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Editorial
by Mark P.J. van der Loo

On behalf of the editorial board, I am pleased to present Volume 16 Issue 1 of the R Journal.

In this issue

News from CRAN, the R Foundation, the R Core team, and Bioconductor are included in
this issue.

This issue features 10 contributed research articles the majority of which relate to R packages
on a diverse range of topics. All packages are available on CRAN. Supplementary material
with fully reproducible code is available for download from the Journal website. Topics
covered in this issue are the following.

Reviews

• Current State and Prospects of R-Packages for the Design of Experiments

Modeling and Inference

• BCClong: An R Package for Bayesian Consensus Clustering for Multiple Longitudinal
Features

• pencal: an R Package for the Dynamic Prediction of Survival with Many Longitudinal
Predictors

• Rfssa: An R Package for Functional Singular Spectrum Analysis

Computational Methods

• clarify: Simulation-Based Inference for Regression Models
• FuzzySimRes: Epistemic Bootstrap –an Efficient Tool for Statistical Inference Based on

Imprecise Data
• Pomdp: A Computational Infrastructure for Partially Observable Markov Decision

Processes

Applications

• Fast and Flexible Search for Homologous Biological Sequences with DECIPHER v3
• reslr: An R Package for Relative Sea Level Modelling
• mcmsupply: An R Package for Estimating Contraceptive Method Market Supply

Shares
• LUCIDus: An R Package For Implementing Latent Unknown Clustering By Integrating

Multi-omics Data (LUCID) With Phenotypic Traits

Mark P.J. van der Loo
Statistics Netherlands and Leiden University

https://journal.r-project.org
r-journal@r-project.org
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LUCIDus: An R Package For
Implementing Latent Unknown
Clustering By Integrating Multi-omics
Data (LUCID) With Phenotypic Traits
by Yinqi Zhao, Qiran Jia, Jesse A. Goodrich, David V. Conti

Abstract Many studies are leveraging current technologies to obtain multiple omics measurements
on the same individuals. These measurements are usually cross-sectional, and methods developed
and commonly used focus on omic integration at a single time point. More unique, and a growing
area of interest, are studies that leverage biology or the temporal sequence of measurements to
relate long-term exposures or germline genetics to intermediate measures capturing transitional
processes that ultimately result in an outcome. In this context, we have previously introduced an
integrative model named Latent Unknown Clustering by Integrating multi-omics Data (LUCID)
aiming to distinguish unique effects of environmental exposures or germline genetics and informative
omic effects while jointly estimating subgroups of individuals relevant to the outcome of interest.
This multiple omics analysis consists of early integration (concatenation of omic layers to estimate
common subgroups); intermediate integration (omic-layer-specific estimation of subgroups that are
all related to the outcome); and late integration (omic-layer-specific estimation of subgroups that are
then interrelated by a priori structures). In this article, we introduce LUCIDus version 3, an R package
to implement the LUCID model. We review the statistical background of the model and introduce
the workflow of LUCIDus, including model fitting, model selection, interpretation, inference, and
prediction. Throughout, we use a realistic but simulated dataset based on an ongoing study, the
Human Early Life Exposome Study (HELIX), to illustrate the workflow.

1 Introduction

The rapid advancement in high-throughput technology has made it possible to measure multiple
omics (referred to as “multi-omics”) data on the same person in many cohort studies. These datasets
include DNA genome sequences (Goodwin et al., 2016), RNA expression data (Ozsolak and Milos,
2011), metabolites in biofluids (Beger, 2013), proteins in cells or tissues (Aslam et al., 2017), as well as
chemical exposures in the environment (Wild, 2005). For example, the Human Early-Life Exposome
project (HELIX) measured molecular omics signatures including RNA expression data, metabolites,
plasma proteins, etc. from 1300 children at the age of 6-11 in six European countries (Vrijheid et al.,
2014). Guided by biology or the temporal sequence of measurements, these studies often share a
common structure that relates germline genetics or environmental exposures to intermediate factors
capturing transitional processes that ultimately result in an outcome. While these suspected causal
pathways can be measured with current omic technology, the analysis often focuses on cross-sectional
relationships using cluster analysis or models focused on feature selection. This is in part due to
the analytic and computational challenges resulting from the complex structure of the data collected
from various sources, limited sample sizes, and the high dimensionality of multi-omics information
(Tini et al., 2019). Existing methods do not consider risk factors that precede the omic measurements
and link those factors with disease or trait outcomes while using multi-omics data to characterize
the underlying mechanism. Thus, there is a great need to develop and easily implement approaches
leveraging these mediating relationships or latent structures for the integration of multi-omics data
(Subramanian et al., 2020). Conventional analysis tools range from clustering approaches to variable
selection approaches (González and Cáceres, 2019). Clustering is a fundamental method for analyzing
both single omic and multi-omics data (Rappoport and Shamir, 2018). Clustering aims to divide
observations into several groups (called clusters) so that observations within a group are similar
while samples in different groups are dissimilar. Clustering has many important applications in the
field of biological science and medicine, such as defining gene sets (Hejblum et al., 2015), identifying
subtypes of cancer, and performing diagnostic predictions (Curtis et al., 2012; Khan et al., 2001),
defining cell types in flow cytometry and scRNA-seq experiments (Chan et al., 2008; Hejblum et al.,
2019; Prabhakaran et al., 2016), and estimating protein localization (Crook et al., 2018). Conventional
clustering methods applied to multi-omics data either concatenate multiple datasets (often called early
integration) or analyze each dataset independently (i.e., late integration). However, both approaches
fall short of adequately capturing the variation across omic levels or reflecting the heterogeneity
of the integrated datasets. To overcome these limitations, several specific integrated clustering
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methods for analyzing multi-omics data are available in the community. Pierre-Jean et al. (2020)
conducted a thorough review comparing 13 unsupervised methods for multi-omics data integration
via clustering. Methods include SGCCA (Tenenhaus et al., 2014), SNF (Wang et al., 2014), and iCluster
plus (Mo et al., 2013), etc. Building upon the foundation of Principal Component Analysis (PCA),
Joint and Individual Variation Explained (JIVE) conducts integrated clustering of multi-omics data via
a variance decomposition framework to summarize information across multiple omic layers (Lock
et al., 2013). Within the Bayesian framework, Kirk et al. (2012) proposed an unsupervised approach,
Bayesian correlated clustering, that simultaneously models each omic layer via a mixture model
while considering the correlation between each model. In a similar fashion, Bayesian consensus
clustering can flexibly describe the dependency and the heterogeneity of the multi-omics data (Lock
and Dunson, 2013). An alternative approach to clustering includes dimension reduction or variable
selection to reduce noise, improve model interpretability, and avoid problems with overfitting. For
example, the least absolute shrinkage and selection operator (LASSO) induces sparsity in model
coefficients based on L1 norm regularization (Tibshirani, 1996). An extension of LASSO, Group
LASSO, allows for variable selection on both individual and pre-specified grouped variables (Yuan
and Lin, 2006). L1 norm regularization is integrated into many clustering approaches to reduce data
dimensionality, such as SGCCA and iCluster plus. Extensions of variable selection approaches exist
for mediation as well and include both high-dimensional and latent variable approaches. HIMA
first implements pre-screening of the high-dimensional mediators and then utilizes an LASSO-type
penalty to obtain a sparse solution (Zhang et al., 2016), while BAMA is a Bayesian shrinkage approach
that employs continuous shrinkage priors on the key coefficients to select active mediators with
large effects only (Song et al., 2020). Both Albert et al. (2016) and Derkach et al. (2019) proposed
statistical models within the causal mediation framework that summarize the information from high-
dimensional multi-omics data into a latent variable to facilitate interpretation. In the context of linking
multi-omics to health outcomes and identifying key omic features that drive the outcomes, Singh
et al. (2019) proposed Data Integration Analysis for Biomarker discovery using Latent cOmponents
(DIABLO), which extends the unsupervised sGCCA to a supervised framework. DIABLO achieves
summarizing common information across different omic layers and conducting variable selection
while discriminating the outcome of interest. Nonetheless, DIABLO fails to take into account the
impact of risk factors related to the outcome and their interplay with multi-omics data. Finally, Peng
et al. (2020) proposed a model called Latent Unknown Clustering by Integrating multi-omics Data
(LUCID) that incorporates both clustering and variable selection to distinguish unique effects of
germline genetics or environmental exposures and informative omic effects while jointly estimating
subgroups of individuals relevant to the outcome of interest. LUCID is a novel ’quasi-mediation’
approach that uses latent variable analysis to estimate subgroups of individuals characterized by key
omic factors and with differential associations to the outcome and exposures. They demonstrated the
performance of LUCID through extensive simulation studies and real data applications to highlight the
integration of genomic, exposomic, and metabolomic data. LUCIDus, the R package to implement the
LUCID model, provides an integrated clustering framework and has numerous downloads (around
19,000 times since it was first introduced according to dlstats (Yu, 2022)). It has also been applied
in several environmental epidemiological studies (Jin et al., 2020; Stratakis et al., 2020; Matta et al.,
2022). In this paper, we introduce LUCIDus version 3, a major update and enhancement from the
original release (Jia et al., 2024). To account for the heterogeneity of the integrated datasets based
on the study design, LUCIDus version 3 incorporates three integration strategies into the LUCID
framework: (1) Early integration (Figure 1 (a)) concatenates all multi-omics data matrices into a single
matrix prior to model estimation; (2) Intermediate integration (Figure 1 (b)) estimates latent clusters
for each omic layer, and the resulting clusters are then modeled in parallel in a joint model linking
exposures and the outcome; and (3) Late integration (Figure 1 (c)) in which each omic layer is used
to estimate omic-specific clusters that are then linked via apriori relationships with each other and
the exposure and outcome. LUCIDus version 3 also includes model selection, model visualization,
and inference based on bootstrap resampling. It also incorporates an integrated imputation approach
to deal with missingness in multi-omics data. The paper is organized as follows: we first briefly
introduce the statistical model of LUCID; we then go through the details of functions in the LUCIDus
package; we illustrate the workflow of fitting LUCID models by using a dataset simulated based on
real cases from the HELIX study (Vrijheid et al., 2014; Maitre et al., 2022).

2 Model and software

2.1 Overview of the original LUCID model (early integration)

In the LUCID model, genomic/exposomic exposures G, other multi-omics data Z, and phenotype trait
Y are integrated through a latent categorical variable X. To model the complex correlation structure
between each layer of the multi-omics data, we propose three types of LUCID models based on

The R Journal Vol. 16/2, June 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=LUCIDus
https://CRAN.R-project.org/package=dlstats


CONTRIBUTED RESEARCH ARTICLE 6

𝑮

𝒁

𝒀𝑿
𝜷 𝜸

𝝁, 𝚺regularization

missing

observed

𝑮

𝒁𝟏

𝑿𝟏

𝜷 𝟏

missing

observed

𝑪𝒐𝑮

𝒁𝟐
missing

observed
𝒁𝒎

missing

observed

𝑿𝟐

𝑿𝒎

𝜷𝟐

𝜷𝒎

𝜸𝟏

𝜸𝟐

𝜸𝒎
𝑪𝒐𝑮

𝑪𝒐𝑮

…

…

𝑮 𝑿𝟏 𝑿𝟐 𝑿𝒎 𝒀

𝑪𝒐𝑮 𝑪𝒐𝒀

𝜷 𝜹𝟏 𝜹𝟐 𝜸

𝒁𝟏
missing

observed
𝒁𝟐

missing

observed
𝒁𝒎

missing

observed
…

… 𝜹𝒎(𝟏

(a) (b)

(c)

𝑪𝒐𝑮 𝑪𝒐𝒀

𝒀
𝑪𝒐𝒀

Figure 1: Three DAGs represent how three different types of the LUCID model integrate ge-
netic/environmental exposures (G), other multi-omics data (Z), and the phenotype trait (Y). (a)
LUCID early integration; (b) LUCID in parallel; (c) LUCID in serial. The squares represent observed
data, the circles represent unobserved latent variables (clusters) and model parameters, and the dia-
mond refers to L1 penalty terms for regularization for (a). CoG and CoY represent covariates to be
adjusted in the LUCID model. Missingness is allowed in multi-omics data. Z is divided into subsets
of observations with complete measurements and observations with missingness. For (b) and (c), Z is
partitioned into m layers.

different integration strategies: (1) LUCID early integration; (2) LUCID in parallel or intermediate
integration; and (3) LUCID in serial or late integration. Figure 1 illustrates the joint relationship
between G, Z, X, and Y for each LUCID model. We will discuss LUCID in parallel and LUCID in
serial in detail under Sections LUCID in Parallel and LUCID in Serial as two extensions, and here we
focus on LUCID early integration. Because X is an unobserved categorical variable, each category of
X is interpreted as a latent cluster in the data, jointly defined by G, Z, and Y . Let G be a N × P matrix
with columns representing genetic/environmental exposures and rows representing the observations;
Z be a N × M matrix of omics data (for example, gene expression data, DNA methylation profiles,
and metabolomic data, etc.) and Y be a N-length vector of phenotype traits. We further assume G, Z,
and Y are measured through a prospective sampling procedure, so we do not model the distribution
of G. All three measured components (G, Z, and Y) are linked by a latent variable X consisting of K
categories. The directed acyclic graph (DAG) in Figure 1 (a) implies that the distributions of X given G,
Z given X, and Y given X are conditionally independent of each other. Let f (·) denote the probability
mass functions (PMFs) for categorical random variables or the probability density functions (PDFs)
for continuous random variables. The joint log-likelihood of the LUCID model is constructed as:

log L(Θ) =
N

∑
i=1

log f (Zi, Yi|Gi; Θ)

=
N

∑
i=1

log
K

∑
j=1

f (Xi = j|Gi; Θ) f (Zi|Xi = j; Θ) f (Yi|Xi = j; Θ)

(1)

where Θ is a generic notation for all parameters in the LUCID model. Since X is a discrete variable
with K categories, we assume X follows a multinomial distribution conditioning on G, denoted by
the softmax function S(·). We assume omics data Z follows a multivariate Gaussian distribution
conditioning on X, denoted by ϕ(Z|X = j; µj, Σj), where µj and Σj are cluster-specific means and
variance-covariance matrices for Z. For illustrative purposes, we assume Y is a continuous outcome
following a univariate Gaussian distribution, denoted by ϕ(Y |X = j; γj, σ2

j ) (γj and σ2
j are also

interpreted as the cluster-specific means and variances for the effect of X on Y). Similar development
for a binary outcome is detailed in (Peng et al., 2020). Because the latent cluster X is unobserved, the
maximum likelihood estimates (MLE) of the parameters associated with the LUCID model based on
Equation 1 are not readily estimated. Therefore, we use the Expectation-Maximization (EM) algorithm
to obtain the MLE of model parameters. We define I(Xi = j) as an indicator function representing
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that observation i belongs to latent cluster j. Then, the log-likelihood function of model parameters in
Equation 1 becomes:

log L(Θ) =
N

∑
i=1

K

∑
j=1

I(Xi = j) (log S(Xi = j|Gi; Θ) + log ϕ(Zi|Xi = j; Θ) + log ϕ(Yi|Xi = j; Θ)) (2)

We denote the observed data as D = {G, Z, Y}, and define the responsibility r as the inclusion
probability (IP) of belonging to the latent cluster j given observed data and current estimation of
model parameters at iteration t, which is:

r(t)ij = P(Xi = j|D; Θ(t))

=
S
(

Xi = j|Gi; β(t)
)

ϕ
(

Zi|Xi = j; µ
(t)
j , Σ

(t)
j

)
ϕ
(

Yi|Xi = j; γ
(t)
j , σ

2(t)
j

)
∑K

j=1 S
(

Xi = j|Gi; β(t)
)

ϕ
(

Zi|Xi = j; µ
(t)
j , Σ

(t)
j

)
ϕ
(

Yi|Xi = j; γ
(t)
j , σ

2(t)
j

) (3)

At each iteration t, in the E-step, we compute the expectation of the complete data likelihood, which is:

Q(Θ|D, Θ(t)) =
N

∑
i=1

K

∑
j=1

rij log S (Xi = j|Gi; β) +
N

∑
i=1

K

∑
j=1

rij log ϕ(Zi|Xi = j; µj, Σj)

+
N

∑
i=1

K

∑
j=1

rij log ϕ
(

Y|Xi = j; γj, σ2
j

) (4)

In the M-step, we update parameter estimates by maximizing Equation 4 in terms of Θ, which results
in the following:

β(t+1) = arg max
β

N

∑
i=1

K

∑
j=1

r(t)ij log S(Xi = j|Gi; β j) (5)

µ
(t+1)
j =

∑N
i=1 r(t)ij Zi

∑N
i=1 r(t)ij

(6)

Σ
(t+1)
j =

∑N
i=1 r(t)ij

(
Zi − µ

(t+1)
j

) (
Zi − µ

(t+1)
j

)T

∑N
i=1 r(t)ij

(7)

γ
(t+1)
j =

∑N
i=1 r(t)ij Yi

∑N
i=1 r(t)ij

(8)

σ
2(t+1)
j =

∑N
i=1 r(t)ij

(
Yi − γ

(t+1)
j

)2

∑N
i=1 r(t)ij

(9)

Although maximization of β
(t+1)
j in Equation 5 does not have a closed-form solution, it is equivalent

to fitting a multinomial logistic regression by treating rij as the outcome and Gi as the exposure. For
LUCIDus, we include a more flexible geometric feature of latent clusters, such as volume, shape, and
orientation determined by Σj. We use the parameterization of covariance matrices by means of an
eigenvalue decomposition in the form below (Banfield and Raftery, 1993):

Σj = λjDj AjD
T
j (10)

where λj is a scalar, Dj is the orthogonal matrix of eigenvectors, and Aj is a diagonal matrix whose
values are proportional to eigenvalues. A detailed discussion of maximizing Σj parameterized by
Equation 10 is provided by Celeux and Govaert (1995). Their algorithm is implemented in the R
package mclust (Scrucca et al., 2016), and we leverage mclust to update Σj in the M-step at each
iteration of the EM algorithm for LUCID.

2.2 General workflow of LUCIDus

The LUCIDus package includes five main functions and two auxiliary functions to implement the
analysis framework based on LUCID. Brief descriptions of each function are listed in Table 1. The
workflow of the LUCIDus package is shown in Figure 2. Below we describe the typical workflow
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Main function Description
lucid() Main function to fit LUCID models, specified by giving inte-

grated data, a distribution of the outcome, and the type of the
LUCID model (early, parallel, serial). It also conducts model
selection and variable selection for LUCID early integration and
model selection for candidate models with different numbers of
latent clusters for LUCID in parallel and LUCID in serial.

summary() S3 method for LUCID. Create tables to summarize a LUCID
model.

plot() S3 method for LUCID. Visualize LUCID models through a
Sankey diagram.

boot_lucid() Derive confidence intervals based on bootstrap resampling.
predict_lucid() Predict latent cluster assignment and outcome using integrated

data.
Workhorse function Description
estimate_lucid() Fit a LUCID model to estimate latent clusters by using integrated

data.
tune_lucid() Fits a series of LUCID models over different combinations of

tuning parameters and determines an optimal model with the
minimum BIC.

Table 1: Functions in the LUCIDus package. lucid() calls estimate_lucid() and tune_lucid() in
the backend. The two workhorse functions are not normally called directly, but they can be useful
when a user wants to examine the model fitting process in more detail.

Input:
𝑮, 𝒁, 𝒀, 𝑳𝑼𝑪𝑰𝑫	𝒎𝒐𝒅𝒆𝒍	𝒕𝒚𝒑𝒆

Tune 𝐾

lucid()

LUCID
Model

Variable
Selection*

plot()*summary()

boot_lucid()*

Confidence
Interval

New Input:
𝑮, 𝒁, (𝒀)

predict_lucid()

Sankey
Diagram

Coefficients 
Table

Cluster Label,
Outcome

Interpretation

Prediction

Inference

Estimation

Figure 2: The workflow of the LUCIDus package. Dark blue nodes represent input data, light
blue nodes represent output results. Green nodes and dashed arrows are optional steps for model
estimation. Red texts correspond to 5 key functions in LUCIDus. Steps and functions marked with an
asterisk currently work for LUCID early integration only.
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of analyzing integrated data using the LUCID early integration model. The function lucid() is the
primary function in the package, which fits a LUCID model based on an exposure matrix (argument G),
multi-omics data (argument Z), outcome data (argument Y), the number of latent clusters (K; default is
2), the type of the LUCID model (argument lucid_model; here it is ‘early’ as we focus on the LUCID
early integration model in this section), and the family of the outcome (argument family; default
is ‘normal’). If a vector of K and/or L1 penalties are supplied, lucid() will automatically conduct
model selection on the number of clusters K, select informative variables in G or Z, or both, and return
a LUCID early integration model (an R object of class ‘lucid_early’) with optimal K and selected
variables in G and/or Z. Several additional functions can then be applied to a fitted LUCID object.
summary() summarizes the fitted LUCID model by producing summary tables of parameter estimation
and interpretation. Visualization is performed via the plot() function to create a Sankey diagram
showing the interplay among the three components (G, Z, and Y). In addition, statistical inference can
be accomplished for LUCID by constructing confidence intervals (CIs) based on bootstrap resampling.
This is achieved by the function boot_lucid(). Finally, predictions on the cluster assignment and
the outcome can be obtained by calling the function predict_lucid(). In practice, it might not be
necessary to implement the entire workflow above. For instance, if we have prior knowledge of the
number of latent clusters K, model selection for the number of clusters can be skipped. If a given
dataset has limited variables (for example, variables selected based on biological annotations), then
variable selection may not be necessary. Note that for a LUCID in parallel model or a LUCID in
serial model (the argument lucid_model is ‘parallel’ or ‘serial’, respectively), specification of K
is different, and the features of variable selection, constructing confidence intervals (CIs) based on
bootstrap resampling, and plotting are not yet available (see Sections LUCID in Parallel and LUCID in
Serial). In the following sections, we show example code and demonstrate the usage of the LUCID
early integration model using the simulated HELIX data.

