yielding the PAP. adh dataset.

The goal of the analysis is to identify the common patterns of adherence and to establish
the most suitable method for the data out of those considered. For brevity, the description
of the package function arguments used in the demonstration below is limited to the main
arguments. We refer users to the package documentation to learn more about other optional
arguments.

The PAP. adh dataset comprises records of the weekly average hours of therapy usage
of 301 patients in their first 13 weeks of therapy. Therapy usage ranges between 0 and 9.5
hours, with a mean of 4.5 hours. The PAP. adh dataset is represented by a data. frame in long
format, with each row representing the observation of a patient at a specific week (1 to 13).

library("latrend”)
data("PAP.adh")
head(PAP.adh, n = 3)

#> Patient Week UsageHours Group
#> 1 1 1 6.298703 Adherers
#> 2 1 2 5.916080 Adherers
#> 3 1 3 5.022241 Adherers

The Patient column indicates the trajectory to which the observation belongs. The
UsageHours column represents the averaged hours of usage in the respective therapy week,
denoted by the Week column. The true cluster membership per trajectory is indicated by the
Group column.

Throughout the analysis, there are several occasions during which the trajectory identifier
and time columns would need to be specified. Instead of passing the column names to each
function, we can set the default index columns using the options mechanism. Keep in mind
that this is only recommended during interactive use.

options(latrend.id = "Patient”, latrend.time = "Week")
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Figure 1: The trajectories from the ‘PAP.adh’ dataset, by reference group.

We can visualize the patient trajectories using the plotTrajectories() function, shown
in Figure 1. As the ground truth is known in our synthetic example, we specified the
cluster membership of the trajectories via the cluster argument, resulting in a stratified
visualization.

plotTrajectories(PAP.adh, response = "UsageHours", cluster = "Group")

4.1 Specifying methods

We first specify the methods to be evaluated. The first method of interest in this case study
is KmL, selected for its flexibility in identifying patterns of any shape. The KmL method
is available in the framework through the 1cMethodKML class, which serves as a wrapper
around the kml () function of the kml package (Genolini et al., 2015). The KmL method is
specified through the 1cMethodKML () constructor function.

kmlMethod <- lcMethodKML(response = "UsageHours"”, nClusters = 2)
kmlMethod

#> 1cMethodKML specifying "longitudinal k-means (KML)"

#>  time: getOption("latrend.time")
#> id: getOption("latrend.id")
#> nClusters: 2

#> nbRedrawing: 20

#> maxIt: 200

#> imputationMethod:"copyMean”

#> distanceName: "euclidean”

#> power: 2

#> distance: function() {}

#> centerMethod: meanNA

#> startingCond: "nearlyAll”

#> nbCriterion: 1000

#> scale: TRUE

#> response: "UsageHours”

Note that any unspecified arguments have been set to the default values defined by the
kml package. The method arguments can be accessed using the $ or [[ operator. Requested
arguments are evaluated unless disabled by the argument eval = FALSE. As can be seen in
the method output below, the time index column is obtained from the options mechanism
by default.

kmlMethod$time

The R Journal Vol. 17/1, March 2025 ISSN 2073-4859


https://CRAN.R-project.org/package=kml
https://CRAN.R-project.org/package=kml

CONTRIBUTED RESEARCH ARTICLE 119

#> [1] "Week"
kmlMethod[["time", eval = FALSE]]
#> getOption("latrend.time")

Next, we specify the other methods of interest. We use a variety of approaches that are
applicable to this type of data. We evaluate a feature-based approach based on LMKM
as implemented in 1cMethodLMKM, a distance-based dynamic time warping approach via
lcMethodDtwclust based on the dtwclust package, and the regression-based approaches via
the 1cMethodLcmmGBTM and 1cMethodLcmmGMM methods based on the lemm package (Proust-
Lima et al., 2017). We specify the distance-based approach using dynamic time warping.
For LMKM, GBTM and GMM, we model the trajectories using an intercept and slope’.
Moreover, GBTM and GMM are specified to use a shared diagonal variance-covariance
matrix. The GMM defines a random patient intercept.

dtwMethod <- 1cMethodDtwclust(response = "UsageHours", distance = "dtw_basic")
ImkmMethod <- 1lcMethodLMKM(formula = UsageHours ~ Week)
gbtmMethod <- 1cMethodLcmmGBTM(fixed = UsageHours ~ Week,

mixture = ~ Week, idiag = TRUE)
gmmMethod <- 1lcMethodLcmmGMM(fixed = UsageHours ~ Week,
mixture = ~ Week, random = ~ 1, idiag = TRUE)

The method arguments of a 1cMethod object cannot be modified. Instead, a new specifi-
cation is created from the existing one with the updated method arguments. Any 1cMethod
object can be used as a prototype for creating a new specification with new, modified, or
removed arguments using the update () function. As an example, if we would like to respec-
ify KmL to identify three clusters, this can be done by updating the existing specification as
follows:

kml3Method <- update(kmlMethod, nClusters = 3)

As the number of clusters is generally not known in advance, we need to fit the methods
for a range of number of clusters. Generating specifications for a series of argument values
can be done via the 1cMethods () function, which outputs a 1ist of updated 1cMethod objects
from a given prototype. We specify each method for up to six clusters” using:

kmlMethods <- lcMethods(kmlMethod, nClusters = 1:6)
ImkmMethods <- 1lcMethods(1mkmMethod, nClusters = 1:6)
dtwMethods <- lcMethods(dtwMethod, nClusters = 2:6)
gbtmMethods <- lcMethods(gbtmMethod, nClusters = 1:4)
gmmMethods <- lcMethods(gmmMethod, nClusters = 1:4)
length(gmmMethods)

#> [1] 4

4.2 Fitting methods

Using the previously created method specifications, we can estimate the methods for the
PAP.adh data. For estimating a single method, we can use the latrend() function. The
function optionally accepts an environment through the envir argument for evaluating the
method arguments within a specific environment. The output of the function is the fitted
1cModel object.

2For methods supporting formula input, the response variable is automatically determined from the response
of the formula.
30nly one to four clusters were estimated for GBTM and GMM due to the relatively excessive computation time
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Imkm2 <- latrend(lmkmMethod, data = PAP.adh)
summary (1mkm2)

#> Longitudinal cluster model using lmkm
#> 1cMethodLMKM specifying "lm-kmeans”

#> time: "Week"

#>  id: "Patient”

#> nClusters: 2

#> center: function (x) { mean(x, na.rm = TRUE)}
#> standardize: “scale”

#> method: "qr"

#> model: TRUE

#> y: FALSE

#> qr: TRUE

#> singular.ok: TRUE

#> contrasts: NULL

#> iter.max: 10

#> nstart: 1

#> algorithm: “c("Hartigan-Wong"”, "Lloyd”, "Forgy”", "M
#> formula: UsageHours ~ Week

#>

#> Cluster sizes (K=2):

#> A B

#> 135 (44.9%) 166 (55.1%)

#>

#> Number of obs: 3913, strata (Patient): 301

#>

#> Scaled residuals:

#> Min. 1st Qu. Median Mean 3rd Qu. Max.

#> -2.52815 -0.67127 -0.06772 0.00000 0.54587 4.04438

Instead of needing to update a method prior to calling 1atrend(), the arguments to be
updated can also be passed directly to latrend(). Here, we estimate the LMKM method for
three clusters.

Imkm3 <- latrend(lmkmMethod, nClusters = 3, data = PAP.adh)

Alternatively, we can achieve the same result by updating the previously estimated
two-cluster solution.

1mkm3 <- update(Ilmkm2, nClusters = 3)

Batch estimation

The latrendBatch() function estimates a list of method specifications. This is useful for
evaluating a method for a range of number of clusters, as we have defined above using
the 1cMethods () function. Another use case is the improvement of model convergence and
the estimation time by tuning the control parameters. Optimizing such parameters may
yield considerably improved convergence or considerably reduced estimation time on larger
datasets. Many of the methods have settings for the number of random starts, maximum
number of iterations, and convergence criteria. However, because such control settings are
specific to each method, we will not cover this.

The inputs to the latrendBatch() function are a list of 1cMethod objects, and a list of
datasets. The output is an 1cModels object, representing a list of the fitted 1cModel objects
for each dataset. A seed is specified to ensure reproducibility of the examples.
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ImkmList <- latrendBatch(lmkmMethods, data = PAP.adh, seed = 1)
ImkmList

#> List of 6 lcModels with
#> .name .method seed nClusters

#> 1 1 Imkm 762473831 1
#> 2 2 Imkm 1762587819 2
#> 3 3 1mkm 1463113723 3
#> 4 4 Imkm 1531473323 4
#> 5 5 1mkm 1922000657 5
#> 6 6 Imkm 1985277999 6

When printing a 1cModels object, the content is shown as a table of method specifications.
By default, only arguments which differ between the models are shown. The table can also
be obtained as a data.frame by calling as.data.frame(). We now fit the other methods in
the same manner.

dtwList <- latrendBatch(dtwMethods, data = PAP.adh, seed = 1)

For the repeated estimation of more computationally intensive methods, we can speed up
the process by using parallel computation. By setting parallel = TRUE, the latrendBatch()
function will use the parallel back-end of the foreach package (Microsoft and Weston, 2022).

To make use of this functionality, we first need to configure the parallel back-end:

nCores <- parallel::detectCores(logical = FALSE)

if (.Platform$0S.type == "windows") {
doParallel::registerDoParallel(parallel: :makeCluster(nCores))
} else {

doMC: : registerDoMC(nCores)
}

The methods can then be estimated in parallel using:

kmlList <- latrendBatch(kmlMethods,
data = PAP.adh, parallel = TRUE, seed = 1)
gbtmList <- latrendBatch(gbtmMethods,

data = PAP.adh, parallel = TRUE, seed = 1)
gmmList <- latrendBatch(gmmMethods,
data = PAP.adh, parallel = TRUE, seed = 1)

4.3 Evaluation
Assessing a cluster result

A cluster result is useful only when it describes the data adequately. There are various
aspects on which the cluster result can be evaluated, depending on the method and analysis
domain:

¢ The identified solution may not be reliable when the method estimation procedure
did not converge. Convergence can be checked via the converged() function.

* The cluster solution may comprise empty clusters or clusters with a negligible pro-
portion of trajectories. In such a case, re-estimating the method may yield a better
solution. Alternatively, one should consider fitting the method with a lower number
of clusters.

* The cluster trajectories may be assessed visually to determine whether the identified
patterns are sufficiently distinct.
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Figure 2: The cluster trajectories of the three-cluster solution identified by LMKM, created by running
plot(Imkm3).

* The prediction error may help to determine to what degree trajectories are represented
by one of the clusters.

As shown in the previous section, the summary of an 1cModel object shows the method
arguments values, cluster sizes, cluster proportions, cluster names, and the standardized
residuals. By default, the residuals are computed from the difference between the reference
values and the predictions outputted by fitted(), conditional on the most likely trajectory
assignments. For methods that do not provide trajectory-specific predictions, the fitted
values are determined from the cluster trajectories.

The cluster trajectories can be obtained using the clusterTrajectories() func-
tion, returning a data.frame. The cluster trajectories can be plotted via plot() or
plotClusterTrajectories(). The three-cluster LMKM solution is visualized in Figure
2. For parametric cluster methods, a more concise representation of the model can be
obtained from the model coefficients, using coef ().

plot(1lmkm3, linewidth = 1)

Assigning descriptive names to the clusters can help to increase the readability of the clus-
ter result, which is especially useful for solutions with many clusters. The clusterNames()
function can be used to retrieve or change the cluster names.

clusterNames(lmkm3) <- c("Struggling"”, "Increasing", "Decreasing")

The most likely cluster for each of the trajectories is obtained using the
trajectoryAssignments() function, which outputs a factor with the cluster names as its
levels. For soft-cluster representations, the cluster assignments are determined by the cluster
with the highest probability, based on the posterior probability matrix. An alternative ap-
proach can be specified through the strategy argument. For example, the which.weight ()
function assigns a random cluster weighted by the proportions. The which.is.max() func-
tion from the nnet package (Venables and Ripley, 2002) returns the most likely cluster,
breaking ties at random.

The posterior probability matrix can be obtained from the postprob() function®. For
probabilistic methods, it can be used to gauge the cluster separation, i.e., the certainty
of assignment. The posterior probability is also important in the post-hoc analysis for
accounting for the uncertainty in cluster assignment.

When it comes to longitudinal representation, the minimum functionality that is available
for all 1cModel objects is the prediction of the cluster trajectories at the given moments in time.
The prediction has been implemented for underlying packages that lack this functionality.
For non-parametric methods such as KmL or LLPA, linear interpolation is used when

“For methods that only support modal assignment, the posterior probability matrix only comprises 0 and 1.
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time points are requested which are not represented by the cluster centers.The available
functionality differs between methods.

All 1cModel objects support the standard model functions from the standard stats pack-
age, including fitted(), residuals(), and predict(). These functions are primarily of
interest for methods that have a notion of a group or individual trajectory prediction error,
such as for the regression-based approaches like GBTM and GMM. The fitted() function
returns the expected values for the response variable for the data on which the model was
estimated. By default, only the values for the most likely cluster are given. However, for
clusters = NULL, a matrix of predictions is outputted, where each column represents the
predictions of the respective cluster.

The predict() function computes trajectory- and cluster-specific predictions for the
given input data.

predict(lmkm3, newdata = data.frame(Week = c(1, 10), Cluster = "Decreasing"”))

#> Fit
#> 1 2.919423
#> 2 2.024865

The predictPostprob() and predictAssignments() functions compute the posterior
probability and cluster membership for new trajectories, respectively. As this is not a
common use case for cluster methods, most of the underlying packages do not provide this
functionality. For demonstration purposes, we have implemented the functionality for the
1cModelKML class.

Using the metric interface defined in Section 2, we can compute a variety of internal
metrics through the metric() function:

metric(1lmkm3, c(”MAE"”, "RMSE"”, "Dunn", "ASW"))

#> MAE RMSE Dunn ASW
#> 0.74262252 0.94094913 ©.09173111 0.35605235

Identifying the number of clusters

Using one or more internal metrics of interest, we can assess how the data representation of
a method improves or worsens for an increasing number of clusters. In this case study, we
will use the Dunn index as the primary metric for the choice of the number of clusters.

The change in metrics for an increasing number of clusters can be visualized via the
plotMetric() function, and can help to determine the preferred solution. For brevity, we
will only provide a detailed view for the KmL method. We plot the Dunn index, WMAE,
and estimation time (in seconds) for the six KmL solutions as follows:

plotMetric(kmlList, c(”"Dunn”, "WMAE", "estimationTime"))

The resulting plot is shown in Figure 3. The Dunn index and WMAE show a rather
convincing improvement for an increasing number of clusters’.

Moreover, we observe that the estimation time increases with the number of clusters.
This can be a practical consideration when deciding on the preferred method to use. For
much larger datasets, it may be useful to conduct a preliminary analysis on a subset of the
data for possibly ruling out methods which are too computationally intensive in relation to
the results.

We can obtain the metric values for each of the models by calling the metric() function.

metric(kmlList, c(”Dunn”, "WMAE", "estimationTime"))

5The Dunn index is not defined for a one-cluster solution.
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Figure 3: The Dunn index (higher is better), and WMAE (lower is better) metrics for each of the KmL
solutions from 1 to 6 clusters

#> Dunn WMAE estimationTime
#> 1 NA 1.4261264 0.672
#> 2 0.10737225 0.7850566 1.116
#> 3 0.09944419 0.6523208 1.470
#> 4 0.11353357 0.6081128 1.880
#> 5 0.13487175 0.5598639 2.338
#> 6 0.13196444 0.5209264 2.690

As the preferred solution corresponds to the highest Dunn index, we can obtain the
respective model by calling the max () function on the 1cModels list object.

kmlBest <- max(kmlList, "Dunn")

Alternatively, we can select the preferred model using the subset () function. By specify-
ing the drop = TRUE, the 1cModel object is returned instead of a 1cModels object.

kmlBest <- subset(kmlList, nClusters == 5, drop = TRUE)

The identification of the number of clusters is a form of model selection. The same
approach can therefore be used for identifying the best cluster representation, e.g., evaluating
different formulas for a parametric model, or selecting a different method initialization
strategy.

Comparing methods

The optimal number of clusters according to the internal metric can be different for other
methods or specifications thereof. Depending on the cluster representation, some methods
may require fewer or more clusters to represent the heterogeneity to the same degree. By
concatenating the lists of fitted methods, we can create a metric plot that is grouped by the
type of method as follows:

alllList <- lcModels(lmkmList, kmlList, dtwList, gbtmList, gmmList)
plotMetric(

alllist,

name = c("Dunn”, "WMAE", "BIC", "estimationTime"),

group = '.method'
)

The WMAE and BIC between GBTM and KmL are almost exactly the same, possibly
indicating that the methods find a similar solution. If the solutions are found to be prac-
tically identical, then one could actually prefer KmL due to its considerably favorable
computational scaling with the number of clusters.

We explore the best solution of each method further to better understand how the cluster
representations differ between the methods. We can select the preferred 1cModel object
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Figure 4: The Dunn index (higher is better), WMAE (lower is better) and BIC (relatively lower is better)
for each of the methods and number of clusters

corresponding to the selected number of clusters for each of the methods using the subset ()

function.

kmlBest <- subset(kmlList, nClusters == 5, drop = TRUE)
dtwBest <- subset(dtwList, nClusters == 5, drop = TRUE)
gbtmBest <- subset(lmkmList, nClusters == 4, drop = TRUE)
ImkmBest <- subset(lmkmList, nClusters == 3, drop = TRUE)
gmmBest <- subset(gmmList, nClusters == 3, drop = TRUE)

We can then assess the pairwise ARI between each method using the externalMetric()
function. Calling this function on a 1cModels list returns a dist object representing a distance
matrix. We therefore create a list of the best 1cModel for each method, by which we can then
determine the pairwise ARI as follows:

bestList <- lcModels(KmL = kmlBest, DTW = dtwBest,
LMKM = 1mkmBest, GBTM = gbtmBest, GMM = gmmBest)

externalMetric(bestList, name = "adjustedRand") |> signif(2)
#> KmL DTW LMKM GBTM
#> DTW 0.41

#> LMKM .50 0.40
#> GBTM 0.66 0.31 0.67
#> GMM  0.49 0.40 0.99 0.68

With all pairwise ARI being at least 0.31, all methods demonstrate some degree of
similarity between each other. In particular, the very high ARI of approximately 0.99
between GMM and LMKM implies that the methods grouped the trajectories in a highly
similar way.

Secondly, we evaluate the similarity of the cluster trajectories between the methods using
the weighted minimum mean absolute error (WMMAE) (Den Teuling et al., 2021b). This
metric computes the mean absolute error between each cluster trajectory and its nearest
cluster trajectory of the other method, weighted by the size of the respective cluster.

externalMetric(bestList, name = "WMMAE") |> signif(2)

#> KmL  DTW LMKM GBTM
#> DTW 0.096

#> LMKM 0.130 0.130

#> GBTM 0.063 0.130 0.091

#> GMM 0.130 0.130 0.036 0.099
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The mean absolute error of 0.091 between the cluster trajectories of GBTM and LMKM is
negligible compared to the residual error estimated by GBTM (SD = 0.8), which indicates
that both methods have identified practically the same cluster trajectories. The same applies
to GMM and LMKM.

4.4 Cluster validation

Assessing the stability and reproducibility of a cluster method can help to determine whether
the identified cluster solution generalizes beyond the data that was used to estimate the
method. This is especially relevant for more complex cluster methods involving many
parameters, which may not generalize well to new data. This primarily pertains to the
number of clusters the method is estimated for, as the number of parameters increases
linearly with the number of clusters. Even relatively simple methods can overfit the data
when the representation comprises too many clusters in relation to the sample size.

Cluster stability using repeated estimation

Many of the cluster methods can yield a slightly different solution during each run, depend-
ing on the starting conditions. In such cases, by doing a repeated estimation, we can gauge
the stability, i.e., consistency, of the method. Comparing repeated estimation results is also
useful for selecting the best solution for a given method.

Repeated estimation can be done via the latrendRep() function, where the number of
repetitions is specified via the . rep argument. Similar to latrend(), the method arguments
can be updated within the function. The function returns a 1cModels object, comprising a
list of 1cModel objects. Here, we only use five repeated estimations to limit the computation
time. In practice, a higher number such as 10 or 25 is advisable, depending on the magnitude
of instability.

kmlRepList <- latrendRep(kmlMethod, data = PAP.adh,
nClusters = 5, .rep = 5, .parallel = TRUE)
summary (metric(kmlRepList, c("Dunn”, "WMAE")))

#> Dunn WMAE

#> Min. :0.1286  Min. :0.5617
#> 1st Qu.:0.1286 1st Qu.:0.5619
#> Median :0.1286 Median :0.5658
#> Mean :0.1311 Mean :0.5643
#> 3rd Qu.:0.1349  3rd Qu.:0.5658
#> Max. :0.1349  Max. :0.5665

The result suggests that the solutions found by KmL are highly consistent on this dataset,
in the sense that both metrics demonstrate a negligible level of variability between repeated
estimations.

Cluster stability using bootstrap sampling

Instead of assessing the cluster stability across repeated estimation on the same dataset,
we can obtain a more generalizable estimate of the cluster stability in a nonparametric
way by measuring the cluster stability across different datasets. This form of bootstrap
sampling, also referred to as bootstrapping, involves the repeated estimation on simulated
datasets generated from the original dataset. It is primarily used for assessing the stability
of a method, as measured by one or more internal metrics. Here, complete trajectories are
selected at random with replacement from the dataset to generate a new dataset of equal size.
Each simulated dataset, referred to as a bootstrap sample in this context, will yield a slightly
different solution. This variability between samples can provide an indication of the stability
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of the cluster method on the overall dataset (Hennig, 2007). Since the repeated estimation is
done on new datasets that only partially overlap®, this restricts the available external metrics
to only those that can compare between different datasets, e.g., the WMMAE.

The latrendBoot () function applies bootstrapping to the given method specification.
The samples argument determines the number of times the data is resampled, and a model is
estimated. Setting the seed argument ensures that the same sequence of bootstrap samples
is generated when redoing the bootstrapping procedure. The output is a 1cModels list
containing the model for each sample. The estimated methods each have a different call
for the data argument such that the original bootstrap training sample can be recreated
as needed. This avoids the need for models to store the training data. As an example, we
compute 10 bootstrap samples’ (i.e., repeated fits) in parallel as follows:

kmlMethodBest <- update(kmlMethod, nClusters = 5)
kmlBootModels <- latrendBoot(kmlMethodBest, data = PAP.adh,

samples = 10, seed = 1, parallel = TRUE)
head(kmlBootModels, n = 3)

#> List of 3 lcModels with

#> .name .method data seed
#> 1 1 kml bootSample(PAP.adh, "Patient”, 762473831L) 1062140483
#> 2 2 kml bootSample(PAP.adh, "Patient”, 1762587819L) 185557490
#> 3 3 kml bootSample(PAP.adh, "Patient”, 1463113723L) 934902099

We can now assess the stability of the solutions across the models in terms of metrics of
interest. Here, we assess the mean convergence rate, and the quantiles of the WMAE and
Dunn metrics.

bootMetrics <- metric(kmlBootModels, c("converged”, "Dunn”, "WMAE"))
mean (bootMetrics$converged)

#> [1] 1
summary (bootMetrics$Dunn)

#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> ©0.1193 0.1469 ©.1512 0.1530 0.1645 0.1852

summary (bootMetrics$WMAE)

#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 0.5326 0.5489 ©.5542 0.5530 0.5576 0.5728

As can be seen from the output, there is quite some variability between the estimated
solutions across bootstrap samples. This suggests that we should consider estimation with
repeated random starts to identify a better and more stable solution.

Lastly, we can compute a similarity matrix for an external metric of interest, containing
the pairwise similarity for each model pair.

wmmaeDist <- externalMetric(kmlBootModels[1:10], name = "WMMAE")
summary (wmmaeDist)

#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 0.01594 0.05696 0.07259 0.06952 0.08264 0.11011

Showing that there is only a small degree of discrepancy in the cluster trajectories
between bootstrap samples.

%In addition to the challenge of the cluster representations being in a different order between runs, also referred
to as label switching.
7In practice, a much greater number of bootstrap samples is recommended (at least 100).
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Comparison to ground truth

We now consider the case where a method is evaluated in a simulation study. In such a
study, the ground truth is known, and we can directly evaluate whether the trajectories are
clustered correctly. A useful and intuitive measure is the split-join distance (van Dongen,
2000), which is an edit distance that measures the number of trajectory reassignments that
are needed to go from one partitioning to another. In case of a ground truth, we are only
interested in the edit distance from the reference partitioning”.

We can obtain the vector of trajectory cluster membership of the PAP.adh from the Group
column by selecting the first cluster name of each trajectory, since the cluster membership
is stable over time. We then create a 1cModelPartition from the computed membership
vector. By default, the 1cModelPartition generates the cluster representations from the
means of the trajectories assigned to the respective cluster.

refAssignments <- aggregate(Group ~ Patient, data = PAP.adh, FUN = head, n = 1L)
refAssignments$Cluster = refAssignments$Group

refModel <- 1lcModelPartition(data = PAP.adh,
trajectoryAssignments = refAssignments, response = "UsageHours")
refModel

#> Longitudinal cluster model using part
#> 1lcMethod specifying "undefined”
#> no arguments

#>

#> Cluster sizes (K=3):

#> Adherers Improvers Non-adherers

#> 162 (53.8%) 56 (18.6%) 83 (27.6%)

#>

#> Number of obs: 3913, strata (Patient): 301

#>

#> Scaled residuals:

#> Min. 1st Qu. Median Mean 3rd Qu. Max.

#> -3.894748 -0.643671 -0.009533 0.000000 ©.634893 3.590377

We can now compare our selected method solutions to the reference solution using the
one-way splitjoin distance to the reference:

externalMetric(bestList, refModel, name = "splitJoin.ref”, drop = FALSE)

#> splitJoin.ref
#> KmL 23
#> DTW 61
#> LMKM 3
#> GBTM 1
#> GMM 2

This shows that, for the PAP. adh dataset, LMKM, GBTM, and GMM achieve a nearly
perfect recovery of the cluster memberships, but that GBTM needs more clusters to represent
the dataset.

5 Implementing new methods

One of the main strengths of the framework is the standard way in which methods are spec-
ified, estimated, and evaluated. These aspects make it easy to compare newly implemented

8In the one-way edit distance, a solution that has more clusters than the reference can still obtain an edit distance
of zero if the extra clusters are a subset of the cluster of the reference.

The R Journal Vol. 17/1, March 2025 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 129

methods with existing ones. Using the base classes 1cMethod and 1cModel, new methods
can be implemented with a relatively minimal amount of code, enabling rapid prototyping.
These classes provide basic functionality, from which the user can extend certain functions
as needed by creating a subclass.

5.1 Stratification

The simplest form of clustering is the stratification of the dataset based on a known factor.
This can be the response variable, or any other measure available for each trajectory. This is
useful for case studies where there is prior knowledge or expert guidance on how the trajec-
tories should be grouped; either by another factor (e.g., age or gender), or a characteristic of
the trajectory (e.g., the intercept, slope, average, or variance).

A stratification approach can be specified using the 1cMethodStratify() function, which
takes an R expression as input. The expression is evaluated within the data. frame at the
trajectory level during the method estimation, so any column present in the data can be
used. The expression should resolve to a number or category, indicating the stratum for the
respective trajectory.

As an example, we stratify the trajectories by thresholding on the mean hours of usage.
This expression returns a logical value which determines the cluster assignment. For cate-
gorizing trajectories into more than two clusters, the cut () function can be used. The cluster
trajectories are computed by aggregating the trajectories of each cluster at the respective
time points. By default, the average is computed, but an alternative center function can be
specified via the center argument.

stratMethod <- 1lcMethodStratify(
response = "UsageHours",
stratify = mean(UsageHours) > 4
)
stratModel <- latrend(stratMethod, data = PAP.adh)
clusterProportions(stratModel)

#> A B
#> 0.3156146 0.6843854

5.2 Feature-based clustering

Feature-based clustering is a flexible and fast approach to clustering longitudinal data,
with an essentially limitless choice of trajectory representations. The framework includes a
generic feature-based clustering class named lcMethodFeature for quickly implementing
this approach.

A 1cMethodFeature specification requires two functions: A representation function
outputting the trajectory representation matrix, and a cluster function that applies a cluster
algorithm to the matrix, returning an 1cModel object.