3 Illustration

3.1 Fitting a LUCID model by lucid()

To illustrate integrative clustering with the LUCID early integration model, we use simulated data
based on real cases from the HELIX study based on the correlation structure. A subset of the simulated
data is incorporated in the LUCIDus package to replicate the workflow presented here. The dataset is
a list of dataframe containing data from 420 children, with 1 variable measuring maternal exposure
to utero mercury (referred to as the exposome), 10 methylomes measured in children (referred to as
the methylomics), 10 transcriptomes measured in children (referred to as the transcriptomics), 10
miRNA measured in children (referred to as the miRNA), childhood cytokeratin 18 level (referred
to as ck18, a continuous outcome as an indicator of metabolic-dysfunction-associated fatty liver
disease (MAFLD), childhood cytokeratin 18 category (a binary outcome referred to as ck18_cat) and 2
covariates, including child’s sex and child’s age. To organize the data into separate dataframes for
each type of data and to better illustrate functionality within LUCIDus, we use the following code:

> library(LUCIDus)
> # load data
> data("simulated_HELIX_data")
> simulated_data <- simulated_HELIX_data
> exposome <- as.matrix(simulated_data[["phenotype"]]$hs_hg_m_scaled)
> colnames(exposome) <- "hs_hg_m_scaled"
> methylomics <- simulated_data$methylome
> ck18 <- as.matrix(simulated_data[["phenotype"]]$ck18_scaled)
> colnames(ck18) <- "ck18_scaled"
> ck18_cat <- ifelse(ck18 > mean(ck18), 1, 0)
> covars <- c("hs_child_age_yrs_None","e3_sex_None")
> covs <- simulated_data[["phenotype"]][covars]
> covs$e3_sex_None <- ifelse(covs$e3_sex_None == "male", 1, 0)

Our goal is to conduct an integrated clustering of the exposome and methylome and to relate the
estimated latent clusters to the childhood cytokeratin 18 level. The LUCID model is fitted using
the function lucid(). The input data are specified by arguments G, Z, and Y, corresponding to the
exposome, the methylome, and the childhood cytokeratin 18 level, respectively. In practice, scaling of
multi-omics data is highly recommended to obtain more stable estimates; the methylomics data used
in this example are already scaled. If multi-omics data are included in the LUCID analysis as the omic
intermediate Z, the user can concatenate them one by one into a single data matrix and then input
the concatenated matrix as Z for early integration. For illustrative purposes, we assume that, in the
example data, the optimal number of latent clusters is 2 (determining the optimal number of clusters is
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a major question prior to performing clustering analysis; more details are discussed in the later Section
Model selection and variable selection). For illustration, we fit two LUCID models with continuous
outcome ck18 and binary outcome ck18_cat, respectively. The parameter family specifies the outcome
type. The default setting is ‘normal’, corresponding to a continuous outcome. For a binary outcome,
family should be specified as ‘binary’. lucid() returns an object of class ‘lucid_early’ providing the
MLE of the LUCID model as well as IPs.

> # Fit a LUCID model with a continuous outcome
> fit1 <- lucid(G = exposome, Z = methylomics, Y = ck18, init_omic.data.model = NULL,
+ lucid_model = "early", family = "normal", K = 2)
> # MLE of the LUCID model
> # fit1$res_Beta
> # fit1$res_Mu
> # fit1$res_Sigma
> # fit1$res_Gamma
> # IPs of the sample
> # fit1$inclusion.p
> # Fit LUCID model with a binary outcome
> fit2 <- lucid(G = exposome, Z = methylomics, Y = ck18_cat, init_omic.data.model = NULL,
+ lucid_model = "early", family = "binary", K = 2)

Initializing the parameters of LUCID

β is initiated by randomly drawing from a uniform distribution. By default, init_par is ‘mclust’ and
init_omic.data.model is ‘EEV’, so lucid() calls Mclust() to fit the mixture model of ‘EEV’ on omics
data Z and use the mixture model estimates to initiate µ and Σ, and then implement regression to
initiate γ. Alternatively, the user can also specify init_omic.data.model to choose a certain mixture
model. The available mixture models are listed in mclust::mclustModelNames (Scrucca et al., 2016).
Note that init_omic.data.model can be ‘NULL’ to let Mclust() automatically choose the optimal
mixture model. If not using Mclust() for initiation, the user can also specify init_par to be ‘random’
to initiate µ and Σ by randomly drawing them from a uniform distribution and then implement
regression to initiate γ. We recommend using the default setting to initiate the parameters by calling
Mclust() for quick convergence and stable performance.

> # Fit LUCID model with spherical shape, equal volume
> fit3.1 <- lucid(G = exposome, Z = methylomics, Y = ck18,
+ lucid_model = "early", family = "normal", K = 2,
+ init_par = "mclust",init_omic.data.model = "EII")
> # Fit LUCID model with random guess
> fit3.2 <- lucid(G = exposome, Z = methylomics, Y = ck18,
+ lucid_model = "early", family = "normal", K = 2,
+ init_par = "random")
> # Fit LUCID model with ellipsoidal shape, varying volume, shape, and orientation
> fit4 <- lucid(G = exposome, Z = methylomics, Y = ck18,
+ lucid_model = "early", family = "normal", K = 2,
+ init_omic.data.model = "VVV")

Supervised LUCID versus unsupervised LUCID

In Equation 1, the latent clusters X are jointly defined by genomic/environmental exposure G, other
multi-omics data Z, and outcome Y . Because the outcome is explicitly incorporated in the likelihood
function, the estimation process based on Equation 1 is similar to a supervised learning process.
LUCIDus also allows for an unsupervised version of LUCID. In this unsupervised LUCID, the latent
clusters are estimated only by G and Z. Specifically, the joint likelihood of unsupervised LUCID is
written as

log L(Θ) =
N

∑
i=1

K

∑
j=1

I(Xi = j) (log S(Xi = j|Gi; Θ) + log ϕ(Zi|Xi = j; Θ)) (11)

and the corresponding responsibility based on Equation 11 is derived as

r(t)ij =
S
(

Xi = j|Gi; β(t)
)

ϕ
(

Zi|Xi = j; µ
(t)
j , Σ

(t)
j

)
∑K

j=1 S
(

Xi = j|Gi; β(t)
)

ϕ
(

Zi|Xi = j; µ
(t)
j , Σ

(t)
j

) (12)
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Estimations for unsupervised LUCID are also obtained by the EM algorithm discussed previously.
The parameter useY in lucid() is a flag indicating a supervised or unsupervised LUCID model. By
default, useY = TRUE, and lucid() fits supervised LUCID. To fit an unsupervised LUCID model, a
user should set useY = FALSE.

> # Fit an unsupervised LUCID model
> fit5 <- lucid(G = exposome, Z = methylomics, Y = ck18, lucid_model = "early",
+ family = "normal", K = 2, useY = FALSE)

The choice of a supervised LUCID or unsupervised LUCID model depends both on the study design
and the research question. A supervised LUCID analysis may be appropriate, for example, if: (1) there
is the belief that the cluster structure is defined jointly by G, Z, and Y (for example, data collected
from a cross-sectional design); or (2) the goal is to build a predictive model with data from one cohort
to then apply directly to another cohort. If the aim is to obtain an unbiased estimate for the association
between the latent cluster X and the outcome Y , an unsupervised LUCID model is more appropriate.

Adjusting for covariates

LUCIDus also allows for the adjustment of covariates. According to the DAG in Figure 1 (a), covariates
may be included for the association between the exposure and the latent cluster (referred to as G to
X covariate) or for the association between the latent cluster and the outcome (referred to as X to Y
covariate). Covariates in the G to X relationship act more like predictors of the latent cluster while
covariates in the X to Y relationship may be interpreted more in the context of an adjustment for a
potential confounding effect. A variable can serve as both a G to X covariate and a X to Y covariate.
In the lucid() function, G to X covariates are specified by parameter CoG and X to Y covariates are
specified by parameter CoY.

> # Include covariates as G to X covariates
> fit6 <- lucid(G = exposome, Z = methylomics, Y = ck18, lucid_model = "early", K = 2,
+ family = "normal", CoG = covs)
> # Include covariates as X to Y covariates
> fit7 <- lucid(G = exposome, Z = methylomics, Y = ck18, lucid_model = "early", K = 2,
+ family = "normal", CoY = covs)

3.2 Interpreting LUCID

Since LUCID is an integrated analysis framework consisting of clustering, regression, and multiple
data components, we provide two utility functions, summary() and plot() to summarize the results of
LUCID and to facilitate interpretation.

Summarizing LUCID in tables by summary()

A direct call of summary() with the input of a model returned by lucid() prints three tables in the
console, corresponding to associations among G, Z, and Y . We take the LUCID model fitted with the
continuous BMI as an example.

> # summarize a simple lucid model with a continuous outcome
> summary(fit1)
----------Summary of the LUCID Early Integration model----------
K = 2 , log likelihood = -6721.801 , BIC = 14808.7
(1) Y (continuous outcome): effect size of Y for each latent cluster

Gamma
cluster1 0.0000000
cluster2 0.5040367
(2) Z: mean of omics data for each latent cluster

mu_cluster1 mu_cluster2
cg_GRHL3 0.2452019 -0.3627827
cg_BTF3L4 0.1863510 -0.2798288
cg_AL358472.7 0.1954543 -0.3290283
cg_HDGF 0.1897587 -0.2614602
cg_TDRD5 0.1977435 -0.2186209
cg_CSRNP3 0.1742812 -0.1794667
cg_HSPD1 0.2829609 -0.3282916
cg_EPM2AIP1 -0.1565522 0.3031461
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hs_hg_m_scaled

cg_GRHL3

cg_BTF3L4

cg_AL358472.7

cg_HDGF

cg_TDRD5

cg_CSRNP3

cg_HSPD1

cg_EPM2AIP1
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cg_VTRNA1_3

ck18_scaled

Latent Cluster2

Latent Cluster1

Figure 3: An example of using the Sankey diagram to visualize a LUCID model. The dark grey
nodes represent the exposure, the light grey node represents the outcome, the blue nodes are omics
data, and the orange nodes are latent clusters. The width of links and nodes corresponds to effect
size. Light-colored links represent negative associations while dark-colored links indicate positive
associations.

cg_AC025171.1 0.2769363 -0.2656729
cg_VTRNA1_3 -0.2250234 0.1847493
(3) E: odds ratio of being assigned to each latent cluster for each exposure

beta OR
hs_hg_m_scaled.cluster2 0.7909168 2.205417

The first table summarizes the association between the latent cluster and the outcome (cytokeratin 18).
The estimated effect size of cytokeratin 18 for cluster 1 is 0 since it is the reference cluster while that
for cluster 2 is 0.504. In the case of a binary outcome, the coefficient in the first table is interpreted
as the log odds for the variable for that specific cluster vs. the reference cluster. The second table
characterizes each cluster by its omics signature. The omics signature is a cluster-specific mean
for each variable in the omics data. For instance, latent cluster 1 is characterized by low levels of
cg_EPM2AIP1 (µ1(cg_EPM2AIP1) = −0.157) and cg_VTRNA1_3 (µ1(cg_VTRNA1_3) = −0.225),
and high levels of all other omic features; for example, cg_GRHL3 (µ1(cg_GRHL3) = 0.2452019). On
the contrary, latent cluster 2 features high levels of cg_EPM2AIP1 (µ2(cg_EPM2AIP1) = 0.303) and
cg_VTRNA1_3 (µ2(cg_VTRNA1_3) = 0.185), and low levels of all other features including cg_GRHL3
(µ2(cg_GRHL3) = −0.363). The third table relates the exposures to the latent clusters. For instance,
‘hs_hg_m_scaled’ represents the scaled level of maternal mercury exposure. The coefficient OR for
‘hs_hg_m_scaled’ is 0.791, meaning that for each doubling of the scaled level of maternal mercury
exposure, the odds ratio of being assigned to latent cluster 2 is 2.205. Since latent cluster 2 is associated
with a higher child level of cytokeratin 18, these results indicate that exposure to mercury is associated
with a higher child level of cytokeratin 18 and thus higher risks of MAFLD.

Visualizing LUCID by plot()

Visualization is another imperative way to interpret statistical models. Here we use a Sankey diagram
(Schmidt, 2008) for the visualization of the relationships among different components in LUCID.
plot() takes a fitted LUCID model as input and creates a Sankey diagram in html format. It also
accepts a user-defined color palette.

> # Visualize LUCID model via a Sankey diagram
> plot(fit1)
> # Change the node color
> plot(fit1, G_color = "yellow")
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Figure 4: Choosing an optimal number of latent clusters K based on BIC.

> # Change the link color
> plot(fit1, pos_link_color = "red", neg_link_color = "green")

Figure 3 shows an example of a Sankey diagram for the example data. Each node represents a
component in the LUCID model. Different components are labeled by user-defined colors. Each
link represents the statistical association between two nodes. The width of the links reflects the
effect size of the association, and the color of the links indicates the direction of the association. By
default, dark-colored links represent positive associations while light-colored links indicate negative
associations. The output of the Sankey diagram is an interactive html file in which the user can drag
and rearrange the layout of the elements to avoid overlapping. In practice, we recommend limiting
the number of variables in the Sankey diagram to approximately 10 to facilitate interpretation.

3.3 Model selection and variable selection

To determine the number of latent clusters, K, LUCID implements model selection by fitting a series of
models, each with a different value for K, and then the Bayesian Information Criteria (BIC) is used to
choose the optimal model (Fan and Tang, 2013). The optimal model is the one with the lowest BIC.
The BIC for LUCID is defined as

BIC = −2 log L(Θ̂) + D log N (13)

where Θ̂ is the maximum likelihood estimation and D is the number of parameters in LUCID. Specifi-
cally, D = P(K − 1) + KM + KM(M + 1)/2 + nY , where nY is the number of parameters dependent
upon the type of outcome Y . If Y is a continuous outcome, then nY = 2K. If Y is a binary outcome,
then nY = K. If a vector of K is used as input to the function lucid(), model selection is automatically
performed and returns the model with optimal K.

> fit8 <- lucid(G = exposome, Z = methylomics, Y = ck18, lucid_model = "early",
+ family = "normal", K = 2:6)
> # Check the optimal K
> fit8$K
[1] 2

Separately, users can use the auxiliary function tune_lucid() to explore model selection in more detail.
This function returns the optimal model as well as a table recording the tuning process. Below is an
example of tuning K and visualizing the tuning process by using tune_lucid().

> # Look into the tuning process in more detail
> tune_K <- tune_lucid(G = exposome, Z = methylomics, Y = ck18, lucid_model = "early",
+ family = "normal", K = 2:6)
> fit9 <- tune_K$best_model
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> ggplot(data = tune_K$tune_list, aes(x = K, y = BIC, label = round(BIC, 0))) +
+ geom_point() +
+ geom_line() +
+ geom_text(hjust = -0.2)

Figure 4 shows the tuning process with K = 2 resulting in the lowest BIC. Including additional or
redundant variables in clustering models may increase model complexity, impair prediction accuracy,
and boost computational time (Fop and Murphy, 2018). LUCIDus performs variable selection for both
the genetic/environmental exposures G and for the other multi-omics data Z via L1-norm penalty
terms. For variable selection for G, we apply the LASSO regression to obtain sparse solutions for
Equation 5, which is

β
(t+1)
LASSO = arg max

β

 N

∑
i=1

K

∑
j=1

r(t)ij log S(Xi = j|Gi; β j)− λβ

K

∑
j=1

P

∑
l=1

|β jl |

 (14)

To obtain sparse estimation for µ and Σ, we implement the penalized model-based method (Zhou
et al., 2009). µ is first updated by maximizing the following equation,

µ
(t+1)
j = arg max

µ

 N

∑
i=1

K

∑
j=1

r(t)ij log ϕ(Zi|µj, Σj)− λµ

K

∑
j=1

M

∑
l=1

|µjl |

 (15)

Denote W = Σ−1. Then Σ is updated by maximizing its inverse penalized by L1-norm

W (t+1)
j = arg max

W

 N

∑
i=1

K

∑
j=1

r(t)ij

(
det Wj − trace(S(t)

j Wj)
)
− λW ∑

ls
|wjls|

 (16)

where Sj is the empirical covariance matrix at each iteration, defined as

S(t)
j =

∑N
i=1 rij

(
Zi − µ

(t)
j

) (
Zi − µ

(t)
j

)T

∑N
i=1 r(t)ij

(17)

To choose the optimal combination of the three L1-norm penalties, we implement a grid search by
adopting a modified BIC (Pan and Shen, 2007), defined as

BICp = −2 log L(Θ̂) + (D − DG − DZ) log N (18)

Where DG is the number of exposure variables whose effect estimates are 0 across all latent clusters and
DZ is the number of omic variables whose effect estimates are 0 across all latent clusters. We can tune
λβ, λµ, and λW either separately or jointly. For instance, if only exposome data G is high-dimensional,
we only need to tune λβ. If variable selection is desired for both G and Z, then the three L1-norm
penalties should be tuned simultaneously. λβ, λµ, and λW match the parameters Rho_G, Rho_Z_Mu, and
Rho_Z_Cov in the lucid() function. Each parameter accepts a numeric vector or a scalar as input. For
guidance, empirical experiments utilizing normalized multi-omics data suggest integer values in the
range of 0 − 100 for Rho_Z_Mu and values in the range of 0 − 1 for Rho_G and Rho_Z_Cov. The higher
the values of Rho_Z_Mu, Rho_G, and Rho_Z_Cov, the fewer omic features that will be selected. Below are
examples for conducting variable selection for G and Z, separately and jointly.

> # Variable selection for G
> # Add 10 more noise variables to the exposome
> noise <- matrix(rnorm(420 * 10), nrow = 420)
> exposome_noise <- cbind(exposome, noise)
> fit10 <- lucid(G = exposome_noise, Z = methylomics, Y = ck18,
+ lucid_model = "early", family = "normal", K = 2,
+ Rho_G = seq(0, 0.4, by = 0.01), seed = 1008)
1/11 exposures are selected
> # Summary of optimal lucid model
> # summary(fit10)
> # Variable selection for Z
> # add 10 more noise variables to the methylomics
> methylomics_noise <- cbind(methylomics, noise)
> fit11 <- lucid(G = exposome, Z = methylomics_noise, Y = ck18,
+ lucid_model = "early", family = "normal", K = 2,
+ Rho_Z_Mu = 5:10, Rho_Z_Cov = seq(0.1, 0.4, by = 0.1), seed = 1008)
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10/20 omics variables are selected
> # Summary of optimal lucid model
> # summary(fit11)
> # Variable selection for G and Z jointly
> fit12 <- lucid(G = exposome_noise, Z = methylomics_noise, Y = ck18,
+ lucid_model = "early", family = "normal", K = 2,
+ Rho_G = 0.01, Rho_Z_Mu = 10, Rho_Z_Cov = 0.5, seed = 123)
1/11 exposures are selected
11/20 omics variables are selected

Oftentimes, the number of features M for omics data Z is in the hundreds or even thousands. With a
high dimensionality of Z, LUCID can still have stable performance and select the features with effect if
the number of observations N is higher than M. Below is an example of conducting variable selection
in Z with M = 210 features (including 200 noise features) while N = 420. We can see that with higher
Rho_Z_Mu and Rho_Z_Cov, LUCID successfully selects the features with effect.

> # Variable selection for Z (high number of features M)
> set.seed(1008)
> # Add 200 more noise features to the methylomics
> noise <- matrix(rnorm(420 * 200), nrow = 420)
> methylomics_noise <- cbind(methylomics, noise)
> fit13 <- lucid(G = exposome, Z = methylomics_noise, Y = ck18,
+ family = "normal", lucid_model = "early", K = 2,
+ Rho_Z_Mu = 20, Rho_Z_Cov = 0.6)
17/210 omics variables are selected
> # Summary of optimal lucid model
> # summary(fit13)

Via simulations, the run time for LUCIDus increases linearly as the number of features increases.
While the integration of regularization allows for a high number of features to be analyzed, when M is
higher than N, LUCID might result in unstable estimation; therefore, pre-screening approaches for the
omic features such as the "meet-in-the-middle" become imperative to reduce dimensionality before
fitting the LUCID model (Cadiou et al., 2021).

3.4 Deriving confidence intervals

We use the nonparametric bootstrap approach to derive confidence intervals (CIs) for the MLE
estimates from a LUCID model (Davison and Hinkley, 1997). Nonparametric bootstrap draws ob-
servations from a sample with replacement. We index the bootstrap samples by b = 1, 2, . . . , B. For
each bootstrap sample Db, we fit the LUCID model and calculate MLE Θb. Two types of bootstrap
CIs are constructed based on the distribution of Θb: (1) normal CIs and (2) percentile CIs. Given the
confidence level 1 − α, the normal CIs are constructed by

(1 − α)%CInormal = Θ − bias ± Z1−α/2σ(Θ) (19)

where bias = Θ̄ − Θ, Θ̄ is the mean of the bootstrap estimators and σ(Θ) is the bootstrap standard
error, which is

σ(Θ) =

√√√√ 1
B − 1

B

∑
b=1

(
Θb − Θ̄

)
(20)

All calculations in Equations 19 and 20 are element-wise. In addition, the 1 − α percentile CIs are
calculated by ordering the bootstrap estimators from smallest to largest and selecting the estimates
at α/2 percentile and (1 − α/2) percentile as the CIs. boot_lucid() constructs the two bootstrap
CIs described above for inference. Users can specify the confidence level (conf) and the number of
bootstrap replicates (R). While boot_lucid() is running, a progress bar is displayed in the R console.
We recommend R≥ 200 to estimate the bootstrap standard error for normal CIs and R≥ 800 to estimate
quantiles to construct percentile CIs. Below are examples of deriving bootstrap CIs for LUCID. By
default, LUCID calculates 95% CIs.

> # Bootstrap to obtain 95% CI (by default) for LUCID
> set.seed(123)
> boot1 <- boot_lucid(G = exposome, Z = methylomics, Y = ck18, lucid_model = "early",
+ model = fit1, R = 200)
# 90% CIs
> boot2 <- boot_lucid(G = exposome, Z = methylomics, Y = ck18, lucid_model = "early",
+ model = fit1, R = 200, conf = 0.9)
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We can obtain a more comprehensive summary table with bootstrap CIs by integrating summary()
with output from boot_lucid(). The resulting summary table has 5 columns: ‘t0’ corresponds to
parameters estimated from the observed data; ‘norm_lower’ and ‘norm_upper’ represent the lower and
upper limit of normal CIs, respectively; ‘perc_lower’ and ‘perc_upper’ represent the percentile CIs.

> # Summary table with 95% bootstrap CIs
> summary(fit1, boot.se = boot1))

boot_lucid() is built upon the R library boot (Canty and Ripley, 2021). The original output from boot
is also returned by boot_lucid() and can be used to evaluate the normality of the distribution of the
bootstrap estimations.

3.5 Prediction

The prediction of LUCID includes two parts: prediction of the latent clusters X and prediction of
the outcome Y . The predict_lucid() can perform both tasks. Prediction for the latent cluster is
determined by IP using the optimal rule, which is

X̂i = arg max
j

P(Xi = j|D, Θ) (21)

Prediction for the outcome follows a conventional regression framework. When making predictions,
predict_lucid() for LUCID requires input of new G and Z, and optional input of Y . If Y is provided,
we use Equation 3 to calculate IPs; otherwise, Equation 12 is applied. As a result, we can either fit a
supervised LUCID model to make predictions in an unsupervised fashion or vice versa. This design
allows for flexibility. For instance, we can build a LUCID model in one cohort in a supervised fashion
and then make predictions on another new independent cohort, regardless of whether the outcome
is measured or not. predict_lucid() for LUCID returns a list containing IPs for each observation,
predicted cluster assignment, and predicted outcome. Below is an example code for prediction based
on a supervised LUCID model, fit1.

> # Predict cluster with information of Y
> pred1 <- predict_lucid(model = fit1, G = exposome, Z = methylomics, Y = ck18)
> # Predict cluster without information of Y
> pred2 <- predict_lucid(model = fit1, G = exposome, Z = methylomics)
> # Predicted cluster label
> table(pred1$pred.x)
1 2

223 197
> # Predicted outcome
> pred1$pred.y[1:5]
[1] 0.2580164 -0.3806054 0.2504817 0.4123169 -0.1898255

3.6 Incorporating missingness in multi-omics data

A major update in LUCIDus version 3 is the incorporation of missing data. Missingness is a major
challenge in the integrative analysis of omics. In large cohort studies, it is common that some omics
data are not available for all participants for various reasons such as budgetary constraints, low
sample availability, or lack of consent for future use of biospecimens (Voillet et al., 2016). We refer
to this type of missingness as a list-wise missingness pattern. In addition, even when omics data
are measured for a given participant, it is common that some omic features are randomly missing
due to the measurement process. We refer to this pattern as sporadic missingness. LUCIDus can
deal with the two missing patterns mentioned above or the combination of the two. We assume the
multi-omics data are missing completely at random (MCAR) for both missing patterns (i.e., for the
list-wise missing pattern, the probability of multi-omics data being not available is the same for all
subjects; for sporadic missing patterns, the probability of a certain omic feature being missing is the
same for all omic features). For list-wise missingness, we use a modified LUCID model based on a
likelihood partition. We divide the LUCID likelihood into two parts: observations with complete
multi-omics data and observations without any measured multi-omics data. The likelihood of the
former observations remains the same as Equation 2, denoted by lo(Θ|D). The joint likelihood of the
latter observations becomes

lm(Θ|D) =
No

∑
lo=1

K

∑
j=1

I(Xio = j)
(

log S(Xio = j|Gio ; β j) + log ϕ
(

Yio |γj, σ2
j

))
(22)
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List-wise missing pattern

Sporadic missing pattern

Figure 5: Two simulated missing patterns in methylomics data
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with corresponding responsibility defined as

r(t)ij =
S
(

Xi = j|Gi; β(t)
)

ϕ
(

Yi|Xi = j; γ
(t)
j , σ

2(t)
j

)
∑K

j=1 S
(

Xi = j|Gi; β(t)
)

ϕ
(

Yi|Xi = j; γ
(t)
j , σ

2(t)
j

) (23)

The joint likelihood of LUCID for all data becomes l(Θ) = lo(Θ|D) + lm(Θ|D). We then use the
same EM algorithm described in Section Overview of the original LUCID model (early integration)
to calculate the MLE of LUCID with list-wise missingness. For sporadic missingness, we use an
integrated imputation method (Zhang et al., 2021). Each missing value in the omics data Z is treated as
an unknown “parameter” to be optimized. Specifically in the M-step, after maximizing the parameters
of the LUCID model with fixed Z, we implement an additional imputation step which maximizes Z
with fixed parameters within LUCID. Details of the statistical derivation can be found in Zhang et al.
(2021). To illustrate this new feature, we first simulate missing values in the HELIX methylomics
data by randomly setting values to ‘NA’. Both list-wise and sporadic missing patterns are considered,
as shown in Figure 5. We use the vis_miss() function from the R package visdat to visualize both
missing patterns (Tierney, 2023).

> library(visdat)
> set.seed(1)
> methylomics_miss_sporadic <- methylomics_miss_listwise <- as.matrix(methylomics)
> index <- arrayInd(sample(1000, 0.1 * 1000), dim(methylomics))
> methylomics_miss_sporadic[index] <- NA # sporadic missing pattern
> methylomics_miss_listwise[sample(1:100, 30), ] <- NA # listwise missing pattern
> vis_miss(as.data.frame(methylomics_miss_sporadic))
> vis_miss(as.data.frame(methylomics_miss_listwise))

Below are examples of fitting the LUCID model with missingness in multi-omics data. lucid() will
automatically examine missing patterns present in the multi-omics data and select a corresponding
method to account for the missing data. For sporadic missing patterns, we use mclust to initialize
missing values in the multi-omics data.

> fit14 <- lucid(G = exposome, Z = methylomics_miss_listwise, Y = ck18,
+ lucid_model = "early", K = 2, family = "normal")
> fit15 <- lucid(G = exposome, Z = methylomics_miss_sporadic, Y = ck18,
+ lucid_model = "early", K = 2, family = "normal")
> # summary(fit15)

3.7 LUCID in Parallel

In the previous sections, we focused on using the early integration strategy by concatenating each omic
layer one by one and inputting a single data matrix into the LUCID model for estimation. However,
researchers may be interested in modeling the correlation structure of each omic layer independently
to investigate how multi-omics data may act in parallel with an outcome. In this section, we extend
the LUCID model to incorporate multi-omics data by introducing multiple latent variables into the
framework. Suppose we have a sample of size n, indexed by i = 1, 2, ..., n. It has a collection of m
omic layers, denoted by Z1, ..., Za, ..., Zm with corresponding dimensions p1, ..., pa, ..., pm. Each omic
layer Za is summarized by a latent categorical variable Xa, which contains ka categories. Each category
is interpreted as a latent cluster (or subgroup) for that particular omic layer. All latent variables are
linked to the same exposure matrix G and the outcome Y for LUCID in parallel, as shown in Figure 1
(b). Suppose the latent variable Xai is observed for a = 1, . . . , m. According to the DAG in Figure 1
(b), the distributions of f (Zai | G) are conditionally independent of each other for a = 1, . . . , m, and
the distributions of the latent variable f (Xai | Gi) are also conditionally independent of each other.
Since Xai is a discrete variable with ki categories, we assume Xai follows a multinomial distribution
conditioning on G, denoted by the softmax function S(·). We assume multi-omics data Zai follows a

multivariate Gaussian distribution conditioning on Xai, denoted by ϕ
(

Zai | Xai = ja; µja, Σja

)
, where

µja and Σja are cluster-specific means and variance-covariance matrices for omic layer a. The outcome
Y can be either a continuous outcome or a binary outcome. For illustration, here, we discuss the
situation that Y is a continuous variable that follows a Gaussian distribution. The relationship between
latent variables Xa and outcome Y is formulated as

EYi = γ0 +
k1

∑
j1=2

γj1 I (X1i = j1) + · · ·+
ka

∑
ja=2

γja I (Xai = ja) + · · ·+
km

∑
jm=2

γjm I (Xmi = jm) (24)
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where the intercept γ0 is the expected value of Yi given Xai = 1 for a = 1, 2, . . . , m (the reference
cluster for all combinations of latent cluster assignments); γja is the change of Y if the latent variable
Xa becomes ja instead of 1. Let D be the generic notation for all observed data. The log-likelihood of
LUCID in Parallel is constructed below:

log L(Θ | D) =
n

∑
i=1

log f (Z1i, . . . , Zmi, Yi | Gi; Θ)

=
n

∑
i=1

log

 k1

∏
j1=1

· · ·
km

∏
jm=1

f (Z1i, . . . , Zmi, X1i, . . . , Xmi, Yi | Gi; Θ)I(X1i=j1,...,Xmi=jm)


=

n

∑
i=1

k1

∑
j1=1

. . .
km

∑
jm=1

I (X1i = j1, . . . , Xmi = jm) log f (Z1i, . . . , Zmi, X1i, . . . , Xmi, Yi | Gi; Θ)

=
n

∑
i=1

k1

∑
j1=1

. . .
km

∑
jm=1

I (X1i = j1, . . . , Xmi = jm) log ϕ
(

Yi | X1i, . . . , Xmi, γ, σ2
)

+
n

∑
i=1

m

∑
a=1

k1

∑
j1=1

. . .
km

∑
jm=1

I (X1i = j1, . . . , Xmi = jm) log ϕ
(

Zai | Xai = ja, µa,ja , Σa,ja

)

+
n

∑
i=1

m

∑
a=1

k1

∑
j1=1

. . .
km

∑
jm=1

I (X1i = j1, . . . , Xmi = jm) log S (Xai = ja | Gi, βa)

(25)
The log-likelihood of LUCID in parallel is similar to that with LUCID early integration. It is natural
to follow the same principles of the EM algorithm for LUCID early integration and estimate the
parameters of LUCID in parallel with targeted modifications. For illustration, we continue with
the previous data example using maternal exposure to mercury as the exposome G and childhood
cytokeratin 18 level as the outcome Y . For a LUCID in parallel model, multi-omics data Z is a list of
three 420 × pa matrices of omic layers where a = 1, 2, 3 (layer 1: methylome; layer 2: transcriptome;
layer 3: miRNA). We fit LUCID in parallel models with continuous ck18 using lucid(). We specify
the argument lucid_model to be ‘parallel’, and the argument K should be specified as a list of three
integers (or sequences of integers if tuning) indicating the number of latent clusters for each omic
layer. The variable selection feature is not yet available for LUCID in parallel, and we can only tune
for K. We can use argument CoG and CoY to adjust for covariates for the G to X association and the X
to Y association, respectively. Similar to LUCID early integration, the parameter family specifies the
outcome type, which is ‘normal’ here, corresponding to a continuous outcome. For a binary outcome,
family should be specified as ‘binary’. lucid() returns an object of class ‘lucid_parallel’ providing
the MLE of the LUCID in parallel model as well as IPs. We can call summary() with the input of a
‘lucid_parallel’ object to print three tables of the model results. Similar to the summary table of a
LUCID early integration model, the first table summarizes the association between the latent clusters
for each omic layer and the outcome (cytokeratin 18). The second table characterizes each cluster by
its omics signature within each layer. The third table relates the exposures to the latent clusters for
each layer. The nuance is that the LUCID in parallel model has multiple independent omic layers, and
each layer corresponds to a separate latent cluster variable, thus all the related results are presented in
the summary tables. See the two examples of fitting a LUCID in parallel model below.

> # Create a list of multi-omics data
> omics_lst <- simulated_data[-which(names(simulated_data) == "phenotype")]
> Z = omics_lst[c(1:3)]
> # LUCID in parallel, adjusting for the covariates for the E-X and X-Y associations
> fit16 <- lucid(G = exposome, Z = Z, Y = ck18, K = list(2, 2, 2), family = "normal",
+ CoY = covs, CoG = covs,
+ lucid_model = "parallel", useY = TRUE)
> # print the summary of the LUCID in parallel model
> summary(fit16)
----------Summary of the LUCID in Parallel model----------
K = 2 2 2 , log likelihood = -16413.64 , BIC = 36892.36
(1) Y (continuous outcome): effects of each non-reference latent cluster

for each layer of Y
(and effect of covariates if included)

Gamma
cluster2Layer1 2.139337462
cluster2Layer2 -0.976575066
cluster2Layer3 1.617148373
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e3_sex_None 0.023397524
hs_child_age_yrs_None -0.002297037
(2) Z: mean of omics data for each latent cluster of each layer
Layer 1

mu_cluster1 mu_cluster2
cg_GRHL3 0.09782065 -0.2827826
cg_BTF3L4 0.12271079 -0.3059186
cg_AL358472.7 0.10019649 -0.3164803
cg_HDGF 0.15388979 -0.3322801
cg_TDRD5 0.10778098 -0.1832600
cg_CSRNP3 0.08692918 -0.1300857
cg_HSPD1 0.21255103 -0.3855858
cg_EPM2AIP1 -0.11651397 0.3691065
cg_AC025171.1 0.24747122 -0.3750450
cg_VTRNA1_3 -0.13739036 0.1515515
Layer 2

mu_cluster1 mu_cluster2
tc_TC01006069_nc 0.098203482 -0.169267971
tc_SLC9A4 -0.025858454 0.046609093
tc_RAB6C_AS1 0.009567584 -0.087150028
tc_LOC100129029 0.032557846 0.078278431
tc_BRE -0.039411493 0.073329913
tc_TC03001220_nc -0.068457436 0.013811537
tc_TC04002114_nc -0.030761261 0.033415671
tc_TC04002369_nc 0.297076410 -0.216123334
tc_BEND4 -0.128343956 0.074585000
tc_SLC9A3 0.139869536 0.002458175
Layer 3

mu_cluster1 mu_cluster2
miR.101.3p 0.10748628 0.023648293
miR.125a.5p -0.20581745 0.135670802
miR.125b.1.3p 0.07644648 0.019200103
miR.127.3p -0.05542160 0.184175902
miR.140.5p 0.14979024 0.050720602
miR.142.3p 0.11157913 -0.017566242
miR.144.5p 0.07526727 -0.016027655
miR.19a.3p 0.09193308 -0.002059547
miR.19b.3p 0.08515311 0.032351416
miR.21.5p 0.05800681 0.029022417
(3) E: odds ratio of being assigned to each latent cluster for each exposure

for each layer
Layer 1

beta OR
hs_hg_m_scaled.cluster2 0.7352341 2.0859703
e3_sex_None.cluster2 -0.4107395 0.6631596
hs_child_age_yrs_None.cluster2 -0.2657909 0.7665994
Layer 2

beta OR
hs_hg_m_scaled.cluster2 0.1313174 1.1403296
e3_sex_None.cluster2 0.1928708 1.2127261
hs_child_age_yrs_None.cluster2 -0.1066509 0.8988394
Layer 3

beta OR
hs_hg_m_scaled.cluster2 -0.4896515 0.6128399
e3_sex_None.cluster2 0.4855559 1.6250782
hs_child_age_yrs_None.cluster2 0.1042404 1.1098672
> # LUCID in parallel, tune for the number of clusters for methylomics
> fit17 <- lucid(G = exposome, Z = Z, Y = ck18, K = list(2, 2:3, 2), family = "normal",
+ lucid_model = "parallel", useY = TRUE)
> # summary(fit17)
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3.8 LUCID in Serial

In a more late integration framework, LUCID can also be extended to incorporate multiple latent
variables in a serial fashion if researchers believe that given an exposure, multi-omics data act serially
through a multistep process towards the outcome, as illustrated in Figure 1 (c). This framework can
accommodate the following situations: (1) longitudinal measurements on the same multi-omics data
type and (2) biological relationships of multi-omics data. The estimation of latent clusters for each omic
layer can be formulated as an unsupervised LUCID early integration or LUCID in parallel sub-model.
For a LUCID in serial model, Z includes m ordered omic layers in a sequential fashion. For illustration,
assuming all the sub-models are LUCID early integration models. For a certain omic component a,
the cluster variable Xa−1 serves as the “G” in the LUCID early integration model framework, and
Xa is jointly estimated by Xa−1 and Za. However, the special cases are for the first and the last omic
layer, where the corresponding X1 is estimated jointly by G and Z1, and the corresponding Xm is
estimated jointly by Xm−1, Zm, and Y if supervised, respectively. Alternatively, for a certain omic
component a, we can add another transition probability matrix component p in the joint likelihood
relating Xa−1 to Xa to describe the state change with P(Xa|Xa−1, C) = pa, where pa is a general
notation for the inclusion probability of all the latent clusters for omic component a and C dynamically
represents other variables that jointly estimate Xa. Note that a list of m ordered omic components for Z
indicates m sub-models in a LUCID in serial model, and each sub-model can be either a LUCID Early
Integration model or a LUCID in Parallel model. Note that the DAG in Figure 1 (c) only shows the
scenario where all the sub-models are LUCID early integration models. Bold Xa and omic component
Za indicate that they may include more than 1 latent variable or omic layer for each omic component
if the corresponding sub-model is LUCID in parallel. Let m be the number of sub-models in a LUCID
in serial model. For each sub-model a, given Θa and Da, its own log L(Θa | Da) follows the log-
likelihood of a LUCID Early Integration or a LUCID in Parallel model defined in the previous sections.
Except for the sub-model m, all sub-models are unsupervised. For sub-models 2 to m, the β parameter
defined previously becomes δ. The log-likelihood of LUCID in Serial is constructed below,

log L(Θ | D) =
m

∑
a=1

log L(Θa | Da)

=
n

∑
i=1

log f1(Z1i, Gi | Θ1)

+
m−1

∑
a=2

n

∑
i=1

log fa(Zai, pai | Θa) +
n

∑
i=1

log fm(Zmi, pai, Yi | Θm)

=
n

∑
i=1

log f1(Z1i, Gi | β, µ1, Σ1)

+
m−1

∑
a=2

n

∑
i=1

log fa(Zai, pai | δa, µa, Σa)

+
n

∑
i=1

log fm(Zmi, pai, Yi | δm, µm, Σm, γ)

(26)

Here, we assume sub-models are independent of each other. The EM algorithm for estimating the
parameters of each sub-model is exactly the same as estimating a single LUCID early integration
model or a LUCID in parallel model. Using the previous data example for illustration, for a LUCID in
serial model, multi-omics data Z can be an ordered list of three 420 × pa matrices of omic layers where
a = 1, 2, 3 (layer 1: methylome; layer 2: transcriptome; layer 3: miRNA), representing that all the sub-
models are LUCID early integration models and K is a list of three integers (or sequences of integers if
tuning) indicating the number of latent clusters for each successively linked omic layer. We specify
lucid_model to be ‘serial’. The use of arguments CoG, CoY, useY, and family is exactly the same as for
a LUCID in parallel model. lucid() constructs the model and returns an object of class ‘lucid_serial’,
and calling summary() with the input of a ‘lucid_serial’ object prints the summarizing tables of the
model estimates. We have introduced summarizing tables for the LUCID early integration model
and the LUCID in parallel model. Since the LUCID in serial model is a combination of LUCID early
integration and LUCID in parallel sub-models, the summarizing tables for each sub-model follow
a similar structure to what we have discussed for the two types of sub-models, but with targeted
modifications to conform to the setup of the LUCID in serial model. See the summarizing tables for
the first LUCID in serial model example below. Alternatively, besides an integer, the element of the
ordered list of Z can also be a list, which indicates that the corresponding sub-model is a LUCID in
parallel model. Here, K should contain a list of lists of integers. See the second LUCID in serial model
example below.
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> # LUCID in serial, adjusting for the covariates of the E-X and X-Y associations
> # Tune the number of clusters for methylome and transcriptome
> # All 3 sub-models are LUCID early integration models and each with two latent clusters for each layer
> fit18 <- lucid(G = exposome, Z = Z, Y = ck18,
+ lucid_model = "serial", CoY = covs, CoG = covs,
+ K = list(2:3, 2:3, 2), useY = TRUE, family = "normal")
> # Print the summary of the LUCID in serial model
> summary(fit18)
----------Summary of the First Component of the LUCID in Serial Model----------
----------Summary of the LUCID Early Integration Sub Model----------
K = 2 , log likelihood = -5977.843 , BIC = 13320.78
(1) Z: mean of omics data for each latent cluster

mu_cluster1 mu_cluster2
cg_GRHL3 0.295741860 -0.410975212
cg_BTF3L4 0.021123889 -0.090792176
cg_AL358472.7 0.301523381 -0.439813049
cg_HDGF 0.170527566 -0.234364618
cg_TDRD5 0.192293276 -0.207240424
cg_CSRNP3 0.235578302 -0.242839045
cg_HSPD1 -0.002680386 -0.003986538
cg_EPM2AIP1 0.033545336 0.086638565
cg_AC025171.1 0.303125436 -0.287725955
cg_VTRNA1_3 -0.090000154 0.029899266
(2) E: odds ratio of being assigned to each latent cluster for each exposure

beta OR
hs_hg_m_scaled.cluster2 1.8300519 6.2342102
e3_sex_None.cluster2 -0.1045747 0.9007075
hs_child_age_yrs_None.cluster2 -0.4683347 0.6260439
----------Summary of the Middle Component of the LUCID in Serial Model----------
----------Summary of the LUCID Early Integration Sub Model----------
K = 2 , log likelihood = -6035.014 , BIC = 13435.13
(1) Z: mean of omics data for each latent cluster

mu_cluster1 mu_cluster2
tc_TC01006069_nc -0.32822703 0.321670957
tc_SLC9A4 0.10853723 -0.106428335
tc_RAB6C_AS1 -0.24384843 0.195716238
tc_LOC100129029 0.10572458 -0.005932059
tc_BRE -0.10399915 0.125807476
tc_TC03001220_nc -0.30053137 0.248463710
tc_TC04002114_nc 0.04931376 -0.060764599
tc_TC04002369_nc -0.38991227 0.586539770
tc_BEND4 -0.26952193 0.195503719
tc_SLC9A3 0.26488011 -0.110649505
(2) E: odds ratio of being assigned to each latent cluster for each cluster

from the last sub model
delta OR

G1.cluster2 1.554258 4.731575
----------Summary of the Last Component of the LUCID in Serial Model----------
----------Summary of the LUCID Early Integration Sub Model----------
K = 2 , log likelihood = -4533.659 , BIC = 10444.5
(1) Y (continuous outcome): effect size of Y for each latent cluster
(and effect of covariates if included)

Gamma
cluster1 0.00000000
cluster2 1.64219533
e3_sex_None 0.06626907
hs_child_age_yrs_None -0.16063912
(2) Z: mean of omics data for each latent cluster

mu_cluster1 mu_cluster2
miR.101.3p 0.12404049 0.028070959
miR.125a.5p -0.19583201 0.088128200
miR.125b.1.3p -0.02249475 0.064270997
miR.127.3p -0.21746619 0.215300195
miR.140.5p 0.27069168 0.017292491
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miR.142.3p 0.15068775 -0.015944126
miR.144.5p 0.25253765 -0.071952430
miR.19a.3p 0.15974513 -0.015887823
miR.19b.3p 0.20886420 -0.008073847
miR.21.5p 0.18868583 -0.017110888
(3) E: odds ratio of being assigned to each latent cluster for each cluster

from the last sub model
delta OR

G1.cluster2 0.9911389 2.694301
----------Overall Summary of the LUCID in Serial model----------
log likelihood = -16546.52 , BIC = 37200.41
> # LUCID in serial with the first sub-model being LUCID in parallel
and the second sub-model being LUCID early integration

> # Rearrange the omics list to match the new structure of the LUCID in serial model
> Z_new = list(list(omics_lst$methylome, omics_lst$transcriptome), omics_lst$miRNA)
> # Fit the LUCID in serial model with the new omics list and the new K list
> fit19 <- lucid(G = exposome, Z = Z_new, Y = ck18,
+ lucid_model = "serial", CoY = covs, CoG = covs,
+ K = list(list(2, 2), 2), useY = TRUE, family = "normal")
> # summary(fit19)

4 Conclusion

In this paper, we have introduced the LUCIDus package, version 3, to perform estimation of the LUCID
model in R (Jia et al., 2024). LUCIDus focuses on integrative clustering analysis using multi-omics data,
both with and without phenotypic traits. It consists of a set of toolkits for modeling, interpretation,
visualization, inference, and prediction. Compared to the previous version, LUCIDus version 3 is
faster (120 times faster than the previous version for a dataset with 20,000 observations), more stable,
and includes several features for more functionality, including options for early, intermediate, and
late integration of multi-omics data. The LUCIDus package is a useful tool for performing integrated
clustering analysis and can potentially provide greater insights into environmental epidemiology
studies with measured multi-omics data.
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Current State and Prospects of R-Packages
for the Design of Experiments
by Emi Tanaka and Dewi Amaliah

Abstract Re-running an experiment is generally costly and, in some cases, impossible due to limited
resources; therefore, the design of an experiment plays a critical role in increasing the quality of
experimental data. In this paper, we describe the current state of R-packages for the design of
experiments through an exploratory data analysis of package downloads, package metadata, and a
comparison of characteristics with other topics. We observed that experimental designs in practice
appear to be sufficiently manufactured by a small number of packages, and the development of
experimental designs often occurs in silos. We also discuss the interface designs of widely utilized R
packages in the field of experimental design and discuss their future prospects for advancing the field
in practice.