To illustrate the method, we represent each trajectory using a linear model, and we cluster
the model coefficients using k-means. In the representation step, 1m() is applied to each
trajectory, and the model coefficients are combined into a matrix with the trajectory-specific
coefficients on each row. We parameterize the 1cMethod implementation by obtaining the
model formula from method$formula. During the method specification, the user therefore
needs to define the formula argument. The representation function is as follows:

repStep <- function(method, data, verbose) {
repTraj <- function(trajbData) {
Im.rep <- lm(method$formula, data = trajData)
coef(1lm.rep)

}
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dt <- as.data.table(data)
coefData <- dt[, as.list(repTraj(.SD)), keyby = c(method$id)]

coefMat <- as.matrix(subset(coefData, select = -1))
rownames(coefMat) <- coefDatal[[method$id]]
coefMat

We implement the cluster step to return a 1cModelPartition object based on the cluster
assignments outputted by kmeans (). We have parameterized the function by obtaining the
number of clusters for k-means from the nClusters model argument. The cluster function is
as follows:

clusStep <- function(method, data, repMat, envir, verbose) {
km <- kmeans(repMat, centers = method$nClusters)
1cModelPartition(response = responseVariable(method), method = method,
data = data, trajectoryAssignments = km$cluster, center = mean)

We can now specify and estimate the feature-based method, including the additionally
required arguments. Comparing the estimated model to the preferred KmL model, we see
that the solutions have a relatively high degree of overlap.

tsMethod <- 1cMethodFeature(response = "UsageHours"”, formula = UsageHours ~ Week,
representationStep = repStep, clusterStep = clusStep)

tsModel <- latrend(tsMethod, data = PAP.adh, nClusters = 5)

externalMetric(tsModel, kmlBest, "adjustedRand")

#> adjustedRand
#> 0.6283228

externalMetric(tsModel, kmlBest, "WMMAE")

#> WMMAE
#> 0.06505086

5.3 Implementing a method

The framework is designed to support the implementation of new methods, so that users
can extend or implement new methods to address their use case. In this section, we describe
the high-level steps that are involved in adding support for a method to the framework.
Considering the number of lines of code for even a relatively simple cluster method, we
do not cover a complete example here. Instead, we only outline the typical set of functions
that need to be implemented, together with any relevant input and output assumptions of
these functions. For complete examples, see the 1cMethod-interface implementations based
on external packages, e.g., 1cMethodKML or 1cMethodLcmmGMM. A step-by-step example of
implementing a statistical method in the framework can be found in the vignette included
with the package, which can be viewed by running vignette("implement”, package =
"latrend").

The estimation process of a method is divided into six steps, involving the processing of
the method arguments, preparing and validating the data, and fitting the specified method.
All steps except for fit() are optional.

1. The prepareData() function transforms the training data into the required format
for the internal method estimation code. By default, data is provided in long format
in a data. frame. For most implementations, no transformation is therefore needed.
Cluster methods for repeated-measures data typically require data to be transformed
to matrix format, however.

The R Journal Vol. 17/1, March 2025 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 131

2. The compose() function evaluates the method arguments and returns an updated
1cMethod object with the evaluated method arguments. The function can also be used
for modifying or even replacing the original 1cMethod object for the remainder of the
estimation process. This is useful when a method is a special case of a more general
method and intends to conceal derivative or redundant arguments from the base class.

3. The validate() function enables evaluated method arguments to be checked against
the input data. This can be used, for example, for checking whether the data contains
the covariates specified in the method formula, or whether an argument has a valid
value. For implementations which wrap an underlying package function, this valida-
tion is usually not needed as the underlying package already performs validation of
the input.

4. The preFit() function is intended for processing any arguments prior to fitting. In
order for these results to be persistent, they should be returned in an environment
object, which will be passed as an input to the fit() function.

5. The fit() function is where the internal method is estimated for the given specifi-
cation to obtain the cluster result. This function is also responsible for creating the
corresponding 1cModel object. The running time of this function is used to determine
the method estimation time.

6. The postFit() function takes the outputted 1cModel from fit() as input, enabling
post-processing to be done. This is used, for example, for computing derivative
statistics, or for reducing the memory footprint by stripping redundant data fields
from the internal model representation. Preferably, this function is implemented
such that it can be called repeatedly, allowing for updates to fitted methods without
requiring re-estimation.

The implementation of a method requires defining a new lcMethod class. Usually, a new
1cModel class needs to be implemented to handle the result and representation of the fitted
method. If the new method only outputs a partitioning, then the 1cModelPartition class
may be used instead.

6 Summary and outlook

The latrend package facilitates the standardized yet flexible exploration of heterogeneity in
longitudinal datasets, with a minimal amount of coding effort. The framework provides
functionality for specifying, estimating, and assessing models for clustering longitudinal
data. The package builds upon the efforts of the R community by providing an interface
to the many methods for clustering longitudinal data across packages. Perhaps most
importantly, the latrend package makes it easy to compare between any two cluster methods,
enabling users to identify the most suitable method to their use case. To ensure transparent
and reproducible research, all decisions and settings that are relevant to the analysis should
be reported. A useful checklist for reporting on latent-class trajectory studies is provided by
van de Schoot et al. (2017), which is also relevant to longitudinal cluster analyses in general.

Users can implement new methods within the framework or add support for other
packages, enabling rapid prototyping for the case study at hand. Additionally, the standard
functionality provided by the framework also reduces the effort needed in implementing a
longitudinal cluster model.

We encourage the framework to be used as a first exploratory step in clustering lon-
gitudinal data, after which the identified preferred method can then be applied directly
from the original package, which typically provides special tools or options not provided
by the framework. To illustrate one such limitation, consider the initialization or prior
specification of a longitudinal cluster model. This is generally an important aspect of model
estimation that can improve the identified model solution but is challenging to facilitate in a
standardized way.

The framework is currently focused towards the modeling of a single continuous re-
sponse variable, whereas some of the supported cluster packages already support multitra-
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jectory modeling. The possible support for multitrajectory modeling has been accounted for
in the design of the software. Similarly, while the single response is required to be numerical,
support could be added for categorical outcomes such as those used in longitudinal latent
class analysis.

Overall, we intend the framework to bridge the different approaches to clustering
longitudinal data that exist from the various areas of research. We encourage users and
package developers to create interfaces for their methods, as the availability of a standard
framework for performing a longitudinal cluster analysis lowers the barrier to evaluating
and comparing methods for applied researchers.

Computational details

The examples and figures in this paper were obtained using R 4.5.1 (R Core Team, 2024)
with the packages latrend 1.6.2, ggplot2 4.0.0.9000 (Wickham, 2016), and data.table 1.17.8
(Barrett et al., 2024). The KmL method was estimated with the kml 2.5.0 package. The
distance-based method used the dtwclust 6.0.0 package. The GBTM and GMM analyses
were performed using the lemm 2.2.1 package, with the parallel computation achieved using
the foreach 1.5.2 package (Microsoft and Weston, 2022).

R and all packages used within the article and the latrend package are available from
the Comprehensive R Archive Network (CRAN) at (https://CRAN.R-project.org).
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Structured Bayesian Regression Tree
Models for Estimating Distributed Lag
Effects: The R Package dlmtree

by Seongwon Im, Ander Wilson, and Daniel Mork

Abstract When examining the relationship between an exposure and an outcome, there
is often a time lag between exposure and the observed effect on the outcome. A common
statistical approach for estimating the relationship between the outcome and lagged mea-
surements of exposure is a distributed lag model (DLM). Because repeated measurements
are often autocorrelated, the lagged effects are typically constrained to vary smoothly over
time. A recent statistical development on the smoothing constraint is a tree structured DLM
framework. We present an R package dlmtree, available on CRAN, that integrates tree
structured DLM and extensions into a comprehensive software package with user-friendly
implementation. A conceptual background on tree structured DLMs and a demonstration
of the fitting process of each model using simulated data are provided. We also demonstrate
inference and interpretation using the fitted models, including summary and visualization.
Additionally, a built-in shiny app for heterogeneity analysis is included.

1 Introduction

In many fields, there is interest in estimating the lagged relationship between an exposure
(or treatment) and an outcome. In such cases, the length of the lag or how the exposure
effect varies is often unknown. The lagged relationship can take either of two forms.
The first form is the association between the exposure at one time point and an outcome
distributed across several subsequent times. For example, the impact of advertisement
persists beyond that single time point of the investment (Koyck, 1954; Palda, 1965) or
exposure to an environmental pollutant affects mortality on the same day and each of the
following days (Schwartz, 2000). The second form is an exposure assessed longitudinally
and an outcome assessed post-exposure. Examples of this form are maternal exposure
to environmental chemicals during pregnancy on birth outcomes and children’s health
and development (Wilson et al., 2017a; Chiu et al., 2023; Hsu et al., 2023) and the effect of
training and recovery activities over multiple days on athlete wellness (Schliep et al., 2021).
A popular statistical method to estimate the time-varying association between exposure and
outcome is a distributed lag model (DLM).

The DLM regresses a scalar outcome on the exposure measured at preceding time points
(Schwartz, 2000; Gasparrini et al., 2010). The DLM framework is particularly useful as it
allows for estimating time-resolved exposure effects and quantifies the temporal relationship
between the exposure and the outcome. Because the repeated measurements of exposure are
often correlated, DLMs typically include a smoothing constraint to add temporal structure
to the estimated time-specific effects and to regularize the exposure effects in the presence
of multicollinearity across the measurements. Constraints include polynomials, splines, and
Gaussian processes (Zanobetti et al., 2000; Warren et al., 2012). Notably, Mork and Wilson
(2023) introduced an approach for constrained DLM using regression tree structures based
on the Bayesian additive regression tree (BART) framework (Chipman et al., 2010). More
recent methods have extended the tree structured DLM framework in several directions,
including nonlinear exposure-response relationships (Mork and Wilson, 2022), models with
lagged interactions among multiple exposures (Mork and Wilson, 2023), and models with
heterogeneous lag effects (Mork et al., 2024).

There are several related methods and packages for DLM implementation. Table 1 lists
currently available R packages for DLMs that are generally appropriate for the type of
epidemiology studies considered in this paper. The dlnm package contains software for
estimating a DLM with linear or nonlinear exposure-response relationships using splines for
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the smoothing constraint (Gasparrini, 2011). Mork and Wilson (2022, 2023) compare model
performance between the spline-based and tree structured DLM implementations. The dinm
package does not consider heterogeneity or multiple exposures. There are several DLM
methods for the linear effect of a single exposure with modification by a single covariate.
The dlim package allows for modification by a single continuous factor (Demateis et al.,
2024) and the bdlim package allows for modification by a single categorical factor (Wilson
et al., 2017b). However, these packages do not allow for multiple candidate modifying
factors or multiple exposures. The package DiscreteDLM extends Bayesian estimation to
categorical outcomes but does not consider mixtures or heterogeneity (Dempsey and Wyse,
2025). Hence, the dlmtree package fills several gaps including heterogeneous effects of
multiple candidate modifiers and analysis of mixture or multivariate lagged exposures.

Table 1: Available DLM related R packages with functionalities

Package GLM Nonlinearity ~Mixture Heterogeneity
bdlim v v
DiscreteDLM v

dlim v v
dlmtree v v v v

dlnm v v

Note: This table excludes packages designed for autoregressive DLMs,
which are used in a different context from the models proposed here.

In this article, we introduce a comprehensive R package dimtree which consolidates a
wide range of tree structured DLMs. The package offers a user-friendly and computationally
efficient environment to fit tree structured DLMs and to address multiple potential research
assumptions including nonlinearity, monotonicity and prior information, multiple simul-
taneous exposures, and heterogeneous lag effects. We first provide a conceptual review
of a regression tree as a smoothing constraint in a DLM framework and an overview of
the extensions of tree structured DLMs. We present a decision tree to help users select an
appropriate model for their analysis. We illustrate the model fitting process with detailed
descriptions and syntax of functions for implementing models, obtaining the summary
output and inferential information, and plotting the fitted models for visualization. The
package is available in the comprehensive R archive network (CRAN), and the installation
instructions are provided at https://danielmork.github.io/dlmtree/.

2 Tree structured DLMs

2.1 DLM tree as a smoothing constraint

In this section, we review the regression tree approach to constrained DLM estimation, a
key idea underlying the tree structured DLMs in the dimtree package. Classically, the DLM
model is applied to time-series studies, and time is defined in terms of the outcome time.
Let y; be the observed outcome and x; the observed exposure at time ¢ for t = 1,...,T.
For clarity, we assume a continuous outcome when presenting the models. We discuss
extensions to generalized linear models in Section 2.4. The DLM applied to time-series is

L

ye =Y X+ zy + e )
=1

where f; is the linear effect of exposure at lag [ (I days prior to the outcome assessment), z;
is a vector of covariates including the intercept, v is a vector of regression coefficients for
the covariates, ¢; is independent error assumed to follow Normal(0, (72).

In this paper, we focus on an alternative and more general representation of the DLM
that does not assume repeated assessments of an outcome in a time-series design. Consider
a vector of outcomes y = (y1,...,yn) forasamplei = 1,...,n. Suppose we are interested in
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the lagged association between the outcome and a single longitudinally assessed exposure
x; = (xj1,...,x;7) measured at equally spaced time points, t = 1, ..., T. Here, exposure time
is not explicitly defined relative to the outcome. Most commonly, the exposures are in the T
time points prior to outcome assessment, as in (1), but that is not required. In the illustrations
in this manuscript, we consider exposure during the first T weeks of pregnancy and a birth
or early childhood health outcome as our motivating example. Using this representation,
the DLM is

T
yi=fx) +ziv+e, f(x) =) xib, 2
t=1

where z;, v and ¢; are as defined above, and f is a distributed lag function parameterized
by 6; representing the linear effect of exposure at time ¢. The time-series design can also be
modeled using this format, and we discuss the data processing needed to convert time-series
data to this format in Section 4.2.

The estimation of 6; for t = 1,..., T in (2) requires an appropriate temporal structure,
such as a smooth or piecewise-smooth constraint on 8;, to account for autocorrelation within
the exposure measurements. Mork and Wilson (2023) introduced a regression tree-structure,
shown in Figure 1, referred to as a DLM tree. A DLM tree, denoted T, is a binary tree that

Effect (SC

1 t to T

Time

Figure 1: A DLM tree, 7. A binary tree splits the time span into non-overlapping intervals, here
resulting in three terminal nodes representing three time segments (gray nodes). Each terminal node
is assigned a constant effect (gray dashed lines).

splits the exposure time span into non-overlapping segments. We denote the terminal nodes
of T as Ac forc = 1,...,C where C is the total number of terminal nodes. Each terminal
node of the DLM tree is assigned a scalar parameter 6. that represents the effect of the time
lags contained in that terminal node. We denote a set of scalar parameters of the DLM tree
T asD = {61,...,6c}. ADLM tree defines a function of a time lag,

g(t|T,D) =46, ifteA. (3)

The treed distributed lag model (TDLM) is a tree structured DLM in its simplest form
and is a Bayesian additive model that consists of an ensemble of A DLM trees, indexed as 75,
with a corresponding set of scalar parameters D, fora = 1,..., A. TDLM defines 0; in (2) as

A
Or = ;g(flﬂ,Da)- 4)

The representation of the DLM tree ensemble provides several advantages. Each DLM tree
provides a temporal structure on the exposure-time-response function with data-driven
learning of the change points and time spans related to the outcome. The ensemble structure
allows for flexibility to approximate smoothness in the exposure-time-response function as
each DLM tree in the ensemble splits the time span differently.
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2.2 DLM tree pair for lagged multivariate exposures

A distributed lag mixture model extends the DLM framework to a multivariate exposure
(also referred to as mixture exposures in the environmental literature) assessed longitudi-
nally. For mixture exposures with M > 2 exposures, we denote the vector of longitudinally
assessed measurements of the mth exposure, form = 1,..., M, as xj;; = (Xim1, - -, XimT)-
The exposure-time-response function f(x;) in (2) is replaced with a mixture-exposure-time-
response function that incorporates the main effect of each exposure and the pairwise lagged
interaction effects between exposures. The mixture-exposure-time-response function is

f(xilr s rxz'M Z Z xlmtgmt + Z Z Z Z xzmltlxzmztzemlmztltgr (5)

m=1t= my= 1m2 mltl 1t2 1

where 60, is a main effect of exposure m at time t and 6y, m,t,t, is an interaction effect of
exposure m; at time t; and exposure m; at time t;.

Estimating the function in (5) is challenging due to autocorrelation across repeated
exposure measurements, correlation at the same time lag between exposures, and a high-
dimensional parameter space. Mork and Wilson (2023) introduced the treed distributed
lag mixture model (TDLMM) that structures the parameters in (5) using a DLM tree pair.
Figure 2 illustrates a single DLM tree pair, denoted {77, 72, 71 X 7T} with corresponding
parameters sets {Dj, Dy, (1}, where D; and D; represent the scalar main effects for 77
and 7, respectively, and Q) contains the scalar interaction effects for interaction surface,
denoted 77 x 7. Each DLM tree in the pair is associated with one component of the mixture

Th Ty x T

Exposure msy

t3

1 t to T

Exposure m;

Effect O2¢

Effect 1,

I Effect ()
1 tq to T

Time

—
~
w
~
-
o~
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Figure 2: A DLM tree pair. Two DLM trees split the time span of the assigned exposure into non-
overlapping intervals, here resulting in three time segments for exposure 17 and four time segments
for exposure m; (colored nodes). Each terminal node is assigned a scalar parameter that represents a
constant effect of the assigned exposure (colored dashed lines). The interaction surface is fully defined
by two DLM trees and each combination of time segments is assigned a scalar parameter (color-shaded
boxes).

exposures. Similar to the DLM tree described above, each DLM tree in the pair partitions
the time span of its assigned component. Each DLM tree in a tree pair is defined similarly to
(3) such that

S(t|Tp, Dp) = pc  ift € Ape, p=1,2. (6)

The DLM tree pair structure allows for an interaction surface to model lagged interactions
between exposures. The interaction surface 77 x 7, shown in the middle of Figure 2, is fully
defined by the two DLM trees in a pair. Each time interval of the first DLM tree is paired
with every interval of the second DLM tree. Each combination is assigned a scalar parameter
we,c, that represents the lagged interaction effect where ¢ and ¢, are indices for terminal
nodes of the first and second DLM tree, respectively. The interaction surface of a DLM tree
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pair defines a function
gl(tll t2|7-l X 7-2/ Q) = Weicy if h € /\ClltZ € /\Cz- (7)

A DLM tree pair with an interaction surface provides a structure to regularize the exposure-
time-response function for two components and their lagged interaction effects.

TDLMM employs an ensemble representation of A DLM tree pairs denoted
{Ta1, Taz, T1 X Taa} with the corresponding set of scalar parameters {D,1, Dy, (s}, us-
ing the formulation in (6) and (7). Each DLM tree 7, is also associated with exposure 1,
indicated by S;, = m. With TDLMM, the main effect of exposure m at time ¢ in (5) is

A 2
GMt = Z Z g(t|771p/ Dup)I[(Sgp = m) (8)

a=1p=1

The pairwise interaction effect between exposure m; at time #; and exposure m; at time t; in
5)is

A
9m1m2t1t2 = Z gl(t1/t2|71.11 X 7:12/ QH)H(Sﬂl - ml/SaZ = mz) (9)
a=1

TDLMM has three representations depending on different assumptions of lagged interac-
tions between exposures. The simplest form, TDLMMadd, assumes 0y, m,t,1, = 0 in (5),
implying no interaction between exposures, resulting in an additive model of the main
effects of exposures. The second form, TDLMMns, accounts for lagged interaction between
exposures but not within exposures. The last, TDLMMall, allows for all lagged interactions
between and within exposures, implying a nonlinear effect of exposure.

2.3 Extensions to nonlinear exposure-time-response functions

Mork and Wilson (2022) introduced the treed distributed lag nonlinear model (TDLNM) to
estimate the nonlinear association between a single longitudinally assessed exposure and an
outcome. The DLM tree, as shown in (3), assumes a linear association between exposure
at each time point and the outcome. To relax the linearity assumption for a distributed lag
nonlinear model framework, TDLNM modifies the DLM tree to additionally split exposure
concentration levels along with the exposure time span, partitioning the bi-dimensional
space of exposure concentration and time lags. Mork and Wilson (2024) further extended
TDLNM to include a monotonicity assumption, where the exposure-response is constrained
to be non-decreasing at each time point. See Mork and Wilson (2022, 2024) for details.

2.4 Extensions to generalized linear models

In various applications of DLMs, the response variables may be binary or counts. Examples
of binary outcomes include the occurrence of conditions such as asthma or preterm birth,
and an example of a count-valued outcome is the daily number of deaths in a county. The
linear representation of the DLM framework allows the tree structured DLMs to extend to
the generalized linear model setting. TDLM, TDLNM, and TDLMM have been extended to
incorporate binary response variables via logistic regression (Mork and Wilson, 2022, 2023).
Further extensions on these models allow for count data via negative binomial regression,
including an option for zero-inflated negative binomial data. The extensions to binary and
count data rely on a framework based on the Pélya-Gamma data augmentation approach
(Polson et al., 2013; Neelon, 2019).

2.5 Extensions to heterogeneous models

Another extension to the DLM framework is to assume heterogeneous exposure effects. The
exposure effects may be heterogeneous due to a single modifying factor or a set of factors.
For example, the impact of prenatal exposure to air pollution may be governed by genetic

The R Journal Vol. 17/1, March 2025 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 141

factors such as fetal sex (Rosa et al., 2019). The set of factors, referred to as modifiers, may
be continuous, categorical, or ordinal. The general approach is to introduce an additional
tree, known as a modifier tree, that partitions the modifier space and has a DLM tree or
a DLM tree pair affixed to each terminal node. Mork et al. (2024) extended TDLM to the

Subgroup 1
./C\ Subgroup 2 Subgroup 3

/<\/>k

=Ei : i!i
£
&

Time Time

Effect

Effect

Figure 3: A nested tree structure for heterogeneous tree structured DLMs. The top tree is a modifier
tree that is applied to candidate modifiers, here resulting in three subgroups. DLM trees are affixed to
the terminal nodes of a modifier tree to estimate the exposure-time-response relationship specific to
the subgroups.

heterogeneous distributed lag model (HDLM) by introducing a nested tree structure, as
shown in Figure 3. In a nested tree, a modifier tree is applied to a set of candidate modifiers,
defining mutually exclusive subgroups of the sample at each terminal node. A DLM tree is
then attached to each terminal node of the modifier tree to define subgroup-specific effects
with unique parameters for each subgroup. Other extensions include a heterogeneous
distributed lag mixture model (HDLMM) that extends TDLMM to incorporate heterogeneity
based on a set of multiple candidate modifiers using an ensemble of tree triplet structures.

3 Implementation

The tree structured DLMs are classified with three main criteria: 1) linear or nonlinear
exposure-time-response function, 2) one lagged component or a mixture of more than
one lagged component, and 3) homogeneous or heterogeneous exposure-time-response
relationship. Figure 4 illustrates a decision tree as a guide to choosing an appropriate tree

structured DLM.

Yes No

[ Single exposure ] [ Linear association ]

* Gaussian * Gaussian ¢ Gaussian
¢ Binary
¢ Count

* Gaussian * Gaussian
e Binary e Binary
* Count ¢ Count

Figure 4: A decision tree for choosing tree structured DLMs. The bullet points below the models list
the data types of response variables that each model can incorporate.

The dlmtree package offers tree structured DLMs shown in Figure 4. A main function
dlmtree is designed to fit various tree structured DLMs, offering customizable analysis
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through its arguments. The function dlmtree with its main arguments is as follows.
dlmtree(formula, data, exposure.data, family, dlm.type, mixture, het)

The function requires a formula specifying an outcome and covariates for the fixed effect, a
data source, the data type of response variable, and three arguments for model specification.
The data for the formula, including covariates and the outcome, are provided as an (1 x p)
data frame in the data argument. The exposures are not specified in the formula and are not
needed in the data argument. Rather, the exposure data is specified separately as an (n x T)
matrix of exposure measurements or a list of (n x T) matrices of exposure measurements in
the exposure.data argument.

Table 2: Arguments for dlmtree function

Argument Description
formula Object of class formula for the fixed effect
data A data frame containing covariates and an outcome used in formula

exposure.data A numerical matrix of exposure data with the same length as data.
For a mixture setting, a named list containing equally sized numerical
matrices of exposure data having the same length as the data

family ‘gaussian’ for a continuous response, ‘logit’ for binomial, ‘zinb’ for
count data

dlm.type DLM type specification: “linear’, ‘nonlinear’, ‘monotone’

mixture logical; A flag for mixture exposures if TRUE

het logical; A flag for heterogeneity if TRUE

Table 2 provides descriptions of the arguments. All tree structured DLMs allow for
continuous response variables, while TDLM, TDLNM, and TDLMM additionally allow for
binary and count-valued response variables. Additional parameters, omitted here, include
MCMC sampling parameters, the number of trees in the ensemble, effect shrinkage, sparsity
parameters for exposure and modifier selection, and model-specific hyperparameters. These
parameters can be fine-tuned and passed as a list to the corresponding control helper
functions, each suffixed with its purpose (e.g., control.mcmc, control.hyper).

A fitted model is assigned a class, determined by the model-specifying arguments. The
classes are: td1lm, tdlmm, tdlnm, hdlm, and hdlmm. Each class uses an S3 object oriented system
with summary method. The summary method returns the model information, estimates and
credible intervals for the fixed effects and lag effects, and time points of a significant effect,
where the 95% credible intervals of the lag effects do not contain zero (in some applications
this is referred to as critical window) of the exposure or mixture exposures. The plot method
on the summary object further returns the visualization of the estimated main exposure
effects (and interaction effects if applicable) with 95% credible intervals. Additionally for
classes of models with heterogeneity: hdlm and hdlmm, the shiny method is built for various
types of statistical inference. The shiny app interface provides tools for identifying important
modifiers and their splitting points that contribute to heterogeneity. It also includes features
for evaluating personalized exposure effects with a set of user-specified modifiers, and
exposure effects specific to a subgroup defined by a set of modifiers of interest.

4 Example usage

We illustrate the example usage of tree structured DLMs through a set of vignettes based
on simulated data. We demonstrate data preparation and the model fitting process for
TDLM, TDLMM, HDLM, and HDLMM. An example of fitting TDLNM is provided in the
supplementary material.
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4.1 Simulated dataset

We use the simulated dataset ‘sbd_dimtree’, which is publicly available in the dlmtree pack-
age GitHub repository. The dataset contains 10,000 simulated mother-child dyads with
descriptions of maternal and birth information. The maternal covariates include maternal
age, height, prior weight, prior body mass index (BMI), race, Hispanic designation, educa-
tion attainment, smoking habits, marital status, and yearly income. Additionally, the birth
information includes birth weight for gestational age z-scores (BWGAZ), gestational age,
sex of a child, and estimated date of conception. The dataset contains five environmental
chemicals measured at 37 weeks preceding the birth for each dyad: fine particulate matter
(PMy5), temperature, sulfur dioxide (SO;), carbon monoxide (CO), and nitrogen dioxide
(NOy). Each exposure measurement is scaled by its interquartile range value. The dataset
is constructed to have realistic distributions and correlations of the covariates and expo-
sures. It contains a complex exposure-response relationship that includes interactions and
heterogeneous effects.

In the following examples, we examine the distributed lag effects of maternal exposure
to the environmental mixtures during the 37 weeks of gestation on BWGAZ. The results
provided in the example usage are solely for demonstrative purposes of the model fitting
process using the model parameters and simulated data and do not represent any actual
findings.

4.2 Data preparation for model fitting

We first load the required packages: dlmtree and dplyr. We used dplyr for a better pre-
sentation of the data processing. We set the seed for reproducibility and load the exter-
nal dataset ‘sbd_dimtree’” from dimtree package repository using an embedded function
get_sbd_dlmtree.

# Libraries and seed
library(dlmtree)
library(dplyr)
set.seed(1)

# Download data as 'sbd'
sbd <- get_sbd_dlmtree()

The data frame sbd has a lagged format where each row has columns of lagged measure-
ments of each exposure (e.g. wide format data). Often, datasets have a time-series format,
which contains a single column of dates and multiple columns of corresponding measure-
ments of response variables and exposures on that specific date only. This is particularly
common in time-series studies, whereas the wide format data is more common in cohort
studies. The model fitting function dlmtree is designed to use a data frame in a wide
format; hence, a data frame with a time-series format must be pivoted to a wide format. An
example data frame of time-series format and a function for data pivoting are provided in
the supplementary materials. In addition to the wide format, the software in this package
requires that all individuals and all exposures (for multi-exposure models) have the same
number of exposure time points.

To prepare the birth data in sbd for model fitting, we create a data frame including the
covariates and the response variable, BWGAZ. We note that the categorical columns in
the dataset are of class factor. We consider five components for exposure data: PM;s,
temperature, SO,, CO, and NO;, and store them as a list of exposure matrices with a size of
(10,000 x 37). Each matrix is already in wide format, where rows represent observations
and columns represent exposure measurements at different lags.

# Response and covariates
sbd_cov <- shd %>% select(bwgaz, ChildSex, MomAge, GestAge, MomPriorBMI, Race,
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Hispanic, MomEdu, SmkAny, Marital, Income,
EstDateConcept, EstMonthConcept, EstYearConcept)

# Exposure data

sbd_exp <- 1list(PM25 = sbd %>% select(starts_with("pm25_")),
TEMP = sbd %>% select(starts_with("temp_")),
S02 = sbd %>% select(starts_with("so02_")),
CO = sbd %>% select(starts_with("co_")),
NO2 = sbd %>% select(starts_with("no2_")))

sbd_exp <- shd_exp %>% lapply(as.matrix)

Each matrix of the exposure data list can be centered and scaled with caution to different
interpretations of the resulting estimates. Specifically, when using the TDLMM with lagged
interaction, it is crucial to avoid centering the exposure data as it can lead to an inaccurate
estimate of the marginal exposure effect when considering co-exposures.