1 Introduction

The critical role of data collection is well captured in the expression “garbage in, garbage out” – in
other words, if the collected data are rubbish, then no analysis, however complex it may be, can make
something out of it. Therefore, a carefully crafted data-collection scheme is critical for optimizing
the information from the data. The field of experimental design is specifically devoted to planning
the collection of experimental data, largely based on the founding principles of Fisher (1935) or an
optimization framework like those described in Pukelsheim (2006). These experimental designs are
often constructed with the aid of statistical software such as R (R Core Team 2021), Python (Rossum
1995), and SAS (SAS Institute 1985); thus the use of experimental design software can inform us about
some aspects of experimental designs in practice.

Methods for data collection can be dichotomized by the type of data collected – namely, exper-
imental or observational – or alternatively, categorized as experimental design (including quasi-
experimental design) or survey design. This dichotomization, to a great extent, is seen in the Compre-
hensive R Archive Network (CRAN) task views (a volunteer maintained list of R-packages by topic)
where R-packages for experimental design are in the ExperimentalDesign task view and R-packages
for survey designs are in the OfficialStatistics task view. A full list of available topics is provided
in Table S1 in the Supplementary Materials. A subset of experimental designs is segregated into
the ClinicalTrials task view, where the focus is on clinical trials with primary interest in sample size
calculations. This paper focuses on packages in the ExperimentalDesign task view, henceforth referred
to as “DoE packages”.

From the ExperimentalDesign task view, there are 105 R packages for the experimental design and
analysis of data from experiments. The sheer quantity and variation of experimental designs in the
R-packages are arguably unmatched by any other programming languages; for example, in Python,
only a handful of packages that generate design of experiments exist (namely pyDOE, pyDOE2, dexpy,
experimenter, and GPdoemd) with a limited type of design. Thus, the study of DoE packages, based on
quantitative and qualitative data, can provide an objective view of the state of current experimental
designs in practice.

The utility of the software can also be described by its design to facilitate the clear expression and
interpretation of the desired experimental design. Certain programming language designs can hinder
or discourage the development of reliable programs (Wasserman 1975). The immense popularity of
tidyverse (a collection of R-packages for various stages of data analysis that places enormous emphasis
on the interface design by Wickham et al. 2019) is a testament to the impact that an interface design can
have in practice. The practice of experimental design can be advanced by adopting similar interface
design principles across the DoE packages.

The remainder of this paper is organized as follows. Data briefly describes the data source used for
the analysis; Exploratory data analysis presents some insights into the state of the current DoE packages
by the exploratory data analysis of package download data, text descriptions, and comparisons with
other CRAN task views; Interface design discusses the interface designs of widely used DoE packages,
and we conclude with a discussion in Discussion of future prospects in the software development of
experimental designs.
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2 Data

To study the DoE packages, we analyze data using three sources of data as described below.

2.1 RStudio CRAN download logs

The Comprehensive R Archive Network (CRAN) is a network of servers located across the world
that stores mirrored versions of R and R packages. The most popular network is the RStudio mirror
(the default server for those that use the RStudio IDE). The RStudio mirror is also the only server that
provides comprehensive daily download logs of R and R packages since October 2012. The summary
data can be easily accessed using the cranlogs package (Csárdi 2019). This paper uses the data from
the beginning of 2013 to the end of 2021 (a total of nine years) for the packages in the CRAN task
views.

2.2 Package descriptions

All CRAN packages have a title, description, package connections (suggests, depends, and imports of
other packages), and other meta-information in the DESCRIPTION file. We use text data from the title
and description (accessed on 2022-12-12).

2.3 CRAN task views

CRAN task views are volunteer-maintained lists of R-packages on CRAN relevant to the corresponding
topic. There were 39 CRAN task views in total. Table S1 in the Supplementary Materials lists the
available topics from the ctv package (Zeileis 2005). The list of packages in each CRAN task view (as
of 2022-12-12) is used to contrast the characteristics of the DoE packages.

3 Exploratory data analysis

In this section, we derive some conjectures based on an analysis of the data described in Data.
All results presented are from exploratory data analysis of observational data; consequently, all
interpretations are somewhat speculative and may not be indicative of the true state of the field of
experimental design. In particular, any analysis over time is confounded by the fact that the nature
of users and package management has changed over the years. It should be noted that some DoE
packages may have been archived or removed from the task view over the years; therefore, any
cross-sectional analysis presented may not reflect the set of all DoE packages at that particular time
period (although we assume such incidents are low).

A subset of DoE packages is not primarily about the design of experiments but about the analysis
of experimental data. A complete delineation of these packages is difficult, as there is almost always at
least one function that can aid decisions or constructions of experimental designs (and any catego-
rization is prone to our subjective bias); therefore, we opted not to remove any DoE packages in the
analysis.

3.1 Small, but diverse, set of packages are sufficient for most experimental designs in
practice

There are at least 50 DoE packages since 2013, but most of the downloads are concentrated in only a
handful of packages. For example, Figure 1 shows a Lorenz curve (Lorenz 1905) for the total package
downloads in 2021 for 102 DoE packages (first released prior to 2021). We can see from Figure 1 that
the bottom 90% of DoE packages (in terms of total download count in 2021) only share approximately
32% of total downloads across all DoE packages; in other words, 68% of the total downloads are due
to 10 packages (10% of the DoE packages).

If we consider package downloads as a measure of “wealth”, then we can consider using the
Gini index (Gini 1921) as a measure of download inequality across packages. The ratio of the red
region to the total colored regions in Figure 1 corresponds to the Gini index for 2021. A Gini index
of 0% indicates equality in downloads across packages, whereas a value of 100% indicates maximal
inequality (all downloads are due to one package). In Figure 2, we see that the distributions of the
package downloads each year have a heavy right tail, with the Gini index ranging from 32.7% to 69.1%
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Figure 1: Lorenz curve of the total download count for DoE packages in 2021. The red line corresponds
to the line of perfect equality. The yellow region shows the area under the Lorenz curve and the red
region shows the area of the gap in equality.
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Figure 2: Distribution of number of downloads for DoE packages by year. Packages were removed
in any year if they were released in that year or later so that each download count was for the full
year. The label at the bottom of the plot shows the Gini index for downloads and the number of
packages with a full download count in the corresponding year. In the last six years, the Gini index
has consistently exceeded 60%, indicating that most downloads are due to a relatively small number
of packages.
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across the years 2013 to 2021, indicating that there is a high level of inequality in package downloads,
particularly with more pronounced inequality in the last six years.

An increase in the number of packages that are not highly downloaded may mean that there
are more packages to construct niche experimental designs. Some examples of these packages in-
clude qtlDesign, PwrGSD and Crossover made for QTL experiments, group sequential designs and
crossover trials, respectively. These packages would naturally have fewer potential users. Counterfac-
tual to this, the increase could be due to other external factors, such as an increase in the number of
skilled developers (and thus more package contributions), a change in CRAN policy or management
to add packages (either to CRAN and/or task view), and/or the fact that new packages are still yet
to amass users. While there is an argument that low download counts are due to the low utility
and/or quality of packages, packages in CRAN task views are selected by expert maintainers. We
can reasonably assume that any package listed in the CRAN task view has an acceptable utility and
quality.

If the downloads are reflective of the experimental designs used in practice, a small set of packages
appears to be sufficient for most users to construct the full set of designs of experiments they need in
practice. Packages of course evolve, and the top downloaded packages have had regular updates that
may have broadened their scope from their previous releases.

While in absolute terms the Gini index is high for the ExperimentalDesign task view (32.7% to
69.1%), the inequality is not as severe as in other CRAN task views, as shown in Figure 3. We can see
in Figure 3 that the Gini index generally increases over time for DoE packages (as is generally the
case for other CRAN task views, as shown in Figure S1 in the Supplementary Materials), but most
other CRAN task views have a Gini index of over 75%. This suggests that other CRAN task views
may have dominant standards, and in comparison to other topics, there are more diverse approaches
to designing experiments, and thus, no single DoE package is dominant. However, this observation
does not consider other approaches to generate experimental designs, such as the proprietary software
CycDesignN (Whittaker, Williams, and John 2022), which may be widely used.
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Figure 3: The points show the Gini index of the download counts by year for the ExperimentalDesign
task view with the color showing the number of packages. The gray lines show the line plots of the
Gini index across years for all other CRAN task views. See Figure S1 in the Supplementary Material
for the line graph of the Gini index across years for each CRAN task view.

3.2 The field of experimental design is slow-changing

We can see in Figure 4 that most of the top 10 ranking packages have been in the top 10 for the last
nine years, with lhs steadily climbing up the ranks in the last few years. It should be noted that the
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download of one package can prompt the download of another package; the most notable package
connection is AlgDesign and agricolae, where the former is an import for the latter. The full network
of package connections within the DoE packages is shown in Figure 8.
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Figure 4: The plot shows the rank of the top 10 packages downloaded by year. Packages that did not
appear in the top 10 for at least two periods were omitted from the plot. Most packages are consistently
in the top 10 for the period shown.

Figure 5 shows a moderate negative correlation between the first release date and the (log of) total
download counts of DoE packages for any given year from 2013 to 2021. This suggests that packages
released earlier are more likely to be used today (possibly for legacy reasons or the general inertia to
adopt new packages). We can also see in Figure 5 that most downloaded packages were released from
2004 to 2010.

The consistency in the top 10 ranking packages (Figure 4) and the fact that most downloaded
DoE packages were first released more than 10 years ago (Figure 5) indicate that either the existing
packages fulfilled the needs of the masses in practice or no new packages were compelling for many
to switch their practice. However, we also see that the top downloaded packages generally have more
updates (see Figure 5); therefore, it is possible that the packages have improved or broadened the
scope of their usage.

3.3 Optimal designs are of interest

Figure 6 shows some of the common purposes of DoE packages, based on bigrams in the package title
and description. We only show the bigrams as unigrams were not insightful, and there were not many
trigrams common across packages. To count the bigrams, we processed the text data as follows:

1. We standardized the words to lower case and removed pluralization.
2. Multiple mentions of the same bigram within a package were counted as one (for example,

AlgDesign mentions “experimental design” four times in the title and the description, but this
is counted as one).

3. Bigrams consisting of stop words were removed. The stop words are sourced from the lexicons
in tidytext::stop_words in addition to other words we deemed irrelevant, e.g., “provide”,
“e.g.”, “calculate” and so on – the full list is shown in the code provided in the link under
Acknowledgment.
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Figure 5: The above figure shows the total download (in log scale) of a package in the corresponding
year against the first release date of the package. The blue line corresponds to the least-squares fit
of the simple linear regression model. The label in the upper right-hand corner shows the sample
correlation coefficient between the first release date and log (with base 10) of the total download
count. The high leverage point on the far left belongs to ‘conf.design‘, authored by one of the earlier
contributors to R.
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Unsurprisingly, the bigram “experimental design” was the most common. More interestingly,
“optimal design” and “sequential design” appeared across different packages (indicated by the size
of the word in Figure 6), and the bigrams “latin hypercube” and “computer experiment” are used
across a few packages that are downloaded frequently (indicated by the color of the word in Figure 6).
Sequential design, Latin hypercube sampling, and computer experiments (which generally include
space-filling designs such as Latin hypercube sampling) generally operate by optimizing a user-
selected criterion and can be classified as optimal designs.
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Figure 6: The above figure shows the word cloud of bigrams from the title and descriptions of the
DoE packages. The size shows how often the bigram appears across the DoE packages and the color is
relative to the total download count in 2021 for the packages that contain the bigram.

Although there exists a separate ClinicalTrials task view, the DoE packages clearly include some
packages that are of interest to clinical trials, as shown by the size of the bigram “clinical trial” (and
related bigrams like “dose finding” and “phase ii”) in Figure 6.

3.4 Development of experimental designs occurs in silos

Figure 7 shows that the ExperimentalDesign task view has the lowest average number of contributors
among all the 39 CRAN task views. In addition, we can also see in Figure 7 that the ExperimentalDesign
task view has one of the least intra-connectivity (the percentage of packages that make use of other
packages within the same task view). The full connection between DoE packages is shown in Figure
8. These observations suggest that experimental design is one of the least collaborative fields and
package development generally occurs in silos.

4 Interface design

In software design, there are two interface designs to consider: user interface (UI) and application
programming interface (API). The UI is concerned with the interaction of the software by the user,
while the API is concerned with how different programs interact and is predominantly of interest to
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Figure 7: The above figure is a scatterplot of intra-connectivity (the percentage of packages that depend,
suggest, or import at least one other package within the same task view) and the average number of
contributors for each CRAN task view. Low intra-connectivity suggests that development within the
topic mostly occurs in silos, while high intra-connectivity suggests that there are more interactions
within the topic. The color shows the number of packages, the size of the point corresponds to the
total number of contributors, and the text labels show the CRAN task view names. The label of the
ExperimentalDesign task view is colored in red. The task views in the bottom-left corner are topics
that are more indicative of contributors working in silos. The actual numerical values are listed in
Table S1 in the Supplementary Material.
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of the arrow shows the connection of packages, where the package on the tail of the arrow is a
dependency, suggestion, or import for the package on the head of the arrow. DoE packages that do
not depend, suggest, or import another DoE package are not shown.
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the developer. The UI design is an abstraction that specifies the desired experimental design, and its
choices enable how a user expresses the specification of an experimental design. The API design aids
other developers in leveraging existing systems.

In this section, we discuss the interface designs of functions that output an experimental design
based on three broad areas: factorial, recipe, and augmenting designs. The discussion is exclusive
to the top downloaded packages (shown in Figure 4), with the exception of ez and DiceKriging, as
the former is predominantly visualization of experimental data and the latter is about the analysis of
computer experiments in addition to belonging to the same suite of packages as DiceDesign (Dupuy,
Helbert, and Franco 2015).

4.1 The case of factorial designs

Factorial experiments offer a challenge in allocating the treatment factors to experimental units, where
the full set of factorial treatments cannot be administered (and replicated), and/or the experimental
units have a grouping structure. The effort to address this challenge is reflected in the number of
packages that focus on the construction of factorial designs, as described next.

The DoE.base package (Grömping 2018) can construct full factorial and (regular and irregular) or-
thogonal array designs via fac.design() and oa.design(), respectively. The FrF2 package (Grömping
2014) constructs regular fractional 2-level factorial designs using FrF2() and FrF2Large(), with the
latter for large designs. The conf.design package (Venables 2013) constructs symmetric confounded
factorial designs via conf.design() and the BHH2 package (Barrios 2016) generates a full or fractional
2-level factorial design matrix via ffDesMatrix().

While the argument names and underlying algorithms of these functions to generate factorial
designs differ, it generally requires the users to input the number of:

• treatment factors,
• experimental runs (or replications), and
• levels for each factor if the design was allowed to vary in the number of levels.

The output of the design is either a special class of list (e.g., the design class for DoE.base and FrF2)
or a data.frame for conf.design or a matrix for BHH2, such that an element or column corresponds to a
treatment factor with each value corresponding to one experimental run. The treatment factors are
generally assigned pseudo names (e.g., letters of the alphabet) or an argument exists for users to input
treatment names as a character vector.

Some forms of factorial design are known by other names. For example, response surface designs are
factorial designs where the treatment factors are discrete levels of continuous variables. Two types of
response surface designs can be constructed using the rsm package (Lenth 2009): Box-Behnken design
(Box and Behnken 1960) and central-composite designs (Box and Wilson 1951) via functions bbd() and
ccd(), respectively, where the minimum required input is the number of factors. Another form of
factorial design is the saturated designs, where higher-order interaction effects of treatment factors are
typically confounded with the main effects. Plackett-Burman designs (Plackett and Burman 1946) are
a type of saturated design that can be generated by the function pb() in the FrF2 package, where the
user provides the number of experimental runs and the number of treatment factors.

4.2 The case of recipe designs

The agricolae package (de Mendiburu 2021) is the prime example of constructing designs based on a
set of so-called “recipe functions”, where each function corresponds to a single class of experimental
design. For example, design.crd(), design.rcbd(), and design.split() construct completely ran-
domized, randomized complete block, and split-plot designs, respectively. Users typically supply
treatment labels (or the number of treatments in the case of design.split()) and the number of
replications as arguments for these functions. The output is a list with one element corresponding to a
data.frame that contains the design in a table such that the row corresponds to the experimental run
and the columns correspond to the experimental variables (we refer to this format simply as “table
format” henceforth).

The use of recipe functions is not limited to classical experimental designs; the AlgDesign
(Wheeler 2022) package offers three primary functions for generating optimal designs: optBlock(),
optFederov(), and optMonteCarlo(). In general, these functions require data and formulas in terms
of the supplied data variables, along with the choice of the criterion (e.g., the D-criterion), with the
output as a list with one element corresponding to the design in a table format. The difference between
these functions lies in the underlying search strategy for optimal designs, and the name of the function
is a surrogate for the search algorithm.
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Computer experiments, which generally involve space-filling designs, are implemented in pack-
ages such as lhs (Carnell 2022) and DiceDesign (Dupuy, Helbert, and Franco 2015). For the lhs package,
functions such as randomLHS(), optimumLHS(), and maximinLHS() require users to specify the sample
size (n) and the number of variables (p). It generates a Latin hypercube sample (McKay, Beckman, and
Conover 1979) based on different optimization schemes (in this case, random, S-optimal, and maxmin
criteria, respectively; see package documentation for more details). Similarly, for DiceDesign, there is a
comprehensive list of space-filling designs such as dmaxDesign(), lhsDesign(), and wspDesign() with
input of n and p as before (among additional parameters for some) that implement algorithms that
either maximize the entropy (Shewry and Wynn 1987), produce a random Latin hypercube sample, or
use the WSP algorithm (Santiago, Claeys-Bruno, and Sergent 2012), respectively. These designs output
an n × p matrix with values between 0 and 1. Again, these functions employ a recipe style, in which
each function has a name that corresponds to a certain search strategy to generate the experimental
design.

4.3 The case of augmenting designs

Some functions in the DoE packages require the input of existing experimental designs to produce new
designs. For example, the DoE.base package contains some experimental functions, cross.design()
and param.design(), to combine designs, with the former taking a Cartesian product of the input
designs, while the latter uses a Taguchi style (Taguchi 1986) to aggregate the designs with the inner
and outer arrays. The lhs package contains a function, augmentLHS(), to add additional samples to the
existing Latin hypercube sample.

Another class of augmenting design is sequential design (also called adaptive sampling), which is
best represented by tgp (Gramacy and Taddy 2010). This requires prior information that is used
to inform the next experimental design using tgp.design() and dopt.gp(). The user is required to
supply candidate samples to subsample from and a model or a prior experimental design. Follow-up
experiments, which can also be classified as sequential designs, are implemented by BsMD (Barrios
2020) using a model-discriminant approach with MD().

5 Discussion

Through the exploratory data analysis of the three data sources (package download logs, package
metadata, and CRAN task views) outlined in Data, we observed in Exploratory data analysis that
the total download of DoE packages is concentrated only on a handful of R-packages, although these
represent a diverse set in comparison with other CRAN task views. Furthermore, the data suggest
that experimental design is the least collaborative field.

There are a number of limitations and shortcomings to our exploratory data analysis. First, CRAN
task views are volunteer maintained, so some experimental design packages may not be included
in the DoE packages. Second, we used only the RStudio CRAN mirror download, which may have
biased our observations. Third, our analysis was limited to R-packages alone, and many practitioners
may use other methods to construct experimental designs. Finally, all our statements should be treated
as speculative rather than conclusive; the data are all observational, so no conclusive, generalizable
statement is possible. Regardless, the data-driven nature of our analysis provides objective insight
into the field of experimental design.

The interface design (discussed in Interface design) reveals that the most widely used DoE packages
generally have functions that 1) focus on certain aspects of experimental design (e.g., factorial structure
or augmenting design), 2) are in a recipe format (i.e., the name of the function is a surrogate for a
single class of the design or optimal search algorithm), and 3) context is often a second thought – many
inputs are a single integer corresponding to the number of factors, levels, or experimental runs (or
sample size). The function will often assign pseudo-factor names, or there is an optional argument to
input a character vector that corresponds to the factor names. These interface designs require users to
have processed the experiment in statistical terms (often stripping the experimental context away) and
simultaneously, users must choose the generation mechanism by selecting an appropriate function.
Arguably, the current dominant interface designs are not aligned with the way practitioners cognitively
design their experiments. Often, the critical part of designing an experiment is to understand the
experimental structure, and the experimental context can govern or guide the choice of algorithm to
allocate treatments. In addition, the nature of recipe functions can obscure the understanding and
relation of designs (e.g., how do you go from an unstructured factorial design to a split plot design?).
Each new method for generating an experimental design appears to correspond to a completely new
function, and intermediate results are often not easily accessible. These factors may contribute to why
developers often work in silos in the field of experimental design.
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A consistent cognitive interface design that leverages existing developments and can be easily
extended to new methods will conceivably be of great help to practitioners. Some efforts to this end
are seen in DoE.wrapper (Grömping 2020), which contains wrapper recipe functions for other DoE
packages such as lhs, AlgDesign, and FrF2 (see Figure 8), and is also the subject of the developmental
package edibble (Tanaka 2021). Undoubtedly, no single developer or package can cater to all experi-
mental designs; therefore, any unifying interface should consider how other developers can contribute
or add their methods. Future research could benefit from further exploratory data analysis, expanding
the study beyond R-packages, and discussing other aspects of interface designs.
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BCClong: An R Package for Bayesian
Consensus Clustering for Multiple
Longitudinal Features
Zhiwen Tan, Chang Shen, Zihang Lu

Abstract It is very common nowadays for a study to collect multiple longitudinal features, and ap-
propriately integrating these features simultaneously for defining individual subgroups (i.e., clusters)
becomes increasingly crucial to understanding population heterogeneity and predicting future out-
comes. The aim of this paper is to describe a new package, BCClong, which implements a Bayesian
consensus clustering (BCC) model for multiple longitudinal features. Compared to existing packages,
several key features make the BCClong package appealing: (a) it allows simultaneous clustering
of mixed-type (e.g., continuous, discrete, and categorical) longitudinal features, (b) it allows each
longitudinal feature to be collected from different sources, with measurements taken at distinct sets of
time points (known as irregularly sampled longitudinal data), and (c) it relaxes the assumption that all
features have the same clustering structure by estimating the feature-specific (local) clusterings and
consensus (global) clustering. Using two real data examples, we provide a tutorial with step-by-step
instructions on how to use the package.

1 Introduction

Cluster analysis has been widely used to identify subgroups of the study population, and it is also
known as an unsupervised learning method in the machine learning literature. When longitudinal
data is available, identifying distinct developmental patterns is a common goal in many research
studies. Traditional statistical models often focus on clustering a single longitudinal feature, which
may ignore the complexity of the clustering structures and the dynamic relationship when multiple
longitudinal features are available. It is very common nowadays for a study to collect multiple features,
and appropriately integrating multiple longitudinal features simultaneously for defining individual
subgroups (i.e., clusters) becomes increasingly crucial to understanding population heterogeneity
and predicting future outcomes. In particular, compared to clustering a single longitudinal feature,
simultaneously clustering multiple longitudinal features (also known as joint clustering) facilitates the
discovery of co-occurring trajectory patterns for multiple features of interest. Several R packages have
been developed to cluster longitudinal data with multiple features. For model-based clustering, the
gbmt package (Magrini, 2022a) and the flexmix package (Leisch, 2004) are developed to implement
the group-based multi-trajectory analysis (GBMT) (Nagin et al., 2018; Magrini, 2022b). Both packages
implement the EM algorithm, allowing unbalanced data and missing values, and can only be applied
to continuous features. Notably, a SAS procedure PROC TRAJ is also developed for this model and
has been widely used (Nagin et al., 2018). The GBMT assumes that the features and repeated measures
are independent conditional on the cluster membership. Alternatively, the lcmm and mixAK packages
are developed under the framework of mixed-effect models. The dependence between features and
repeated measurements is captured by joint modeling of the random effects. Specifically, the lcmm
package is designed for performing analyses such as latent class mixed models for a single longitudinal
feature, joint latent class mixed models for multiple longitudinal features, as well as joint latent class
mixed models for longitudinal features and time-to-event outcomes. While this package allows
modeling multiple continuous or categorical longitudinal data of the same type, it does not support
clustering mixed data types (e.g., continuous and categorical) simultaneously. On the other hand, the
mixAK package can handle same-type (e.g., multiple continuous) or mixed-type (e.g., continuous,
discrete, and categorical) features. For nonparametric clustering, the kml3d package (Genolini et al.,
2013) is developed to implement the K-means clustering for multiple longitudinal features, which
is an extension of the kml package (Genolini and Falissard, 2009) for a single longitudinal feature.
However, this package can only be applied to continuous features and does not allow for missing
data. See Lu et al. (2023) for a review and comparison of these packages. The aim of this paper is
to describe a new package, the BCClong package, which implements the BCC model for multiple
longitudinal features (Lu and Lou, 2022b; Tan et al., 2022). Compared to existing packages, several key
features make the BCClong package appealing: (a) it allows simultaneous clustering of mixed-type
(e.g., continuous, discrete, and categorical) longitudinal features, (b) it allows each longitudinal feature
to be collected from different sources, with measurements taken at distinct sets of time points (known
as irregularly sampled longitudinal data), and (c) it relaxes the assumption that all features have the
same clustering structure by estimating the feature-specific (local) clusterings and overall (global)
clustering. This model is very flexible, which facilitates the interpretation of clustering results and
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enhances its practical utilities.

2 Models and software

The methodology of the BCC model for clustering multiple longitudinal features implemented in the
BCClong package is described in detail in Lu and Lou (2022b) (for multiple continuous features) and
in Tan et al. (2022) (for multiple mixed-type features). In this section, we provide a brief overview
of this model and the BCClong package. Without loss of generality, we use the term "features" to
represent variables of interest used for the cluster analysis; however, these variables can also be a
patient’s traits, biomarkers, risk factors, exposures, and outcomes of interest in different contexts and
studies.

2.1 Bayesian Consensus Clustering for Multiple Longitudinal Features

The BCC model is originally proposed as a flexible approach to model the dependence and heterogene-
ity of the data collected from multiple sources (Lock and Dunson, 2013). Instead of arriving at a single
overall clustering structure, the BCC model allows each feature to follow feature-specific (local) cluster-
ing and these local clusterings are aggregated to find a consensus (global) clustering. Let Li,r = 1, ..., K
denote the feature-specific (local) cluster label for individual i and feature r for r = 1, ..., R, and
Ci = 1, ..., K denote the consensus (global) cluster label for individual i, where K denotes the number of
clusters and R denotes the number of longitudinal features. Let yi,r = (yi1,r, ..., yini,r ,r)

⊤ denote the mea-
surement for individual i and feature r, where yij,r denotes the observation j of individual i for feature
r, and ni,r is the number of measurements, for i = 1, ..., N, j = 1, ..., ni,r, r = 1, ..., R. The BCC model as-
sumes that Lr = (L1,r, ..., LN,r) is dependent on C = (C1, ..., CN) through P(Li,r = k|Ci) = ϑ(k, Ci, αr),
where αr adjusts the dependence function ϑ(·). The conditional model can be specified as

P(Li,r = k|yi,r, Ci, γk,r, βik) ∝ ϑ(k, Ci, αr) fk,r(yi,r|γk,r, βik,r) (1)

where γk,r and βik,r denote the fixed effects and random effects for individual i belonging to cluster k,
where k = 1, ..., K. To specify ϑ(k, Ci, αr), the package uses the following function (Lock and Dunson,
2013).

ϑ(k, Ci, αr) =

{
αr if Ci = Li,r

(1 − αr)/(K − 1) otherwise
(2)

Therefore, αr (for r = 1, ..., R) can also be viewed as an adherence parameter representing the degree
of agreement between Li,r and Ci. Moreover, fk,r(yi,r|γk,r, βik,r) is a distribution from the exponential
family with the dispersion parameter ϕk,r and the fully specified mean function is given by

h−1
k,r (E(yi,r|βik,r, γk,r)) = ηik,r = x⊤i,rγk,r + Z⊤

i,rβik,r (3)

where h−1
k,r is a canonical link function for the mean of the feature r in cluster k. Also, ηik,r =

(ηi1k,r, ..., ηini,rk,r)
⊤ is the linear predictor for feature r, xi,r is a pr × ni,r vector of predictors, γk,r is the

corresponding vector of coefficients, Zi,r is a qr × ni,r vector of predictors, and βik,r|· ∼ MVN(0, Σk,r).
In addition, the distribution of yi,r can be written as

P(yi,r|βik,r, γk,r, ϕk,r) =
ni,r

∏
j=1

exp
{ yij,rηijk,r − gk,r(ηijk,r)

ϕk,r
+ wk,r(yij,r, ϕk,r)

}
(4)

where g(η) and w(y, ϕ) are appropriate distribution-specific functions. For example, for features with

Gaussian distributions, g(η) = η2/2 and w(y, ϕ) =
log(2πϕ)

2 − y2

2ϕ . Furthermore, for three features
with Gaussian, Poisson, and Binomial distributions, respectively, the model can be specified as:

(1): E(yi,1|γk,1, βik,1) = ηik,1 = x⊤i,1γk,1 + Z⊤
i,1βik,1

(2): log(E(yi,2|γk,2, βik,2)) = ηik,2 = x⊤i,2γk,2 + Z⊤
i,2βik,2

(3): logit(E(yi,3|γk,3, βik,3)) = ηik,3 = x⊤i,3γk,3 + Z⊤
i,3βik,3

where i = 1, ..., N, j = 1, ..., ni,r and r = 1, 2, 3. The model also involves dispersion parameters
ϕk,r = σ2

k,r for Gaussian distribution. The corresponding dispersion parameters for logistic regression
and Poisson regression are both 1, for r = 1, ..., R and k = 1, ..., K. Given this proposed model, the
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complete-data likelihood can be written as

LBayes(Θ|yi, βi; xi) = ∑
k1,...,kR

(
∑
k

R

∏
r=1

ϑ(Li,r = kr, Ci = k, αr)πk

) R

∏
r=1

f (yi,r|γikr ,r, βikr ,r; xi,r) (5)

where yi = (yi,1, ..., yi,R), xi = (xi,1, ..., xi,R), βi = (βi,1, ..., βi,R), πk = P(Ci = k) and Θ = (α, π, γ, Σ, ϕ).

2.2 Bayesian Inference

For computational convenience, the BCClong package uses independent conjugate priors for the model
parameters. Specifically, for the adherence parameters, the prior distribution is αr ∼ TBeta(δ1,r, δ2,r, 1/K)
for r = 1, ..., R, where TBeta denotes a truncated Beta distribution ranged from [1/K, 1]. For the cluster
probabilities, the prior distribution is π ∼ Dirichlet(φ0). For the fixed effect coefficients, the prior
distribution is γk,r ∼ MVN(0, V0k,r), where V0k,r is an mk,r × mk,r variance-covariance matrix, and mk,r
is the dimension of γk,r. The dispersion parameter ϕk,r is not constant only when the feature is a Gaus-
sian distribution. In such a case, ϕk,r = σ2

k,r. The prior distribution is σ2
k,r ∼ IG(a0k,r, b0k,r), where a0k,r

and b0k,r are the parameters of an inverse gamma distribution. By definition, ϕk,r = 1 for features that
follow a Poisson or Binomial distribution, for k = 1, ..., K and r = 1, ..., R. For the variance-covariance
matrix of the random effect, the prior distribution is Σ−1

k,r ∼ Wishart(λ0k,r, (λ0k,rΛ0k,r)
−1), where the

prior for the Wishart distribution is parametrized such that the mean is Λ−1
0k,r. In the special case when

Σk,r is a diagonal matrix, that is, Σk,r = diag(ξ2
k1,r, ..., ξ2

kqr ,r), the prior is an inverse gamma distribution,

i.e., ξ2
km,r ∼ IG(c0k,r, d0k,r), for m = 1, ..., qr. For posterior computation, a Gibbs sampling approach to

update the model parameters is described as follows. After initializing the parameters, the algorithm
repeats the following steps until convergence. At the s step of the iteration,

• Update local cluster membership L(s)
i,r given {yi,r, Θ

(s−1)
r , α

(s−1)
r , C(s−1)

i , β
(s−1)
r }, for i = 1, ..., N

and r = 1, ..., R.

• Update α
(s)
r given {C(s−1), L(s)}, for r = 1, ..., R.

• Update C(s)
i given {L(s), α(s), π(s−1)}, for i = 1, ..., N.

• Update π(s) given C(s).

• Update cluster-specific parameters Θ(s) = (γ(s), Σ(s), σ2(s)) and β(s). In particular, γ(s) and β(s)

are updated via the Metropolis-Hastings algorithm.

Each MCMC iteration will produce a realization of cluster membership for C, L1,..., LR. The package
uses the mode over all the MCMC samples (after burn-in and thinning) as the point estimates for
both feature-specific and global clustering. Label switching is a common phenomenon in mixture
models. This problem arises due to both the likelihood and posterior distributions being invariant
to permutations of the parameters. The BCClong package applies a post-processing algorithm, via
the label.switching package (Papastamoulis, 2016), to reorder the labels based on Kullback-Leibler
divergence (Stephens, 2000). The computation of the BCC model can be carried out using the main
function in the BCClong package:

BCC.multi(mydat, dist, id, time, formula, num.cluster,
hyper.par, initials, initial.cluster.membership,
input.initial.local.cluster.membership,
input.initial.global.cluster.membership,
burn.in, thin, per, max.iter, ...)

The meaning of the key arguments of the BCC.multi() function is described as follows.

• mydat: list of R longitudinal features (i.e., with a length of R), where R is the number of features.
The data should be prepared in a long format (each row is one time point per individual).

• dist: a character vector (with a length of R) that determines the distribution for each feature.
Possible values are "gaussian" for a continuous feature, "poisson" for a discrete feature (e.g.,
count data) using a log link, and "binomial" for a dichotomous feature (0/1) using a logit link. A
single value (i.e., a length of 1) is recycled if necessary.

• id: a list (with a length of R) of vectors of the study ID of individuals for each feature. A single
value (i.e., a length of 1) is recycled if necessary.

• time: a list (with a length of R) of vectors of time (or age) at which the feature measurements
are recorded.
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• formula: a list (with a length of R) of formulas for each feature. Each formula is a two-sided
linear formula object describing both the fixed-effects and random effects part of the model, with
the response (i.e., longitudinal feature) on the left of a operator and the terms, separated by +
operations, to the right. Random-effects terms are distinguished by vertical bars (|) separating
expressions for design matrices from grouping factors. See the formula argument from the lme4
package.

• num.cluster: number of clusters K. A minimum value of K is 2.

• hyper.par: hyper-parameters of the prior distributions for the model parameters. The default
hyper-parameters values will result in weakly informative prior distributions.

• initials: a list of initial values for model parameters.

• initial.cluster.membership: a character, which can be "random", "mixAK" or "input". For
"random" (default), the local cluster membership is randomly generated from 1 to K for each
feature. For "mixAK", the local cluster membership is obtained by fitting the Bayesian mix-
ture model for longitudinal data to each feature through the mixAK package for the given
K. For both methods, the global cluster membership is set to be equal to the local cluster
membership of the first feature. For "input", the user can input initial values for local and
global cluster memberships, using the argument input.initial.local.cluster.membership
and input.initial.global.cluster.membership.

• input.initial.local.cluster.membership: if initial.cluster.membership = "input", then
this argument must not be empty. It is a list with a length of R and each element of the list
corresponds to the local clustering of each feature. See the Illustration section for an example.

• input.initial.global.cluster.membership: if initial.cluster.membership = "input", by
default the input.initial.global.cluster.membership is the local cluster membership of the
first feature, and therefore this argument need not be supplied, but the user can also use this
argument to supply a different initial cluster membership for the global clustering. See the
Illustration section for an example.

• burn.in: the number of samples discarded. This value must be smaller than max.iter.

• thin: the number of thinning. For example, if thin = 10, then the MCMC chain will keep one
sample every 10 iterations.

• per: specify how often the MCMC chain will print the iteration number.

• max.iter: the number of MCMC iterations.

In the BCClong package, the default hyper-parameter values for the prior distributions are set to
reflect no prior information regarding the values of these parameters, that is, uninformative priors are
used. The argument hyper.par allows setting these hyper-parameter values. The default values are:

hyper.par = list(a.star = 1, b.star = 1, delta = 1,
aa0 = 0.001, bb0 = 0.001, cc0 = 0.001, dd0 = 0.001,

vv0 = 1000)

This indicates that for δ1,r = δ2,r = 1 for r = 1, ..., R (corresponding to a.star = 1,b.star = 1). The
elements of φ are set to 1 (corresponding to delta = 1), and a0k,r = b0k,r = 0.001 for k = 1, ..., K and
r = 1, ..., R (corresponding to aa0 = 0.001,bb0 = 0.001). Also, V0k,r is set to be a diagonal matrix
with elements of 1000 (corresponding to vv0 = 1000). Finally, Σk,r is set to be a diagonal matrix with
elements following an inverse gamma distribution (corresponding to cc0 = 0.001,dd0 = 0.001).
Customized or informative priors can be used by modifying the values in hyper.par. By default, the
initials is set to NULL and the BCClong will automatically generate initial values for both the local
and global cluster memberships and the model parameters. Convergence of MCMC is diagnosed
using visual inspection of trace plots as well as using the Geweke statistics (Geweke, 1991). The
BCClong package provides a function called traceplot() to produce trace plots for model parameters
of interest. The traceplot() function has the following arguments:

traceplot(fit, cluster.indx, feature.indx, parameter)

The meaning of these arguments is described as follows.

• fit: an objective output from BCC.multi() function.

• cluster.indx: a numeric value. For cluster-specific parameters, specifying cluster.indx will
generate the trace plot for the corresponding cluster.

• feature.indx: a numeric value. For cluster-specific parameters, specifying feature.indx will
generate the trace plot for the corresponding cluster.

• parameter: a character value. Specify which parameter for which the trace plot will be generated.
The value can be "PPI" for π, α for α, "GA" for γ, "SIGMA.SQ.U" for Σ and "SIGMA.SQ.E" for σ.
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In addition, the output of summary statistics from the BCC.multi() function also includes the Geweke
statistics calculated using the coda package (Plummer et al., 2006). Briefly, the Geweke statistics
determine whether a Markov chain converges or not based on a test for equality of the means of the
first and last parts of a Markov chain (by default the first 10% and the last 50%). If the samples are
drawn from the stationary distribution of the chain, the two means are equal and Geweke’s statistic
has an asymptotically standard normal distribution. Practically, if the estimated Geweke statistics fall
between -1.96 and 1.96, we consider the model parameter has converged.

2.3 Missing Data, Measurement Time and Frequency

The proposed BCC model for longitudinal data and the BCClong package allow the modeling of
missing data under the assumption that the data are missing at random (Lu and Lou, 2022b; Tan et al.,
2022). No extra steps are required from the users to handle the missing data. The package will keep
individuals with at least one observation for any input features and use them for the analysis, whereas
the package will remove individuals with no data on all features. The package also allows the number
of observations to be different between individuals and features, and these observations can also be
measured at time points that are different between individuals and features.

2.4 Determining the Number of Clusters

Determining the number of clusters in model-based clustering is challenging and there are no widely
accepted approaches. A review of different approaches within the Bayesian framework can be found
in Celeux et al. (2006); Nasserinejad et al. (2017); Merkle et al. (2019). The BCClong package offers
three criteria to determine the number of clusters, namely the mean adjusted adherence (Lock and
Dunson, 2013), the Deviance Information Criterion (DIC) (Spiegelhalter et al., 2002; Celeux et al.,
2006), and the widely Applicable Information Criterion (WAIC) (Watanabe, 2010; Gelman et al.,
2014). We briefly describe these three approaches in this subsection. For consensus clustering,
Lock and Dunson (2013) proposed an empirical separability criterion, which selects the value of K
that gives maximum adherence to an overall clustering. For each K ≥ 2, the estimated adherence
parameters αr ∈ [ 1

K , 1] are mapped to the unit interval by the linear transformation α∗r = Kαr−1
K−1 ,

thus α∗r ∈ [0, 1]. One then selects the value of K that results in the highest mean adjusted adherence,
which is defined as ᾱ∗ = 1

R ∑R
m=1 α∗r . This approach selects a model with which the feature-specific

clusterings contribute the most information (on average) to the global clustering. A model with a
higher ᾱ∗ is preferred. DIC and its variants have also been widely used for clustering multivariate
longitudinal data. See references (Lu and Lou, 2019; Neelon et al., 2011; Leiby et al., 2009; Elliott et al.,
2005; Frühwirth-Schnatter and Pyne, 2010) for example. In the BCClong package, the DIC is computed
based on the complete likelihood (also known as DIC4 in Celeux et al. (2006)), which is defined
as DIC = −4EΘ,C,L[log f (y, C, L|Θ)|y] + 2EC,L[log f (y, C, L|E[Θ|y, C, L])|y)], where y = (y1, ..., yN)
and Θ is defined in equation (5). The effective number of parameters and the posterior mean of
deviance are defined as pD = −EΘ,C,L[2 log f (y, C, L|Θ)|y] + EC,L[2 log f (y, C, L|E[Θ|y, C, L])|y]
and D(Θ) = −EΘ,C,L[2 log f (y, C, L|Θ)|y], respectively. A model with a lower DIC is preferred.
WAIC is an extension of the Akaike Information Criterion (AIC) that is more fully Bayesian than the
DIC. Similar to DIC, WAIC estimates the effective number of parameters to adjust for overfitting.
The BCClong package uses the LaplacesDemon package (Hall, 2021) to calculate the WAIC, which
is defined as WAIC = −2(lppd − pWAIC), where lppd is the log pointwise predictive density, which
is equivalent to lppd = log ∏N

i=1 ppost(y, C, L). Also, pWAIC = ∑N
i=1 varpost(logp(y, C, L|Θ)) is an

approximation to the number of unconstrained and uninformed parameters, where a parameter
counts as 1 when estimated without constraint or any prior information, 0 if fully constrained or
all information comes from the prior distribution, or an intermediate number if both the data and
prior are informative. The pWAIC defined here corresponds to pWAIC2 in Gelman et al. (2014), which is
recommended because its results are closer in practice to the results of leave-one-out cross-validation.
A model with a lower WAIC is preferred. In the BCClong package, the model.selection.criteria()
function is used to compute the DIC and WAIC:

model.selection.criteria(fit, fast_version)

• fit: an objective output from BCC.multi() function.

• fast_version: if fast_verion = TRUE (default), then compute the DIC and WAIC using the
first 100 MCMC samples (after burn-in and thinning). If fast_version = FALSE, then compute
the DIC and WAIC using all MCMC samples (after burn-in and thinning).
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2.5 Goodness of Fit

To assess the model goodness of fit, one can compute the posterior predictive check (Gelman et al.,
1996). This approach is performed by comparing the observed data with data replicated from the
posterior predictive distribution. If the model fits the data well, the replicated data, denoted as yrep,
should have a similar distribution as the observed data y. Let T = T(y, Φ) denote a discrepancy
measure, where Φ = (Θ, β, L, C) denotes all model parameters (including random effects and cluster
labels) and T is sample quantiles or residual-based measures. Following Gelman et al. (1996), a natural
discrepancy measure is a χ2 measure. For the BCC model, it is defined as

Tobs(y, Φ) =
K

∑
k=1

N

∑
i=1

ni,r

∑
j=1

R

∑
r=1

zik,r||yi,r − h−1
k,r (E(yi,r|βik,r, γk,r))||2

σ2
k,r

(6)

where zik,r = 1 if Li,r = k, and 0 otherwise. This measure is computed at each MCMC step by treating
cluster indicator zik,r and random effects βik,r as observed data. The Bayesian predictive p-value is the
probability that the discrepancy measure based on a predictive sample, Trep(yrep, Φ) is more extreme
than the observed measure Tobs(y, Φ). This quantity is estimated by computing the proportion of
draws in which Trep > Tobs. A p-value close to 0.5 indicates the model provides a good fit to the data,
whereas a p-value close to 0 or 1 indicates a poor fit. In the BCClong package, BayesT() is used for
computing the posterior predictive check.

BayesT(fit)

• fit: an objective output from BCC.multi() function.

2.6 Visualization of Trajectory Patterns by Clusters

To plot the longitudinal trajectory of features by local and global clusterings derived from the BCC
model, the trajplot() function can be used. This function uses the ggplot2 package internally.

trajplot(fit, feature.ind, which.cluster)

• fit: an objective output from the BCC.multi() function.

• feature.indx: a numeric value indicating which feature to plot. The number indicates the order
of the feature specified in the mydat argument of the BCC.multi() function.

• which.cluster: a character value: "global" or "local", indicating whether to plot the trajectory
by global cluster or local cluster indices.

3 Illustrations

In this section, we demonstrate the utility of the BCClong package (version 1.0.3) using two real
data examples. The first example was quality of life data following epilepsy drug treatment, which
included three continuous features. This dataset can be found in the joineRML package (Hickey
et al., 2018). The second example was the Mayo Clinic primary biliary cholangitis (PBC) data, which
included three features of mixed types (i.e., continuous, discrete, and categorical). This dataset can be
found in mixAK package (Komárek and Komárková, 2014).