4.3 TDLM: Estimating linear relationship between an outcome and a single exposure
Model fitting and summary

We first assume that we are interested in the linear association between BWGAZ and weekly
exposure to PM; 5 during the first 37 gestational weeks. We include the following covariates
to control for fixed effects: child sex, maternal age, BMI, race, Hispanic designation, smoking
habits, and month of conception. We fit TDLM with the following code.

tdlm.fit <- dlmtree(
formula = bwgaz ~ ChildSex + MomAge + MomPriorBMI + Race +
Hispanic + SmkAny + EstMonthConcept,
data = sbd_cov,
exposure.data = sbd_exp[["PM25”1], # A single numeric matrix
family = "gaussian”,
dlm.type = "linear”,
control.mcmc = list(n.burn = 2500, n.iter = 10000, n.thin = 5)

The resulting fitted object of class td1lm has attributes of the fitted model information and
posterior samples of parameters of interest. The summary method applied to the object
tdlm.fit returns a clear overview of the model fit. The summary of the model is obtained
with the following code.

tdlm.sum <- summary(tdlm.fit)
print(tdlm.sum)

TDLM summary

Model run info:

- bwgaz ~ ChildSex + MomAge + MomPriorBMI + Race + Hispanic + SmkAny + EstMonthConcept
- sample size: 10,000

- family: gaussian

- 20 trees

- 2500 burn-in iterations

- 10000 post-burn iterations

- 5 thinning factor

- exposure measured at 37 time points
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- 0.95 confidence level

Fixed effect coefficients:
Mean Lower Upper

*(Intercept) 2.289 2.032 2.542
*ChildSexM -2.105 -2.126 -2.085
MomAge 0.000 -0.001 0.002
*MomPriorBMI -0.021 -0.022 -0.019
RaceAsianPI 0.069 -0.057 0.192
RaceBlack 0.078 -0.050 0.205
Racewhite 0.059 -0.060 0.181
*HispanicNonHispanic @.255 0.233 0.278
*SmkAnyY -0.403 -0.451 -0.356
EstMonthConcept2 -0.049 -0.109 0.010
*EstMonthConcept3 -0.145 -0.211 -0.077
*EstMonthConcept4 -0.230 -0.295 -0.160
*EstMonthConcept5 -0.207 -0.265 -0.147
*EstMonthConcept6 -0.205 -0.260 -0.153
EstMonthConcept?7 -0.032 -0.083 0.023
*EstMonthConcept8 0.145 0.081 0.210
*EstMonthConcept9 0.393 0.326 0.460
*EstMonthConcept10 0.372 0.311 0.437
*EstMonthConcept11 0.330 0.271 0.387
*EstMonthConcept12 0.129 0.078 0.181

* = CI does not contain zero

DLM effect:

range = [-0.019, 0.008]
signal-to-noise = 0.021
critical windows: 11-20,36-37

Mean Lower Upper
Period 1 0.003 -0.005 0.015
Period 2 0.000 -0.006 0.010
Period 3 -0.002 -0.010 0.004
Period 4 -0.002 -0.010 0.003
Period 5 -0.001 -0.007 0.004
Period 6 -0.001 -0.006 ©.005
Period 7 -0.001 -0.006 ©.006
Period 8 -0.001 -0.008 0.004
Period 9 -0.002 -0.011 0.003
Period 10 -0.002 -0.012 0.006

*Period 11 -0.016 -0.024 -0.007
*Period 12 -0.017 -0.024 -0.010
*Period 13 -0.017 -0.024 -0.012
*Period 14 -0.017 -0.022 -0.010
*Period 15 -0.017 -0.022 -0.011
*Period 16 -0.017 -0.022 -0.011
*Period 17 -0.017 -0.024 -0.011
*Period 18 -0.019 -0.030 -0.013
*Period 19 -0.018 -0.027 -0.011
*Period 20 -0.015 -0.024 -0.003
Period 21 -0.007 -0.019 0.002
Period 22 -0.002 -0.010 0.006
Period 23 -0.003 -0.012 0.003
Period 24 -0.002 -0.008 0.004
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Period 25 ©.000 -0.005 0.006
Period 26 0.000 -0.005 ©0.006
Period 27 -0.001 -0.005 0.005
Period 28 -0.001 -0.006 0.004
Period 29 -0.001 -0.007 0.004
Period 30 -0.002 -0.008 0.003
Period 31 -0.002 -0.008 0.004
Period 32 -0.001 -0.008 0.005
Period 33 0.002 -0.004 0.010
Period 34 0.004 -0.003 0.012
Period 35 ©0.006 -0.001 0.014
*Period 36 ©0.008 0.000 0.017
*Period 37 0.008 0.000 0.019

* = CI does not contain zero

residual standard errors: 0.004

The summary output first presents a section ‘Model run info” with the model fitting
information including the formula, sample size, data type of the response variable, number
of trees in the ensemble, MCMC parameters, number of lags, and a confidence level. The
next section, ‘Fixed effect coefficients’, shows the estimates with credible intervals
for the regression coefficients of the covariates. Lastly, the summary output returns ‘DLM
effect’ section including the range of DLM effects, signal-to-noise ratio, and estimated
lagged effects with credible intervals. Each lag is marked with an asterisk if it is identified as
a critical window based on a pointwise 0.95 probability credible interval. In context, TDLM
estimated a negative association between BWGAZ and PM; 5 with gestational weeks 11-20
as critical windows.

The cumulative effect of the exposure is defined as the effect of a one unit increment of
the exposure across all time points. The following code returns the estimated cumulative
effect with its 95% credible interval from an attribute cumulative.effect of the summary
object td1lm. sum.

tdlm.sum$cumulative.effect
mean 2.5% 97.5%
-0.1738753 -0.2124918 -0.1367665

In this context, TDLM estimates that a unit increment of exposure to PM; 5 across all
gestational weeks has a cumulative exposure effect of -0.17 (95% Crl: [-0.21, -0.14]) on
BWGAZ.

Visualizing exposure effects

For a more intuitive view of the overall trend of the distributed lag effects, the plot method
may be applied to the summary object tdlm.sum to visualize the effect estimates as the
following.

plot(tdlm.sum, main = "Estimated effect of PM2.5", xlab = "Time", ylab = "Effect”)

Figure 5 shows the plot of the estimated exposure effect of PM; 5 in the simulated dataset
where the x-axis is the lags (or weeks) and the y-axis is the estimated exposure effect. The
gray area showing the 95% credible intervals of exposure effects during weeks 11-20 does
not cover the red line of a null effect, which indicates a critical window. The plot method
also includes additional arguments of main, xlab, and ylab for customizing the main title,
x-axis, and y-axis label. For a customized plot, the estimated values can be obtained from
the attributes of the summary object tdlm. sum: matfit, cilower, and ciupper.
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Figure 5: Estimated distributed lag effects of PM; 5 on BWGAZ during 37 gestational weeks, using
TDLM. These results are based on simulated data.

4.4 TDLMM: Analyzing linear relationship between an outcome and multiple exposures
Model fitting with pairwise lagged interactions

Suppose we are interested in the linear association between BWGAZ and mixture exposures
of five exposures: PM; 5, temperature, SO, CO, and NO,. We are mainly interested in the
marginal effects of each exposure on BWGAZ, the pairwise lagged interactions between
exposures, and which exposures are most correlated with BWGAZ. Here, we use all five
exposures to illustrate the flexibility and capability of our package to handle multiple
exposures. In practice, users should carefully determine the number of exposures included in
the model by considering the complexity of the model relative to the number of observations
and the expected signal-to-noise ratio. The key differences between the code for the model
for multiple exposures below and the code for the previous single exposure model are that
the exposure.data is provided with a list of matrices of five different exposures and we
specify mixture = TRUE. The code is as follows.

tdlmm.fit <- dlmtree(
formula = bwgaz ~ ChildSex + MomAge + MomPriorBMI +
Race + Hispanic + SmkAny + EstMonthConcept,
data = sbd_cov,
exposure.data = sbd_exp,
family = "gaussian”,
dlm.type = "linear”,
mixture = TRUE,
control.mix = list(interactions = "noself"),
control.mcmc = list(n.burn = 2500, n.iter = 10000, n.thin = 5)

The model assumption regarding lagged interaction can be additionally specified for the
TDLMM fitting with interactions argument within control.mix. The options include
no interaction (‘none’), no-self interactions (‘noself’), and all interactions (‘all’). We use
TDLMM with no-self lagged interaction, which is the default argument.
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Model summary accounting for co-exposures

The summary method can be applied to the fitted object tdlmm.fit. As TDLMM allows
for pairwise lagged interaction between mixture exposures, the estimated exposure effect
for each exposure varies with the levels of the co-exposures. The summary method on
class tdlmm offers additional control argument marginalize to address this. The argument
marginalize requires a fixed level used for co-exposure marginalization. The default is the
empirical means of co-exposures, which provides the distributed lag function for a single
exposure estimated when all other exposures are fixed at their means. This is equivalent to
integrating out all co-exposures. The following code returns the summary of the tdlmm.fit
with marginalization using the empirical means of co-exposures.

# Marginalization with co-exposure fixed at the empirical means
tdlmm.sum <- summary(tdlmm.fit, marginalize = "mean")

Other marginalization options are available for conducting different types of inferences. The
second option is to specify a number between 0 and 100, representing a percentile of the
co-exposures that will be used for marginalization. The following code returns the summary
of the tdlmm.fit with marginalization fixing all co-exposures at their 25th percentile values.

# Marginalization with co-exposure fixed at 25th percentile
tdlmm.sum.percentile <- summary(tdlmm.fit, marginalize = 25)

The last option is to specify the exact levels of co-exposures. This option requires the
argument marginalize to be a numeric vector of the same length as the number of exposures
used for the model fitting. The specified values in the vector must also follow the order
of the exposures in the fitted model. This method of marginalization offers flexibility as
these exposure levels can be specified based on pre-informed levels using existing data or to
address hypothetical questions. For example, the following code can be used to obtain the
marginal exposure effect of PM, 5 when temperature, SO,, CO, and NO, are all fixed to 1.
The marginalized effects of other exposures are calculated in a similar manner.

# Marginalization with co-exposure fixed at exact levels for each exposure
tdlmm.sum.level <- summary(tdlmm.fit, marginalize = c(1, 1, 1, 1, 1))

Below is the summary result of tdlmm. sum with the default argument using empirical means.

print(tdlmm.sum)

TDLMM summary

Model run info:

- bwgaz ~ ChildSex + MomAge + MomPriorBMI + Race + Hispanic + SmkAny + EstMonthConcept
- sample size: 10,000

- family: gaussian

- 20 trees (alpha = 0.95, beta = 2)

- 2500 burn-in iterations

- 10000 post-burn iterations

- 5 thinning factor

- 5 exposures measured at 37 time points

- 10 two-way interactions (no-self interactions)
1 kappa sparsity prior

0.95 confidence level

Fixed effects:

Mean Lower Upper
*(Intercept) 0.172 0.043 0.307
*ChildSexM -2.063 -2.085 -2.041
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MomAge 0.001 -0.001 0.002
*MomPriorBMI -0.020 -0.022 -0.019
RaceAsianPI 0.027 -0.058 0.117
RaceBlack 0.033 -0.063 0.124
Racewhite 0.016 -0.067 0.100
*HispanicNonHispanic ©.248 0.224 0.272
*SmkAnyY -0.393 -0.441 -0.346
EstMonthConcept2 0.073 -0.003 0.145
*EstMonthConcept3 0.107 0.009 0.211
*EstMonthConcept4 0.158 0.038 0.282
*EstMonthConcept5 0.255 0.126 0.388
*EstMonthConcept6 0.200 0.064 0.333
*EstMonthConcept7 0.223 0.084 0.354
*EstMonthConcept8 0.199 0.068 0.331
*EstMonthConcept9 0.291 0.164 0.418
*EstMonthConcept10 0.182 0.070 0.296
*EstMonthConcept11 0.135 0.040 0.236
EstMonthConcept12 0.006 -0.062 0.077

* = CI does not contain zero

Exposure effects: critical windows
* = Exposure selected by Bayes Factor
(x.xx) = Relative effect size

*PM25 (0.7): 11-20
*TEMP (0.7): 5-19
*S02 (0.21):

*CO (0.63):

*NO2 (0.26): 23

Interaction effects: critical windows

PM25/TEMP (0.8):
12/6-19
13/6-19
14/6-20
15/6-20
16/6-20
17/6-21
18/5-22
19/5-22
20/6-21

residual standard errors: 0.005

The summary output of the TDLMM fit contains similar information to that of the TDLM.
The ‘Model run info’” section in the output includes additional information specific to
mixture exposures: the number of exposures included in the model, the number of pairwise
interactions, and a sparsity parameter for exposure selection. The summary output does
not include the lagged effects for each exposure to prevent overwhelming the output with
excessive information. The summary presents the critical window of the marginal effects of
each exposure with the relative effect size, indicating the effect size of exposure relative to
that of other exposures. The summary also returns the critical window of lagged interaction
effects with relative effect size. In our context, all five exposures are considered to be
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significantly associated with BWGAZ, based on a Bayes factor threshold of 0.5. The TDLMM
estimated gestational weeks 11-20, 5-19, and 23 as critical windows of PMj, 5, temperature,
and NO,, respectively. The model fit also identified significant PM; s—temperature lagged
interaction effects.

Additional statistical inferences using TDLMM

More useful statistical inferences are possible with tdlmm.fit and tdlmm.sum. First, a
function adj_coexposure can be used to obtain the marginalized exposure effect while
accounting for the expected change in co-exposures. In comparison to using the argument
marginalize in summary method, the function adj_coexposure uses a spline-based method
to predict the expected changes in co-exposures corresponding with a pre-defined change
in an exposure of interest and calculates the marginalized effects of the primary exposure
with co-exposure at the predicted levels. The following code shows an example usage of the
function with its output omitted.

# Lower and upper exposure levels specified as 25th and 75th percentiles
tdlmm.coexp <- adj_coexposure(sbd_exp, tdlmm.fit, contrast_perc = c(0.25, 0.75))

The function requires exposure data, the model fit of class tdlmm, and an argument
contrast_perc which can be specified with a vector of two percentiles used for co-exposure
prediction. Another argument contrast_exp is available for specifying exact exposure levels
for each exposure.

Second, the marginal cumulative effect of each exposure can be obtained with the
summary object tdlmm. sum. The object has a list attribute DLM, which contains estimates of
marginal exposure effect and cumulative effect with their credible intervals. These estimated
effects correspond to the argument marginalize specified within summary method. The code
below returns the estimates of the cumulative effect of PM; 5.

tdlmm. sum$DLM$PM25$cumulative
$mean
[1] -0.3790024

$ci.lower
2.5%
-0.5318544
$ci.upper
97.5%
-0.2305391
PM;5 can be replaced with other exposures if desired, e.g.,

tdlmm. sum$DLM$TEMP$cumulative for temperature. In this context, the TDLMM esti-
mates that the marginal cumulative effect of a unit increase of PM; 5 across all gestational
weeks is -0.38 (95% CrI: [-0.53, -0.23]).

Visualizing main exposure effects and lagged interaction effects

The plot method on the summary object tdlmm. sum requires a single exposure or a pair of
exposures. The plot method returns the marginal effect of an exposure when specified with
a single exposure. For instance, for the three exposures, PM; 5, temperature, and NO;, we
can use the following code.

library(gridextra)

pl <- plot(tdlmm.sum, exposurel = "PM25", main = "PM2.5")
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p2 <- plot(tdlmm.sum, exposurel "TEMP", main = "Temperature”)
p3 <- plot(tdlmm.sum, exposurel = "N02", main = "N0O2")

grid.arrange(pl, p2, p3, nrow = 1)

PM2.5 Temperature NO2

0.02 0,050

0.0254
0.01+4

0.000 4

Effect
Effect
Effect

-0.025 4

-0.014

-0.050 4

-0.04

10 20 30 10 20 30 10 20 30
Time Time Time

Figure 6: Estimated marginal distributed lag effects of PM; 5, temperature, and NO, on BWGAZ
during 37 gestational weeks, using TDLMM. These results are based on simulated data.

The plot method with arguments of two exposures visualizes an interaction surface of two
specified exposures. The following code plots an estimated pairwise interaction surface of
two specified exposures:

plot(tdlmm.sum, exposurel = "PM25", exposure2 = "TEMP")
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Figure 7: Estimated lagged interaction effects between PMj; 5 and temperature, using TDLMM. These
results are based on simulated data.

Figure 7 shows the estimated interaction surface between PM; 5 and temperature in the
simulated data, estimated with TDLMM. The gradient colors on the grid indicate the
estimated interaction effects where the x-axis is the exposure time span of PM; 5 and the
y-axis is that of temperature. The red dots indicate that the credible interval of the effect
does not contain zero, with larger dots indicating a higher probability of non-null effect.
Figure 7 indicates significant negative interaction effects at weeks 12-20 of PM; 5 and 6-19
weeks of temperature at 95% confidence level, implying that increased exposure to PM; 5
may decrease the exposure effect of temperature, and vice versa.
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4.5 HDLM & HDLMM: Introducing heterogeneity to distributed lag effects

We illustrate heterogeneous models for a single exposure (HDLM) and for a mixture expo-
sure (HDLMM) for estimating heterogeneous exposure effects. We focus our demonstration
on a shiny interface built for HDLM and HDLMM for examining the most significant
modifying factors, the personalized exposure effects, and the subgroup-specific exposure
effects.

Model fitting and summary with selected modifiers

Suppose we are interested in the linear association between BWGAZ and a single exposure
PM;5. We additionally assume that the exposure effect of PM; 5 may be modified by
child sex, maternal age, BMI, and smoking habits across the population. Specifically, to fit
heterogeneous models, additional arguments can be passed to control.het as a list. An
argument modifiers can be set to a vector of modifier names. These modifiers must be
included in the data frame provided to the data argument (sbd_cov in this example). By
default, the argument is set to include all covariates included in the formula argument as
modifiers. Also, the possible number of splitting points of modifiers for heterogeneity can
be specified with an integer argument modifier.splits to manage the computational cost.
We specify het = TRUE to fit the HDLM with the following code.

hdlm.fit <- dlmtree(
formula = bwgaz ~ ChildSex + MomAge + MomPriorBMI +
Race + Hispanic + SmkAny + EstMonthConcept,
data = sbd_cov,
exposure.data = sbd_exp[["PM25"]],

family = "gaussian”,
dlm.type = "linear”,
het = TRUE,

control.het = list(
modifiers = c("ChildSex"”, "MomAge", "MomPriorBMI", "SmkAny"),
modifier.splits = 10

),

control.mcmc = list(n.burn = 2500, n.iter = 10000, n.thin = 5)

)

The summary method applied to the object hdlm. fit returns the overview of the model fit.
The following code returns the summary.

hdlm.sum <- summary(hdlm.fit)
print(hdlm.sum)

HDLM summary

Model run info:

- bwgaz ~ ChildSex + MomAge + MomPriorBMI + Race + Hispanic + SmkAny + EstMonthConcept
- sample size: 10,000

- family: gaussian

- 20 trees

- 2500 burn-in iterations

- 10000 post-burn iterations

- 5 thinning factor

- exposure measured at 37 time points
- 0.5 modifier sparsity prior

- 0.95 confidence level
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Fixed effects:
Mean Lower Upper

*(Intercept) 1.272 ©.914 1.629
ChildSexM 0.127 -0.302 0.566
MomAge 0.001 -0.002 0.004

*MomPriorBMI -0.021 -0.024 -0.018
RaceAsianPI 0.045 -0.074 0.171
RaceBlack 0.055 -0.070 0.182
Racewhite 0.034 -0.082 0.157

*HispanicNonHispanic @.255 ©.233 0.278

*SmkAnyY -0.406 -0.453 -0.359
EstMonthConcept2 -0.050 -0.104 0.004

*EstMonthConcept3 -0.129 -0.188 -0.070

*EstMonthConcept4 -0.201 -0.265 -0.139

*EstMonthConcept5 -0.195 -0.246 -0.144

*EstMonthConcept6 -0.199 -0.249 -0.144
EstMonthConcept?7 -0.035 -0.087 0.019

*EstMonthConcept8 0.147 0.088 0.208

*EstMonthConcept9 0.395 0.331 0.455

*EstMonthConcept10 0.388 0.328 0.446

*EstMonthConcept11 0.343 0.290 0.397

*EstMonthConcept12 0.141 0.091 0.190

* = CI does not contain zero

Modifiers:

PIP
ChildSex 1.0000
MomAge 0.6305
MomPriorBMI 0.9055
SmkAny 0.0975

PIP = Posterior inclusion probability

residual standard errors: 0.004

To obtain exposure effect estimates, use the 'shiny(fit)' function.

As before, the summary output includes ‘Model run info” and ‘Fixed effects’ sections
with the estimates and the 95% credible intervals of the regression coefficients of the fixed
effect. The summary additionally shows the sparsity hyperparameter set for modifier
selection and the posterior inclusion probability (PIP) of the modifiers included in the
model. The fitted HDLM identified child sex, maternal age, and BMI to be the modifiers
that contributed the most heterogeneity to the exposure effect of PM; 5. It is important to
note that a high PIP does not necessarily indicate modification. Instead, it suggests that their
posterior should be examined to determine if any meaningful modification is present.

A similar model fitting process can be done when examining the heterogeneous exposure
effect of a mixture of five exposures on BWGAZ. The following code additionally specifies
mixture = TRUE and fits HDLMM with the same potential modifiers:

hdlmm.fit <- dlmtree(
formula = bwgaz ~ ChildSex + MomAge + MomPriorBMI +
Race + Hispanic + SmkAny + EstMonthConcept,
data = sbd_cov,
exposure.data = sbhd_exp,
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family = "gaussian”,

dlm.type = "linear”,

mixture = TRUE,

het = TRUE,

control.het = list(
modifiers = c("ChildSex", "MomAge", "MomPriorBMI", "SmkAny"),
modifier.splits = 10),

),

control.mecmc = list(n.burn = 2500, n.iter = 10000, n.thin = 5)

)

As previously, the summary method on hdlmm model object similarly returns the summary of
the fitted HDLMM. The summary output, omitted here, is similar to that of HDLM, with
additional information such as the number of exposures, number of pairwise interactions,
and sparsity parameters for modifier selection and exposure selection. Unlike the summary
method applied to the model of class tdlmm in Section 4.4, marginalization methods are
unavailable for the fitted model hdlmm. fit as the marginalization of co-exposure with
heterogeneity is not well defined.

Using shiny app to investigate heterogeneous distributed lag effects

Exposure effects are estimated at the individual level and can be summarized at either
the individual or subgroup level. This flexibility makes summarizing and visualizing the
estimated effects challenging. A built-in shiny app with an object of class hdlm and hdlmm
provides a comprehensive analysis of the exposure effects. HDLM and HDLMM share the
same shiny interface but the shiny method applied to class hdlmm additionally includes an
option in the panel to select an exposure of interest from mixture exposures. We present the
shiny app interface using the fitted HDLM for a single exposure, using the same argument
specification for fitting the model hdlmm.fit. The shiny app is launched with the following
code.

shiny(hdlm. fit)

Heterogeneous DLM  Modifier  Individual  Subgroup

S ZE O BT Posterior inclusion probability (PIP) & Split points
MomAge -

MomAge

Note: The PIP plot is not subject to changes in the selection.

0.10 ——

mPrior8MI

SmkAny :|
0.00

000 025 050 075  1.00 > AP

Posterior inclusion probability Location

Modifier
Proportion

DRSS D SR

Figure 8: Example of R shiny user interface for the fitted HDLM. The displayed results are based on
simulated data.

Figure 8 shows the main screen, also the first tab, of the shiny app for the fitted HDLM.
The shiny interface includes three tabs. The first tab labeled ‘Modifier” presents two panels
including a bar plot of modifier PIPs and the proportions of split points of a user-selected
continuous modifier used to split the internal nodes of modifier trees.

In the ‘Individual’ tab, the user can adjust the levels of modifiers to obtain the indi-
vidualized estimate of the distributed lag effects. In our context, the shiny app provides
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the personalized exposure effect and critical windows when the sex of a child, age, BMI,
and smoking habits of a mother are specified. Figure 9 shows the estimated personalized
exposure effect of PM, 5 during gestational weeks for a 29-year-old mother with a BMI of 24,
whose child is male and who does not smoke.

Heterogeneous DLM  Modifier  Individual ~ Subgroup

Modifier input: Individualized distributed lag effect
ChildSex
M M
MomAge
" [29] 54
e T Con
- 0.004
MomPriorBMI
” 2 o
T, X ! ! 4
U S P g
SmikAny &
N -
0.02
0.04
10 20 30

Lag

Figure 9: Example of estimated personalized exposure effect in R shiny app. The displayed results are
based on simulated data.

The last tab labeled ‘Subgroup’ offers subgroup-specific analyses. In the top panel, shown
in Figure 10, the user can select one or two modifiers to group the samples into multiple
subgroups and obtain personalized exposure effects for individuals in each subgroup. Each
line of the resulting plot represents an exposure effect of an individual accounting for all
modifiers of that individual. This is useful for simultaneously assessing how much exposure
effects vary among individuals and across subgroups. The bottom panel allows users to

HeterogeneousDLM  Modifier  Individual  Subgroup

Individual effect per subgroup input: Subgroup specific effect

Sample size per subgroup

Individual DLMs per subgroups (n = 50 per subgroup)

Select afirst modifier

ChildSex

Select asecond modifier

No selection

Note: 'No selection' for the second modifier will result in a plot

Effect

Weighted subgroup specific effect input:
Select afirst modifier

ChildSex

Select asecond modifier

Noselection - 10 20 30 10 20 30
Lag

Caution: Choosing two continuous modifiers will lead to an
excessive number of plots

Figure 10: Example of estimated personalized exposure effects with subgroups in R shiny app. The
displayed results are based on simulated data.

select one or two modifiers for subgroup-specific distributed lag effects. Subgroup-specific
distributed lag effects are calculated by marginalizing out the modifiers not specified in
the panel. Two modifiers at most can be specified for analyzing how much each modifier
affects heterogeneity in the exposure effects. For example, Figure 11 shows the estimated
exposure-time-response function for four subgroups, grouped by two categorical modifiers:
child sex and smoking habit. The difference in subgroup-specific exposure effects indicates
that smoking habit does not contribute much heterogeneity in the exposure effect of PM; 5,
while child sex introduces a considerable amount, which aligns with the modifier PIPs in
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the summary output. Using the simulated dataset, the subgroup-specific effects suggest that
mothers with a male child may be more vulnerable to PM; 5.

Weighted subgroup average effect

ChildSex = F ChildSex = M

0.024

. -ﬁ

&
o
N
N = Auyus

Effect

Augjug

A=

0
Lags

Figure 11: Example of estimated subgroup-specific effects, grouped by child sex and maternal smoking
status, in R shiny app. These results are based on simulated data.

5 Practical considerations

R package dimtree offers highly flexible and integrative models for analyzing the effects
of repeatedly measured exposures. The package allows user specification for adjusting
the flexibility of the exposure-lag-response relationship, number of exposures, types of
lagged interaction terms, modifiers, and MCMC simulation control. We highlight important
considerations and best practices when using the package to obtain reliable results.

The models included in dimtree are very flexible and highly parametric. It is, there-
fore, important to be mindful of whether such a complex model is relevant to a research
question. Factors that increase model complexity are: increased number of time points the
exposure is assessed at, more unique exposures and allowing for additional interactions
between or within exposures across time, and including heterogeneity and the number of
candidate modifiers. The BART framework and shrinkage and selection priors are effective
at regularizing these models. However, more complex models can still result in increased
variance, identifiability issues where the model becomes sensitive to model specification,
and challenges in interpretation. Therefore, we recommend users employ standard best
practices in model building, such as carefully assessing what should be included in the
model, considering pre-selection of exposures or combining related exposures into a single
index, aggregating exposure measurements to a coarser time interval, being mindful of
extreme multicollinearity, and conducting sensitivity analyses with simpler models where
possible.

When running heterogeneous distributed lag models, potentially important modifiers
can be identified using the PIP. When the number of modifiers is small relative to the
number of trees, all modifiers will have a higher baseline PIP. Additionally, a large PIP
does not necessarily imply meaningful effect modification, and the posterior distribution of
the exposure-response function should be explored to better identify important modifiers.
Related to model complexity, when two or more modifiers are highly correlated, one or both
may be identified as driving heterogeneity. Therefore, considering the mechanisms of effect
modification is essential when selecting modifiers and interpreting results.
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For practical implementation, we recommend running longer MCMC chains than are
used in the examples in this paper. While the examples presented use short iterations for
demonstration, longer chains are necessary for stable estimates and to improve mixing and
convergence. Given the high dimensionality of the tree structured DLMs, a longer chain
will sample more reliable full posterior distributions for inference. Additionally, for logistic
and negative binomial models, longer burn-in periods are important to ensure convergence.
For example, in our previous large data analyses with this software (Mork and Wilson,
2023; Mork et al., 2024; Mork and Wilson, 2022), we have used upwards of 10,000 burn-in
iterations.

Convergence can be assessed in several ways. We have relied on trace plots, which graph
the chain of posterior draws for key parameters. When possible, another approach is to run
multiple Markov chains with different seeds and compare results across chains. To help
users assess model convergence and identify potential issues with mixing, our package
provides a diagnose S3 method for model summary objects which returns a comprehensive
convergence diagnostics panel customized for the treed DLM framework. It provides an
overview of key outputs including trace plots and posterior density plots of distributed
lag effects, Metropolis-Hastings acceptance rate for tree updates, and changes in tree sizes
throughout MCMC sampling. The example usage of diagnose is demonstrated in the
supplementary materials.