3.1 Example 1: Quality of Life Data Following Epilepsy Drug Treatment

The data called epileptic.qol came from the Standard and New Antiepileptic Drugs (SAND) study
(Marson et al., 2007). This is a randomized control trial of standard and new antiepileptic drugs,
comparing effects on long-term clinical outcomes. Quality of life (QoL) data were collected by mail at
baseline, 3 months, and at 1 and 2 years using validated measures. The first measurement for each
individual was the baseline measurement; however, there was variability in the time taken to return
the questionnaires. Similarly, the second, third, and fourth follow-up times, which were scheduled for
3 months, 1-year, and 2 years, respectively, also had variability in completion times. The data can be
loaded by

R> library("joineRML")
R> head(epileptic.qol[,c(1,5,6,7,8)])

id time anxiety depress aep
1 1 147 11 14 43
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2 1 259 12 12 51
3 1 519 20 21 63
4 1 906 17 20 53
5 2 134 19 13 45
6 2 258 21 16 50

This is a longitudinal dataset with one row per visit. At each visit, measurements of three continuous
features (R = 3) are recorded, namely the anxiety score (anxiety), depression score (depress), and
Liverpool Adverse Events Profile (aep) defined according to the NEWQOL (Newly Diagnosed Epilepsy
Quality of Life) assessment. One could use a spaghetti plot to visualize the trajectories of these features
(Figure 1). The goal of the analysis was to identify distinct longitudinal QoL patterns based on these
three features simultaneously. Based on the observed trajectories, we used a linear form with a random
intercept for each feature with a Gaussian distribution. The model is written as:

anxiety: E(yi,1|γk,1, βik,1) = ηik,1 = x⊤i,1γk,1 + Z⊤
i,1βik,1

depress: E(yi,2|γk,2, βik,2) = ηik,2 = x⊤i,2γk,2 + Z⊤
i,2βik,2

aep: E(yi,3|γk,3, βik,3) = ηik,3 = x⊤i,3γk,3 + Z⊤
i,3βik,3

where xi,r = (1, ti,r)
⊤ for r = 1, 2, 3 and ti,r = (ti1,r, ..., tini,r ,r)

⊤ is a vector of time values at which the
feature r is recorded for individual i. The corresponding coefficients are γk,r = (γk,r1, γk,r2)

⊤. Also,
Zi,r = 1ni,r for r = 1, 2, 3. For model-based clustering based on a finite mixture model, it is necessary

Figure 1: Longitudinal trajectories of three features for the epileptic.qol dataset. A locally weighted
scatterplot smoothing curve is overlaid on each panel to provide an estimate of the overall trend. (A)
longitudinal trajectories of Anxiety score (anxiety), (B) longitudinal trajectories of depression score
(depress), (C) longitudinal trajectories of Liverpool Adverse Events Profile (aep).

to normalize the data within each feature in order to model the growth pattern, not the level. This is
because the level could dominate the sample variability so that the clusters will be mainly determined
by the level and will not necessarily be homogeneous in trend (Heggeseth and Jewell, 2018). Therefore,
in the current analysis, the three features were normalized using the scale function before entering the
model, using the following commands,

R> epileptic.qol$anxiety_scale <- scale(epileptic.qol$anxiety)
R> epileptic.qol$depress_scale <- scale(epileptic.qol$depress)
R> epileptic.qol$aep_scale <- scale(epileptic.qol$aep)

Determining the Number of Clusters

The following codes fit the BCC model with the number of clusters ranging from 2 to 5, i.e., K = 2, ..., 5.
For each value of K, we saved the mean adjusted adherence (alpha.adjust). For each model, we
generated 2000 samples and discarded the first 1000 samples. Note that the following part of the codes
may be computationally intensive; if users just want to get familiar with the codes and outputs, a
smaller number of iterations and burn-in can be used to reduce the computational time, for example,
by setting burn.in = 10,per = 1,and max.iter = 20.

R> dat <- epileptic.qol
R> alpha.adjust <- NULL
R> for (k in 2:5){
+ fit.BCC <- BCC.multi (
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+ mydat = list(dat$anxiety_scale,dat$depress_scale,dat$aep_scale),
+ dist = c("gaussian"),
+ id = list(dat$id),
+ time = list(dat$time),
+ formula = list(y ~ time + (1|id)),
+ num.cluster = k,
+ burn.in = 1000,
+ thin = 1,
+ per = 100,
+ max.iter = 2000)
+ alpha.adjust <- c(alpha.adjust, fit.BCC$alpha.adjust)
+ }

An alternative specification for the formula argument is

formula = list(y ~ time + (1|id), y ~ time + (1|id), y ~ time + (1|id))

This specification can be used if the users would like to use different functional forms for different
features. Each element within the list corresponds to a model for a feature listed in the mydat argument.
To compare the model under different numbers of clusters, one can plot the mean adjusted adherence
index using the following commands:

R> num.cluster <- 2:5
R> plot(num.cluster, alpha.adjust, type = "o",
+ cex.lab = 1.5, cex.axis = 1.5, cex.main = 1.5, lwd = 2,
+ xlab = "Number of Clusters",
+ ylab = "mean adjusted adherence", main="mean adjusted adherence")

Figure 2: Mean adjusted adherence for K = 2 to 5 for the epileptic.qol dataset.

From Figure 2, it was clear that the model with the number of clusters K = 2 had the largest mean
adjusted adherence (0.88), suggesting that a two-cluster model provided the best fit for the data. To de-
termine the number of clusters based on DIC and WAIC, one can also use the model.selection.criteria()
function to compute these indices. Next, we used the following commands to fit the final model with
K = 2.

R> fit.BCC2 <- BCC.multi (
+ mydat = list(dat$anxiety_scale, dat$depress_scale, dat$aep_scale),
+ dist = c("gaussian"),
+ id = list(dat$id),
+ time = list(dat$time),
+ formula = list(y ~ time + (1|id)),
+ num.cluster = 2,
+ burn.in = 1000,
+ thin = 1,
+ per = 100,
+ max.iter = 2000)
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One can apply print() and summary() functions to the object returned from BCC.multi() to obtain
summary information of the result, for example,

> print(fit.BCC2)
> summary(fit.BCC2)

Both functions will return result summaries such as the number of individuals, number of features
included in the analysis, and tabulation for global and local clusterings.

Posterior Summary Statistics and Trace Plots

One can print the summary statistics for all the model parameters using the following commands
(results not shown):

print(fit.BCC2$summary.stat)

As an illustration, we print the estimated cluster probabilities π = (π1, π2) as follows:

R> print(fit.BCC2$summary.stat$PPI)

[,1] [,2]
mean 0.43608373 0.56391627
sd 0.02367214 0.02367214
2.5% 0.39326189 0.51584563
97.5% 0.48415437 0.60673811
geweke.stat -0.78671117 0.78671117

The summary statistics provided the posterior mean, standard deviation (sd), 2.5%tile, 97.5%tile,
and the Geweke statistics. For example, the posterior mean for π1 and π2 were 0.44 and 0.56,
respectively. This suggested that the estimated cluster proportions for Clusters 1 and 2 are 44% and
56%, respectively. The Geweke statistics for π1 and π2 fell between -2 and 2, suggesting that the two
parameters converge to a stationary distribution. One can also use the following commands to print
the adherence parameters for the three features, i.e., α = (α1, α2, α3):

R> print(fit.BCC2$summary.stat$ALPHA)

[,1] [,2] [,3]
mean 0.97572877 0.91727462 0.92427049
sd 0.01230074 0.01764104 0.01771331
2.5% 0.94682192 0.88115409 0.88730582
97.5% 0.99620462 0.95091755 0.95581869
geweke.stat 0.10674171 0.05585855 -1.13303537

The output indicated that the posterior means for the adherence parameters were 0.98, 0.92, and 0.92,
respectively. This suggested that all three features highly adhered to the global clustering. The Geweke
statistics suggested that all the parameters converge to a stationary distribution. One can print similar
information for the fixed effect coefficients γk using commands print(fit.BCC2$summary.stat$GA),
for the variance-covariance matrix of the random effects Σk using commands print(fit.BCC2$summary.stat$SIGMA.SQ.U),
for the residual variance of continuous features σk using commands print(fit.BCC2$summary.stat$SIGMA.SQ.E),
for k = 1, ..., K. To visualize the MCMC chain for model parameters, one can use the traceplot() function
to generate the trace plots. For example, to generate a trace plot for cluster probabilities π = (π1, π2)
and the adherence parameters α = (α1, α2, α3), the following commands were used:

R> traceplot(fit = fit.BCC2, parameter = "PPI", ylab = "pi", xlab = "MCMC samples")
R> traceplot(fit = fit.BCC2, parameter = "ALPHA", ylab = "alpha", xlab = "MCMC samples")

The outputs are displayed in Figure 3 and Figure 4, respectively. These trace plots suggested that
π1, π2, α1, α2, and α3 are mixing well and converging. In addition, one can generate trace plots for
cluster-specific parameters, for example, the fixed effect regression coefficients, γk,r = (γk,r1, γk,r2),
with the first element as the intercept and the second element as the slope. The following commands
generate trace plots (results not shown) for Cluster 1 of the first feature (anxiety), second (depress),
and third (aep) features, that is, γ1,1 = (γ1,11, γ1,12), γ1,2 = (γ1,21, γ1,22), and γ1,3 = (γ1,31, γ1,32).

R> traceplot(fit = fit.BCC2, cluster.indx = 1, feature.indx = 1,
+ parameter = "GA", ylab = "GA", xlab = "MCMC samples")
R> traceplot(fit = fit.BCC2, cluster.indx = 1, feature.indx = 2,
+ parameter = "GA", ylab = "GA", xlab = "MCMC samples")
R> traceplot(fit = fit.BCC2, cluster.indx = 1, feature.indx = 3,
+ parameter = "GA", ylab = "GA", xlab = "MCMC samples")
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Figure 3: Trace plots for cluster probabilities π1 and π2.

Figure 4: Trace plots for adherence parameters α1, α2, α3.

Also, the following commands generated trace plots (results not shown) for Cluster 2 of the first feature
(anxiety), second (depress), and third (aep) features, that is, γ2,1 = (γ2,11, γ2,12), γ2,2 = (γ2,21, γ2,22),
and γ2,3 = (γ2,31, γ2,32).

R> traceplot(fit = fit.BCC2, cluster.indx = 2, feature.indx = 1,
+ parameter = "GA", ylab = "GA", xlab="MCMC samples")
R> traceplot(fit = fit.BCC2, cluster.indx = 2, feature.indx = 2,
+ parameter = "GA", ylab = "GA", xlab = "MCMC samples")
R> traceplot(fit = fit.BCC2, cluster.indx = 2, feature.indx = 3,
+ parameter = "GA", ylab = "GA", xlab = "MCMC samples")

Similarly, one can use parameter = "SIGMA.SQ.U" to generate the elements of the variance-covariance
matrix (Σk) for the random effects, and parameter = "SIGMA.SQ.E" for the residual variance of
continuous features σk, for k = 1, ..., K.

Longitudinal Profiles by Local and Global Clusters

The package uses the mode over all the MCMC samples (after burn-in and thinning) as the point
estimates for both feature-specific and global clusterings. The following commands computed the
number of individuals belonging to each cluster for both feature-specific and global clusterings.

R> table(fit.BCC2$cluster.local[[1]])
1 2

231 309
R> table(fit.BCC2$cluster.local[[2]])
1 2

223 317
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R> table(fit.BCC2$cluster.local[[3]])
1 2

267 273
R> table(fit.BCC2$cluster.global)
1 2

236 304

That is, for clustering based on the first feature (anxiety) L1, 231 individuals were assigned to Cluster
1 and 309 were assigned to Cluster 2. For clustering based on the second feature (depress) L2, 223
individuals were assigned to Cluster 1 and 317 were assigned to Cluster 2. For clustering based on the
third feature (aep) L3, 267 individuals were assigned to Cluster 1 and 273 were assigned to Cluster 2.
For global clustering, C, 236 individuals were assigned to Cluster 1 and 304 were assigned to Cluster 2.
To plot the longitudinal trajectory of features by local and global clusterings, the trajplot() function
can be used. Example codes for plotting the trajectory of the features in the epileptic.qol data are
provided as follows:

R> gp1 <- trajplot(fit = fit.BCC2, feature.ind = 1,
+ which.cluster = "local.cluster",
+ title= bquote(paste("Local Clustering (",
+ hat(alpha)[1] ==.(round(fit.BCC2$alpha[1],2)),")")),
+ xlab = "time (months)", ylab = "anxiety", color = c("#00BA38", "#619CFF"))
R> gp2 <- trajplot(fit = fit.BCC2, feature.ind = 2,
+ which.cluster = "local.cluster",
+ title = bquote(paste("Local Clustering (",
+ hat(alpha)[2] ==.(round(fit.BCC2$alpha[2],2)),")")),
+ xlab = "time (months)", ylab = "depress", color = c("#00BA38", "#619CFF"))
R> gp3 <- trajplot(fit = fit.BCC2, feature.ind = 3,
+ which.cluster = "local.cluster",
+ title = bquote(paste("Local Clustering (",
+ hat(alpha)[3] ==.(round(fit.BCC2$alpha[3],2)),")")),
+ xlab = "time (months)", ylab = "aep", color = c("#00BA38", "#619CFF"))
R> gp4 <- trajplot(fit = fit.BCC2, feature.ind = 1,
+ which.cluster = "global.cluster",
+ title = "Global Clustering", xlab = "time (months)", ylab = "anxiety",
+ color = c("#00BA38", "#619CFF"))
R> gp5 <- trajplot(fit = fit.BCC2, feature.ind = 2,
+ which.cluster = "global.cluster",
+ title = "Global Clustering", xlab = "time (months)", ylab = "depress",
+ color = c("#00BA38", "#619CFF"))
R> gp6 <- trajplot(fit = fit.BCC2, feature.ind = 3,
+ which.cluster = "global.cluster",
+ title = "Global Clustering", xlab = "time (months)", ylab = "aep",
+ color = c("#00BA38", "#619CFF"))

The cowplot package (Wilke, 2024) is used here to combine all six plots together into one figure.

R> library("cowplot")
R> dev.new(width = 180, height = 120)
R> plot_grid(gp1, gp2, gp3, gp4, gp5, gp6,
+ labels = c("(A)", "(B)", "(C)", "(D)", "(E)", "(F)"),
+ ncol = 3, align = "v" )

The results are displayed in Figure 5. The top panel (A, B, and C) shows the three features plotted by
local clustering indices, whereas the bottom panel (D, E, F) shows the three features plotted by global
clustering indices. Individuals in Cluster 1 had lower anxiety scores, depression scores, and aep scores,
which represented a better health condition compared to those in Cluster 2. The local clustering based
on the anxiety score highly adhered to the global clustering (α̂1 = 0.98), followed by aep (α̂2 = 0.92)
and depress scores (α̂3 = 0.92), respectively. This suggested that all three features highly adhered to
the global clustering, and the anxiety score contributed the most information to determine the global
clustering.

Goodness of Fit

To assess the model goodness of fit, one can use BayesT() for computing the posterior predictive check.
The commands of the two-cluster model for epileptic.qol data are as follows:
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Figure 5: Longitudinal trajectories for features by local and global clusterings epileptic.qol data.
Locally weighted scatterplot smoothing curves are overlaid on each panel to provide an estimate of the
overall trend. (A) Longitudinal trajectories of anxiety plotted by local clustering L1. (B) Longitudinal
trajectories of depress plotted by local clustering L2. (C) Longitudinal trajectories of aep plotted
by local clustering L3. (D) Longitudinal trajectories of anxiety plotted by global clustering C. (E)
Longitudinal trajectories of depress plotted by global clustering C. (F) Longitudinal trajectories of aep
plotted by global clustering C.

R> res <- BayesT(fit = fit.BCC2)
R> plot(log(res$T.obs), log(res$T.rep), xlim = c(8.45,8.7), ylim = c(8.45,8.7), cex = 1.5,
+ xlab = "Observed T statistics (in log scale)",
+ ylab = "Predicted T statistics (in log scale)")
R> abline(0, 1, lwd = 2,col = 2)

The result is displayed in Figure 6. This figure suggested that there was no systematic pattern (e.g.,
consistent overestimation or underestimation) between the observed T (in log scale) and predicted T
(in log scale) statistics, indicating that the model provided a good fit to the data. To further evaluate
the goodness of fit using an objective measure, the Bayesian p-value can be calculated, using the
following commands,

R> p.value <- sum(res$T.rep > res$T.obs)/length(res$T.rep)
R> p.value

[1] 0.559

The Bayesian p-value of 0.559 corresponds to the proportion of samples above the diagonal, further
suggesting that there is no clear evidence of model misspecification or that the model provides a
poor fit to the data. In addition, the output also provided the posterior cluster probability, which is a
measure of cluster uncertainty. The following commands generated a boxplot for the posterior cluster
probabilities by clusters.

R> fit.BCC2$cluster.global <- factor(fit.BCC2$cluster.global,
+ labels = c("Cluster 1", "Cluster 2"))
R> boxplot(fit.BCC2$postprob ~ fit.BCC2$cluster.global, ylim = c(0.5, 1),
+ xlab = "", ylab = "Posterior Cluster Probability")

The results were displayed in Figure 7. The posterior cluster probabilities for a majority of individuals
in both Clusters 1 and 2 were close to 1, except for a few individuals. This suggested that the cluster
membership for individuals is robust.
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Figure 6: Posterior predictive check: observed T (in log scale) and predicted T (in log scale) statistics.

Figure 7: Boxplot for the posterior cluster probabilities by clusters.

Using a Different Set of Initial Values for Local and Global Cluster Memberships

It is a good practice to fit the model with different starting values to ensure the model converges
and the clustering results are stable. By default, the initial values of the local cluster membership are
randomly generated from 1 to K for each feature, and the global cluster membership is set to be equal
to the local cluster membership of the first feature. One can also supply the local cluster membership
by fitting the Bayesian mixture model for longitudinal data to each feature through the mixAK package
for the given K. To do so, the argument initial.cluster.membership = "mixAK" can be added to
the BCC.multi function. One can also provide user input initial values for the cluster membership,
by using initial.cluster.membership = "input", and then supply the initial values using the
input.initial.local.cluster.membership and input.initial.global.cluster.membership argu-
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ments. For example, if the user would like to refit the model using clustering results generated from
the previous model (fit.BCC2), the following code can be used:

> fit.BCC2a <- BCC.multi (
+ mydat = list(dat$anxiety_scale, dat$depress_scale, dat$aep_scale),
+ dist = c("gaussian"),
+ id = list(dat$id),
+ time = list(dat$time),
+ formula = list(y ~ time + (1|id)),
+ initial.cluster.membership = "input",
+ input.initial.local.cluster.membership = list(fit.BCC2$cluster.local[[1]],
+ fit.BCC2$cluster.local[[2]], fit.BCC2$cluster.local[[3]]),
+ input.initial.global.cluster.membership = fit.BCC2$cluster.global,
+ num.cluster = 2,
+ burn.in = 1000,
+ thin = 1,
+ per = 100,
+ max.iter = 2000)

Comparing Clustering Results to Other Model Specifications

To evaluate the robustness of the resulting clusters, one can compare the clustering results to more
complicated models. We fit a BCC model with a linear form using a random intercept and slope, and a
BCC model with a quadratic form using a random intercept and slope. The commands are as follows:

R> fit.BCC2b <- BCC.multi (
+ mydat = list(dat$anxiety_scale, dat$depress_scale, dat$aep_scale),
+ dist = c("gaussian"),
+ id = list(dat$id),
+ time = list(dat$time),
+ formula = list(y ~ time + (1 + time|id)),
+ num.cluster = 2,
+ print.info = "FALSE",
+ burn.in = 1000,
+ thin = 1,
+ per = 100,
+ max.iter = 2000)
R> fit.BCC2c <- BCC.multi (
+ mydat = list(dat$anxiety_scale, dat$depress_scale, dat$aep_scale),
+ dist = c("gaussian"),
+ id = list(dat$id),
+ time = list(dat$time),
+ formula = list(y ~ time + time2 + (1 + time|id)),
+ num.cluster = 2,
+ print.info = "FALSE",
+ burn.in = 1000,
+ thin = 1,
+ per = 100,
+ max.iter = 2000)
> fit.BCC2b$cluster.global <- factor(fit.BCC2b$cluster.global,
+ labels = c("Cluster 1", "Cluster 2"))
> table(fit.BCC2$cluster.global, fit.BCC2b$cluster.global)

Cluster 1 Cluster 2
Cluster 1 223 13
Cluster 2 1 303

The agreement between the first model (linear model with a random intercept) and the second model
(linear model with a random intercept and random slope) was (223 + 303)/540 = 97%.

R> fit.BCC2c$cluster.global <- factor(fit.BCC2c$cluster.global,
+ labels = c("Cluster 1", "Cluster 2"))
R> table(fit.BCC2$cluster.global, fit.BCC2c$cluster.global)

Cluster 1 Cluster 2
Cluster 1 227 9
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Cluster 2 2 302

The agreement between the first model (linear model with a random intercept) and the second model
(quadratic model with a random intercept and random slope) was (226 + 301)/540 = 98%. This
suggested that fitting a more complicated model does not substantially change the individual cluster
membership, and further attests that the estimated cluster membership was robust to different model
specifications.

3.2 Example 2: Mayo Clinic Primary Biliary Cholangitis Data

The second dataset was from a randomized placebo-controlled trial of the drug D-penicillamine for
Primary Biliary Cholangitis conducted between 1974 and 1984 at the Mayo Clinic Primary Biliary
Cholangitis (PBC). The dataset used here contains multiple laboratory results collected longitudinally
on 312 randomized PBC patients. Example features (variables) include serum bilirubin (mg/dl),
serum albumin (mg/dl), platelet count, serum glutamic-oxaloacetic transaminase and the presence
of blood vessel malformations in the skin. The dataset was analyzed previously by Komárek and
Komárková (2013) using the mixAK package. The analysis goal was to identify subgroups of patients
with similar profiles based on multiple features which may serve as critical information regarding
patients’ prognostics. To illustrate the clustering process of mixed-type longitudinal features, we
followed Komárek and Komárková (2013) analysis and chose three features of interest, namely the
lbili (log of serum bilirubin), platelet count, and spiders (presence of blood vessel malformations
in the skin). Also, following Komárek and Komárková (2013), we included N = 260 individuals
known to be alive at 910 days of follow-up, and only the longitudinal measurements up to this point
were considered (known as the PBC910 data). The median (min, max) number of observations for
these markers was 4 (1, 5). Given a small number of observations available for each individual, we
considered a model with only a random intercept, i.e., using the following specification:

formula = list(y ~ time + (1|id))

For a complete analysis, one can follow the steps outlined in Example 1 to determine the number of
clusters and to evaluate the model performance using several different approaches (e.g., posterior
predictive check). Here, as an illustration, and for the purpose of comparison, we only fitted a model
with two clusters (i.e., K = 2) as in Komárek and Komárková (2013). The data is available through the
mixAK package. The following commands prepared the dataset for analysis.

R> library("mixAK")
R> data(PBC910)

Using the argument dist = c("gaussian","poisson","binomial") to specify the distributions for
the three features, the following commands performed a BCC model with K = 2.

R > fit.BCC2 <- BCC.multi(
+ mydat = list(PBC910$lbili, PBC910$platelet, PBC910$spiders),
+ dist = c("gaussian", "poisson", "binomial"),
+ id = list(PBC910$id),
+ time = list(PBC910$month),
+ formula = list(y ~ time + (1|id)),
+ num.cluster = 2,
+ burn.in = 10000,
+ thin = 10,
+ per = 1000,
+ max.iter = 20000)

The following commands generated the longitudinal profile plots for the three features (lbili, platelet,
spiders).

R> gp1 <- trajplot(fit = fit.BCC2, feature.ind = 1,
+ which.cluster = "local.cluster",
+ title = bquote(paste("Local Clustering (",
+ hat(alpha)[1] ==.(round(fit.BCC2$alpha[1],2)),")")),
+ xlab = "months", ylab = "lbili", color = c("#00BA38", "#619CFF"))
R> gp2 <- trajplot(fit = fit.BCC2, feature.ind = 2,
+ which.cluster = "local.cluster",
+ title = bquote(paste("Local Clustering (",
+ hat(alpha)[2] ==.(round(fit.BCC2$alpha[2],2)),")")),
+ xlab = "months", ylab = "platelet", color = c("#00BA38", "#619CFF"))
R> gp3 <- trajplot(fit = fit.BCC2, feature.ind = 3,
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+ which.cluster = "local.cluster",
+ title = bquote(paste("Local Clustering (",
+ hat(alpha)[3] ==.(round(fit.BCC2$alpha[3],2)),")")),
+ xlab = "months", ylab = "spiders", color = c("#00BA38", "#619CFF"))
R> gp4 <- trajplot(fit = fit.BCC2, feature.ind = 1,
+ which.cluster = "global.cluster",
+ title = "Global Clustering",
+ xlab = "months", ylab = "lbili", color = c("#00BA38", "#619CFF"))
R> gp5 <- trajplot(fit = fit.BCC2, feature.ind = 2,
+ which.cluster = "global.cluster",
+ title = "Global Clustering",
+ xlab = "months", ylab = "platelet", color = c("#00BA38", "#619CFF"))
R> gp6 <- trajplot(fit = fit.BCC2, feature.ind = 3,
+ which.cluster = "global.cluster",
+ title = "Global Clustering",
+ xlab = "months", ylab = "spiders", color = c("#00BA38", "#619CFF"))

Figure 8: Longitudinal trajectories for features by local and global clusterings for PBC910 data. Locally
weighted scatterplot smoothing curves are overlaid on each panel to provide an estimate of the overall
trend. (A) Longitudinal trajectories of lbili plotted by local clustering L1. (B) Longitudinal trajectories
of platelet plotted by local clustering L2. (C) Longitudinal trajectories of spiders plotted by local
clustering L3. (D) Longitudinal trajectories of lbili plotted by global clustering C. (E) Longitudinal
trajectories of platelet plotted by global clustering C. (F) Longitudinal trajectories of spiders plotted by
global clustering C.

To compare the results with an existing model, we fit a Bayesian mixture model using the mixAK
package using the following commands (see (Komárek and Komárková, 2014) for details of using this
package):

R> mod <- GLMM_MCMC(y = PBC910[, c("lbili", "platelet", "spiders")],
+ dist = c("gaussian", "poisson(log)", "binomial(logit)"),
+ id = PBC910[, "id"],
+ x = list(lbili = "empty", platelet = "empty", spiders = PBC910[, "month"]),
+ z = list(lbili = PBC910[, "month"], platelet = PBC910[, "month"], spiders = "empty"),
+ random.intercept = rep(TRUE, 3), prior.b = list(Kmax = 2),
+ nMCMC = c(burn = 100, keep = 1000, thin = 10, info = 100),
+ parallel = FALSE)
R> mod <- NMixRelabel(mod, type = "stephens", keep.comp.prob = TRUE)
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R> cluster.mixAK <- apply(mod[[1]]$poster.comp.prob, 1, which.max)
R> table(mixAK = cluster.mixAK, BCClong = fit.BCC2$cluster.global)

BCClong
mixAK 1 2

1 158 3
2 65 34

The agreement between the two models for the PBC910 data was (158 + 34)/260 = 74%.

4 Summary and discussion

In this paper, we described a BCC model for clustering longitudinal data with multiple features. Using
two real-life and open-access data, we provided step-by-step guidance on using the BCClong package
and interpreting the results. The results also demonstrated that the BCClong package is a useful tool
for clustering longitudinal data and it enhanced our understanding of the heterogeneity underlying
each feature and across features. Of note, the reason we require the user to create three separate lists
of data vectors (instead of a data frame) when using BCC.multi(), in specifying the arguments mydat,
id, and time is to allow more flexibility in modeling longitudinal features with distinct structures.
This is particularly useful when these features are collected from multiple data sources (with different
study designs), and therefore the time scale and data collection frequency could differ between
features. Additional details regarding the functions and their arguments can be found in the package
vignettes. The BCC model implemented using the BCClong package yields both feature-specific (local)
clusterings and consensus (global) clustering. In practice, global clustering is often of greater interest,
as it encompasses information from all features. It can be used to associate with exposures and predict
long-term outcomes. Conceptually, feature-specific clustering can be viewed as clustering based on a
single feature alone, whereas global clustering can be viewed as a weighted average clustering across
all features, with weights being the adherence parameters. In order to capture the complexity of the
underlying population heterogeneity, it is of great importance to consider multiple features of interest
simultaneously, as we often do for cross-sectional data. Several directions can be considered in future
studies. For example, incorporating variable selection (e.g., spike-and-slab and shrinkage) priors (Lu
and Lou, 2022a, 2021) for fixed and random effects will enhance the flexibility of the package and allow
it to be applied to high-dimensional settings. In addition, determining the number of clusters can be
achieved by using a Dirichlet process mixture model (Escobar, 1994; Lu and Chandra, 2024; Lu et al.,
2024). The package does not support predicting the cluster membership of a new individual or future
trajectories for a given individual. These functions will be considered in future versions of the package.
Finally, the current version of the BCClong package relies on a standard MCMC algorithm to estimate
the model, which is generally slow and requires particular care for the user to check convergence.
While the computational time is reasonable for our current applications, to scale up the model to a
large dataset, other computational algorithms such as distributed stochastic gradient MCMC (Ahn
et al., 2014) and variational inference (Blei et al., 2017) can be considered in future studies.

Computational details

Most of the functions in the BCClong package are written in C++. The output shown in this article was
obtained using R version 4.2.1 (June, 2022), BCClong 1.0.3, and the following contributed packages
which are the dependencies or imports of the BCClong package: cluster (2.1.4) (Maechler et al.,
2022), coda (0.19-4) (Plummer et al., 2006), ggplot2 (3.4.0) (Wickham, 2016), label.switching (1.8)
(Papastamoulis, 2016), LaplacesDemon (16.1.6) (Hall, 2021), lme4 (1.1-31) (Bates et al., 2015), MASS
(7.3-58.1) (Ripley et al., 2013), mclust (6.0.0) (Scrucca et al., 2023), MCMCpack (1.6-3) (Martin et al.,
2011), mixAK (5.5) (Komárek and Komárková, 2014), mvtnorm (1.1-3) (Genz et al., 2021), nnet (7.3-18)
(Venables and Ripley, 2002), Rcpp (1.0.9) (Eddelbuettel and François, 2011), Rmpfr (0.8-9) (Maechler,
2022), truncdist (1.0-2) (Novomestky et al., 2016). R itself and all packages used are available from the
Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/.
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reslr: An R Package for Relative Sea Level
Modelling
by Maeve Upton, Andrew Parnell, and Niamh Cahill

Abstract We present reslr, an R package to perform Bayesian modelling of relative sea level data. We
include a variety of different statistical models previously proposed in the literature, with a unifying
framework for loading data, fitting models, and summarising the results. Relative sea-level data often
contain measurement error in multiple dimensions, and so our package allows for these to be included
in the statistical models. When plotting the output sea level curves, the focus is often on comparing
rates of change, and so our package allows for computation of the derivatives of sea level curves with
appropriate consideration of the uncertainty. We provide a large example dataset from the Atlantic
coast of North America and show some of the results that might be obtained from our package.

1 Introduction

Understanding the rates and spatial patterns of Relative Sea-Level (RSL) change across various
timescales, spanning from decades to millennia, poses a significant challenge. The task involves
analysing sparse and noisy proxy and/or instrumental data sources that often have large measurement
uncertainties. To address these complexities and provide robust assessments, statistical models play a
pivotal role and have become indispensable in the task of quantifying RSL changes (as examined by
Cahill et al. (2015a) and Khan et al. (2015)) and in the evaluation of temporal and spatial variability
(e.g., Kopp, 2013; Kopp et al., 2016; Kemp et al., 2018; Walker et al., 2021). To that end, the paleo
sea-level community would benefit from a comprehensive toolset capable of analysing the historical
evolution of sea-level changes across different times and locations. This motivated us to create the
reslr package, which is available on the Comprehensive R Archive Network at https://cran.r-
project.org/web/packages/reslr or on GitHub at https://github.com/maeveupton/reslr. Our
package includes a suite of statistical models appropriate for modelling the complexity of sea-level
over time and space, while accounting for sea-level data uncertainties and remaining computationally
tractable. The output of our package provides insight into temporal and spatial sea-level variability
and rates of sea-level change.

The reslr package includes a comprehensive dataset of proxy RSL reconstructions for 21 locations
along the Atlantic coast of North America (Kemp et al., 2013). These reconstructions rely heavily on
dated geological archives obtained from coastal sediments (e.g., Gehrels, 1994) or corals (e.g., Meltzner
et al., 2017). Moreover, users of the package have the option to incorporate instrumental sea-level data
sourced from the Permanent Service Mean Sea Level (PSMSL) online database, which provides annual
RSL measurements for approximately 1,500 tide-gauge stations worldwide (Holgate et al., 2013). By
offering this diverse range of data sources, the reslr package caters to the needs of researchers seeking
to explore and analyse sea-level variations across different locations and time periods.

The reslr package offers a range of statistical models which include: linear regression (e.g., Ashe
et al. (2019)), change point models (e.g., Cahill et al. (2015b)), integrated Gaussian process (IGP) models
(e.g., Cahill et al. (2015a)), temporal splines (e.g., de Boor (1978)), spatio-temporal splines (e.g., Simpson
(2018)) and generalised additive models (GAM) (e.g., Upton et al. (2023)). In all cases, a Bayesian
framework is employed, facilitating the estimation of unknown parameters based on the RSL data
while fully accounting for the associated uncertainties. The reslr package enables researchers to gain
comprehensive insights into sea-level variations, leveraging the flexibility and robustness of these
statistical models.

When it comes to addressing measurement uncertainty in proxy records, the reslr package offers
two distinct approaches. The first approach involves employing the Errors-in-Variables (EIV) method,
which takes into account the inherent uncertainties in the input variables (Dey et al., 2000). This
method acknowledges that the input variables are not error-free and incorporates this knowledge
into the analysis. The second approach offered by the package is the Noisy Input (NI) uncertainty
method. This method tackles uncertainty by inflating the output noise variance with a corrective term
that is directly linked to the input noise variance (McHutchon and Rasmussen, 2011). Both the EIV
and NI uncertainty methods have their respective advantages, and the reslr package recommends
the most suitable uncertainty method based on the statistical model being employed. This ensures
that researchers can select the appropriate approach to effectively address measurement uncertainties
within their specific analysis context.

For each model, the reslr package generates informative plots illustrating the model-based esti-
mates of RSL. In the case of more complex models, like the IGP, splines, and GAMs, the resulting
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plots not only provide RSL estimates but also offer insights into the rates of RSL change. Of partic-
ular significance to the paleo-sea level community, the GAM model provides estimates for separate
components that represent potential drivers of RSL change. This feature enables comparisons be-
tween different components and contributes to a more comprehensive understanding of the factors
influencing RSL fluctuations (Upton et al., 2023). These visual representations enable researchers to
gain a clearer understanding of when and where RSL changes occurred, including the magnitude of
their temporal variations. Moreover, the package grants users access to the posterior samples used to
generate the plots, providing the option to delve deeper into the underlying statistical distributions
and uncertainties associated with the estimated RSL changes. The combination of these outputs serves
as a valuable resource for researchers, aiding in the investigation and interpretation of RSL dynamics
across various spatial and temporal contexts.

The reslr package is uniquely tailored to address the challenges inherent in analysing historic
RSL changes using proxy records. Its design, characterised by minimal functions and a user-friendly
interface, draws inspiration from other packages such as mgcv, renowned for its diverse statistical
modelling options (Wood, 2015). Crucially, there are currently no competing R packages that match the
breadth of capabilities offered by reslr. This uniqueness stems from its capability to provide users with
a selection of Bayesian statistical models and account for bi-variate uncertainty, crucial in sea-level
research.

Our paper has the following structure. First, we introduce the example dataset provided within
the package, which serves as the foundation for the examples presented throughout the paper. We
also provide insight into additional data sources. Second, we offer an overview of the statistical
models available in the package, providing necessary background information. Next, we explore
the uncertainty methods employed within these statistical models. Following this, we provide a
detailed description of the functionality of the reslr package, outlining the diverse outputs and
plots accessible to users. Finally, we conclude with important remarks and discuss potential future
extensions for the package’s advancement. Whilst this paper is just a summary of the features of reslr,
a more complete vignette containing examples of the full functionality of the package is available at
https://maeveupton.github.io/reslr/.

2 Data and models

2.1 Data sources

Proxy sea-level data are vital sources of information for examining historic changes in RSL prior to
the instrumental data period. A proxy refers to a characteristic that can be observed and used to
estimate a variable of interest, which cannot be measured directly, and can be of physical, biological,
or chemical nature (e.g., Gornitz, 2009). In sea-level studies, the proxy data can be sourced from
microorganisms such as foraminifera (e.g., Edwards and Wright, 2015), geochemical measurements
(e.g., Marshall, 2015), or vegetation that has accumulated in the tidal realm (e.g., Kemp and Telford,
2015). The datasets we use have had their proxy measurements transformed into sea level using
various techniques which are beyond the scope of our paper (e.g., Gehrels (1994), Shennan et al. (2015),
Kemp et al. (2018)). In the reslr package, we provide an example proxy dataset which contains 21
proxy sea-level records (See Appendix) from the Atlantic coast of North America as used in Upton
et al. (2023).

Within the context of sea-level analysis, instrumental data plays an important role by providing
direct measurements obtained from tide gauges and satellites (although the latter is currently not
incorporated into the reslr package). To enhance the versatility of the package, we have implemented
a feature that allows users to download annual tide-gauge data from the PSMSL Level online database
and store it in a temporary file, making it readily available when needed (PSMSL, 2023; Holgate et al.
(2013); Woodworth and Player (2003)).

To ensure the comparability of the tide-gauge data with proxy records, we apply two processing
steps. First, the tide-gauge data in the PSMSL database is given in millimetres relative to a revised
local reference datum (a coordinate system that defines the zero level for sea level measurements
Pugh and Woodworth (2014)). Within reslr, we transform the data by removing 7,000 mm to revert
the tide-gauge data into the observed reference frame and convert the RSL to metres following the
guidance from the PSMSL website as described in Aarup et al. (2006). The second processing step
involves averaging the tide-gauge data to align with the temporal resolution of the more recent proxy
data. However, we provide flexibility for users to adjust this averaging period according to the specific
characteristics of their data.
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2.2 Statistical Models

Within the reslr package, a Bayesian hierarchical framework is employed for each statistical modelling
technique. Markov Chain Monte Carlo (MCMC) simulations are carried out using the Just Another
Gibbs Sampler (JAGS) tool (Plummer, 2003) and implemented using the rjags package in R (Plummer
et al., 2016). Other tools, such as Stan (Carpenter et al., 2017), are used for MCMC simulations.
However, our preference for JAGS is based on its user-friendly interface, computational efficiency, and
flexible model design capabilities.

Mathematically, the data level for each statistical model is described as:

y = f (x, t) + ϵy (1)

where y is the response data (RSL in metres). f (x, t) is the process mean that depends on location x
and time t. ϵy is the error term given by ϵy ∼ N(0, σ2

y + s2
y), where σ2

y is the residual variance and
sy the known measurement error associated with RSL, which occurs during the collection of proxy
records (e.g., Kemp and Telford (2015)). In Table 1, we provide a list of all the possible options for
f within the reslr package. Since some of the models we fit do not vary over space (they apply to
a single site or treat a set of sites as identical), we use f (t) rather than f (x, t) to denote the process
model. In Figure 1, we provide a simplified graphic to describe the Bayesian hierarchical framework
used for each statistical model in Table 1.

When using proxy RSL data, measurement error is also present in the input variable (time) due to
the dating technique used. For the input measurements, t̃ is assumed to be a noisy estimate of the true
time value t:

t̃ = t + ϵt (2)

with the error term given by ϵt ∼ N(0, s2
t ) where st is the known measurement error associated with

time.

We use two methods to account for the time measurement uncertainty. The first is the Errors-
in-variables (EIV) method, which assumes that the input variable, e.g., time, is measured as an
error-prone substitute and models it directly (Dey et al., 2000). The second uncertainty method is the
Noisy Input (NI) method. This method fits an initial model and uses the derivative of the mean of
f to calculate a corrective variance term. Then, the model is re-run with this additional corrective
variance term, allowing for the input noise variation to be learned from the complete outputs of the
model (McHutchon and Rasmussen, 2011). The reslr package employs the EIV method for linear
regression, change point, and IGP models, while employing the NI uncertainty method for temporal
spline, spatio-temporal spline, and GAM models. In general, the EIV method tends to be slower but
models the uncertain input process directly, whilst the NI method is faster but requires the model to
be fitted twice.

In Table 1, we present a range of statistical modelling techniques for f (x, t), the component of our
approach, available in the reslr package. Below we discuss each technique and provide insight into
the potential uses of these techniques for the paleo-environmental community.

Statistical Model Model Information model_type code

Errors in variables simple
linear regression

A straight line of best fit taking into account any
age and measurement errors in the RSL values
using the method of Cahill et al. (2015a)

"eiv_slr_t"

Errors in variables change
point model

An extension of the linear regression modelling
process. It uses piece-wise linear sections and
estimates where/when trend changes occur in
the data (Cahill et al., 2015a)

"eiv_cp_t"

Errors in variables
integrated Gaussian
process

A non-linear fit that uses a Gaussian process
prior on the rate of sea-level change that is then
integrated (Cahill et al., 2015a).

"eiv_igp_t"

Noisy Input spline in time A non-linear fit using regression splines (Upton
et al., 2023).

"ni_spline_t"

Noisy Input spline in space
and time

A non-linear fit for a set of sites across a region
using the method of Upton et al. (2023).

"ni_spline_st"

Noisy Input Generalised
Additive model for the
decomposition of the RSL
signal

A non-linear fit for a set of sites across a region
and provides a decomposition of the signal into
regional, local linear, and non-linear local
components. This full model is as described in
Upton et al. (2023).

"ni_gam_decomp"
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Figure 1: A visual representation of the Bayesian hierarchical model structure used for each statistical
model in the reslr package.

Table 1: List of all statistical models available in the reslr package. We provide a short description
and the relevant literature for each model. The model_type code column represents the text input the
user should use when implementing their preferred modelling technique.

2.3 EIV Linear Regression

The EIV linear regression model is given by:

f (t) = α + βt (3)

where α is the intercept, β is the slope, and t is time. Earlier studies, for example, Shennan and Horton
(2002) and Engelhart et al. (2009), employed linear regression when evaluating the rate of RSL change
over the past 4,000 years. The reslr package implements a temporal linear regression as its simplicity
is popular for approximate estimates of linear rates of RSL change. However, linearity assumptions
for RSL change are often unrealistic when examining long-term historical trends.

2.4 EIV Change Point Model

The EIV change point (CP) model, an extension of the linear regression model, assumes the RSL
process is piecewise linear and estimates when trend changes occur in the data (Cahill et al., 2015b).
Mathematically, the multiple CP model, f (t) is described as:

f (t) =

{
α1 + β j(t − λ1) when j = 1, 2,
αj−1 + β j(t − λj−1), when j = 3, ..., m + 1

(4)

where αj is the expected value of the response at the jth CP. λj is the time at which the CP occurs with
the prior restriction that λ1 < λ2 < ... < λm and m is the number of CPs (Cahill et al., 2015b). In the
reslr package, the user can select m to be 1, 2, or 3 CPs. β1 and βm+1 are the slopes before and after
the first and last CP, respectively. β j for j = 2 . . . , m are the slopes between the (j − 1)th and jth CP.

This technique has been used in different aspects of the sea-level literature. For example, Kemp
et al. (2009) determined the magnitude and the timing of recent accelerated sea-level rise using change
point models in North Carolina, USA. Brain et al. (2012) used the CP method to examine the impacts
of sediment compaction on reconstructing recent sea-level rise in the United Kingdom. Hogarth et al.
(2020) used CP models to obtain more consistent estimates of sea-level rise since 1958 for the British
Isles. The main advantage of the CP model is its ability to identify sudden changes in RSL. However,
the number of change points must be specified by the user.

2.5 Integrated Gaussian Process

An Integrated Gaussian process (IGP) is a modelling strategy that is extensively used by the sea-level
community when examining the temporal evolution of sea level change (e.g. Cahill et al. (2015a);
Hawkes et al. (2016); Kemp et al. (2017); Shaw et al. (2018); Dean et al. (2019); Stearns et al. (2023);
Kirby et al. (2023)).

The IGP uses Gaussian Process (GP) to directly estimate the rate of change of the response
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(Holsclaw et al., 2013). In order to extract the original f (t) we integrate p(t):

f (t) = α +
∫ t

0
p(u)du (5)

where α is the intercept, and is the rate of change, p(t) = d f
dt , described as:

p(t) ∼ GP(µ(t), k(t, t′)) (6)

with t time and µ(t) the mean function, and k(t, t′) is the covariance function. The covariance function
provides insight into the relationship between the outcome variables, i.e., if the input variables, t
and t′, are in close proximity, the corresponding outcomes will be more correlated, and vice versa
(Rasmussen and Williams, 2006). It is written as (Cahill et al., 2015a):

k(t, t′) = ν2ρ(t−t′)2
(7)

where ρ is the correlation parameter and ν2 is the variance of the rate process.

The technique, described by Cahill et al. (2015a), offers insights into examining rates of Relative
Sea Level (RSL) change using proxy records from a single location. Apart from the IGP model, the
reslr package does not rely on GP methods. We acknowledge that the use of GP modelling has
gained considerable traction within the sea-level research community, particularly for investigating
the spatio-temporal evolution of sea-level changes, as evidenced by notable studies (Kopp et al., 2009;
Kopp, 2013; Kopp et al., 2016; Kemp et al., 2018; Walker et al., 2021). Nevertheless, in the context of
the reslr package, we have intentionally opted for computationally efficient alternatives—splines and
GAMs—as detailed in our prior work (Upton et al., 2023). These methods offer practical and effective
approaches to analysing sea-level data, accommodating the complexities of spatio-temporal dynamics
while ensuring computational tractability.