6 Summary

We introduced the R package dlmtree, a user-friendly software for addressing a wide range
of research questions regarding the relationship between a longitudinally assessed exposure
or mixture and a scalar outcome. Our software provides functionality to estimate distributed
lag linear or nonlinear models, quantify main and interaction effects, and account for hetero-
geneity in the exposure-time-response function. Furthermore, the methods in our package
have been carefully optimized for computational efficiency under a custom C++ language
framework with a convenient R wrapper function, dlmtree, designed for accessibility by
all researchers. In this paper, we provided an overview of the regression tree approaches
used for estimating DLMs, and through a collection of vignettes, we highlighted a variety of
tools available for processing data, fitting models, conducting inference, and visualizing the
results. Our goal in making this package available is to bring robust data science tools to
expand the range of questions that can be asked and answered with longitudinally assessed
data.
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CDsampling: An R Package for
Constrained D-Optimal Sampling in Paid

Research Studies
by Yifei Huang, Liping Tong, and Jie Yang

Abstract In the context of paid research studies and clinical trials, budget considerations
often require patient sampling from available populations, which comes with inherent
constraints. We introduce the R package CDsampling, which is the first to our knowledge
to integrate optimal design theories within the framework of constrained sampling. This
package offers the possibility to find both D-optimal approximate and exact allocations
for samplings with or without constraints. Additionally, it provides functions to find
constrained uniform sampling as a robust sampling strategy when the model information
is limited. To demonstrate its efficacy, we provide simulated examples and a real-data
example with datasets embedded in the package and compare them with classical sampling
methods. Furthermore, the CDsampling package revisits the theoretical results of the Fisher
information matrix for generalized linear models (including the regular linear regression
model) and multinomial logistic models, offering functions for its computation.

1 Introduction

Paid research studies are essential for determining the influence of new interventions or
treatments and for providing quantitative evidence in various domains, such as healthcare,
psychology, and politics. However, conducting such studies often involves a limited budget
and a large pool of potential volunteers, which poses a challenge in selecting the best sample
to meet the research objectives. Poor samples may result in biased or inaccurate estimates,
low statistical power, and even misleading conclusions. Therefore, finding a good sampling
strategy is crucial for researchers and practitioners.

Consider a constrained sampling problem commonly encountered in paid research
studies. Suppose, in a research study to evaluate a new intervention, N = 500 volunteers
register to participate. Upon registration, the investigators collect basic demographic in-
formation, such as gender (female or male) and age groups (18 ~ 25, 26 ~ 64, 65 and
above) for each volunteer. Treating gender and age as stratification factors, we obtain m = 6
subgroups. However, due to budget limitations, the study could only accommodate n = 200
participants. Let N; denote the frequency of volunteers within the ith subgroup, where
i=1,...,m. We call the integer number of participants sampled from each subgroup, #;, the
exact allocation, and the corresponding proportion #;/ N; the approximate allocation. The
goal is to select a sample of 200 participants n = (n4, ..., ny), such that } /" ; n; = 200 from
the pool of N = 500 volunteers to evaluate the intervention effect most accurately, subject to
the constraint that no subgroup is oversampled beyond the number of available volunteers
within that subgroup, that is, n; < N;. This constraint is the most commonly encountered in
paid research studies (see Section 3.1 for details, and for constraints of other forms, please
refer to Section 3.2).

Commonly used sampling strategies include simple random sampling, stratified sam-
pling, and cluster sampling. Simple random sampling is the most straightforward form of
probability sampling, where each element has an equal chance of being selected (Till¢, 2006).
Proportionally stratified sampling involves dividing the population into homogeneous
subgroups, such as gender and age groups, and applying random sampling to sample
proportionally within each subgroup (Lohr, 2019). Cluster sampling, on the other hand,
splits the population into heterogeneous clusters, for example, based on the locations of
volunteers, and randomly selects some clusters as the sample units. However, these methods
have their drawbacks. Cluster sampling is relatively low-cost but less precise than simple
random sampling. Stratified sampling can produce more efficient estimators of population
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means, but it requires finding well-defined and relevant subgroups that cover the entire
population (Levy and Lemeshow, 2008). Moreover, these existing methods are based on
assumptions that may not hold if model estimation is the primary goal of the paid research
study.

In the proposed CDsampling package, we implement the sampling strategy based on
optimal design theory (with main functions 1iftone_GLM(), liftone_constrained_GLM(),
liftone_MLM(), and liftone_constrained_MLM()), which can improve the accuracy of the
intervention effect estimation. Optimal design theory is a branch of experimental design that
aims to find the best allocation of experimental units to achieve a specific optimality criterion
such as minimizing the variance of estimation or equivalently maximizing the information
obtained from the design. For example, D-optimality maximizes the determinant of the
information matrix, which minimizes the estimators” expected volume of the joint confidence
ellipsoid. A-optimality minimizes the trace of the inverse information matrix, equivalent
to minimizing the average of the variances of the estimators. E-optimality minimizes
the maximum eigenvalue of the inverse information matrix, which minimizes the largest
expected semi-axis of the confidence ellipsoid and protects against the worst possible
case (Fedorov, 1972; Atkinson et al., 2007; Yang and Stufken, 2012; Fedorov and Leonov,
2014). In this paper, we focus on D-optimality due to its overall good performance and
mathematical simplicity (Zocchi and Atkinson, 1999; Atkinson et al., 2007). According
to Huang et al. (2025), the constrained D-optimal sampling strategies work well for paid
research studies or clinical trials. To implement the recommended sampling strategy, we
develop an R package called CDsampling (namely, Constrained D-optimal sampling),
available on CRAN at https://cran.r-project.org/package=CDsampling. To the best of
our knowledge, CDsampling is the first R package offering a sampling tool with constraints
in paid research studies based on optimal design theory. Package sampling implements
random samples using different sampling schemes (Tillé and Matei, 2016). The package
also provides functions to obtain (generalized) calibration weights, different estimators, as
well as some variance estimators. Package SamplingStrata determines the best stratification
for a population frame that ensures the minimum sample cost with precision thresholds
(Barcaroli, 2014). On the other hand, there are existing R packages for optimal designs.
Package AlgDesign finds exact and approximate allocations of optimal designs under D-,
A-, and I-criteria (Wheeler and Braun, 2019). Package OptimalDesign enables users to
compute D-, A-, I-, and c-efficient designs with or without replications, restricted design
spaces, and under multiple linear constraints (Harman et al., 2016). Package acebayes finds
Bayesian optimal experimental designs with approximate coordinate exchange algorithm
(Overstall et al., 2020, 2018). Package OPDOE provides functions for optimal designs with
polynomial regression models and ANOVA (Gromping, 2011). These packages provide
programming tools for finding samplings or optimal designs under different criteria and
models. However, they do not address the specific challenges of practical feasibility in the
constrained sampling scheme of paid research studies. The proposed CDsampling package
fills this gap by offering an efficient sampling tool to handle general constraints and common
parametric models in paid research studies.

2 Method

2.1 Constrained lift-one algorithm

The lift-one algorithm was initially proposed by Yang et al. (2016) to find D-optimal designs
with binary responses. This was extended to generalized linear models (GLMs) by Yang and
Mandal (2015) and subsequently adapted for cumulative link models by Yang et al. (2017).
The methodology was further extended to multinomial logit models (MLMs) by Bu et al.
(2020).

Figure 1 provides a concise summary of the lift-one algorithm applied to general para-
metric models. The detailed algorithm is provided in Algorithm 3 from the Supplementary
Material of Huang et al. (2025). We consider a general study or experiment involving co-
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variates x; = (xj1,...,%;7) ', fori = 1,...,m, referred to as experimental settings. In paid
research studies, these covariates could be the stratification factors such as the gender and
age groups in our motivating example. Here, m > 2 denotes the number of experimental
settings, which corresponds to m = 6, the number of gender and age groups in the moti-
vating example. Suppose the responses follow a parametric model M(x;, 0), where 8 C R?
with p > 2. Under regularity conditions, the Fisher information matrix of the experiment
design can be written as F = Y/" ; n;F;, where F;,i = 1,...,m is the Fisher information
matrix at x; and #; is the number of subjects allocated to the ith experimental setting. In
the setting of paid research studies, 1; corresponds to the number of subjects sampled from
the ith subgroup. We usually calln = (n,..., nm)T the exact allocation, where n = Y ; n;,
and w = (wy,...,wy) = (ny/n,...,nyu/n)’ the approximate allocation, where w; > 0
and Y_I" ; w; = 1 (Kiefer, 1974; Pukelsheim, 2006; Atkinson et al., 2007). The approximate
allocation is theoretically more tractable, while the exact allocation is practically more use-
ful. In the statistical literature, approximate allocations are more commonly discussed
(Kiefer, 1974). The D-optimal design aims to find the optimal allocation that maximizes
f(w) = |F(w)| = | L~ w;F;|. The lift-one algorithm simplifies a complex multivariate
optimization problem into a sequence of simpler univariate optimization problems. This
is achieved by “lifting” and optimizing one weight w;, within the approximate allocation
vector w. Specifically, in step 3° of the algorithm depicted in Figure 1, the determinant
of the Fisher information matrix function concerning the lift-one variable is expressed as
f(z) = f(w;(z)) where the variable z substitutes for w; in allocation w, and the remaining
weights are adjusted proportionally, denoted as w;. The updated weight vector is given by

1—z 1—z 1—z 1—z T
Wy, eo.)=———W;_ 1,2, ————Wjs1,...,——W .
1—wi I '1—wl- ll/llfwi i+l /1*7/01' "

wi(z) = <

The allocation that results from the convergence in step 6° of the algorithm is identified as
the D-optimal approximate allocation.

Start with arbitrary allocation

Wwo = (Wi, ..., wn)" € So
f(wo) >0

No. Converge
Y

{ Random order i going through {1,2, ..., m}}

Yes

Y

1-z -z - -z
wi(z) = (le Wi oo s T Winls Zs T Witk ls oo s T wm)

fi(2) = f(wi(2))
ze€[0,1]

7 Report w, as D-optimal allocation

Y
Find z, maximizing f;(z),z € [0, 1]

define wi = Wi (z4)

l

5 Replace wy with w,
and f (wo) with f(w?)

Figure 1: The framework of lift-one algorithm.

In the context of paid research studies, budgetary limitations often necessitate the se-
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lection of a subset of participants. We consider the sampling of n subjects from a larger
population of N, where n < N. A typical constraint in such studies is #; < N;, where N;
represents the number of available subjects from the ith experimental setting group. This
effectively places an upper bound on the sample size for each subgroup (or stratum), ensur-
ing the sampling process does not overdraw from any subgroup. Additional constraints
may include 1y + np + n3 +ng < 392 (see the MLM example in Section 3.2), 4n7 > n3
(see Example 52.2 in Supplementary Material Section S2), etc. The constrained lift-one
algorithm seeks the approximate allocation w that maximizes |F(w)|, on a collection of
feasible approximate allocations S C Sy where

m
So:={(w1,...,wn)" €R™ | w >0,i=1,...,m) w;=1}.
i=1

The set S is presumed to be either a closed convex set or a finite union of closed convex sets.
The framework of the constrained lift-one algorithm is provided in Figure 2. The details of
the algorithm can be found in Algorithm 1 of Huang et al. (2025). In the constrained lift-one
algorithm, the search for the optimal lift-one weight z in step 3° of Figure 2 is confined within
the interval of [rj, 7] (Example S2.2 in Supplementary Material Section S2 and Section S.3
in Huang et al. (2025) for details of finding [r;1, 72]). To ensure that the resulting allocation
is D-optimal, two additional decision steps, labeled steps 7° and 8°, are incorporated into
the algorithm. The reported allocation in step 10° is the constrained D-optimal approximate
allocation for the study. To illustrate the difference between the lift-one algorithm and the
constrained lift-one algorithm, we provide examples in Supplementary Material Section S2.

Start with arbitrary allocalioh
T wo = (wi,...,w,) €S |
f(wg) >0 /

— { P

P [ Random order i going through {1,2, ... ,m)J

N Converge

Yes

l | *

T 7 y
1-z 1-z 1-z 1z Calculate f/(w}) for all i
> \WKZ)—(I_—MWLH ’1__wvw:71,zvl__““w:+l«~wvl__uﬂu‘m) J Siwn)

if f/(w}) < Oforalli
Ji(2) = f(wi(2))
determine 0 < r;; < rip < 1,such thatw;(z) € Siifz € [ry,rn]

Find z, maximizing f;(z),z € [rj,ri2l]

define WQ) =w;(z,)

Determine W, = argmax,, . s 2(W);
where g(w) = X7, w;(1 — w})f](w)
if g(w,) <0

Ty > f(wo) |

Yes | Find a, maximizing h(a) = £ ((1 — &)W, + aw,)
v 9 with @ € [0, 1], set wo = (1 — )W, + W,

Replace wo with w’,
10° Report w. as D-optimal allm:almn/

and f (wo) with f(w?)
Figure 2: The framework of constrained lift-one algorithm.

-~

Upon obtaining the approximate allocation, we may employ the constrained approxi-
mate to exact allocation algorithm outlined in Figure 3 for the conversion of a real-valued
approximate allocation to an integer-valued exact allocation. The full details of the algorithm
are in Algorithm 2 of Huang et al. (2025). The algorithm begins by assigning a floor integer
value to all subgroups n; = | Nw; |. Subsequently, each remaining subject is added to the
corresponding group in a manner that maximizes the determinant of the Fisher information
matrix. This transformation provides a more pragmatic application in the actual sampling
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process within paid research studies.

n=|Nwi|fori=1,... ., mandk=N-3%" n
denote indexset I = {i € {1,....m} |w; >0,
. oomiopn + Lngg, o np)IN € 8

2" 3°
Yes
Fori € I, calculate
2.1 di = flny, oo omo i + Lnggy, oo ng)
Y
2.2 [ i, = argmax,_;d; }
Y
2.3 n, < n, +landk — k-1 ‘
24
No
J

Figure 3: The framework of constrained approximate to exact algorithm.

The calculation of the Fisher information matrix F and the subsequent maximization of
its determinant |F| are key steps in both the constrained and original (unconstrained) lift-one
algorithms. The theoretical details and functions for the computation of F are provided in
Sections 2.2 and Section 2.3.

2.2 Fisher information for generalized linear models

The generalized linear model (GLM) broadens the scope of the traditional linear model. In
the standard approach, the response variable is expected to change in direct proportion
to the covariate. Yet, this isn’t always a practical assumption. Take binary outcomes, for
instance, the classic linear model falls short here. Similarly, it’s unsuitable for positive-only
data like count data. Nelder and Wedderburn (1972) expanded the model to accommodate
a wider range of applications.

For a GLM, we assume that response variables Y3, ..., Y, are independent and from the
exponential family. Then we have (Dobson and Barnett, 2018; McCullagh and Nelder, 1989)

E(Y; | X)) =i, g(pi) =i =X/ B

where ¢ is a link function, B = (B1,B2,...,Bp)" is the parameter vector of interest,
and p; is the conditional expectation of response Y; given predictors X; = h(x;) =
(h1(xi), ..., hp(x;)) T, where i = 1,...,n with known and deterministic predictor functions
h = (h,...,hy)". There are various link functions that could be used, for example, logit link

i = log 1+ w7 probit link 77; = ®~1(u;), where ®(+) is the normal cumulative distribution

function; and complementary log-log link #; = log{—log(1 — y;) }. Regular linear models
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can be considered as GLMs with the identity link function and normal responses. Suppose
we have a design with m design points x1, ..., x;; that has an exact allocation (11, ..., 1)
where ) ; n; = n and corresponding approximate allocation (wy, ..., wy) = (71‘1—1, ),
The Fisher information matrix F under GLMs can be written as (McCullagh and Nelder,

1989; Khuri et al., 2006; Stufken and Yang, 2012; Yang et al., 2016):

m
F=nX"WX=n)_ wvX;X] 1)
i=1

where X = (Xq,...,Xy) " is the m x p design matrix with X; = h(x;), W = diag{w;v,
Ve (oot
information the design point x; contains. The explicit formats of v; with different response
distributions and link functions can be found in Table 5 of the Supplementary Material of
Huang et al. (2025). To calculate the Fisher information matrix F given the approximate allo-
cation w, we may use the F_func_GLM() function in the CDsampling package. Additionally,
the W_func_GLM() function can be used to find the diagonal elements of the matrix W in the
Fisher information matrix (1) of GLM. An example of finding the Fisher information matrix
for GLM is provided in Example S1.1 of Supplementary Material.

.., WnVpy} is a diagonal matrix with v; = )2. Here, v; represents how much

2.3 Fisher information for multinomial logistic model

The multinomial logistic model (MLM) is an extension of GLM aiming to manage responses
that fall into multiple categories, such as rating scales and disease severity levels (Agresti,
2013).

We assume that the responses Y; = (Y1, ..., Yij) follow a multinomial distribution with
probabilities (711, ..., 1), where m;; = P(Y; = j | x;), Y; € {1,...,]} is the ith original
categorical response, j = 1,...,], and Zj Ttj = 1. If the response variables are nominal, in
other words, there is no natural ordering among different levels, a commonly used MLM is
the baseline-category logit model with the Jth level selected as the baseline category. If the
response variable is ordinal, that is, we have a natural ordering of response levels, there are
three commonly used MLMs in the literature: cumulative logit model, adjacent logit model,
and continuation-ratio logit model (Bu et al., 2020; Dousti Mousavi et al., 2023; Wang and
Yang).

In addition to different logit models, the proportional odds (po) assumption is an im-
portant concept in MLMs. The po assumption is a parsimonious model assumption, where
a model simultaneously uses all | — 1 logits in a single model with the same coefficients.
This means the covariate effect is constant on the odds ratio among different response levels.
When the assumption doesn’t hold, the model is referred to as a non-proportional odds
(npo) model and has more parameters in it. When the assumption only holds for part of the
parameters, the model is referred to as a partial proportional odds (ppo) model. Commonly
used multinomial logit models with po, npo, or ppo assumptions can be summarized in
a unified matrix form (Glonek and McCullagh, 1995; Zocchi and Atkinson, 1999; Bu et al.,
2020):

CT IOg(LTL’,‘) = Xl'e

CT:(I]T_l _IT]—l 0]—1)
o, o, 1

where

isa ] x (2] — 1) constant matrix, Lis a (2] — 1) x J constant matrix with different formats
among the four different multinomial logit models, and 7r; = (71;,..., 7T ])T. The model
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matrix X; is defined in general as

h{ (x;) h! (x;)
X; = ' :
hi (x;) hl(x)
T T T
o) o O, 0 )

and the parameter 8 = (B, .. .,ﬁ]T_l,gT)T consists of p = p1 + -+ + pj_1 + pc unknown
parameters. Here h]T() = (hj(-),---, hjp; (+)) are known functions to determine p; predic-
tors associated with unknown parameters f; = (Bt -« ‘Bj,[,].)—r in jth response category, and
h! (-) = (h1(),..., hp.(-)) are known functions to determine p. predictors associated with
proportional odds parameters { = (1,...,{p.) . If h]T (x;) =1, the model is a po model; if
h/ (x;) = 0, the model is an npo model.

According to Theorem 2.1 in Bu et al. (2020), the Fisher information matrix under a
multinomial logistic regression model with independent observations can be written as

F = iniFi (2)

where F; = (g:r' ) " diag(7r;)~! g;TT’ with % = (CTDl‘_lL)_1 and D; = diag(L7;). Explicit
forms of (CTDi_lL) ~! can be found in Section S.3 of the Supplementary Material of Bu et al.
(2020). To calculate the Fisher information matrix F for the MLM, one may use the function
F_func_MLM() in the CDsampling package. An example of finding the Fisher information

matrix for MLM is provided in Example 51.2 of the Supplementary Material.

3 Examples

The methods described in Section 2 are implemented in the proposed R package CD-
sampling. The CDsampling package comprises 16 functions, as detailed in Table 1.
The primary functions of the CDsampling package are liftone_constrained_GLM()
and liftone_constrained_MLM(). Additionally, the package includes the original (un-
constrained) lift-one algorithm for general experimental designs, accessible via the
liftone_GLM() and liftone_MLM() functions. Two datasets trial_data and trauma_data
are provided for illustration purposes.

In the remainder of this section, we present two examples to illustrate the usage of
the CDsampling package for sampling problems in paid research studies, using datasets
provided by CDsampling. All results in this section were generated using R version 4.3.2
on a macOS Sonoma 14.6.1 system.

3.1 Applications in paid research study: trial_data example

The trial_data dataset is simulated data for a toy example of paid research studies. This
study includes a cohort of 500 patients for a clinical trial, with gender and age as stratification
factors. A logistic regression model incorporates these factors as covariates: gender (coded
as 0 for female and 1 for male) and age (coded as two dummy variables age_1 and age_2
with (age_1,age_2) = (0,0) for age group 18 ~ 25; (1,0) for age group 26 ~ 64, and (0,1)
for age group 65 and above). For simplicity, the study assumes binary gender options and a
tripartite age categorization. In total, there are m = 6 combinations of covariate factors. In
practice, non-binary gender options and a “prefer not to answer” choice may be included
to respect gender diversity and protect patient confidentiality. The response Y denotes the
treatment’s efficacy (0 indicating ineffectiveness, 1 indicating effectiveness). The data is
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Usage

Function

Calculating W matrix diagonal elements of generalized linear model
(see Section 2.2); providing input for function liftone_GLM() and
liftone_constrained_GLM().

Calculating Fisher information matrix and its determinant of generalized

W_func_GLM()

F_func_GLM(),

Model linear model (see Example S1.1 in Supplementary Material). Fdet_func_GLM()
Calculating Fisher information matrix of multinomial logit model ata | Fi_func_MLM()
specific design point (see Section 2.3); using as input of 1iftone_MLM()
and liftone_constrained_MLM().
Calculating Fisher information matrix and its determinant of multinomial F_func_MLM(),
logit model (see Example S1.2 in Supplementary Material). Fdet_func_MLM()
Using in approxtoexact_constrained_func() to find constrained uni- | Fdet_func_unif()
form exact allocation.
Finding unconstrained D-optimal approximate allocation for generalized | 1iftone_GLM(),
linear model and multinomial logit model (see Section S2 in Supplemen- | 1iftone_MLM()

Sampling tary Material).
Finding constrained D-optimal approximate allocation for generalized | 1liftone_constrained_GLM(),
linear model and multinomial logit model (see Section 3). liftone_constrained_MLM()
Transferring approximate allocation to exact allocation (see Section 3). approxtoexact_constrained_func()
approxtoexact_func()
Finding constrained uniform exact allocation for bounded constraint (see bounded_uniform()
Section 3.1).
Example Specific Finding I set for exact allocation conversion in trial_data and iset_func_trauma(),

trauma_data examples (see Section 3 and Section S4 in Supplementary
Material).

iset_func_trial()

Table 1: Functions and corresponding usages in the CDsampling package.

generated by the logistic regression model

logit{P(Yij =1 | Xgender_ir Xage_lir xuge_zi)} = ﬁO + .legenderj + ﬁleage_li + ,322xage_2i (©)]

with (Bo, B1, B21, B22) = (0,3,3,3), wherei = 1,. .., 6 stands for the ith covariate combina-
tion, and j = 1,..., N; is an index of patients who fall into the ith covariate combination
or sampling subgroups. Figure 4 illustrates the distribution of treatment efficacy across
different gender and age groups.

Sg-8l

count
=]
(=]
L

¥9-92

GO=<

Response

Figure 4: The number of patients from different gender (F, M) and age groups (18 — 25, 26 — 64, and
> 65) and their responses (0 indicating ineffectiveness, 1 indicating effectiveness) to treatment in
trial_data of CDsampling package.
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In this example, it is posited that a sample of n = 200 participants is desired from the
population of N = 500 volunteers due to budget constraints. The objective is to examine
the variation in efficacy rates across gender and age demographics. Should a pilot study
or relevant literature provide approximate values for the model parameters, a constrained
lift-one algorithm may be employed to find a locally D-optimal design. Conversely, if only
partial parameter information is available, the expectation can be deduced from some prior
distributions, and the constrained lift-one algorithm can be utilized to determine an EW
D-optimal allocation (substituting W in the Fisher information matrix (1) with E(W)).

There are m = 6 design points, corresponding to gender and age group com-
binations (xgende,_i, Xage_1ir xage_zl') = (0,0,0), (0,1,0), (0,0,1), (1,0,0), (1,1,0), and
(1,0,1), respectively. The numbers of available volunteers in the six categories are
(N1, Na, ..., Ng) = (50,40, 10, 200, 150,50). Our goal is to find the constrained D-optimal
allocation (wy,w, ..., ws) in the set of all feasible allocations S = {(wy,..., wy)T € Sy |
nw; < Nj,i=1,...,m}.

We consider the logistic regression model (3), to find the locally D-optimal design, we
assume, for illustrative purposes, that the model parameters (Bo, 1, B21, B22) = (0,3,3,3).
We may define the parameters and the model matrix as follows. Subsequently, we find the
W matrix in (1) for the Fisher information matrix F.

> beta = c(0, 3, 3, 3) #coefficients

> #design matrix

> X=matrix(data=c(1,0,0,0,1,0,1,0,1,0,0,1,1,1,0,0,1,1,1,0,1,1,0,1), ncol=4, byrow=TRUE)
> W=W_func_GLM(X=X, b=beta, link="logit") #find W as input of constrained liftone

To define the number of design points, sample size, and constraints with S, we use the
following R codes (see Section S3 in the Supplementary Material of Huang et al. (2025) for
details on finding r;; and 7, in step 3 of the constrained liftone algorithm in Figure 2):

> rc = c(50, 40, 10, 200, 150, 50)/200 #available volunteers/sample size
>m = 6 #design points

.con = matrix(@,nrow=(2*m+1), ncol=m) #constraints
.con[1,] = rep(1, m)

.con[2:(m+1),] = diag(m)

.con[(m+2): (2*m+1), 1 = diag(m)

.dir = c("==", rep("<=", m), rep(">=", m)) #direction
.rhs = c(1, rc, rep(@, m)) #righ-hand side

V V. V V V V
0Q 0Q 0Q 0Q 0Q 0Q

\2

#lower bound in step 3 of constrained liftone

> lower.bound=function(i, w){

rc = c(50, 40, 10, 200, 150, 50)/200
m=length(w)

temp = rep(@,m)
temp[w>@]1=1-pmin(1,rc[w>@1)*(1-w[il)/w[w>0];
temp[i]=0;

max (0, temp);

+ + + + + +

+ )

> #upper bound in step 3 of constrained liftone
> upper.bound=function(i, w){

+ rc = c(50, 40, 10, 200, 150, 50)/200

+  min(1,rcl[il);

+ )

To identify the subgroups of the output D-optimal allocations, we may add an optional
label for each of the m = 6 covariatres combination or subgroups as “F, 18-25”, “F, 26-64”,
“F, >=65",“M, 18-2", “M, 26-6”, “M, >=65" using the following codes:
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> label = c("F, 18-25", "F, 26-64", "F, >=65", "M, 18-25", "M, 26-64", "M, >=65")

Then, we run the constrained lift-one algorithm with 1iftone_constrained_GLM() to
find the constrained D-optimal approximate allocation.

> set.seed(092)
> approximate_design = liftone_constrained_GLM(X=X, W=W, g.con=g.con, g.dir=g.dir,
+ g.rhs=g.rhs, lower.bound=lower.bound, upper.bound=upper.bound, reltol=1e-10,
+ maxit=100, random=TRUE, nram=4, w@0=NULL, epsilon=1e-8, label=label)
The design output is presented below:

> print(approximate_design)

Optimal Sampling Results:

Optimal approximate allocation:

F, 18-25 F, 26-64 F, >=65 M, 18-25 M, 26-64 M, >=65
w 0.25 0.2 0.05 0.5 0.0 0.0
wo 0.25 0.0 0.05 0.7 0.0 0.0

maximum :
2.8813e-08

TRUE

deriv.ans :
0.0, 3.6017e-08, 4.8528e-07, -1.1525e-07, -1.0310e-07, -7.9507e-08

reason :
ngmax <= 9"

The output includes several key components:

* w: reports the D-optimal approximate allocation.
* wy: reports the random initial approximate allocation used to initialize optimization.
* maximum: reports the maximum determinant of Fisher information matrix.

* reason: reports the termination criterion for the constrained lift-one algorithm includ-
ing either “all derivative < 0” or “gmax < 0”, which corresponds to step 7° and step 8°
in the constrained lift-one algorithm in Figure 2.

In practical terms, exact allocations are more beneficial. One may use the constrained
approximate to exact allocation algorithm depicted in Figure 3, which is implemented as the
approxtoexact_constrained_func() function.

> exact_design = approxtoexact_constrained_func(n=200, w=approximate_design$w, m=6,
+ beta=beta, link='logit', X=X, Fdet_func=Fdet_func_GLM, iset_func=iset_func_trial,
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+ label=label)
> print(exact_design)

Optimal Sampling Results:

Optimal exact allocation:

F, 18-25 F, 26-64 F, >=65 M, 18-25 M, 26-64 M, >=65

allocation 50.0 40.0 10.0 100.0 0.0 0.0
allocation.real 0.25 0.2 0.05 0.5 0.0 0.0

det.maximum :
46.1012

The output provides three key components for the sampling results:

¢ allocation: reports the exact allocation of D-optimal sampling, specifying the number
of subjects to sample from each subgroup.

¢ allocation.real: reports the real-number approximate allocation used prior to integer
conversion.

¢ det.maximum: reports the maximum determinant of the Fisher information matrix by
the optimal design.

In this example, the D-optimal exact allocation is to sample 50 subjects from the “female,
18 — 25” subgroup, 40 subjects from the “female, 26 — 64” subgroup, 10 subjects from the
“female, > 65” subgroup, and 100 subjects from the “male, 18 — 25” subgroup. Such a design
may not explore all the design space and may lead to extreme design cases. In practice,
allocating some subjects to the omitted subgroups “male, 26 — 64” and “male, > 65” could
improve robustness and reduce the risk of overfitting.

Alternatively, one may aim for EW D-optimal allocations when partial coefficient
information is available with the W matrix substituted by the expectation (EW stands
for the expected weight). To calculate these expectations, one may define prior distri-
butions for the parameters based on available information. For instance, in this sce-
nario, we assume the following independent prior distributions: By ~ uniform(—2,2),
B1 ~ uniform(—1,5), Bo; ~ uniform(—1,5), and By ~ uniform(-1,5). Subsequently,
the diagonal elements of W are determined through integration. Fori = 1,...,m and
i = Bo + Xgender_iP1 + Xage_i1P21 + Xage_inP22, we calculate the key component E(v;) of the
ith diagonal element of W through:

//// 1—§);I>)<pm;71) t(Bo)Pr(B1)Pr(B21)Pr(B2) dBodBrdpa1dpa

where Pr(-) stands for the corresponding probability density function. We use the
hcubature() function in the cubature package to calculate the integration as illustrated by
the R codes below.

> unif.prior <- rbind(c(-2, -1, -1, -1), c(2, 5, 5, 5)) #prior parameters

> #find expectation of W matrix given priors
> W.EW.unif = matrix(rep(0,6))
> for (i in 1:6){

+ x = X[i,]

+ W.EW.unif[i] = hcubature(function(beta) dunif(betal1], min=unif.prior[1,1],
max=unif.prior[2,1])*dunif(betal2], min=unif.prior[1,2], max=unif.prior[2,2])*

dunif(betal3], min=unif.prior[1,3], max=unif.prior[2,3])*dunif(betal4],

min=unif.prior[1,4], max=unif.prior[2,4]1)*(exp(x[1]xbetal1]+x[2]*betal2]+x[3]*
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betal[3]+x[4]1xbetal[4])/(1+exp(x[1]*betal1]+x[2]xbeta[2]+x[3]xbetal[3]+x[4]*betal4]1))*2),
lowerLimit = unif.prior[1,], upperLimit = unif.prior[2,])$integral

+ 3

Given the expectation of W, the functions liftone_constrained_GLM() and approxtoexac
t_constrained_func() are used for deriving the constrained EW D-optimal approximate
allocation and the corresponding exact allocation, respectively. This process follows a similar
procedure to that used for local D-optimal approximate allocation.

> set.seed(123)

> approximate_design_EW = liftone_constrained_GLM(X=X, W=W.EW.unif, g.con=g.con,

+ g.dir=g.dir, g.rhs=g.rhs, lower.bound=1lower.bound, upper.bound=upper.bound,
reltol=1e-12, maxit=100, random=TRUE, nram=4, w@@=NULL, epsilon=1e-10, label=label)

+

> exact_design = approxtoexact_constrained_func(n=200,
+ w=approximate_design_EW$w, m=6, beta=beta, link='logit', X=X, Fdet_func=Fdet_func_GLM,
+ iset_func=iset_func_trial, label=label)

The output is summarized with print() function and presented below:

> print(exact_design_EW)

Optimal Sampling Results:

Optimal exact allocation:

F, 18-25 F, 26-64 F, >=65 M, 18-25 M, 26-64 M, >=65

allocation 48.0 40.0 10.0 43.0 19.0 40.0
allocation.real 0.2406 0.2 0.05 0.2102 0.0991 0.2001
det.maximum :

25.59

In situations when the model parameters are unknown, the constrained uniform al-
location is applicable. This method entails sampling an equal number of patients from
each category within the given constraints. The selection criterion is n; = min{k, N;}
or min{k, N;} + 1 with k satisfying }/* ; min{k, N;} < n < Y, min{k + 1, N;}, where
N; represents the maximum allowable number for each category. This is an example
of a bounded design problem, where each category has an upper boundary. The func-
tion bounded_uniform() can be used to find the constrained uniform allocation with the
trial_data example and “allocation” in the output representing the constrained uniform
allocation.

> bounded_uniform(Ni=c(50, 40, 10, 200, 150, 50), nsample=200, label=label)

Optimal Sampling Results:

Optimal exact allocation:
F, 18-25 F, 26-64 F, >=65 M, 18-25 M, 26-64 M, >=65
allocation 38.0 38.0 10.0 38.0 38.0 38.0

Alternatively, we may also use approxtoexact_constrained_func() to find the same
constrained uniform exact allocation. This function can be used under fairly general con-
straints. To find the constrained uniform exact allocation using approxtoexact_constr
ained_func(), we suggest starting with one subject in each stratum or subgroup, which
corresponds to the approximate allocation wop = (1/200,1/200,1/200,1/200,1/200,1/200)
in this case.
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> w0 = rep(1/200, 6) #initial approximate allocation
> unif_design = approxtoexact_constrained_func(n=200, w=w@@, m=6, beta=NULL,
+ 1link=NULL, X=NULL, Fdet_func=Fdet_func_unif, iset_func=iset_func_trial, label=label)

> print(unif_design)

Optimal Sampling Results:

Optimal exact allocation:

F, 18-25 F, 26-64 F, >=65 M, 18-25 M, 26-64 M, >=65

allocation 38.0 38.0 10.0 38.0 38.0 38.0
allocation.real 0.005 0.005 0.005 0.005 0.005 0.005
det.maximum :

792351680.0

The iset_func_trial () function in the CDsampling package is specifically designed
for the trial_data example, which defines the set I in step 1° and step 2.4 in the constrained
approximate to exact algorithm depicted by Figure 3. This function serves as a template that
users can adapt to their specific constraints by modifying the codes. The package includes
two such template functions: iset_func_trial() and iset_func_trauma() with details
provided in Section S4 of Supplementary Material.

To perform a comparison analysis on different sampling strategies, including the con-
strained D-optimal allocation, the constrained EW D-optimal allocation with uniform priors,
the constrained uniform allocation, simple random sample without replacement (SRSWOR),
as well as the full data (all the 500 patients enrolled), we simulate their responses Y;;’s based
on model (3) with parameter values (0, 3,3,3). We apply each sampling strategy to obtain
a sample of n = 200 observations out of 500, and estimate the parameters using the 200
observations. The exception is the full data method, where estimation is performed using
all 500 patients. We use the root mean square error (RMSE) to measure the accuracy of the
estimates (see Section 4 of Huang et al. (2025) for more theoretical and technical details).
We repeat the procedure 100 times and display the corresponding RMSEs in Figure 5 and
simulation codes in Supplementary Material Section S3 (Wickham, 2016; Wickham et al.,
2023). Obviously, if we use the full data (all 500 patients) to fit the model, its RMSE attains
the lowest. Besides that, the constrained locally D-optimal allocation and the constrained
EW D-optimal allocation have a little higher RMSEs than the full data estimates but outper-
form SRSWOR and the constrained uniform allocation. The sampling strategy based on the
constrained uniform allocation doesn’t need any model information and is a more robust
sampling scheme, which is still better than SRSWOR.

3.2 Applications in paid research study: trauma_data example

In the CDsampling package, trauma_data is a dataset of N = 802 trauma patients from
Chuang-Stein and Agresti (1997), stratified according to the trauma severity at the entry
time of the study with 392 mild and 410 moderate/severe patients enrolled. The study
involved four treatment groups determined by the dose level, xj; = 1 (Placebo), 2 (Low
dose), 3 (Medium dose), and 4 (High dose). Combining with severity grade (xj, = 0
for mild or 1 for moderate/severe), there are m = 8 distinct experimental settings with
(xi1,xi2) = (1,0),(2,0),(3,0),(4,0),(1,1),(2,1),(3,1), (4,1), respectively. The responses
belong to five ordered categories, Death (1), Vegetative state (2), Major disability (3),
Minor disability (4) and Good recovery (5), known as the Glasgow Outcome Scale (Jennett
and Bond, 1975). Figure 6 shows the distribution of outcomes over severity grades and
dose levels. In this example, we have m = 8 subgroups, which are combinations of the
two covariates categories: dose levels and severity grades. We aim to enroll n = 600
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Figure 5: Boxplots of RMSEs obtained from 100 simulations using full data (full), SRSWOR, constrained
uniform design (Unif), the constrained locally D-optimal allocation (local_Dopt), and constrained
EW D-optimal allocation with uniform priors (EW_Unif), with black diamonds representing average
RMSE.
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Figure 6: The number of patients from different dose levels (Placebo, Low, Medium, and High) and
severity grades (Mild, Moderate/Severe) groups and their treatment outcomes in trauma_data of
CDsampling package.

patients from the 802 available patients. The collection of feasible allocations is inherently
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constrained by the number of patients in different severity grades, defined as
S={(wy,...,wg)" € Sy | n(wy+wy+ws+wy) <392, n(ws+ we+ wy +wg) < 410}.

The constraints specify that in the sample, the number of patients with mild symptoms must
not exceed 392 across all dose levels, while those with moderate/severe symptoms must not
exceed 410.

The parameters fitted from the trauma_data are

ﬁ = (,311/ ,Ber ,313/ ,321/ ,8221 ,323/ ,331/ ,832/ ,333/ ,341/ ,8421 B43)T
= (—4.047,—-0.131,4.214, —2.225, —0.376,3.519, —0.302, —0.237, 2.420, 1.386, —0.120, 1.284)T

The model can be written in the following format:

Ti1
1 l — p— . o
og < . ) B11 + Br2xin + P13xin

Tl + T2
T3 + T + TTis

o8 (i 7m) =
log (7T11 + T + 7r13)
()=

Boa1 + Boxin + Pa3xin

+ B32xi1 + P33xi
—— B3t + Ba2xj1 + B3zxin

T+ -+ Ty

log Bar + Pazxin + PazXin

wherei =1,...,8.

We use the R codes below to define the model matrix and coefficients.
> J=5; p=12; m=8; #response levels; parameters; subgroups

> f#tcoefficients
> beta = ¢c(-4.047, -0.131, 4.214, -2.225, -0.376, 3.519, -0.302, -0.237, 2.420, 1.386,
+ -0.120, 1.284)

> #define design matrix of 8 subgroups
> Xi=rep(Q,J*p*m); dim(Xi)=c(J,p,m);
> Xil[,,1] = rbind(c( 1, 1, @, 0, 0, @, 0, @, 0, @, 0, @),
+ «¢(0,0,0,1,1, 0, 0, 0, 0, ¢, 0, @), c( 0, 0, 0, @0, @, @, 1, 1, 0, 0, 0, Q),
+ «¢(0,0,0,6 0, 0,0,0,0,0,1, 1, 0), c( 0, 0, 0, 0, 0, 0, @, 0, 0, 0, 0, 9))

, 9, 0, 0, 0, 0, 0, 0, 0, 0, 9),

, 2, 0, 0, 0, 0, 0, 0, ), c( 0, 0, 0, 0, 0, @0, 1, 2, 0, 0, 0, 0),
+ c¢c(0o, 0,0 0 0, 0,0, 0 0,1, 2,0, c(0, 0, 0,0, 0,0, 0, 0,0,0,0,0))
0, 0, 0, 0, 9, 0, 0),

, 3, 0, 0,0, 0,0, 0,0, c(0, 0, 0, 0, 9, 0, 1, 3, 0, 0, 0, 0),
+ ¢c(0,0, 00,60, 0, 0,0,0,1, 3,0, c(o0, o, 0, 0,00, 0,0, 0, 00,0))

> Xi[,,4] = rbind(c( 1, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
+ c¢c(o0,0,01,4,0 0, 0,0,0,0, 0,c(0, 0,0, 00, 01,4,0,0,0,0),
+ c¢(o, 0 0 0 00,0,0,0,1,4,0,c(0, 0,0, 020,0,0,0,20,0,0,0)

> Xi[,,5] = rbind(c(C 1, 1, 1, @, 0, 0, @0, @, @, @, @, @),
+ c(0, 0,0 1,1,1,0, 0,0 0,0, 0),c(0,0, 00,0,0,1,1,1,0,0,0),
+ c(o0, 0, 0,0 0,0, 00,0 1,1,1),c(0, 0, 0,0 000,000, 0, 0))

> Xi[,,6] = rbind(c( 1, 2,
1

0, 0, 0, 0, 0, 0, 9),
+ c¢(o, 0, 0,1, 2, 0, 0

,0,0,c(o,0, 0, 00,0,1,2, 1,0, 0, 0),
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+ ¢(0o,0,0 0 0 0 000,1,2 1),c(0, 0,0 000,000,020, 0))

> Xi[,,7]1 = rbind(c( 1, 3, 1, 0, @, 0, 0, 0, 0, 0, 0, 0),
+ C( 0’ 07 0’ 17 3’ 17 ) ®7 @, ®7 0’ @), C( 07 0! 07 0! 07 0! 17 37 17 07 07 0)7
+ c¢(o, 0, 0 0 0,0,0,0,01,3,1),c(0, 0,0 020,000,000, 0)

> Xi[,,8] = rbind(c( 1, 4, 0, 0, 0, 0, 0, 0),
+ c(o,0,0,1, 4,1 0, @), c(0, 0, 0, 0, 0, 0, 1, 4, 1, 0, 0, 0),

’®7
’ ’ !0’ ’ )
+ c¢(o0,0, 0 0,0, 0,0 00,1, 4,1), c(0, 0,0, 0,0,0,0,0,0,0,0,0))

’ 07
0

To define the sample size, the constraints, and the functions of lower and upper bound-
aries r;; and rj, we may use the following R codes (see Section S3 in the Supplementary
Material of Huang et al. (2025) for details on finding r;; and r;):

> nsample=600 #sample size
> constraint = c(392, 410) #mild:severe

> #lower bound function in step 3 of constrained liftone
> lower.bound <- function(i, we@){

+ n = 600

+ constraint = c(392,410)

+  if(i <= 4){

+ a.lower <- (sum(w@[5:8])-(constraint[2]1/n)*x(1-w@[i]))/(sum(w@[5:81))}

+ else{

+ a.lower <- (sum(w@[1:4]1)-(constraint[11/n)*(1-w@[i]))/(sum(wo[1:4]1))}
+ a.lower}

> #upper bound function in step 3 of constrained liftone
> upper.bound <- function(i, we@){

+ n = 600

+ constraint = c¢(392,410)

+ if(i <= 4){

+ b.upper <- ((constraint[1]1/n)*(1-w@[i]) - (sum(wo[1:41)-w@[i]))/(1-sum(w@[1:4]1))}
+ else{

+ b.upper <- ((constraint[2]/n)*x(1-w@[i]) - (sum(w@[5:8]1)-w@[il))/(1-sum(w@[5:81))}

+ b.upper}

> #define constraints

> g.con = matrix(@,nrow=length(constraint)+1+m, ncol=m)

> g.con[2:3,] = matrix(data=c(1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1), ncol = m, byrow=TRUE)
> g.con[1,] = rep(1, m)

> g.con[4:(length(constraint)+1+m), 1 = diag(1, nrow=m)

> g.dir = c("==", "<=","<=", rep(">=",m))

> g.rhs = c(1, ifelse((constraint/nsample<1),constraint/nsample,1), rep(@, m))

Then, we may define an optional label of the sampling subgroups that corresponds to
each of the m = 8 subgroups using the following code:

> label=label = c("Placebo-Mild", "Low-Mild"”, "Medium-Mild", "High-Mild",
"Placebo-Severe"”, "Low-Severe”, "Medium-Severe"”, "High-Severe")

We then run the constrained lift-one algorithm to find the constrained D-optimal approx-
imate allocation using liftone_constrained_MLM() function and convert the approximate
allocation to an exact allocation with approxtoexact_constrained_func function.

> set.seed(123)
> approx_design = liftone_constrained_MLM(m=m, p=p, Xi=Xi, J=J, beta=beta,
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+ lower.bound=1lower.bound, upper.bound=upper.bound, g.con=g.con, g.dir=g.dir,
+ g.rhs=g.rhs, w@@=NULL, link='cumulative', Fi.func=Fi_func_MLM, reltol=1e-5,
+ maxit=500, delta=1e-6, epsilon=1e-8, random=TRUE, nram=3, label=label)

> exact_design = approxtoexact_constrained_func(n=600, w=approx_design$w, m=8,
+ beta=beta, link='cumulative', X=Xi, Fdet_func=Fdet_func_MLM,
+ iset_func=iset_func_trauma, label=label)

> print(exact_design)

Optimal Sampling Results:

Optimal exact allocation:
Placebo-Mild Low-Mild Medium-Mild High-Mild Placebo-Severe

allocation 155.0 0.0 0.0 100.0 168.0
allocation.real 0.2593 0.0 0.0 0.1667 0.2796
Low-Severe Medium-Severe High-Severe

allocation 0.0 0.0 177.0

allocation.real 0.0 0.0 0.2944

det.maximum :
1.63163827059162e+23

The allocation output provides the exact allocation of the sampling across different
treatment-severity subgroups, representing the implementable sample sizes for each sub-
group. The result is derived by converting the allocation.real, which is the D-optimal
approximate allocation outcome from 1iftone_constrained_MLM()

As the trauma_data example doesn’t have bounded constraints, to find the constrained
uniform sampling allocation, we use approxtoexact_constrained_func() with one sub-
ject in each stratum or subgroup as the input, that is, the approximate allocation w =
(1/600,1/600,1/600,1/600,1/600,1/600,1/600,1/600). The corresponding I set function
is provided in the CDsampling package, and it can be easily defined according to other con-
straints, see Section 54 of Supplementary Material. Note that the determinant provided by
approxtoexact_constrained_func() for different designs is not comparable, as the criteria
Fdet_func differs.

> unif_design = approxtoexact_constrained_func(n=600, w=rep(1/600,8), m=8,
+ beta=NULL, link=NULL, X=NULL, Fdet_func=Fdet_func_unif, iset_func=iset_func_trauma)

> print(unif_design)

Optimal Sampling Results:

Optimal exact allocation:
Placebo-Mild Low-Mild Medium-Mild High-Mild Placebo-Severe Low-Severe

allocation 75.0 75.0 75.0 75.0 75.0 75.0
allocation.real 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017
Medium-Severe High-Severe

allocation 75.0 75.0

allocation.real 0.0017 0.0017

det.maximum :
1001129150390625
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4 Summary

The current version of CDsampling implements D-optimal allocations within both paid
research sampling and general study frameworks with or without constraints. Its primary
objective is to optimize sampling allocations for better model estimation accuracy in the
studies. The package includes F_func_GLM() and F_func_MLM() for the computation of
the Fisher information matrix of GLMs and MLMs, respectively. It is noteworthy that
standard linear regression models are special GLMs with an identity link function and
Gaussian-distributed responses, which is also supported by our package. Theoretical results
are summarized in Section 2.2 and Section 2.3 while illustrative examples are provided in
Supplementary Section S1.

To find standard or unconstrained D-optimal allocations, our package implements the lift-
one algorithm through functions liftone_GLM() and liftone_MLM(). Paid research studies
often impose sampling constraints. To address this, the constrained lift-one algorithm can
be applied using functions liftone_constrained_GLM() and liftone_constrained_MLM().
An example illustrating the difference between the lift-one algorithm and the constrained
lift-one algorithm is provided in Supplementary Section S2 while Section 3 presents two
application examples from paid research studies.

In the absence of model information, constrained_uniform() function is available to
find a robust constrained uniform allocation with bounded constraints, while the approxt
oexact_constrained_func() function can be used to find constrained uniform allocation
with more general constraints. For transitioning from approximate to exact allocations, the
package provides approxtoexact_constrained_func() for constrained cases and approxto
exact_func() for unconstrained cases. Detailed applications for both GLMs and MLMs are
provided in Sections 3.1 and 3.2.

Future enhancements of the package may aim to incorporate a broader spectrum of
optimality criteria, such as A-optimality and E-optimality, as well as some models beyond
GLMs and MLMs to expand its applicability.
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panelPomp: Analysis of Panel Data via

Partially Observed Markov Processes in R
by Carles Bretd, Jesse Wheeler, Aaron A. King, and Edward L. Ionides

Abstract Panel data arise when time series measurements are collected from multiple,
dynamically independent but structurally related systems. Each system’s time series can
be modeled as a partially observed Markov process (POMP), and the ensemble of these
models is called a PanelPOMP. If the time series are relatively short, statistical inference
for each time series must draw information from across the entire panel. The component
systems in the panel are called units; model parameters may be shared between units or
may be unit-specific. Differences between units may be of direct inferential interest or
may be a nuisance for studying the commonalities. The R package panelPomp supports
analysis of panel data via a general class of PanelPOMP models. This includes a suite
of tools for manipulation of models and data that take advantage of the panel structure.
The panelPomp package currently highlights recent advances enabling likelihood based
inference via simulation based algorithms. However, the general framework provided by
panelPomp supports development of additional, new inference methodology for panel
data.

1 Introduction

Collections of time series, known as panel data or longitudinal data, are commonplace
across the sciences, medicine, engineering, and business. Examples include biomarkers
measured over time across a panel of patients in a clinical trial (Ranjeva et al., 2017, 2019),
ecological predator-prey dynamics for lake plankton measured within a season across a
panel of years or lakes (Marino et al., 2019), and interactions between self-driving cars and
pedestrians (Domeyer et al., 2022). Generically, we say each time series is associated with
measurements on a unit. Not infrequently, the time series data available on a single unit are
too short or too noisy to adequately identify parameters of interest, and yet large collections
of such time series analyzed jointly may suffice. This paper presents software enabling the
fitting of general nonlinear nonstationary partially observed stochastic dynamic models to
panel data. The methodology provides flexibility in model specification, giving the user
considerable freedom to develop models appropriate for the system under study.

Scientific motivations to fit a panel of partially observed Markov processes (PanelPOMP)
model to panel data (Bret¢ et al., 2020) are similar to the motivations to fit a partially observed
Markov process (POMP) model to time series data from a single unit. POMP models provide
a general framework for mechanistic modeling of nonlinear dynamic systems (Breto et al.,
2009). However, relatively few of the many methodologies developed for time series
analysis via POMPs have been extended to panel analysis. The larger datasets and higher-
dimensional parameter spaces arising in PanelPOMPs have challenged the Monte Carlo
methods that have proved successful for nonlinear time series. Our panelPomp package
takes advantage of newly developed methodology for PanelPOMP models, as well as
building a foundation on which additional methodology for this class of models can be built
and tested.

Existing widely-used panel methodology has built on the linear Gaussian model (Crois-
sant and Millo, 2008). Panel analysis of generalized linear models with dependence can
be carried out using generalized estimating equations (Halekoh et al., 2006). By contrast,
panelPomp is designed to facilitate analysis using arbitrary PanelPOMP models, with
dynamic relationships and dependence on covariate processes specified according to sci-
entific considerations rather than the constraints of statistical software. Beyond supplying
implementations of inference algorithms for PanelPOMP models, the panelPomp pack-
age provides a framework for developing and sharing new models and methods. This is
done by providing a way of writing basic mathematical functions that comprise a general
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PanelPOMP model as easy-to-write C-code snippets (King et al., 2016), which makes the pan-
elPomp package both computationally efficient and readily adaptable to new developments
in methodology for PanelPOMP models.

Analysis of experimental or observational studies often assumes independent outcomes
for units given their treatment, and here we take the same approach for panel models. That
is, the underlying dynamic process that is used to define a PanelPOMP model is assumed
to be independent across units. A collection of POMP models with dynamic dependence
between units is called a SpatPOMP, a name motivated by the dependence between nearby
locations in spatiotemporal models. Software for general SpatPOMP models is available
in the spatPomp package (Asfaw et al., 2024). Addressing SpatPOMP models introduces
complexities in both software and methodologies that can be avoided when the dynamic
processes are independent. The goal of the panelPomp package is to take full advantage of
the independence inherent in the PanelPOMP model structure.

2 Statistical models

The general scope of the panelPomp package requires notation concerning random variables
and their densities in arbitrary spaces. The notation below allows us to talk about these
things using the language of mathematics, enabling precise description of models and
algorithms.

Units of the panel can be identified with numeric labels {1,2,...,U}, which we also
write as 1: U. Let N,, be the number of measurements collected on unit 1, and write the data
asyy 1.n, = Y1 -+ YN, } Wherey;, , is collected at time £, , with t,1 < t,0 < -+ <tyn,.
The data are modeled as a realization of an observable stochastic process Y, 1.y, which
is dependent on a latent Markov process { X, (), t,0 < t < t, n, } defined subsequent to
an initial time t, o < t,1. Requiring that {X,(¢)} and {Y), ;i # n} are independent of
Yun given Xy, (ty,), for each n € 1: N, completes the partially observed Markov process
(POMP) model structure for unit u. For a PanelPOMP we require additionally that all units
are modeled as independent.

The latent process at the observation times is written Xy, , = Xy, (t,,n). We suppose that
Xunand Yy, , take values in arbitrary spaces X, and Y, respectively. Using the independence
of units, conditional independence of the observable random variables, and the Markov
property of the latent states, the joint distribution of the entire collection of latent variables
X = {Xy0:n, }'L; and observable variables Y = {Y,, 1.y, }'_; can be written as

u Ny
fxy(xy) = l—Ilel,,o(xu,O?e) I—Ilqu,,,\Xu,n (Yun xu,n?e)fxu,n\xu,n,l (xun|xun-1;0),
u= n=

where 6 € RP is a parameter vector. This representation is useful as it demonstrates how any
PanelPOMP model can be fully described using three primary components: the unit tran-
sition densities fx, ,|x, ., (Xun | Xun—1; ), measurement densities fy, |x, , (Yun [ Xun; 6),
and initialization densities fx, , (x,,0;0). Each class of densities are permitted to depend arbi-
trarily on u and #, allowing non-stationary models and the inclusion of covariate time series.
In addition to continuous-time dynamics, the framework includes discrete-time dynamic
models by specifying X, o.n, directly without ever defining { Xy (t),t,0 < t < t, n,}. We
also permit the possibility that some parameters may affect only a subset of units, so that
the parameter vector can be written as 6 = (¢, ¥1, ..., Py7), where the densities described
above can be written as

qu,n‘Xu,n—l (xu,n | Xun—1r 9) = qu,n‘Xu,n—l (xu,n | Xun—17 4)/ #)u) (1)
qu,,,\Xl,,,, (Yun | xun; 0) = qu/,,|XW, Yun | Xun; ¢, Pu) ()
le,lg (xu,O ; 9) qu,O (xu,O ; P, l,bu)- (3)

Then, 1, is a vector of unit-specific parameters for unit u, and ¢ is a shared parameter vector.
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We suppose ¢ € R4 and ¢, € R, so the dimension of the parameter vector fis D = A + BU.
In practice, the densities in Egs. (1)—(3) serve two primary roles in PanelPOMP models:
evaluation and simulation. Each function can depend on the unit to which it belongs, and
therefore are specified in the unit-specific POMP models that together define the PanelPOMP.
This feature is reflected in the software implementation, where the fundamental tasks of
simulation and evaluation are defined in the unit pomp objects, as described in in Table 1.

Method  Operation Function
rprocess Simulate from Eq. (1)  fx, | X1 (Xun | Xupn—1; ¢, Pu)
dprocess Evaluate Eq. (1) FXo X (Xun | Xun—1; ¢ Pu)
rmeasure Simulate from Eq. (2) fyu,n| X (Yun | Xun; ¢, Pu)
dmeasure Evaluate Eq. (2) P X Y | X s @, 9u)
rinit Simulate from Eq. (3) fXuo (X0 ¢, Pu)
dinit Evalutate Eq. (3) Fxuo(Xu0 s ¢, 1u)

Table 1: Methods of a unit model in a panelPomp object and their mathematical definitions.

In addition to the functions listed in in Table 1, additional basic mathematical functions
can be specified for the unit objects of a panelPomp model as needed. For instance, functions
rprior and dprior—which represent the operations of simulating from and evaluating a
prior density function, respectively—can be specified as part of the unit objects if desired.
The current version of the package (1.7.0.0), however, currently emphasizes the likelihood-
based, plug-and-play methodologies described in Section 3, which do not require the
specification of a prior distribution.

2.1 Model representation in panelPomp

The package uses the S4 functional object oriented programming approach in R (Wickham,
2019) in order to represent PanelPOMP models as panelPomp objects. Because a PanelPOMP
model comprises multiple POMP models, a panelPomp object is essentially a structured
collection of pomp objects from the pomp package (King et al., 2016). The panelPomp class
contains three attributes: unit_objects, a list containing the models for each unit; shared, a
named numeric vector of parameters that are shared across all units; and specific, a matrix
of parameters that are unique to each unit.

Typically, creating panelPomp objects involves supplying a dataset for each unit and
explicitly defining the mathematical functions in Table 1. The functions can be defined either
using R functions or C-code snippets, the latter offering the advantage of reduced computing
times. The construction of pomp objects using both R functions and C-code snippets is a topic
discussed in detail in King et al. (2016) and various online tutorials for the pomp package.
To avoid redundancy with this existing material, we focus instead on the novel features
of the panelPomp package. Specifically, we illustrate how to construct a panelPomp object
when a collection of pomp objects is already available.

For demonstration purposes, we consider a stochastic version of the discrete-time Gom-
pertz population model (Winsor, 1932). This model is a popular choice for representing the
exponential growth and decay observed in numerous ecological populations (Auger-Méthé
etal., 2021; Smith et al., 2023; Lindén and Knape, 2009). It serves as a useful example due
to its nonlinear, non-Gaussian nature, which can be transformed into a linear Gaussian
model through log transformations. Consequently, the model is a popular choice for demon-
strating the capabilities of plug-and-play algorithms on a nonlinear, non-Gaussian model
where the likelihood can be exactly calculated using linear Gaussian techniques (Bret6
et al., 2020). It further serves as an illustrative case study for panelPomp, as researchers
may use similar models to describe population dynamics at distinct observation sites or
experimental treatments. This approach allows for formal statistical testing to determine
whether characteristics of the population dynamics are shared across populations or are
unique to each unit.
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For each unit u, the latent population density X, , at time # is recursively modeled
according to Eq. (4).

1—e Tu Tu

p— 67
Xu,n-‘rl =Ky Xu,n €uns (4)

where €, ,, are independent and identically-distributed log-normal random variables with
loge,, ~ N(0,02). The observed population Y, at time n is assumed to follow a log-
normal distribution, independently and identically distributed, conditioned on the value
Xu,n/

log Yiuu| Xun ~ N(log Xy, 1'5)

Below, we use the pomp: : gompertz constructor function to build these unit-specific
models. These constructors simultaneously build the unit models described above, and store
a simulation from the model in the data attribute. The times argument in the constructor
indicates the observation times for each unit; these times do not need to be the same when
constructing panelPomp objects, as highlighted below.

gomp_ul <- pomp: :gompertz(
K=1, r=20.1, sigma = 0.1, tau = 0.1, X_0 = 1, times = 1:20, seed = 111

gomp_u2 <- pomp: :gompertz(
K=1.5 r=0.1, sigma = 0.1, tau = 0.07, X_0
)

1, times = 1:21, seed = 222

gomp_u3 <- pomp: :gompertz(
K=1.2, r=0.1, sigma = 0.1, tau
)

0.15, X_.0 =1, times = 3:25, seed = 333

In this example, we construct three unit objects, gomp_u1, gomp_u2, and gomp_u3, each of
which is a pomp object. Each object contains a vector of parameters K, r, sigma tau, and X_0
that correspond to the parameters «,,, 7, 0, T, and X, o, respectively. To build a panelPomp
object, we pass a list of these models and specify which parameters are shared across units
and which are specific to each unit.

gomp <- panelPomp(
object = list(gomp_ul, gomp_u2, gomp_u3),
shared = c("r" = 0.1, "sigma” = 0.1),
specific = c("K", "tau", "X_0")

)

The parameter values of the shared vector need to be explicitly defined, replacing the
separate values in the parameter vectors for each unit object. The unit-specific parameters
are extracted from the constituent pomp objects. In the above construction, we are creating a
panelPomp model that has shared parameters r and sigma. Mathematically, this is equivalent
to assuming that, forallu € 1 : U, r, = r = 0.1 and 0, = ¢ = 0.1. The choice of which
parameters are shared and which are unit-specific can be modified, as the helper function
described in the following subsection enables changing the original parameter specifications.

Several pre-built models are also included in the package via constructor functions,
including:

* contacts() creates a dynamic model for the variation in sexual contacts for the data
of Vittinghoff et al. (1999). The model supposes each individual has a latent rate of
making sexual contacts that evolves over time, allowing for heterogeneity between
and within individuals, auto-correlation in individual rates over time, and a trend in
rates over the time of the study (Romero-Severson et al., 2015).
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¢ panelMeasles() creates a PanelPOMP model for measles incidence data in several UK
cities, based on the model of He et al. (2010). This model is a stochastic compartmental
model that describes Measles incidence data using a susceptible, exposed, infected,
recovered (SEIR) model. The source code provides a useful demonstration of how
users can build compartmental models for panel data from an infectious disease
outbreak.

* panelRandomWalk() constructs a collection of independent latent Gaussian random
walk models. After building the panel model, the constructor populates the data slots
for the created unitObjects by simulating from the created model.

* panelGompertz() creates a collection of the stochastic Gompertz population models
described in this section. The data slots for the unitObjects are populated by using
simulations from the model.

The primary purpose of these pre-built constructor functions is to provide source code
demonstrating how users may create a variety of different panelPomp objects, and to enable
quick testing and comparison of newly developed PanelPOMP methodology using existing
models and data. The parent pomp package also contains a number of pre-built models
and datasets for similar purposes. In cases where there may be confusion between the
constructor functions in these packages, the panel prefix is used to clarify the distinction.

2.2 Generic methods for panelPomp objects

The created object from the previous section, gomp, is a Pane]lPOMP model with 3 inde-
pendent units, each with a unique number of observations specified by the length of the
times argument in their constructor function. In this model x,,, T, and X, o are treated as
unit-specific, and r, = r, 0, = o are shared for all unit objects. Internally, each unit_object
treats both types of parameters the same, and thereby the construction of the unit objects
does not require renaming unit-specific parameters to allow for distinction across units. For
example, though x, may be unique for each unit u, the internal functions representing the
process model (Eq. (1)) can use the variable name kappa to represent the parameter in all
unit objects, rather than needing unique variable names for each unit. This important feature
allows for changing which parameters are treated as shared and which are unit-specific
without having to redefine each of the unit objects.

Model parameters can be extracted and modified using the coef () generic function.
The default treatment of this function is the convention <parameter name>[<unit name>]
for unit-specific parameters, and <parameter name> for shared parameters. This format is
intended to closely reflect the standard mathematical notation for unit-specific parameters.
For instance, to change the value of xy, we could refer to the corresponding parameter
KCunit2] in the gomp object:

coef (gomp) [ 'K[unit2]'] <- 0.9

coef (gomp)

#> r sigma K[unit1] taulunit1] X_@[unit1] K[unit2] taulunit2]
#> 0.10 0.10 1.00 0.10 1.00 0.90 0.07
#> X_0[unit2] K[unit3] taulunit3] X_0@[unit3]

#> 1.00 1.20 0.15 1.00

It can be more convenient to view unit-specific parameters as a matrix and shared
parameters as a vector. This can be done using the format = 'list' argument of the coef ()
function, or by alternatively using the shared() and specific() functions to extract only
the shared or unit-specific parameters, respectively.

coef(gomp, format = 'list')

#> $shared
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#> r sigma

#> 0.1 0.1

#>

#> $specific

#> unit

#> param unitl unit2 unit3
#> K 1.0 0.90 1.20
#> tau 0.1 0.07 0.15
#> X0 1.0 1.00 1.00
shared(gomp)

#> r sigma

#> 0.1 0.1

The shared()<- and specific()<- setter functions are also convenient for modifying

which model parameters are considered shared and unit-specific.

shared(gomp) <- c("tau” = 0.15)
shared(gomp)

#>

tau r sigma

#> 0.15 0.10 0.10

specific(gomp)

#> unit

#> param unitl unit2 unit3
#> K 1 0.9 1.2
#>  X_0 1 1.0 1.0

Before altering the definitions of existing parameters, these functions verify whether the

parameters are already present in the model. They enable changing parameter values and
adjusting whether a parameter is unit-specific or shared, but do not allow for the creation or
deletion of model parameters.

A non-exhaustive list of useful methods that are frequently applied to panelPomp objects

in the course of a data analysis includes:

e simulate(). For panelPomp objects that contain units with the functions rinit,

rprocess, and rmeasure, the simulate() function can generate a number of simu-
lations, specified by the nsim argument, which defaults as nsim = 1. The resulting
object is a panelPomp object where the simulated results are saved as data in the unit
objects.

plot(). This function plots each unit of a panelPomp object sequentially. For derived
classes, such as pfilterd.ppomp resulting from applying pfilter to a panelPomp, or
mif2d.ppomp resulting from an application of mif2, diagnostic plots are produced
for each unit. For example, calling plot() on the measles model constructed by the
panelMeasles() function will plot the measles data available for the specified UK
cities:

plot(panelMeasles(), units = c('Bradford', 'London'))
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* as(). Many essential features of the basic model components of a panelPomp object
have already undergone extensive development and testing in the context of the
pomp package. To avoid unnecessary duplication, the as() function offers a way to
convert a panelPomp object into a list of pomp objects. For example, as(gomp, "list")
and as(gomp, "pompList”) will convert the gomp panelPomp object into a list or
pompList, respectively. This is particularly useful when it is appropriate to consider
the individual components of the panelPomp object.

3 Inference methodology

All POMP methods can in principle be extended to PanelPOMPs; three different ways
to represent a PanelPOMP as a POMP were identified by Romero-Severson et al. (2015).
The ability to represent a PanelPOMP model as a POMP model, however, does not imply
that methodology for POMP models will be feasible for PanelPOMP models. In particular,
sequential Monte Carlo algorithms can have prohibitive scaling difficulties with the high
dimensionality that arises in Pane]lPOMP models.
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The current version of panelPomp emphasizes plug-and-play methods (Breto et al., 2009;
He et al., 2010), also known as likelihood-free (Marjoram et al., 2003; Sisson et al., 2007),
that are applicable to dynamic models for which a simulator is available even when the
transition densities are unavailable. In the terminology used in this article, this means that
dprocess (Eq. (1)) is not needed in order to perform inference. This class of algorithms
includes methods such as a particle filter (Arulampalam et al., 2002) and the panel iterated
filter (PIF) (Breto et al., 2020), which are methods that can be used to evaluate and maximize
model likelihoods, respectively. In this section, we describe and demonstrate a plug-and-
play likelihood-based inference workflow using the Stochastic Gompertz population model
described previously. To highlight the capability of panelPomp to perform inference on
high-dimensional models, we reconstruct a model with U = 50 measurement units and
N = N, = 100 observations per unit using the panelGompertz() constructor function.

gomp <- panelGompertz(N = 100, U = 50)

3.1 Log-likelihood evaluation via particle filters

The particle filter, also known as sequential Monte Carlo, is a standard tool for log-likelihood
evaluation on nonlinear non-Gaussian POMP models. The log-likelihood function is a
central component of Bayesian and frequentist inference. Due to the dynamic independence
between units that is a defining feature of a PanelPOMP model, particle filtering can be
carried out separately on each unit. The pfilter method for panelPomp objects is therefore
a direct extension of the pfilter method for pomp objects from the pomp package. All
mathematical functions needed to carry out the particle filter for a PanelPOMP model are
represented by the functions rinit, rprocess, rmeasure and dmeasure (Egs. (1)—(3)).

Methods applied to panelPomp objects—like the pfilter function—typically create new
objects of the same class or a child class of the original object. For instance, we can perform
a particle filter on the gomp object that contains 50 units, and 100 observations per unit in the
following way:

gomp_pfd <- pfilter(gomp, Np = 1000)

In this case, we used Np = 1000 particles to obtain a single stochastic estimate of the
log-likelihood of the gomp model. The resulting object gomp_pfd is of class pfilterd.ppomp,
which is a child class of panelPomp and contains the estimated log-likelihood of each unit
object, as well as the log-likelihood of the entire panel; these can be accessed using the
unitloglik() and logLik() functions, respectively.

In practice it is advisable to repeat this Monte Carlo approximation in order to reduce and
quantify the error associated with the estimate. Because sequential Monte Carlo algorithms
can be computationally expensive, we obtain replicated estimates by taking advantage of
multicore computation using the foreach (Microsoft and Weston, 2022b) and doParallel
(Microsoft and Weston, 2022a) packages:

pf_results <- foreach(i = 1:10) %dopar% {
pfilter(gomp, Np = 1000)
}

This took 2.68 seconds to run the 10 replicates in parallel, resulting in a list of objects of class
pfilterd.ppomp. We can use the loglLik function to extract the Monte Carlo estimate of the
log-likelihood Al for each replicate i, and unitLoglL ik to extract the vector of component
Monte Carlo log-likelihood estimates /\E] for each unitu = 1,...,U, where All = 25:1 /\E].
For a POMP model, replicated log-likelihood evaluations via the particle filter are usually
averaged on the natural scale, rather than the log scale, to take advantage of the unbiasedness
of the particle filter likelihood estimate. Thus, we have
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A 1 U [i]
A1 = log (T Y exp{ ) Ay }>,
i=1 u=1
which can be implemented as

lambda_1 <- logmeanexp(
sapply(pf_results,loglik), se = TRUE
)

giving A; = 2065.4 with a jack-knife standard error of 0.5. Taking advantage of the indepen-
dence of the units in the panel structure, Bret6 et al. (2020) showed it is preferable to average
the replicates of marginal likelihood for each unit before taking a product over units. This
corresponds to

N CI Ali
A :log(HTZ:exp {AL]}>,

u=1"i=1

which can be obtained using

lambda_2 <- panel_logmeanexp(
sapply(pf_results,unitloglLik), MARGIN = 1, se = TRUE
)

giving A, = 2068.5 with a jack-knife standard error of 1.1. For this model, a Kalman filter
log-likelihood evaluation gives an exact answer, A = 2068.2.

3.2 Maximum likelihood estimation

Although particle filters can effectively approximate the log-likelihood of non-linear models,
it is well known that obtaining a maximum likelihood estimate for fixed parameters using
these filters is difficult in practice. To maximize the likelihood, we employ iterated filtering
algorithms, which perform repeated particle filtering on an extended version of the model
that incorporates time-varying parameter perturbations. With each iteration, the magnitude
of these perturbations is reduced, allowing the algorithm to approach a local maximum of the
likelihood function. An example of this type of algorithm for general POMP models includes
the IF2 iterated filtering algorithm (lonides et al., 2015). IF2 has been successfully employed
for likelihood-based inference in various POMP models, particularly in epidemiology and
ecology, as reviewed by Bret6 (2018). However, both particle filters and IF2 face scalability
issues as model dimensions increase, and IF2 cannot be applied to each unit separately
when the PanelPOMP model includes shared parameter values.

A panel iterated filtering (PIF) algorithm was developed by Bret¢ et al. (2020), extending
IF2 to panel data. An implementation of PIF in panelPomp is provided by the mif2 method
for class panelPomp, following the pseudocode in Algorithm 1. The pseudocode sometimes
omits explicit specification of ranges over which variables are to be computed when this
is apparent from the context: it is understood that j takes valuesin1:],ain1: A and b in
1: B. The NJ0, 1] notation corresponds to the construction of independent standard normal
random variables, leading to Gaussian perturbations of parameters on a transformed scale.
The theory allows considerable flexibility in how the parameters are perturbed, but Gaussian
perturbations on an appropriate scale are typically adequate.

At a conceptual level, the PIF algorithm has an evolutionary analogy: successive itera-
tions mutate parameters and select among the fittest outcomes measured by Monte Carlo
likelihood evaluation. Most often, the perturbation parameters Ufn and 0’;}: uy i Algorithm
1 will not depend on n. For parameters that have uncertainty on a unit scale, the value
0.02 demonstrated here has been commonly used. The help documentation on the rw_sd
argument gives instruction on using additional structure should it become necessary.

The unmarginalized PIF was proposed by Bret¢ et al. (2020), who provided theoretical
convergence results for the algorithm. When MARGINALIZE = TRUE, the PIF algorithm
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Algorithm 1: mif2(pp, Nmif=M, Np=], start=(¢, l[ngu), rw_sd= ((T;I/)n,(rilju,n),
cooling.factor.50= p50), where pp is a panelPomp object containing data and de-
fined rprocess, dmeasure, rinit and partrans components.

input: Data, y, ,, uinl:U,nin1: N
Simulator of initial density, fx, , (xu,0; ¢, ¥u)
Simulator of transition density, fx, . x, . (Xun [ Xun—1; @, Pu)
Evaluator of measurement density, qu,n\Xu,n (Yun | Xun; §, Pu)
Number of particles, J, and number of iterations, M
Starting shared parameter swarm, CDS, i = 4)2, ainl:A,jinl:]
Starting unit-specific parameter swarm, ‘Pg,u, = l[JS/u, binl:B,jin1l:]
Random walk intensities, Ufn and (7;}’} wn
Parameter transformations, & and hf, with inverses (1) “and (h}) !
Logical variable determining marginalization, MARGINALIZE

output: Final parameter swarm, CD%. and ¥M

b,u,j
Forminl: M
m _ gm—1
q)a,O,j - q)a,j
Foruinl:U
CI)P'm _ (h(‘b)—l h(b( m ) + mo.cb Z@,m for ZCD,m ~ N[O 1]
au0,j — \"la a \Pau—1j) TP 00,0%4,u0, a,1,0,j /
Fm ¥\~ 1 (1% (gm-1 m ¥ Ym ¥, m
o = () (hb (Fp;) +e ‘Tb,u,oZb,u,o,j) for Z, 77, ~ N[0, 1]
F,m F,m F,m
X0, ™ fxuo (xu,O | cDa,u,O,j"Pb,u,O,j)
Forninl: N,
Pm  _ (p@\~L (& (gFm m ® 7Pm om
cDa,u,n,j - (hﬂ ) (hﬂ (cDa,u,nfl,j) +p Uﬂ,ﬂZa,u,n,j) for Za,u,n,j N[O,l]
Pm _ ¥\l (1% (@Fm m ¥ Ym Yoo
IIIb,u,n,j - (hb) (hb (‘Yb,u,n—l,j) +p Uh,u,nzb,u,n,j) for Zb,u,n,j N[Ofl]
P,m F,m . xPm P,m
Xu,n,j ~ qu,n\Xu,n—l (x“r” ‘ Xu,nfl,j ’ q)a,u,n,j’lyb,u,n,])
m * Pm ., ;Pm Pm
wu,n,j - qu,n\Xu,n (yu,n | unj ' Taunj’ b,u,n,j)

Draw ky.; with lP(kj =1i) = w';;n,i/zgzl wlnf,n,q

@F,m _ ¢p,m TF,m — \I;P,m al’ld XF,m — XP,m

aumnj a,u,n,kj 4 bun,j b,u,n,kj umn,j u,n,k]-
If MARGINALIZE then
Fm _ wPm
\Pb,v,n,j = Tb,u,n,j forall v # u
Else
Fm _ wPm
\Pb,v,n,j = ‘Pb,v,n,k]- forallv # u
End For
m _ sFm m _ wFm
q)a,u,j - (Du,u,Nu,j and ‘Yb,u,j - Tb,u,Nu,j
End For
m m
cpa,j - q)u,ll,j

End For

is modified such that the particles representing the unit-specific parameter ¢, , remain
unchanged when filtering through a unit v # u. Recent results suggest the marginalized
PIF (MPIF) algorithm has superior empirical performance in many situations, but does not
yet have theoretical support. For the remainder of this article, the presented results use the
unmarginalized version of the algorithm.

Parameter transformations (k> and h;f) are used to ensure that parameter estimates
remain within accepted bounds. For example, parameters that are required to be positive
can be estimated on a log-transformed scale to maintain their positivity when converted
back to the natural scale. This process is facilitated by the parameter_trans function,
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which manages the transformation automatically. This relieves users from the need to
handle parameters on the transformed scale directly; they only need to specify the desired
transformation. In the case of the gomp model, all model parameters must be non-negative.
This requirement can be met by creating unit objects and assigning the partrans argument
as follows:

n_n

parameter_trans(log = c("K", "r", "sigma"”, "tau", "X.0"))

This setup ensures that the parameters «,, r,, 0y, Ty, and X, o are all estimated on
a log-transformed scale, thereby maintaining their non-negativity on the natural scale.
Other common parameter transformations that can be implemented include the logit
transformation, which ensures parameters are in the interval (0,1), and the barycentric
transformation, which is used when a collection of parameters must lie in the interval (0, 1),
with the additional constraint that they sum to one. Finally, custom transformations can be
defined using the toEst and fromEst arguments to the parameter_trans function.

We demonstrate maximum likelihood estimation using parameter transformations for
the gomp object described previously. To do so, we need to specify starting parameter
values from where to start the search. This can be done by explicitly providing the starting
parameters using either the start or the shared. start and specific.start arguments of
the mif2() function. Alternatively, the existing parameter values in the panelPomp object
will be implicitly used as a starting point, as done in the following example. For simplicity,
we fix x, = 1 and the initial condition X,, ) = 1, maximizing over two shared parameters,
r and o, and one unit-specific parameter T, starting from their default values in the gomp
object:

gomp_mif2d <- mif2(
gomp, # panelPomp model, which contains parameter transformations and values.
Nmif = 25, # Number of Iterations (M)
Np = 250, # Number of Particles (J)
cooling.fraction.50 = 0.5, # Cooling intensity, after 50 iterations
cooling.type = "geometric”, # Cooling Style
rw.sd = rw_sd(r = 0.02, sigma = 0.02, tau = 0.02) # Random Walk SD

)

The output gomp_mif2d is a mif2d.ppomp object, which is a child class of panelPomp. The
algorithmic parameters are very similar to those of the mif2 method for class pomp. The
perturbations, determined by the rw_sd argument, may be a list giving separate instructions
for each unit. When only one specification for a unit-specific parameter is given (as we do
for 7, here) the same perturbation is used for all units. As such, functions for coefficient
extraction can be used to get the final parameter estimates, for instance:

shared(gomp_mif2d)

#> r sigma
#> 0.06833055 0.09123509

For Monte Carlo maximization, replication from diverse starting points is recommended.
Further, larger values of Nmif and Np are typically needed in order to reliably maximize
model likelihoods in practice. Smaller initial searches for parameter estimates are useful
in that they can be used to estimate the computational cost of a larger search or to help
determine values of hyperparameters. The computational complexity of the PIF algorithm is
O(JMNU), and so the cost of a larger search may be estimated by noting that the complexity
is linear in each of the arguments | and M.

We demonstrate such a maximization search on gomp. The small, single PIF maximization
took 40.8 seconds to compute. By increasing the number of iterations (Nmif) and particles (Np)
each by a factor of 6, we expect the computation time for a single parameter initialization to
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take roughly 24.5 minutes, noting that there is some overhead in the maximization function
that is not increased on larger jobs. Using 36 cores, we then expect the maximization routine
to take 24.5 minutes for 36 distinct starting values.

To define diverse starting points for the Monte Carlo replicates, we make uniform draws
from a specified box. The parameter bounds on this box are not intended to be bounds on
the final parameter estimates, as there is a possibility that the data lead the parameter search
elsewhere. However, if replicated searches started from this box reliably reach a consensus,
we claim we have carefully investigated this part of parameter space. A larger box leads to
greater confidence that the relevant part of the parameter space has been searched, at the
expense of requiring additional work. The runif_panel_design() function facilitates the
construction and drawing random points from within the box.

starts <- runif_panel_design(

lower = c('r' = 0.05, 'sigma' = 0.05, 'tau' = 0.05, 'K' =1, 'X.0' = 1),
upper = c('r' = 0.2, 'sigma' = 0.2, 'tau' = 0.2, 'K' =1, 'X.0' = 1),
specific_names = c('K', 'tau', 'X.0"),

unit_names = names(gomp),

nseq = 36

)

We then carry out a search from each starting point:

mif_results <- foreach(start=iter(starts,"row")) %dopar% {

mif2(
gomp, start = unlist(start),
Nmif = 150,
Np = 1500,
cooling.fraction.50 = 0.5,
cooling.type = "geometric”,

transform = TRUE,
rw.sd = rw_sd(r = 0.02, sigma = 0.02, tau = 0.02)
)
3

This took 15.6 minutes using 36 cores, producing a list of objects of class mifd. ppomp. We can
check on convergence of the searches, and possibly diagnose improvements in the choices
of algorithmic parameters, by consulting trace plots of the searches available via the traces
method for class mifd.ppomp. This follows recommendations by lonides et al. (2006) and
King et al. (2016).

Block optimization

A characteristic of PanelPOMP models is the large number of parameters arising when
unit-specific parameters are specified for a large number of units. For a fixed value of
the shared parameters, the likelihood of the unit-specific parameters factorizes over the
units. The factorized likelihood can be maximized separately over each unit, replacing
a challenging high-dimensional problem with many relatively routine low-dimensional
problems. This suggests a block maximization strategy where unit-specific parameters
for each unit are maximized as a block. Breto et al. (2020) used a simple block strategy
where a global search over all parameters is followed by a block maximization over units
for unit-specific parameters. The theoretical guarantees available for the PIF algorithm
(Breto et al., 2020) imply that this block-refinement strategy is not necessary for convergence,
but empirically it can help reduce the computational effort needed to fully maximize the
likelihood.

We demonstrate this here, refining each of the maximization replicates above. The
following function carries out a maximization search of unit-specific parameters for a single
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unit. The call to mif2 takes advantage of argument recycling: all algorithmic parameters
are re-used from the construction of mifd_gomp except for the re-specified random walk
standard deviations which ensures that only the unit-specific parameters are perturbed.

mif_unit <- function(unit, mifd_gomp, reps = 6) {
unit_gomp <- unit_objects(mifd_gomp)[[unit]]

mifs <- replicate(
n = reps, mif2(unit_gomp, rw.sd = rw_sd(tau = 0.02))
)

best <- which.max(sapply(mifs, logLik))
coef(mifs[[best]])["tau"]

Now we apply this block maximization to find updated unit-specific parameters for each
replicate, and we insert these back into the panelPomp.

mif_block <- foreach(mf=mif_results) %dopar% {
mf@specific["tau”,] <- sapply(1:length(mf), mif_unit, mifd_gomp = mf)
mf

3

This took 40.4 seconds to compute all 36 block refinements in parallel.

We expect Monte Carlo estimates of the maximized log-likelihood functions to fall below
the actual (usually unknown) value. This is in part because imperfect maximization can
only reduce the maximized likelihood, and in part a consequence of Jensen’s inequality
applied to the likelihood evaluation: the unbiased SMC likelihood evaluation has a negative
bias on estimation of the log-likelihood.

3.3 Parameter uncertainty

A key component of a likelihood-based inference framework is the estimation of parameter
uncertainty, often achieved by the estimation of confidence intervals. This task is particularly
challenging for general non-linear, latent variable models. Some potential methods include
profile likelihoods, observed Fisher information, and the bootstrap method. Here, we
demonstrate the profile likelihood approach, which has proven useful for mechanistic
models (Simpson and Maclaren, 2023).

The profile likelihood function is constructed by fixing a focal parameter at various values
and then maximizing the likelihood over all other parameters for each value of the focal
parameter. Constructing a profile likelihood function offers several practical advantages:

¢ Evaluations at neighboring values of the focal parameter provide additional Monte
Carlo replication. Typically, the true profile log-likelihood is smooth, and asymptoti-
cally close to quadratic under regularity conditions, so deviations from a smooth fitted
line can be interpreted as Monte Carlo error.

* Large-scale features of the profile likelihood reveal a region of the parameter space
outside which the model provides a poor explanation of the data.

¢ Co-plots, which show how the values of other maximized parameters vary along the
profile, may provide insights into parameter trade-offs implied by the data.

* The smoothed Monte Carlo profile log-likelihood can be used to construct an approx-
imate 95% confidence interval. The resulting confidence interval can be properly
adjusted to accommodate both statistical and Monte Carlo uncertainty (lonides et al.,
2017).

Once we have code for maximizing the likelihood, only minor adaptation is needed to
carry out the maximizations for a profile. The runif_panel_design generating the starting
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values is replaced by a call to profile_design, which assigns the focal parameter to a grid
of values and randomizes the remaining parameters. The random walk standard deviation
for the focal parameter is unassigned, which leads it to be set to zero and therefore the
parameter remains fixed during the maximization process. The following code combines
the joint and block maximizations developed above.

# Names of the estimated parameters
estimated <- c(

r", "sigma", paste@(”"taulunit”, 1:length(gomp), "1")
)

# Names of the fixed parameters (not estimated)
fixed <- names(coef(gomp))[!names(coef(gomp)) %in% estimated]

profile_starts <- profile_design(
r = seq(0.05, 0.2, length = 20),
lower = c(coef(gomp)[estimated] / 2, coef(gomp)[fixed])[-11],
upper = c(coef(gomp)[estimated] * 2, coef(gomp)[fixed])[-1],
nprof =5, type = "runif”

)

profile_results <- foreach(start = iter(profile_starts, "row")) %dopar% {
mf <- mif2(
mif_results[[1]1],
start = unlist(start),
rw.sd = rw_sd(sigma = 0.02, tau = 0.02)
)
mf@specific[”tau”, ] <- sapply(1:length(mf), mif_unit, mifd_gomp = mf)
mf

In the above code, the profile_design function creates 20 x 5 = 100 unique starting
points to perform the profile search. Parallelized over 36 cores, these 100 searches took 47.6
total minutes. However, we are not quite done gathering the results for the profile. The
perturbed filtering carried out by mif2 leads to an approximate likelihood evaluation, but
additional accuracy is obtained by re-evaluating the likelihood without perturbations. Also,
replication is recommended to reduce and quantify Monte Carlo error. We do this, and
tabulate the results.

profile_table <- foreach(mf=profile_results,.combine=rbind) %dopar% {
LL <- replicate(10, logLik(pfilter(mf, Np = 2500)))
LL <- logmeanexp(LL, se = TRUE)
data.frame(t(coef(mf)), loglik = LL[1], loglik.se = LL[2])

}

The likelihood evaluations took 2.5 minutes. It is appropriate to spend comparable time
evaluating the likelihood to the time spent maximizing it: a high quality maximization
without high quality likelihood evaluation is hard to interpret, whereas good evaluations of
the likelihood in a vicinity of the maximum can inform about the shape of the likelihood
surface in this region, and this may be as relevant as knowing the exact maximum.

The Monte Carlo adjusted profile (MCAP) approach of lonides et al. (2017) is imple-
mented by the mcap() function in pomp. This function constructs a smoothed profile
likelihood, by application of the loess smoother. It computes a local quadratic approxima-
tion that is used to derive an extension to the classical profile likelihood confidence interval
that makes allowance for Monte Carlo error in the calculation of the profile points. Theoreti-
cally, an MCAP procedure can obtain statistically efficient confidence intervals even when

The R Journal Vol. 17/1, March 2025 ISSN 2073-4859


https://CRAN.R-project.org/package=pomp

CONTRIBUTED RESEARCH ARTICLE 194

1 1
_________ S N Rl - 30 S
A7 1 1S o
pr P 1 ° ©° (N _s. Kalman
Q 1 > 1 Filter —
- 2070+ o 1 ol T NI
o Vi 1 P N
(@) 1 1 9) [nY P”: +
= I I RN Particle Filter
g o 1 1 o o
= 1 1
I_ 2050 - 1 1 0
8’ 1 1 AN
- 1 1 o
% 1 1 \\
S ! ; EANN
[a
2030 1 | | =N

1 1 N

1 1 N

1 1 N

1 1

T I T I T T
0.05 0.10 0.15 0.20

Figure 1: The Monte Carlo adjusted profile confidence interval (solid red lines, evaluation points
shown as circles). Construction using deterministic optimization of the likelihood calculated by the
Kalman filter (dashed lines, evaluation points show as squares).

the Monte Carlo error in the profile likelihood is asymptotically growing and unbounded
(Ning et al., 2021). Log-likelihood evaluation has negative bias, as a consequence of Jensen’s
inequality for an unbiased likelihood estimate. This bias produces a vertical shift in the
estimated profile, which fortunately does not have consequence for the confidence interval
if the bias is slowly varying.

The profile points evaluated above, and stored in profile_table, can be used to compute
a 95% MCAP confidence interval as follows:

profile_table <- profile_table |>
as.data.frame() |>
dplyr::group_by(r) |>
dplyr::slice_max(n = 1, order_by = loglik)

gomp_mcap <- pomp: :mcap(
loglik = profile_table$loglik,
parameter = profile_table$r,
level = 0.95

)

The construction of the confidence interval is best shown by a plot of the smoothed profile
likelihood, shown in Fig. 1 (Wickham, 2016). In this toy example, the exact likelihood can be
calculated using the Kalman filter, and this is carried out by the panelGompertzLikelihood
function. The likelihood can then be maximized using a general-purpose optimization
procedure such as optim() in R. With large numbers of parameters, and no guarantee
of convexity, this numerical optimization is not entirely routine. One might consider a
block optimization strategy, but here we carry out a simple global search, which took 1.7
minutes to compute the profile likelihood, once parallelized. The deterministic search is
also not entirely smooth, and so we apply MCAP as for the Monte Carlo search. Both
deterministic and Monte Carlo optimizations can benefit from a block optimization strategy
which alternates between shared and unit-specific parameters (Bret6 et al., 2020). Such
algorithms can be built using the panelPomp functions we have demonstrated, and they
will be incorporated into the package once they have been more extensively researched.
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4 Conclusion

The analysis using the gomp model illustrates one approach to plug-and-play inference
for PanelPOMP models, but the scope of panelPomp is far from limited to this approach.
panelPomp is a general and extensible framework which encourages the development of
additional functionality. The panelPomp class, along with its associated workhorse functions,
provide an adaptable interface that can accommodate future methodologies. In this sense,
panelPomp provides an environment for sharing and developing PanelPOMP models
and methods, both through future contributions to the panelPomp package and through
open-source applications that leverage the package. This framework will facilitate the
comparison of new methodologies with existing ones, promoting continuous improvement
and innovation. Other software packages, such as pomp, spatPomp, nimble, among others
summarized in Section 4.2 of Newman et al. (2023), can also be used to perform inference
on non-linear mechanistic models. However, none of these packages specifically address
the unique challenges posed by high-dimensional PanelPOMP models.

A special class of POMP models arises when the latent process takes values in a discrete
and finite space. A model of this type is often referred to as a hidden Markov model (HMM)
(Eddy, 2004; Doucet et al., 2001; Glennie et al., 2023; Newman et al., 2023), though this
terminology has also been used as a synonym for POMP (King et al., 2016). Under this
additional constraint, efficient dynamic-programming algorithms can be used to perform
inference, as summarized by McClintock et al. (2020). In principle, panelPomp can be
leveraged to implement these existing approaches for longitudinal data, though the current
version of the package emphasizes methodologies for models that have latent processes
with states taking values in spaces that cannot be programmatically searched.

In our example, likelihood evaluation and maximization was used to construct con-
fidence intervals. These calculations also provide a foundation for other techniques of
likelihood-based inference, such as likelihood ratio hypothesis tests and model selection via
Akaike’s information criterion (AIC). The examples discussed provide case studies in the
use of these methods for scientific work.

Data analysis using large data sets or complex models may require considerable com-
puting time. Simulation-based methodology is necessarily computationally intensive, and
access to a cluster computing environment extends the size of problems that can be tackled.
Our example workflow has a simple parallel structure that can readily take advantage of
additional resources. Embarrassingly parallel computations, such as computing the profile
likelihood function at a grid of points, or replicated evaluations of the likelihood function,
can be parallelized using the foreach package.

Panel data are widely available: for many experimental and observational systems
it is more practical to collect short time series on many units than to obtain one long
time series. For time series data, fitting mechanistic models specified as partially observed
Markov processes has found numerous applications for formulating and answering scientific
hypotheses (Breto et al., 2009; King et al., 2016). However, there are remarkably few examples
in the literature fitting mechanistic nonlinear non-Gaussian partially observed stochastic
dynamic models to panel data. The panelPomp package offers opportunities to remedy this
situation.

5 Availability, documentation and code quality control

panelPomp is available on CRAN and can be installed by executing
install.packages('panelPomp'). The source code and developmental version of
the package are available on GitHub: https://github.com/panelPomp-org/panelPomp.
Package documentation is created using roxygen?2 and is shipped with the installation of the
package, but can also be found at the package website: https://panelpomp-org.github.io.
Two tutorials are provided on the website; an elementary “Getting Started” guide, and
an in-depth introduction which contains examples that are similar to those in this article
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(Breto et al., 2024). Continuous integration based on GitHub actions is used to build and
test the package. As of writing, unit tests have a 100% line coverage (measured by the covr
package).

All major computations were performed on a high-performance computing (HPC) node
equipped with 2x 3.0 GHz Intel Xeon Gold 6154 processors, totaling 36 cores. The system
ran on Red Hat Enterprise Linux 8.8 (Ootpa) on an x86_64-pc-linux-gnu platform, with
180 GB RAM. We used R version 4.4.0 (2024-04-24) for our analyses. This paper introduces
panelPomp version 1.7.0.09, and requires pomp version 6.2.1.0 or higher.
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SimEngine: A Modular Framework for

Statistical Simulations in R
by Avi Kenny and Charles ]. Wolock

Abstract This article describes SimEngine, an open-source R package for structuring,
maintaining, running, and debugging statistical simulations on both local and cluster-
based computing environments. Several R packages exist for facilitating simulations, but
SimEngine is the only package specifically designed for running simulations in parallel
via job schedulers on high-performance cluster computing systems. The package provides
structure and functionality for common simulation tasks, such as setting simulation levels,
managing seeds for random number generation, and calculating summary metrics (such as
bias and confidence interval coverage). SimEngine also brings several unique features, such
as automatic calculation of Monte Carlo error and information sharing across simulation
replicates. We provide an overview of the package and demonstrate some of its advanced
functionality.

1 Introduction

For the past several decades, the design and execution of simulation studies has been a
pillar of methodological research in statistics (IHauck and Anderson, 1984). Simulations are
commonly used to evaluate finite sample performance of proposed statistical procedures,
but can also be used to identify problems with existing methods, ensure that statistical
code functions as designed, and test out new ideas in an exploratory manner. Additionally,
simulation can be a statistical method in itself; two common examples are study power
calculation (Arnold et al., 2011) and sampling from a complex distribution (Wakefield, 2013).

Although the power of personal computers has increased exponentially over the last four
decades, many simulation studies require far more computing power than what is available
on even a high-end laptop. Accordingly, many academic (bio)statistics departments and
research institutions have invested in so-called cluster computing systems (CCS), which are
essentially networks of servers available for high-throughput parallel computation. A single
CCS typically serves many researchers, can be securely accessed remotely, and operates job
scheduling software (e.g., Slurm) designed to coordinate the submission and management
of computing tasks between multiple groups of users.

Thankfully, the majority of statistical simulations can be easily parallelized, since they
typically involve running the same (or nearly the same) code many times and then per-
forming an analysis of the results of these replicates. This allows for a simulation study
to be done hundreds or thousands of times faster than if the user ran the same code on
their laptop. Despite this, many potential users never leverage an available CCS; a major
reason for this is that it can be difficult to get R and the CCS to “work together,” even for an
experienced programmer.

To address this gap, we created SimEngine, an open-source R package (R Core Team,
2021) for structuring, maintaining, running, and debugging statistical simulations on both
local and cluster-based computing environments. Several R packages exist for structuring
simulations (see Section 2.6); however, SimEngine is the only package specifically designed
for running simulations both locally and in parallel on a high-performance CCS. The package
provides structure and functionality for common simulation tasks, such as setting simulation
levels, managing random number generator (RNG) seeds, and calculating summary metrics
(such as bias and confidence interval coverage). In addition, SimEngine offers a number of
unique features, such as automatic calculation of Monte Carlo error (Koehler et al., 2009)
and information sharing across simulation replicates.

This article is organized as follows. In Section 2.2, we outline the overarching design
principles of the package. In Section 2.3, we give a broad overview of the SimEngine
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simulation workflow. In Section 2.4, we describe how simulations can be parallelized both
locally and on a CCS. Section 2.5 contains details on advanced functionality of the package.
The Appendix includes two example simulation studies carried out using SimEngine.

2 Design principles

There are four main principles that guided the design of SimEngine, which we refer to as (1)
generality, (2) modularity, (3) parallelizability, and (4) appropriate scope. We discuss each in
turn.

The first principle is generality. Many simulation frameworks assume that users will
have a particular type of workflow that involves a data generation step, an analysis step,
and an evaluation step. This three-step workflow is common — in fact, we use it to illustrate
the use of the package in the introductory documentation — but we also do not want to
impose this workflow on the user and disallow other possible workflows. In SimEngine,
instead of providing facilities for the user to specify a data-generating step, an analysis step,
and an evaluation step, the user writes R code representing a single simulation replicate
within a special function called the simulation script. This imposes virtually no constraints on
what the user is able to do within their simulations, and allows for workflows that cannot
be shoehorned into this three-step process, such as simulations involving resampling from
existing datasets, complex data transformations, saving intermediate objects or plots, and
so on. The only requirement of the simulation script is that it returns data in a specific
format (to facilitate processing of results), but this format is completely general and allows
for arbitrarily complex objects (matrices, dataframes, model objects, etc.) to be returned in
addition to simple numeric values.

The second principle is modularity. In short, it should be simple and straightforward
to change one component of a simulation without breaking other components, such as
adding a new estimator or changing a sample size. Additionally, it should be easy to run
additional simulation replicates, possibly with certain elements changed, without having to
rerun the entire simulation. Finally, the step of evaluating the results of a simulation should
be completely separated from the step of actually running the simulation replicates. This
implies that a user does not need to decide in advance how they are going to summarize
or visualize their results, and that they can calculate new summary statistics, produce new
visualizations, and otherwise process their simulation results in an exploratory manner,
possibly long after the simulation itself has been run. In short, we designed SimEngine to
mirror the real-world workflow of statistical simulations, in which researchers often make
small changes in response to new ideas or results.

The third principle is parallelizability. As mentioned in Section 2.1, a primary reason
for creating SimEngine was to build a package that encapsulated the repetitive tasks
related to both local and CCS parallelization. We have seen firsthand that many statistical
researchers run time-consuming simulations serially on their laptops because the barrier to
entry for parallelizing code, particularly on a CCS, is daunting. It is our hope that making
parallelization as easy as possible will allow researchers to easily leverage parallelization
hardware and boost productivity.

The fourth principle is appropriate scope. We designed SimEngine to only provide func-
tionality related to simulations. While some other packages provide functionality to plot
results, for example, we intentionally choose to not do so, since all analysts have their own
preferences when it comes to displaying data. Similarly, unlike many packages, we do not
provide functionality to generate certain data structures, since this would bloat the package
and still only satisfy the needs of a small handful of users.

Finally, although not a software design principle per se, an additional goal of SimEngine
was to create documentation that assumes as little statistical knowledge as possible. Different
statisticians have different areas of background knowledge, and we wanted to avoid having
potential users sidetracked by trying to understand the statistics of a particular example
rather than understand the functions and workflow of SimEngine. Accordingly, we strove
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to create the simplest possible illustrations and examples in the package documentation. In
general, we aimed to make the documentation as comprehensive and accessible as possible,
while remaining concise and minimizing the barriers to entry.

3 Overview of simulation workflow and primary functions

The latest stable version of SimEngine can be installed from CRAN using install.packages.
The current development version can be installed using devtools: :install_github.

R> install.packages("SimEngine")
R> devtools::install_github(repo="Avi-Kenny/SimEngine")

The goal of many statistical simulations is to compare the behavior of two or more
statistical methods; we use this framework to demonstrate the SimEngine workflow. Most
statistical simulations of this type include three basic phases: (1) generate data, (2) run one or
more methods using the generated data, and (3) compare the performance of the methods.

To briefly illustrate how these phases are implemented using SimEngine, we use a simple
example of estimating the rate parameter A of a Poisson(A) distribution. To anchor the
simulation in a real-world situation, one can imagine that a sample of size  from this Poisson
distribution models the number of patients admitted daily to a hospital over the course of n
consecutive days. Suppose that the data consist of n independent and identically distributed
observations X, Xp, ..., X; drawn from a Poisson(A) distribution. Since the A parameter of
the Poisson distribution is equal to both the mean and the variance, one may ask whether
the sample mean Ay , := % Y1 X or the sample variance Ay = ﬁ Y (Xi— Amn)?is
a better estimator of A.

3.1 Load the package and create a simulation object

After loading the package, the first step is to create a simulation object (an R object of class
sim_obj) using the new_sim function. The simulation object contains all data, functions, and
results related to the simulation.

R> library(SimEngine)
R> set.seed(1)
R> sim <- new_sim()

3.2 Code a function to generate data

Many simulations involve a function that creates a dataset designed to mimic a real-world
data-generating mechanism. Here, we write and test a simple function to generate a sample
of n observations from a Poisson distribution with A = 20.

R> create_data <- function(n) {
+ return(rpois(n=n, lambda=20))
+ 3
R> create_data(n=10)
[1] 18 25 25 21 13 22 23 22 18 26

3.3 Code the methods (or other functions)

With SimEngine, any functions declared (or loaded via source) are automatically stored in
the simulation object when the simulation runs. In this example, we test the sample mean
and sample variance estimators of the A parameter. For simplicity, we write this as a single
function and use the type argument to specify which estimator to use.
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R> est_lambda <- function(dat, type) {

+ if (type=="M") { return(mean(dat)) }
+ if (type=="V") { return(var(dat)) }
+ %

R> dat <- create_data(n=1000)

R> est_lambda(dat=dat, type="M")

[1] 19.646

R> est_lambda(dat=dat, type="V")

[1] 20.8195

3.4 Set the simulation levels

Often, we wish to run the same simulation multiple times. We refer to each run as a simulation
replicate. We may wish to vary certain features of the simulation between replicates. In this
example, perhaps we choose to vary the sample size and the estimator used to estimate A.
We refer to the features that vary as simulation levels; in the example below, the simulation
levels are the sample size (n) and the estimator (estimator). We refer to the values that each
simulation level can take on as level values; in the example below, the n level values are 10,
100, and 1000, and the estimator level values are *"M'"' (for “sample mean”) and ~~V""'
(for “sample variance”). We also refer to a combination of level values as a scenario; in this
example, the combination of n=10 and estimator=""M"" is one of the six possible scenarios
defined by the two values of n and the three values of estimator. By default, SimEngine
runs one simulation replicate for each scenario, although the user will typically want to
increase this; 1,000 or 10,000 replicates per scenario is common. An appropriate number
of replicates per scenario may be informed by the desired level of Monte Carlo error; see
Section 2.5.6.

R> sim %<>% set_levels(

+ estimator = c("M", "V"),
+ n = c(10, 100, 1000)

+ )

Note that we make extensive use of the pipe operators (%>% and %<>%) from the magrittr
package (Bache and Wickham, 2022). Briefly, the operator %>% takes the object to the left of
the operator and “pipes” it to (the first argument of) the function to the right of the operator;
the operator %<>% does the same thing, but then assigns the result back to the variable to the
left of the operator. For example, x %>% mean() is equivalent to mean(x) and x %<>% mean()
is equivalent to x <-mean(x). See the magrittr documentation for further detail.

3.5 Create a simulation script

The simulation script is a user-written function that assembles the pieces above (generating
data, analyzing the data, and returning results) to code the flow of a single simulation
replicate. Within a script, the level values for the current scenario can be referenced using
the special variable L. For instance, in the running example, when the first simulation
replicate is running, L$estimator will equal **M'' and L$n will equal 10. In the next
replicate, L$estimator will equal ~*M'' and L$n will equal 100, and so on. The simulation
script will automatically have access to any functions or objects that have been declared in
the global environment.

R> sim %<>% set_script(function() {

+ dat <- create_data(n=L$n)

+ lambda_hat <- est_lambda(dat=dat, type=L$estimator)
+ return (list("lambda_hat"=lambda_hat))
+

D)

The R Journal Vol. 17/1, March 2025 ISSN 2073-4859


https://CRAN.R-project.org/package=SimEngine
https://CRAN.R-project.org/package=magrittr
https://CRAN.R-project.org/package=magrittr

CONTRIBUTED RESEARCH ARTICLE 204

The simulation script should always return a list containing one or more key-value pairs,
where the keys are syntactically valid names. The values may be simple data types (numbers,
character strings, or boolean values) or more complex data types (lists, dataframes, model
objects, etc.); see Section 2.5.3 for how to handle complex data types. Note that in this
example, the estimators could have been coded instead as two different functions and then
called from within the script using the use_method function.

3.6 Set the simulation configuration

The set_config function controls options related to the entire simulation, such as the
number of simulation replicates to run for each scenario and the parallelization type, if
desired (see Section 2.4). Packages needed for the simulation should be specified using the
packages argument of set_config (rather than using library or require). We set num_sim
to 100, and so SimEngine will run a total of 600 simulation replicates (100 for each of the six
scenarios).

R> sim %<>% set_config(

+ num_sim = 100,
+ packages = c("ggplot2"”, "stringr")
+ )

3.7 Run the simulation
All 600 replicates are run at once and results are stored in the simulation object.

R> sim %<>% run()
| ##HHHH SR 100%
Done. No errors or warnings detected.

3.8 View and summarize results

Once the simulation replicates have finished running, the summarize function can be used
to calculate common summary statistics, such as bias, variance, mean squared error (MSE),
and confidence interval coverage.

R> sim %>% summarize(

+ list(stat="bias", name="bias_lambda”, estimate="lambda_hat", truth=20),
+ list(stat="mse", name="mse_lambda", estimate="lambda_hat"”, truth=20)
+ )
level_id estimator n n_reps bias_lambda mse_lambda
1 1 M 10 100 -0.17600000 1.52480000
2 2 vV 10 100 -1.80166667 103.23599630
3 3 M 100 100 -0.03770000 ©.19165100
4 4 V 100 100 0.22910707 7.72262714
5 5 M 1000 100 0.01285000 ©.01553731
6 6 V 1000 100 0.02514744  ©.92133037

In this example, we see that the MSE of the sample variance is much higher than that of
the sample mean and that MSE decreases with increasing sample size for both estimators, as
expected. From the n_reps column, we see that 100 replicates were successfully run for each
scenario. Results for individual simulation replicates can also be directly accessed via the
sim$results dataframe.

R> head(sim$results)

sim_uid level_id rep_id estimator n runtime lambda_hat
1 1 1 1 M 10 0.0003290176 20.1
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2 7 1
3 8 1
4 9 1
5 10 1
6 11 1

o OB~ Ww N

M 10 0.0002038479 20.5
M 10 0.0001709461 17.3
M 10 0.0001630783 20.3
M 10 0.0001599789 18.3
M 10 0.0001561642 20.4

Above, the sim_uid uniquely identifies a single simulation replicate and the level _id
uniquely identifies a scenario (i.e., a combination of level values). The rep_id is unique
within a given scenario and identifies the index of that replicate within the scenario. The
runtime column shows the runtime of each replicate (in seconds).

3.9 Update a simulation

After running a simulation, a user may want to update it by adding additional level values

or replicates; this can be done with the update_sim function. Prior to running update_sim,

the functions set_levels and/or set_config are used to declare the updates that should be

performed. For example, the following code sets the total number of replicates to 200 (i.e.,

adding 100 replicates to those that have already been run) for each scenario, and adds one
additional level value for n.

R> sim %<>% set_config(num_sim

R> sim %<>% set_levels(

+ estimator = c("M", "V"),

+ n=c(19, 100, 1000, 10000)

+ )

200)

After the levels and/or configuration are updated, update_simis called.

R> sim %<>% update_

sim()

| HHH AR | 100%

Done. No errors or warnings detected.

Another call to summarize shows that the additional replicates were successful:

R> sim %>% summarize(
+ list(stat="bias"”, name="bias_lambda", estimate="lambda_hat", truth=20),

+ list(stat="mse", name="mse_lambda”, estimate="lambda_hat", truth=20)
+ )

level_id estimator n n_reps bias_lambda mse_lambda
1 1 M 10 200 -0.205500000 1.875450000
2 2 \ 10 200 -1.189166667 96.913110494
3 3 M 100 200 -0.055000000 ©.197541000
4 4 vV 100 200 0.023244949 7.955606709
5 5 M 1000 200 0.017495000 0.017497115
6 6 V 1000 200 0.053941807 0.874700025
7 7 M 10000 200 -0.005233000 0.002096102
8 8 V 10000 200 -0.007580998 ©.072997135

It is also possible to delete level values. However, it is not possible to add or delete levels,
as this would require updating the simulation script after the simulation has already run,

which is not allowed.

4 Parallelization

User-friendly parallelization is a hallmark of SimEngine. There are two modes of paralleliz-
ing code using SimEngine, which we refer to as local parallelization and cluster parallelization.
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Local parallelization refers to splitting the computational work of a simulation between
multiple cores of a single computer (e.g., a multicore laptop). Cluster parallelization refers
to running a simulation on a CCS using job arrays. SimEngine is designed to automate as
much of the parallelization process as possible. We give an overview of each parallelization
mode below.

4.1 Local parallelization

Local parallelization is the easiest way to parallelize code, as the entire process is handled by
the package and executed on the user’s computer. This mode is activated using set_config,
as follows.

R> sim <- new_sim()
R> sim %<>% set_config(parallel = TRUE)

SimEngine handles the mechanics related to parallelization internally using the base R
package parallel (R Core Team, 2021). If a single simulation replicate runs in a very short
amount of time (e.g., less than one second), using local parallelization can actually result in an
increase in total runtime. This is because there is a certain amount of computational overhead
involved in the parallelization mechanisms inside SimEngine. A speed comparison can be
performed by running the code twice, once with set_config(parallel = TRUE) and once
with set_config(parallel = FALSE), each followed by sim %>% vars("total_runtime"),
to see the difference in total runtime. The exact overhead involved with local parallelization
will differ between machines. A simple example of a speed comparison is given below:

R> for (p in c(FALSE, TRUE)) {
sim <- new_sim()
sim %<>% set_config(num_sim=20, parallel=p)
sim %<>% set_script(function() {
Sys.sleep(1)
return (list("x"=1))
1))
sim %<>% run()
print(paste("Parallelizing:", p))
print(sim %>% vars("total_runtime”))

“ o+ o+ A+ + o+ + o+

| #H A A 100%
Done. No errors or warnings detected.

[1] "Parallelizing: FALSE"
[1] 20.42414
Done. No errors or warnings detected.

[1] "Parallelizing: TRUE"
[1]1 4.41772

Removing the line Sys.sleep(1) and rerunning the code above can give a sense of the
amount of overhead time incurred for a given simulation and hardware configuration. If
the user’s computer has n cores available, SimEngine will use n-1 cores by default. The
n_cores argument of set_config can be used to manually specify the number of cores to
use, as follows.

R> sim %<>% set_config(n_cores = 2)
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4.2 Cluster parallelization

Parallelizing code using a CCS is more complicated, but SimEngine is built to streamline
this process as much as possible. A CCS is a supercomputer that consists of a number of
nodes, each of which may have multiple cores. Typically, a user logs into the CCS and runs
programs by submitting “jobs” to the CCS using a special program called a job scheduler.
The job scheduler manages the process of running the jobs in parallel across multiple nodes
and/or multiple cores. Although there are multiple ways to run code in parallel on a CCS,
SimEngine makes use of job arrays. The main cluster parallelization function in SimEngine
is run_on_cluster. Throughout this example, we use Slurm as an example job scheduler,
but an analogous workflow will apply to other job scheduling software.

To illustrate the cluster parallelization workflow, consider the simulation from Section

R> sim <- new_sim()
R> create_data <- function(n) { return(rpois(n=n, lambda=20)) }
R> est_lambda <- function(dat, type) {
if (type=="M") { return(mean(dat)) }
if (type=="V") { return(var(dat)) }
+ 3
R> sim %<>% set_levels(estimator = c("M","V"), n = c(10,100,1000))
R> sim %<>% set_script(function() {
dat <- create_data(L$n)
lambda_hat <- est_lambda(dat=dat, type=L$estimator)
return(list(”lambda_hat"=1lambda_hat))
1))
R> sim %<>% set_config(num_sim=100)
R> sim %<>% run()
R> sim %>% summarize()

To run this code on a CCS, we simply wrap it in the run_on_cluster function. To use
this function, we must break the code into three blocks, called first, main, and last. The
code in the first block will run only once, and will set up the simulation object. When this
is finished, SimEngine will save the simulation object in the filesystem of the CCS. The code
in the main block will then run once for each simulation replicate, and will have access to
the simulation object created in the first block. In most cases, the code in the main block
will simply include a single call to run (or to update_sim, as detailed below). Finally, the
code in the last block will run after all simulation replicates have finished running, and
after SimEngine has automatically compiled the results into the simulation object. Use of
the run_on_cluster function is illustrated below:

R> run_on_cluster(
first = {
sim <- new_sim()
create_data <- function(n) { return(rpois(n=n, lambda=20)) }
est_lambda <- function(dat, type) {
if (type=="M") { return(mean(dat)) }
if (type=="V") { return(var(dat)) }

sim %<>% set_levels(estimator = c("M","V"), n = c(10,100,1000))
sim %<>% set_script(function() {

dat <- create_data(L$n)

lambda_hat <- est_lambda(dat=dat, type=L$estimator)
return(list("”lambda_hat"=1ambda_hat))

1))

+
+
+
+
+
+
+ }
+
+
+
+
+
+
+ sim %<>% set_config(num_sim=100, n_cores=20)
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+ h

+ main = {

+ sim %<>% run()

+ h

+ last = {

+ sim %>% summarize()

+ h

+ cluster_config = list(js="slurm")
+ )

Note that none of the actual simulation code changed (with the exception of specifying
n_cores=20 in the set_config call); we simply divided the code into chunks and placed
these chunks into the appropriate block (first, main, or last) within run_on_cluster.
Additionally, we specified which job scheduler to use in the cluster_config argument list.
The command js_support can be run in R to see a list of supported job scheduler software;
the value in the js_code column is the value that should be specified in the cluster_config
argument. Unsupported job schedulers can still be used for cluster parallelization, as
detailed below. Note that the cluster_config argument can also be used to specify which
folder on the cluster should be used to store the simulation object and associated simulation
files (the default is the working directory).

Next, we must give the job scheduler instructions on how to run the above code. In
the following, we assume that the R code above is stored in a file called my_simulation.R.
We also need to create a simple shell script called run_sim. sh with the following two lines,
which will run my_simulation.R (we demonstrate this using BASH scripting language, but
any shell scripting language may be used).

> #!/bin/bash
> Rscript my_simulation.R

If created on a local machine, the two simulation files (my_simulation.R and run_sim. sh)
must be transferred to the filesystem of the CCS. Finally, we use the job scheduler to submit
three jobs. The first will run the first code, the second will run the main code, and the third
will run the last code. With Slurm, we run the following three shell commands:

> sbatch --export=sim_run='first' run_sim.sh
Submitted batch job 101

> sbatch --export=sim_run='main' --array=1-20 --depend=afterok:101 run_sim.sh
Submitted batch job 102
> sbatch --export=sim_run='last' --depend=afterok:102 run_sim.sh

Submitted batch job 103

In the first line, we submit the run_sim. sh script using the sim_run="first' environment
variable, which tells SimEngine to only run the code in the first block. After running this,
Slurm returns the message Submitted batch job 101. The number 101 is called the “job
ID” and uniquely identifies the job on the CCS.

In the second line, we submit the run_sim. sh script using the sim_run="main' environ-
ment variable and tell Slurm to run a job array with “task IDs” 1-20. Each task corresponds
to one core, and so in this case 20 cores will be used. This number should equal the n_cores
number specified via set_config. SimEngine handles the work of dividing the simulation
replicates between the cores; the only restriction is that the number of cores cannot exceed
the total number of simulation replicates.

Also note that we included the option --depend=afterok: 101, which instructs the job
scheduler to wait until the first job finishes before starting the job array. (In practice, the
number 101 must be replaced with whatever job ID Slurm assigned to the first job.) Once this
command is submitted, the code in the main block will be run for each replicate. A temporary
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folder called sim_results will be created and filled with temporary objects containing data
on the results and/or errors for each replicate.

In the third line, we submit the run_sim. sh script using the sim_run="'1last"' environment
variable. Again, we use --depend=afterok:102 to ensure this code does not run until all
tasks in the job array have finished. When this job runs, SimEngine will compile the
results from the main block, run the code in the last block, save the simulation object to the
filesystem, and delete the temporary sim_results folder and its contents. If desired, the
user can leave the last block empty, but this third sbatch command should be run anyway
to compile the results and save the simulation object for further analysis.

Further automating job submission

Advanced users may wish to automatically capture the job IDs so that they don’t need to be
entered manually; sample code showing how this can be done is shown below:

> jid1=$(sbatch --export=sim_run='first' run_sim.sh | sed 's/Submitted batch job //')

> jid2=$(sbatch --export=sim_run='main' --array=1-20 --depend=afterok:$jidl \
run_sim.sh | sed 's/Submitted batch job //')

> shatch --export=sim_run='last' --depend=afterok:$jid2 run_sim.sh

Submitted batch job 103

While this is slightly more complicated, this code allows all three lines to be submitted
simultaneously without the need to copy and paste the job IDs manually every time.

4.3 Additional cluster parallelization functionality
Running locally

The run_on_cluster function is programmed such that it can also be run locally. In this case,
the code within the first, main, and last blocks will be executed in the calling environment
of the run_on_cluster function (typically the global environment); this can be useful for
testing simulations locally before sending them to a CCS.

Using unsupported job schedulers

There may be job schedulers that SimEngine does not natively support. If this is the
case, SimEngine can still be used for cluster parallelization; this requires identifying the
environment variable that the job scheduler uses to uniquely identify tasks within a job
array. For example, Slurm uses the variable "SLURM_ARRAY_TASK_ID" and Grid Engine uses
the variable "SGE_TASK_ID". Once this variable is identified, it can be specified in the
cluster_config block, as follows:

R> run_on_cluster(
+ first = {...},

+ main = {...},

+ last = {...3},

+ cluster_config = list(tid_var="SLURM_ARRAY_TASK_ID")
+ )

Updating a simulation on a CCS

To update a simulation on a CCS, the update_sim_on_cluster function can be used. The
workflow is similar to that of run_on_cluster, with several key differences. Instead of
creating a new simulation object in the first block using new_sim, the existing simulation
object (which would have been saved to the filesystem when run_on_cluster was called
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originally) is loaded using readRDS. Then, the functions set_levels and/or set_config are
called to specify the desired updates (see Section 2.3.9). In the main block, update_sim is
called (instead of run). In the last block, code can remain the same or change as needed.
These differences are illustrated in the code below.

R> update_sim_on_cluster(
+ first = {

+ sim <- readRDS("sim.rds")

+ sim %<>% set_levels(n=c(100,500,1000))

+ h

+ main = {

+ sim %<>% update_sim()

+ +

+ last = {

+ sim %>% summarize()

+ h

+ cluster_config = list(js="slurm")

+ )

Submission of this code via a job scheduler proceeds in the same manner as described
earlier for run_on_cluster.

5 Advanced functionality

In this section, we review the following functionality, targeting advanced users of the
package:

* using the batch function, which allows for information to be shared across simulation
replicates;

* using complex simulation levels in settings where simple levels (e.g., a vector of numbers)
are insufficient;

¢ handling complex return data in settings where a single simulation replicate returns
nested lists, dataframes, model objects, etc.;

* managing RNG seeds;
* best practices for debugging and handling errors and warnings;

* capturing Monte Carlo error using the summarize function.

5.1 Using the batch function to share information across simulation replicates

The batch function is useful for sharing data or objects between simulation replicates.
Essentially, it allows simulation replicates to be divided into “batches;” all replicates in
a given batch will then share a certain set of objects. A common use case for this is a
simulation that involves using multiple methods to analyze a shared dataset, and repeating
this process over a number of dataset replicates. This may be of interest if, for example, it is
computationally expensive to generate a simulated dataset.

To illustrate the use of batch using this example, we first consider the following simula-
tion:

R> sim <- new_sim()

R> create_data <- function(n) { rnorm(n=n, mean=3) }
R> est_mean <- function(dat, type) {

+ if (type=="est_mean”) { return(mean(dat)) }
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+ if (type=="est_median”) { return(median(dat)) }
+ 3
R> sim %<>% set_levels(est=c("est_mean","est_median"))
R> sim %<>% set_config(num_sim=3)
R> sim %<>% set_script(function() {
dat <- create_data(n=100)
mu_hat <- est_mean(dat=dat, type=L$est)
return(list(
"mu_hat"” = round(mu_hat,?2),
"dat_1" = round(dat[1],2)
)
)

R> sim %<>% run()
| HHHEHE A AR ) 100%
Done. No errors or warnings detected.

+ + o+ 4+ o+ 4+ o+

From the ~~dat_1"'"' column of the results object (equal to the first element of the dat
vector created in the simulation script), we see that a unique dataset was created for each
simulation replicate:

R> sim$resultsforder(sim$results$rep_id),c(1:7)!=5]

sim_uid level_id rep_id est mu_hat dat_1
1 1 1 1 est_mean 3.05 4.09
4 2 2 1 est_median 3.06 3.23
2 3 1 2 est_mean 3.03 2.99
5 5 2 2 est_median 3.02 2.78
3 4 1 3 est_mean 2.85 1.47
6 6 2 3 est_median 3.03 2.35

Suppose that instead, we wish to analyze each simulated dataset using multiple methods
(in this case corresponding to ““est_mean' ' and " ~est_median' '), and repeat this procedure
a total of three times. We can do this using the batch function, as follows:

R> sim <- new_sim()
R> create_data <- function(n) { rnorm(n=n, mean=3) }
R> est_mean <- function(dat, type) {

if (type=="est_mean”) { return(mean(dat)) }

if (type=="est_median”) { return(median(dat)) }
+ %
R> sim %<>% set_levels(est=c("est_mean”,"est_median"))
R> sim %<>% set_config(num_sim=3, batch_levels=NULL)
R> sim %<>% set_script(function() {

+ batch({

+ dat <- create_data(n=100)

+ 1))

+ mu_hat <- est_mean(dat=dat, type=L$est)
+ return(list(

+ "mu_hat"” = round(mu_hat,2),

+ "dat_1" = round(dat[1],2)

)

+

R> sim %<>% run()
| #H AR AR 100%
Done. No errors or warnings detected.

In the code above, we changed two things. First, we added batch_levels=NULL to
the set_config call; this will be explained below. Second, we wrapped the code line dat

The R Journal Vol. 17/1, March 2025 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE

212

<-create_data(n=100) inside the batch function. Whatever code goes inside the batch
function will produce the same output for all simulations in a batch.

R> sim$results[order(sim$results$rep_id),c(1:7)!=5]

sim_uid level_id rep_id est mu_hat dat_1
1 1 1 1 est_mean 3.02 2.74
4 2 2 1 est_median 3.19 2.74
2 3 1 2 est_mean 2.91 3.71
5 5 2 2 est_median 2.95 3.71
3 4 1 3 est_mean 3.10 3.52
6 6 2 3 est_median 3.01 3.52

In this case, from the ~~dat_1"'" column of the results object, we see that one dataset was
created and shared by the batch corresponding to sim_uids 1 and 2 (likewise for sim_uids
{3,5} and {4,6}).

However, the situation is often more complicated. Suppose we have a simulation with
multiple levels, some that correspond to creating data and some that correspond to analyzing
the data. Here, the batch_levels argument of set_config plays a role. Specifically, this
argument should be a character vector equal to the names of the simulation levels that are
referenced (via the special variable L) from within a batch block. In the example below, the
levels n and mu are used within the batch call, while the level est is not.

R> sim <- new_sim()
R> create_data <- function(n, mu) { rnorm(n=n, mean=mu) }
R> est_mean <- function(dat, type) {

if (type=="est_mean”) { return(mean(dat)) }

if (type=="est_median”) { return(median(dat)) }

+ %

R> sim %<>% set_levels(n=c(10,100), mu=c(3,5), est=c("est_mean"”,"est_median"))
R> sim %<>% set_config(num_sim=2, batch_levels=c(”"n", "mu"), return_batch_id=T)
R> sim %<>% set_script(function() {

+ batch({

+ dat <- create_data(n=L$n, mu=L$mu)

+ 1))

+ mu_hat <- est_mean(dat=dat, type=L$est)

+ return(list(

+ "mu_hat” = round(mu_hat,?2),

+ "dat_1" = round(dat[1],2)

+ ))

+ 1)

R> sim %<>% run()

| HHHEHH AR AR ) 100%
Done. No errors or warnings detected.
R> sim$resultsforder(sim$results$batch_id),c(1:10)!=8]

sim_uid level_id rep_id batch_id n mu est mu_hat dat_1
1 1 1 1 1 10 3 est_mean 2.87 4.29
9 5 5 1 1 10 3 est_median 2.94 4.29
2 9 1 2 2 10 3 est_mean 2.79 2.77
10 13 5 2 2 10 3 est_median 2.73 2.77
3 2 2 1 3100 3 est_mean 2.93 1.77
11 6 6 1 3 100 3 est_median 3.01 1.77
4 10 2 2 4 100 3 est_mean 2.80 4.44
12 14 6 2 4 100 3 est_median 2.71 4.44
5 3 3 1 5 10 5 est_mean 5.49 4.78
13 7 7 1 5 10 5 est_median 5.25 4.78
6 11 3 2 6 10 5 est_mean 4.57 4.48
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14 15 7 2 6 10 5 est_median 4.62 4.48
7 4 4 1 7 100 5 est_mean 4.98 5.66
15 8 8 1 7 100 5 est_median 4.95 5.66
8 12 4 2 8 100 5 est_mean 5.08 5.55
16 16 8 2 8 100 5 est_median 5.14 5.55

The batches were created such that each batch contained two replicates, one for each
level value of est. For expository purposes, we also specified the return_batch_id=T option
in set_config so that the results object would return the batch_id. This is not necessary
in practice. The batch_id variable defines the batches; all simulations that share the same
batch_id are in a single batch. The return_batch_id=T option can be useful to ensure
correct usage of the batch function.

We note the following about the batch function:

* The code within the batch code block must only create objects; this code should not
change or delete existing objects, as these changes will be ignored.

¢ In the majority of cases, the batch function will be called just once, at the beginning of
the simulation script. However, it can be used anywhere in the script and can be called
multiple times. The batch function should never be used outside of the simulation
script.

¢ Although we have illustrated the use of the batch function to create a dataset to share
between multiple simulation replicates, it can be used for much more, such as taking a
sample from an existing dataset or computing shared nuisance function estimators.

e If the simulation is being run in parallel (either locally or on a CCS), n_cores cannot
exceed the number of batches, since all simulations within a batch must run on the
same core.

* If the simulation script uses the batch function, the simulation cannot be updated
using the update_sim or update_sim_on_cluster functions, with the exception of
updates that only entail removing simulation replicates.

5.2 Complex simulation levels

Often, simulation levels are simple, such as a vector of sample sizes:

R> sim <- new_sim()
R> sim %<>% set_levels(n = c(200,400,800))

However, there are many instances in which more complex objects are needed. For these
cases, instead of a vector of numbers or character strings, a named list of lists can be used.
The toy example below illustrates this.

R> sim <- new_sim()
R> sim %<>% set_levels(
n =c(10,100),
distribution = list(
"Beta 1" = list(type="Beta", params=c(0.3, 0.7)),
"Beta 2" = list(type="Beta", params=c(1.5, 0.4)),
"Normal” list(type="Normal”, params=c(3.0, 0.2))
)
)
R> create_data <- function(n, type, params) {
+ if (type=="Beta") {
+ return(rbeta(n, shapel=params[1], shape2=params[2]))

+ + o+ 4+ + o+ o+
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} else if (type=="Normal"”) {
return(rnorm(n, mean=params[1], sd=params[2]))
}
}
R> sim %<>% set_script(function() {
+ X <- create_data(L$n, L$distribution$type, L$distribution$params)
+ return(list("y"=mean(x)))
+ P
R> sim %<>% run()
| #HHHEH A A ) 100%
Done. No errors or warnings detected.

+ + o+ 4+

Note that the list names (" "Beta 1'', “"Beta 2'',and ~~Normal'') become the entries
in the sim$results dataframe, as well as the dataframe returned by summarize.

R> sim %>% summarize(list(stat="mean", x="y"))

level_id n distribution n_reps mean_y
1 1 10 Beta 1 1 0.1635174
2 2 100 Beta 1 1 0.2740965
3 3 10 Beta 2 1 0.6234866
4 4 100 Beta 2 1 0.7664522
5 5 10 Normal 1 3.0903062
6 6 100 Normal 1 3.0179944

5.3 Complex return data

In most situations, the results of simulations are numeric. However, we may want to return
more complex data, such as matrices, lists, or model objects. To do this, we add a key-value
pair to the list returned by the simulation script with the special key ".complex" and a list
(containing the complex data) as the value. This is illustrated in the toy example below.
Here, the simulation script estimates the parameters of a linear regression and returns these
as numeric, but also returns the estimated covariance matrix and the entire model object.

R> sim <- new_sim()
R> sim %<>% set_levels(n=c(10, 100, 1000))
R> create_data <- function(n) {

X <= runif(n)

y <= 3 + 2%x + rnorm(n)

nyn

return(data.frame(”x"=x, "y"=y))

}
R> sim %<>% set_config(num_sim=2)
R> sim %<>% set_script(function() {

+ dat <- create_data(L$n)

+ model <- 1m(y~x, data=dat)

+ return(list(

+ "beta@_hat"” = model$coefficients[[1]],
+ "betal_hat" = model$coefficients[[2]],
+ ".complex" = list(

+ "model” = model,

+ "cov_mtx" = vcov(model)

+ )

+ )

+

1))
R> sim %<>% run()

| #H AR AR 100%
Done. No errors or warnings detected.
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After running this simulation, the numeric results can be accessed directly via
sim$results or using the summarize function, as usual:

R> head(sim$results)

sim_uid level_id rep_id n runtime beta@_hat betal_hat
1 1 1 1 10 0.012123823 2.113012 3.780972
2 4 1 2 10 0.001345873 2.058610 3.726216
3 2 2 1 100 0.006520033 2.784147 2.058041
4 5 2 2 100 0.001568794 3.066045 2.097569
5 3 3 1 1000 0.001888037 3.144964 1.783498
6 6 3 2 1000 0.002427101 3.125128 1.714405

To examine the complex return data, we can use the special function get_complex, as
illustrated below:

R> c5 <- get_complex(sim, sim_uid=5)
R> print(summary(c5$model))

Call:

Im(formula = y ~ x, data = dat)

Residuals:
Min 1Q Median 30 Max
-2.7050 -0.7429 ©0.1183 ©0.7470 1.9673

Coefficients:
Estimate Std. Error t value Pr(>|t]|)
(Intercept) 3.0660 0.2127 14.413 < 2e-16 **xx*
X 2.0976 0.3714 5.647 1.59e-07 ***
Signif. codes: @ ‘*xx’ 0.001 ‘xx’ 0.01 ‘*x’ 0.05 ‘.’ 0.1 ¢’ 1

Residual standard error: 1.003 on 98 degrees of freedom
Multiple R-squared: 0.2455, Adjusted R-squared: 0.2378
F-statistic: 31.89 on 1 and 98 DF, p-value: 1.593e-07

R> print(c5%$cov_mtx)

(Intercept) X
(Intercept) ©0.04525148 -0.06968649
X -0.06968649 ©0.13795995

5.4 Random number generator seeds

In statistical research, it is desirable to be able to reproduce the exact results of a simulation
study. Since R code often involves stochastic (random) functions like rnorm or sample that
return different values when called multiple times, reproducibility is not guaranteed. In a
simple R script, calling the set. seed function at the beginning of the script ensures that the
stochastic functions that follow will produce the same results whenever the script is run.
However, a more nuanced strategy is needed when running simulations. When running 100
replicates of the same simulation, we do not want each replicate to return identical results;
rather, we would like for each replicate to be different from one another, but for the entire
set of replicates to be the same when the entire simulation is run twice in a row. SimEngine
manages this process, even when simulations are being run in parallel locally or on a cluster
computing system. In SimEngine, a single “global seed” is used to generate a different seed
for each simulation replicate. The set_config function is used to set or change this global
seed:

R> sim %<>% set_config(seed=123)
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If a seed is not set using set_config, SimEngine will set a random seed automatically
so that the results can be replicated if desired. To view this seed, we use the vars function:

R> sim <- new_sim()
R> print(vars(sim, "seed"))
[1] 287577520

5.5 Debugging and error/warning handling

In the simulation coding workflow, errors are inevitable. Some errors may affect all simula-
tion replicates, while other errors may only affect a subset of replicates. By default, when a
simulation is run, SimEngine will not stop if an error occurs; instead, errors are logged and
stored in a dataframe along with information about the simulation replicates that resulted in
those errors. Examining this dataframe by typing print(sim$errors) can sometimes help
to quickly pinpoint the issue. This is demonstrated below:

R> sim <- new_sim()
R> sim %<>% set_config(num_sim=2)
R> sim %<>% set_levels(
+ Sigma = list(
+ s1 = list(mtx=matrix(c(3,1,1,2), nrow=2)),
+ s3 = list(mtx=matrix(c(4,3,3,9), nrow=2)),
+ s2 = list(mtx=matrix(c(1,2,2,1), nrow=2)),
+ s4 = list(mtx=matrix(c(8,2,2,6), nrow=2))
+ )
+ )
R> sim %<>% set_script(function() {
+ X <= MASS::mvrnorm(n=1, mu=c(0,0), Sigma=L$Sigma$mtx)
+ return(list(x1=x[1], x2=x[2]))
+ P
R> sim %<>% run()
| A 100%
Done. Errors detected in 25% of simulation replicates. Warnings detected in
0% of simulation replicates.
R> print(sim$errors)

sim_uid level_id rep_id Sigma runtime message

1 5 3 1 s2 0.0004692078 'Sigma' is not positive definite

2 6 3 2 s2 0.0006608963 'Sigma' is not positive definite
call
1 MASS::mvrnorm(n = 1, mu = c(@, @), Sigma = L$Sigma$mtx)
2 MASS::mvrnorm(n = 1, mu = c(@, @), Sigma = L$Sigma$mtx)

From the output above, we see that the code fails for the simulation replicates that use
the level with Sigma="s2" because it uses an invalid (not positive definite) covariance matrix.
Similarly, if a simulation involves replicates that throw warnings, all warnings are logged
and stored in the dataframe sim$warnings. If an error occurs for a subset of simulation
replicates and that error is fixed, it is possible to rerun the replicates that had errors, as
follows:

R> sim %<>% update_sim(keep_errors=FALSE)

The workflow demonstrated above can be useful to pinpoint errors, but it has two main
drawbacks. First, it is undesirable to run a time-consuming simulation involving hundreds
or thousands of replicates, only to find at the end that every replicate failed because of a
typo. It may therefore be useful to stop an entire simulation after a single error has occurred.
Second, it can sometimes be difficult to determine exactly what caused an error without
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making use of more advanced debugging tools. For both of these situations, SimEngine
includes the following configuration option:

R> sim %<>% set_config(stop_at_error=TRUE)

Setting stop_at_error=TRUE will stop the simulation when it encounters any error. Fur-
thermore, the error will be thrown by R in the usual way, so if the simulation is being run in
RStudio, the built-in debugging tools (such as “Show Traceback” and “Rerun with debug”)
can be used to find and fix the bug. Placing a call to browser at the top of the simulation
script can also be useful for debugging.

5.6 Monte Carlo error

Statistical simulations are often based on the principle of Monte Carlo approximation;
specifically, pseudo-random sampling is used to evaluate the performance of a statistical
procedure under a particular data-generating process. The performance of the procedure
can be viewed as a statistical parameter and, due to the fact that only a finite number of
simulation replicates can be performed, there is uncertainty in any estimate of performance.
This uncertainty is often referred to as Monte Carlo error (see, e.g., Lee and Young, 1999). We
can quantify Monte Carlo error using, for example, the standard error of the performance
estimator.

Measuring and reporting Monte Carlo error is a vital component of a simulation study.
SimEngine includes an option in the summarize function to automatically estimate the
Monte Carlo standard error for any inferential summary statistic, e.g., estimator bias or
confidence interval coverage. The standard error estimates are based on the formulas
provided in Morris et al. (2019). If the option mc_se is set to TRUE, estimates of Monte Carlo
standard error will be included in the summary data frame, along with associated 95%
confidence intervals based on a normal approximation.

R> sim <- new_sim()
R> create_data <- function(n) { rpois(n, lambda=5) }
R> est_mean <- function(dat) {
return(mean(dat))

}
R> sim %<>% set_levels(n=c(10,100,1000))
R> sim %<>% set_config(num_sim=5)
R> sim %<>% set_script(function() {
+ dat <- create_data(L$n)
+ lambda_hat <- est_mean(dat=dat)
+ return (list("lambda_hat"=lambda_hat))
+ P
R> sim %<>% run()

| A 100%
Done. No errors or warnings detected.
R> sim %>% summarize(

+ list(stat="mse", name="lambda_mse", estimate="lambda_hat"”, truth=5),
+ mc_se = TRUE
+ )
level_id n n_reps lambda_mse lambda_mse_mc_se lambda_mse_mc_ci_1l
1 1 10 5 0.5020000 0.274178774 -0.0353903966
2 2 100 5 0.0142800 0.012105759 -0.0094472876
3 3 1000 5 0.0031878 0.001919004 -0.0005734471
lambda_mse_mc_ci_u
1 1.039390397
2 0.038007288
3 0.006949047
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6 Discussion

In this article, we described SimEngine, an open-source R package for structuring, main-
taining, running, and debugging statistical simulations. We reviewed the overall guiding
design principles of the package, illustrated its workflow and main functions, highlighted
local and CCS-based parallelization capabilities, and demonstrated advanced functionality.
It is our hope that this article publicizes the existence of the package and leads to an increase
in the size and engagement of the active user community.

SimEngine is one of several R packages aimed at users conducting statistical simulations
but is, to our knowledge, the only package explicitly intended for use in a CCS environment.
The simulator package (Bien, 2016) provides a modular and flexible framework to structure
simulations but contains no functionality designed specifically for debugging simulations
or leveraging a CCS. The simpr package (Brown and Bye, 2023) uses tidy principles but
does not emphasize flexibility, with a relatively limited scope. Likewise, simFrame (Alfons
et al., 2010), an object-oriented simulation package, makes available a suite of relatively
specific simulation tools, which are intended primarily for survey statistics. Both SimDesign
(Chalmers and Adkins, 2020) and simsalapar (Hofert and Méchler, 2013) are designed for
ease of use but are somewhat less modular than other packages, with a single function for
generating simulated data, running analyses, and summarizing results. The recent simChef
package (Duncan et al., 2024) uses a tidy grammar framework and has additional function-
ality for preparing reports on the results of a simulation study. Additionally, there are a host
of packages available that aid in simulating particular data structures, such as riskSimul
(Hormann and Basoglu, 2023), GImSimulatoR (McMahan, 2023), and PhenotypeSimulator
(Meyer and Birney, 2018), which can be used in conjunction with a package for structuring
simulations if applicable.

We chose to write this package specifically for the R programming language since this
language is widely used by statistical methods developers; as evidence of this claim, a
review of the top ten studies from a simple Google Scholar search of the term “simulation
study” (restricted to the last five years) shows that, out of the eight studies that stated the
programming language used, six were coded using R (Belias et al., 2019; Edelsbrunner et al.,
2023; Todorov et al., 2020; Rusticus and Lovato, 2019; Manolov, 2019; Bower et al., 2021;
Hamza et al., 2021; Thompson et al., 2021). That being said, it could be of practical value in
the future to port the package to other programming environments.

Moving forward, future development of the package will be driven mainly by requests
from active users, screening and prioritizing potential additions or modifications based on
the design principles articulated in Section 2.2. In particular, we hope to focus on improving
parallelization capabilities, including expansion of SimEngine to other parallelization plat-
forms (e.g., Apache Spark), support for futures/promises (as in the future package), and
further automation of the cluster parallelization process (possibly by having SimEngine
automatically create and submit sbatch commands, as is done in the rslurm package). Users
can navigate to https://github.com/Avi-Kenny/SimEngine/issues to submit feature re-
quests and view current open issues. Additionally, because SimEngine is built using the R
53 class system, it is extensible and allows for users to write additional methods customized
to their particular needs, workflow, and style, such as functionality for plotting simulation
results.

Computational details
The results in this paper were obtained using R 4.3.2 with the SimEngine 1.4.0 package.

R itself and all packages used are available from the Comprehensive R Archive Network
(CRAN) at https://CRAN.R-project.org/.
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Changes on CRAN

2025-01-01 to 2025-03-31

by Kurt Hornik, Uwe Ligges, and Achim Zeileis

1 CRAN growth

In the past 3 months, 528 new packages were added to the CRAN package repository.
142 packages were unarchived, 274 were archived and 0 had to be removed. The following
shows the growth of the number of active packages in the CRAN package repository:

Number of CRAN Packages

Number of CRAN Packages (Log-Scale)
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On 2025-03-31, the number of active packages was around 22253.

2 CRAN package submissions

2020

From January 2025 to March 2025 CRAN received 7690 package submissions. For these,
12213 actions took place of which 9271 (76%) were auto processed actions and 2942 (24%)

manual actions.

Minus some special cases, a summary of the auto-processed and manually triggered

actions follows:

archive inspect newbies pending pretest publish recheck waiting
auto 2798 623 1622 152 0 2401 931 356
manual 1171 4 13 6 60 1307 276 98

These include the final decisions for the submissions which were
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archive publish

auto 2672 (35.5%) 2179 (28.9%)
manual 1157 (15.4%) 1522 (20.2%)

where we only count those as auto processed whose publication or rejection happened
automatically in all steps.

3 CRAN mirror security

Currently, there are 93 official CRAN mirrors, 77 of which provide both secure downloads
via ‘https’ and use secure mirroring from the CRAN master (via rsync through ssh tunnels).
Since the R 3.4.0 release, chooseCRANmirror() offers these mirrors in preference to the others
which are not fully secured (yet).

4 CRAN Task View Initiative

There are two new task views:

e Compositional Data Analysis: Maintained by Karel Hron, Javier Palarea-Albaladejo,
Matthias Templ, Alessandra Menafoglio.

¢ Network Analysis: Maintained by Fabio Ashtar Telarico, Pavel N. Krivitsky, James
Hollway.

Currently there are 48 task views (see https://CRAN.R-project.org/web/views/), with
median and mean numbers of CRAN packages covered 108 and 122, respectively. Overall,
these task views cover 4906 CRAN packages, which is about 22% of all active CRAN
packages.
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R Foundation News

by Torsten Hothorn

1 Donations and members

Membership fees and donations received between 2025-03-26 and 2025-07-09.

2 Supporting institutions

Alfred Mueller Analytic Services, Miinchen (Germany), Departement Klinische Forschung,
Basel (Switzerland), Ef-prime, Inc., Tokyo (Japan), NIFU Nordic Institute for Studies in
Innovation, Research and Education, Oslo (Norway), The University of Auckland, Statistics
Department, Auckland (New Zealand).

3 Supporting members

Vedo Alagic (Austria), Jose Alaya (Peru), Kristoffer Winther Balling (Denmark), Ashanka
Beligaswatte (Australia), Emmanuel Blondel (France), Tom Boulay (United States), An-
dreas Biittner (Germany), Robert Carnell (United States), Chao Cheng (China), Giuseppe
Corbelli (Italy), Alistair Cullum (United States), Ajit de Silva (United States), Elliott Deal
(United States), Dubravko Dolic (Germany), Serban Dragne (United Kingdom), Guenter
Faes (Germany), Susan Gruber (United States), Chris Hanretty (United Kingdom), James
Harris (United States), Knut Helge Jensen (Norway), Brian Johnson (United States), Chris-
tian Kampichler (Netherlands), Katharina Kesy (Germany), Sebastian Koehler (Germany),
Sebastian Krantz (Germany), Luca La Rocca (Italy), Teemu Daniel Laajala (Finland), Jindra
Lacko (Czechia), Thierry Lecerf (Switzerland), Eric Lim (United Kingdom), Michal Majka
(Austria), Ivan Marino (Italy), Harvey Minnigh (Puerto Rico), David Monterde (Spain),
Maciej Nasinski (Poland), Mark Niemann-Ross (United States), Jens Oehlschlédgel (Ger-
many), Jaesung James Park (Korea, Republic of), Josiah Parry (United States), Bill Pikounis
(United States), Dominic Schuhmacher (Germany), Murray Sondergard (Canada), Berthold
Stegemann (Germany), Tim Taylor (United Kingdom), Fredrik Wartenberg (Sweden).
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