2.6 Temporal Spline

Splines are mathematical tools used in a wide range of settings from interpolation to data smoothing.
There are a variety of different splines available, yet in this research we focus on B-splines (de Boor,
1978; Dierckx, 1995) and P-splines (Eilers and Marx, 1996). Mathematically, B-splines are described in
the following way:

f (t) =
K

∑
k=1

bk(t)βk (8)

where bk(t) is the spline basis function and βk is the spline coefficient.

Following on from B-splines, Eilers and Marx (1996) describe a method to overcome the difficulty
of choosing the correct number of knots by developing penalised spline or P-splines. Penalised
differences in the spline coefficients control the smoothness of the spline based on differences (of order
d) of the spline coefficients. The first order differences are written as:

∆βk = βk − βk−1 (9)

The spline coefficient will be centered on the previous value with an inverse smoothness parameter σ2
β :

∆βk ∼ N (0, σ2
β) (10)

In our package, P-splines are used for the NI spline in time and the extendable nature of these
splines allows for different components to be examined within the GAM, which is described below.

2.7 Spatio-Temporal Spline

We use a spatio-temporal spline to examine RSL evolving over time at multiple locations. We include a
tensor product to capture the variability over time and space (represented with longitude and latitude).
For each individual covariate, time (t) and longitude (x1) and latitude (x2), we construct a B-spline
basis (Wood, 2017a). These basis functions are combined product-wise in the following way (Wood,
2006):

f (t, x1, x2) =
H

∑
h=1

I

∑
i=1

J

∑
j=1

bh(t)bi(x1)bj(x2)βhij (11)
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where βhij is the spline coefficient. H is the number of knots for bh(t) the spline basis function in time
t. I is the number of knots for bi(x1) the spline basis function for longitude. J is the number of knots
for bj(x2) the spline basis functions for latitude values. The prior for the spline coefficient is given as:

βhij ∼ N (0, σ2
β) (12)

where σ2
β is the smoothness parameter for the spatio-temporal spline. The reslr package uses B-splines

for the NI spline in space and time, allowing for multiple sites to be examined. The advantage of the
tensor B-spline approach is that the basis functions are simple to construct, each depending on only
one input variable. However, the number of parameters to estimate does increase considerably.

2.8 Generalised Additive Models

Generalised additive models are an extension of generalised linear models that use a basis expansion
and a smoothing penalty to create linear predictors that are dependent on the sum of smooth functions
of the predictor variable (GAMs; (Wood, 2017b)). The model developed by Upton et al. (2023) uses
splines and random effects to create a spatio-temporal relative sea level surface. It identifies variations
of sea-level at different spatial and temporal scales, encompassing multiple underlying processes and
avoiding a focus on specific physical processes. The decomposition of this mean relative sea level
surface can be written as:

f (x, t) = r(t) + g(zx) + h(zx) + l(x, t) (13)

where r(t) is the regional component at time t represented with a spline in time. g(zx) is the linear
local component at location x represented by a random effect with zx representing each data site. h(zx)
is the spatial vertical offset for each data site. l(x, t) is the non-linear local component represented
with a spline in space-time.

The regional component (r(t)) represents temporal processes that are common to all locations,
including barystatic and thermosteric contributions, where the former is caused by the transfer of
mass between land-based ice and oceans (Gregory et al., 2019) and the latter is influenced by changes
in global temperature creating density variations within the oceans (Grinsted, 2015). It is described
using a spline in time:

r(t) =
kr

∑
s=1

brs (t)βr
s (14)

where βr
s is the sth spline coefficient, kr is the number of knots, and brs (t) is the sth spline basis function

at time t. The prior for the spline coefficients of the regional component βr
s are:

βr
s ∼ N (0, σ2

r ) (15)

where the smoothness of the model fit is controlled by σr, the standard deviation of the spline
coefficient.

The linear local component (g(zx)) of the sea level model aims to capture linear trends present in
the relative sea level signal. One such cause is glacial isostatic adjustment (GIA), which is a response of
the Earth, the gravitational field, and the ocean to changes in the size of ice sheets (Whitehouse, 2018).
On relatively short timescales, it is approximated to be linear through time with spatial variability
along the Atlantic coastline of North America (Engelhart et al., 2009). Mathematically, we define our
linear local component as an unstructured random effect for each site which is formulated as:

g(zxj ) = β
g
j t (16)

where β
g
j is a slope parameter specific for each site j. The prior for the linear local component is given

by:

β
g
j ∼ N (mgj , s2

gj
) (17)

where mgj and s2
gj

are the empirically estimated rate and associated variance for the dataset (refer to
Upton et al., 2023, for a detailed description).

The site-specific vertical offset h is a random effect used to capture vertical shifts associated with
measurement variability between sites and is formulated as:

h(zxj ) = βh
j (18)

The R Journal Vol. 16/2, June 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=reslr


CONTRIBUTED RESEARCH ARTICLE 67

where βh
j contains the random effect coefficients for site j. The prior for the site-specific vertical offset

βh
j is given as:

βh
j ∼ N (0, σ2

h ) (19)

where σ2
h is the variance of the random intercept across all data sites.

The non-linear local component (l(x, t)) captures structured and unstructured RSL variability on
century timescales, including dynamic sea-level changes (atmospheric and oceanic circulation patterns
(Gregory et al., 2019)) and site-specific processes (e.g., sediment compaction affecting solid Earth’s
surface (Horton et al., 2018)). It is described using a spatio-temporal spline function formed using a
tensor product and is formulated as:

l(x, t) =
kl

∑
s=1

bls (x, t)βl
s (20)

where βl
s is the sth spline coefficient, kl is the number of knots, and bls (x, t) is the sth spline basis

function at time t and location x. The prior for the spline coefficient βl
s is given as:

βl
s ∼ N (0, σ2

l ) (21)

where σ2
l is the variance of the spline coefficients over space and time.

As described in Upton et al. (2023), B-splines are used for both the regional and local terms
as this model structure balances both model usability and computational efficiency for examining
proxy-based sea level reconstructions on a regional to local scale. B-splines also allow for easier prior
elicitation of the smoothness parameters since they directly control the variability of the spline weights
in the model.

3 Implementation

Within the package, we keep the number of functions to a minimum to ensure accessibility for users
with varying experience in R. We run the statistical models using an MCMC algorithm and include
a summary function to obtain a high-level insight into the outputs. We use S3 classes to access the
summary, print, and plot commands. The package has functions to plot the input data and resulting
model fits using ggplot2 (Wickham, 2016). The user has access to all the underlying information used
to create these plots, allowing these visualisations to be re-created. In addition, the functions within
the package are extendable, allowing advanced users access to more complex outputs. A detailed
description for each function and associated commands for the reslr package can be found in the
vignettes.

In this section, we provide insight into the example dataset and additional data sources using
tide-gauge data within the reslr package. A discussion is provided into each function using two
separate case studies: a single location and multiple locations. In the first case study, we demonstrate
the Noisy Input temporal spline (model_type = "ni_spline_t") which is an example modelling
strategy for a single location. In the second case study, we examine multiple locations using the Noisy
Input GAM decomposition (model_type = "ni_gam_decomp").

3.1 Example proxy dataset

We include an example dataset called NAACproxydata. The full dataset with the names of the locations
and associated literature is in the Appendix. The NAACproxydata is a data frame with 1715 rows and 8
columns which include:

• Region: Region name
• Site: Site name
• Latitude: Latitude of the site
• Longitude: Longitude of the site
• RSL: Relative Sea level in metres
• RSL_err: 1 standard deviation error associated with relative sea level measured in metres
• Age: Age in years Common Era (CE)
• Age_err: 1 standard deviation error associated with the age in years CE
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3.2 Including tide-gauge data

The tide-gauge data available to users can be obtained from the PSMSL online database ((Holgate
et al., 2013; Woodworth and Player, 2003)) through the reslr package. To ensure compatibility with the
proxy records, several processing steps are performed within the package, as discussed earlier.

When incorporating tide-gauge data, users have three methods to select their preferred tide
gauge(s). The first option is to provide a list of tide-gauge names from the PSMSL database, allowing
users the freedom to select any tide gauge available. The second option is to automatically identify
the nearest tide gauge to the proxy location that has more than 20 years of observations. This option
proves particularly useful when examining proxy records and extending the temporal range to capture
recent changes in RSL.

The final option enables the selection of all tide gauges within a 1-degree radius (latitude and
longitude) of the proxy location, provided they have more than 20 years of observations. This option
grants users access to a wide array of tide gauges within a larger geographic area. Moreover, users can
combine the first option with either the second or the third option, allowing for the freedom to choose
specific tide gauges while incorporating the nearest tide gauge or multiple tide gauges.

All the values mentioned in this paragraph are arguments that can be adjusted within the func-
tion, giving users flexibility in customizing their data selection process according to their specific
requirements.

3.3 Case Study for 1 location

In the following sections, we use one site, Cedar Island, North Carolina, USA, from the example
dataset, NAACproxydata:

CedarIslandNC <- reslr::NAACproxydata %>%
dplyr::filter(Site == "Cedar Island")

glimpse(CedarIslandNC)

#> Rows: 104
#> Columns: 8
#> $ Region <chr> "North Carolina", "North Carolina", "North Carolina", "North~
#> $ Site <chr> "Cedar Island", "Cedar Island", "Cedar Island", "Cedar Islan~
#> $ Latitude <dbl> 34.971, 34.971, 34.971, 34.971, 34.971, 34.971, 34.971, 34.9~
#> $ Longitude <dbl> -76.38, -76.38, -76.38, -76.38, -76.38, -76.38, -76.38, -76.~
#> $ RSL <dbl> -0.12, -0.14, -0.16, -0.18, -0.19, -0.21, -0.22, -0.23, -0.2~
#> $ Age <dbl> 2005, 1996, 1988, 1979, 1974, 1963, 1957, 1951, 1941, 1937, ~
#> $ Age_err <dbl> 2.25, 2.00, 5.00, 5.75, 5.50, 5.50, 7.00, 7.75, 7.75, 8.00, ~
#> $ RSL_err <dbl> 0.06, 0.06, 0.06, 0.06, 0.06, 0.06, 0.06, 0.06, 0.06, 0.06, ~

For a single location such as this case study, we recommend using an EIV IGP or a NI
spline in time as they estimate RSL changes over time. In this example, tide-gauge data is
not included but it is an option available to the user if they require. The next example will
demonstrate a more complex analysis with the inclusion of tide gauges.

After selecting the data site from the example dataset, we use the reslr_load function
to process the data prior to running the statistical model, and it has a number of different
settings that the user can alter depending on the model choice. One such setting is the
prediction_grid_res option. This provides the resolution at which predictions of RSL and
RSL rates are made and subsequently plotted. We set the default at 50 years, and if a finer
grid is required, the user can alter the setting for prediction_grid_res. The reslr_load
function includes additional settings to include tide-gauge data and linear rates, which
will be discussed in the next case study. For the single site case study, we demonstrate the
reslr_load function:

CedarIslandNC_input <- reslr_load(data = CedarIslandNC)

The output of this function is a list of two data frames called data and data_grid. The
data dataframe is the inputted data with an additional column called data_type_id which
distinguishes proxy records from tide-gauge data. The data_grid is a data frame that is
evenly spaced in time based on the prediction_grid_res value chosen by the user and is
used to create the plots. A brief insight into the outputs of the reslr_input function can
be obtained using the print function, which provides the number of observations and the
sources of the data, as shown below:

print(CedarIslandNC_input)
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Figure 2: A plot of the raw data for our example site Cedar Island North Carolina. The x-axis is time
in years in the Common Era (CE) and the y-axis is relative sea level in metres. The grey boxes are 1
standard deviation vertical and horizontal (temporal) uncertainty. The black dots are the midpoints of
the uncertainty boxes.

#> This is a valid reslr input object with 104 observations and 1 site(s).
#> There are 1 proxy site(s) and 0 tide gauge site(s).
#> The age units are; Common Era.
#> Decadally averaged tide gauge data was not included. It is recommended for the ni_gam_decomp model
#> The linear_rate or linear_rate_err was not included. It is required for the ni_gam_decomp model

The next step is using the plot function to plot the raw data, shown in Figure 2, using the
following:

plot(CedarIslandNC_input, plot_caption = FALSE)

Noisy Input Spline in time

The NI spline in time (“ni_spline_t”) examines how the response variable, RSL, varies
in time. While the EIV-IGP method is commonly used in the sea-level community, we
demonstrate that the NI spline in time is a faster alternative. Unlike the Gaussian process,
which has a computational complexity that grows exponentially with the number of data
points, the spline equivalent uses pre-computed basis functions, resulting in a more efficient
computation (Wood, 2017b).

For this model type, we use the reslr_mcmc function to implement the MCMC simulation
using JAGS, and the model type setting is selected to be model_type = "ni_spline_t".

res_ni_spline_t <- reslr_mcmc(input_data = CedarIslandNC_input,
model_type = "ni_spline_t")

The output of the reslr_mcmc function is a list that stores the JAGS model run, the input
dataframe, and the dataframes for plotting the results. The user can set the size of the
credible intervals by changing the CI setting in this function; the current default is CI =
0.95. In addition, the user can alter the number of iterations which will be required if the
model is not converging.

To obtain a brief insight into the outputs of the reslr_mcmc function, the user can use the
print function which provides the number of iterations and the model type:

print(res_ni_spline_t)

#> This is a valid reslr output object with 104 observations and 1 site(s).
#> There are 1 proxy site(s) and 0 tide gauge site(s).
#> The age units are; Common Era.
#> The model used was the Noisy Input Spline in time model.
#> The input data has been run via reslr_mcmc and has produced 3000 iterations over 3 MCMC chains.
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Figure 3: The plot of the Noisy Input spline in time model fit for our example site, Cedar Island, North
Carolina. The x-axis is time in years in the Common Era (CE) and the y-axis is relative sea level in
metres. The grey boxes are 1 standard deviation vertical and horizontal (temporal) uncertainty. The
black dots are the midpoints of the uncertainty boxes. The solid purple line represents the posterior
model fit with a 95% credible interval denoted by shading.

The convergence of the MCMC algorithm can be examined for the “ni_spline_t” model
using the summary function and ensures the scale reduction factor (R-hat) is close to 1
(Gelman and Rubin, 1992; Gelman et al., 2013). If the model run has converged, the package
will print: “No convergence issues detected”. If the package prints: “Convergence issues
detected, a longer run is necessary”. The user is recommended to update the reslr_mcmc
function with additional iterations as described above. The summary function provides
insight into the parameter estimates from the model using the following:

summary(res_ni_spline_t)

#> No convergence issues detected.

#> # A tibble: 2 x 7
#> variable mean sd mad q5 q95 rhat
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 sigma_beta 2.04 0.617 0.520 1.29 3.24 1.00
#> 2 sigma_y 0.00633 0.00478 0.00456 0.000513 0.0153 1.00

For the parameter estimates, “sigma_beta” acts as a smoothness parameter controlling the
penalisation of the spline coefficients for the spline in time model, and “sigma_y” represents
the data model variation. These are σy and σβ as described in Section 2.

The final results from the “ni_spline_t” model can be illustrated using the plot func-
tion, and the corresponding dataframes are stored in the res_ni_spline_t object called
output_dataframes as a named list element. Figure 3 demonstrates the posterior model fit
for our example site using:

plot(res_ni_spline_t,
plot_type = "model_fit_plot",
plot_caption = FALSE)

In Figure 4, the rate of change of this posterior model fit is presented and can be viewed
using:

plot(res_ni_spline_t,
plot_type = "rate_plot",
plot_caption = FALSE)
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Figure 4: The rate of change model fit using the Noisy Input spline in time model for our example site,
Cedar Island, North Carolina. The rate is calculated by taking the first derivative of the total model
fit. The x-axis is time in years in the Common Era (CE) and the y-axis is the instantaneous rate of
change of sea level in mm per year. The solid purple line represents the posterior model fit with a 95%
credible interval denoted by shading. There is a black horizontal line which is the zero rate of change
for this site.

3.4 Case Study for multiple sites

The sea-level research community is commonly interested in temporal and spatial variations
in RSL. To cater to this interest, the reslr package offers two models for spatio-temporal
modeling. The first model is a noisy-input spline that accounts for noise in both time and
space, providing a robust representation of RSL dynamics. The second model, a more
intricate option, is the Noisy Input GAM. Mathematical details concerning the Noisy Input
GAM can be found in Upton et al. (2023). In our upcoming example, we will focus on this
model as it empowers users to explore the decomposition of the RSL signal over time and
space, unraveling valuable insights into the underlying dynamics.

Noisy Input Generalised Additive Model for decomposition of response signal

We demonstrate the functions settings required for the NI GAM. This model requires an
adequate number of sites to perform the decomposition and the minimum sites required
will depend on the signal in the data. In this example, we use nine sites from the example
dataset, NAACproxydata, which are selected in the following manner:

multi_site <- reslr::NAACproxydata %>%
dplyr::filter(Site %in% c("Cedar Island","Nassau",

"East River Marsh", "Swan Key",
"Placentia",
"Pelham Bay","Fox Hill Marsh",
"Snipe Key","Big River Marsh"))

Next, the reslr_load function is required for the preparation of input data for the NI
GAM, which necessitates additional information not required by earlier models. Firstly,
the statistical model relies on an estimate of the “linear local rate” and its associated un-
certainty. By setting include_linear_rate = TRUE, the package incorporates this rate,
which is assumed to stem from physical processes like Glacial Isostatic Adjustment (GIA).
Users have the flexibility to include their preferred linear rate values as additional columns
(linear_rate and linear_rate_err) in the input dataframe. If these values are not provided,
the package automatically calculates them using the available data.

Secondly, users are encouraged to include tide-gauge data by setting include_tide_gauge
= TRUE. As discussed previously, users need to make a decision regarding the inclusion
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of the closest tide gauge (TG_minimum_dist_proxy = TRUE), selecting specific tide gauges
by providing a list of names (list_preferred_TGs = c("ARGENTIA")), or including all tide
gauges within a one-degree proximity of the proxy site (all_TG_1deg = TRUE). Additionally,
the tide-gauge data requires values for the linear_rate and linear_rate_err columns,
which are calculated using the ICE-5G (VM2) Model (Peltier, 2004) with an uncertainty
value of 0.3 mm/year (Engelhart et al., 2009), both provided within the reslr package.

Thirdly, the tide-gauge data is averaged over a decade to align with the resolution
of proxy records. If necessary, users can adjust the size of the averaging window to ac-
commodate varying sediment accumulation rates. For example, a longer sediment accu-
mulation rate would result in a larger average, such as 20 years. The default setting for
sediment_average_TG is 10 years, which we will use in our example.

The final setting of the reslr_load function is prediction_grid_res, allowing users to
modify the resolution of the output plots. The default setting of 50 years serves as a starting
point, but users have the flexibility to explore alternative options. For our example, we will
utilize nine proxy sites and select all tide-gauges within a one-degree range of our proxy
site, maximizing the number of data points to demonstrate the capabilities of our package.
The specific settings employed are described below:

multi_site_input <- reslr_load(
data = multi_site,
include_tide_gauge = TRUE,
include_linear_rate = TRUE,
TG_minimum_dist_proxy = TRUE,
all_TG_1deg = TRUE)

Similar to the previous example, the output of this function is a list of two dataframes
called data and data_grid. The data dataframe is the inputted data with additional
columns for the data_type_id which will contain “ProxyRecord” and “TideGaugeData”. The
data_grid is a dataframe that is evenly spaced in time based on the prediction_grid_res
value chosen by the user and is used to create the plots. In this example, we have 9 proxy sites
and 26 tide gauges sites and the print provides insights into the outputs of the reslr_input
function yields insights such as the number of observations (1,130).

print(multi_site_input)

#> This is a valid reslr input object with 1130 observations and 35 site(s).
#> There are 9 proxy site(s) and 26 tide gauge site(s).
#> The age units are; Common Era.
#> Decadally averaged tide gauge data included by the package.
#> The linear_rate and linear_rate_err has been included.

A plot of the raw data can be created using the plot function, with an option to plot
the tide gauges and the proxy records together or have separate plots for each data source.
Figure 5 demonstrates the resulting plot for the proxy records only using the following
function:

plot(x = multi_site_input,
plot_proxy_records = TRUE,
plot_tide_gauges = FALSE,
plot_caption = FALSE)

For this model type, the reslr_mcmc function should specify the model_type = "ni_gam_decomp",
and the MCMC simulation settings can be altered to ensure convergence.

res_ni_gam_decomp <- reslr_mcmc(
input_data = multi_site_input,
model_type = "ni_gam_decomp"

)

The output of the reslr_mcmc function is a list that stores the JAGS model run, the input
dataframe, and the dataframes for plotting the results. Identical to the other model processes,
the convergence of the MCMC algorithm is examined and the parameter estimates from the
model can be investigated using the following:

summary(res_ni_gam_decomp)

#> No convergence issues detected.
#> # A tibble: 4 x 7
#> variable mean sd mad q5 q95 rhat
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Figure 5: A plot of the raw data for our nine example sites along the Atlantic coast of North America.
The x-axis is time in years in the Common Era (CE) and the y-axis is relative sea level in metres. The
grey boxes are 1 standard deviation vertical and horizontal (temporal) uncertainty. The black dots are
the midpoints of the uncertainty boxes.
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Figure 6: The rate of change for the total model fit for the Noisy Input generalised additive model
for sites along the Atlantic coast of North America. It is calculated by finding the derivative of the
total model fit. The solid purple line is the mean rate of change fit and the shading denotes a 95%
credible interval for each site along the Atlantic coast of North America. The x-axis is time in years in
the Common Era (CE), and the y-axis is the rate of change in mm per year.

#> <chr> <num> <num> <num> <num> <num> <num>
#> 1 sigma_beta_h 1.82 0.257 0.247 1.45 2.29 1.00
#> 2 sigma_beta_r 0.288 0.0547 0.0505 0.213 0.391 1.00
#> 3 sigma_beta_l 0.939 0.148 0.145 0.717 1.21 1.00
#> 4 sigma_y 0.0155 0.00107 0.00108 0.0138 0.0173 1.00

For the parameter estimates, we provide the standard deviation associated with each
component of the NI GAM decomposition. Specifically, “sigma_beta_r” represents the
standard deviation of the spline coefficient for the regional component, “sigma_beta_l”
represents the standard deviation of the spline coefficient for the non-linear local component,
“sigma_beta_h” denotes the standard deviation of the site-specific vertical offset component,
and “sigma_y” indicates the data model variation. These names correspond to the algebraic
components described in Section 2 above.

One of the key advantages of the NI GAM approach is its ability to decompose regional
RSL change into separate components. The results from the ni_gam_decomp model can be
visualized using the plot function, which generates individual plots for each component.
Additionally, all components, except for the linear local component, have corresponding rate
plots. Users can access the data used to create each plot in the res_ni_gam_decomp object as
separate dataframes for each component.

In our example, we demonstrate the rate of change for the total model fit in Figure 6.
This figure illustrates the rate of change at each site, which is useful for understanding the
variations of the relative sea-level signal, i.e., f (x, t). To plot the rate of change, users can
employ the following method:

plot(res_ni_gam_decomp,
plot_type = "rate_plot",
plot_caption = FALSE)

The regional component (r(t)) captures the mean of RSL change along the Atlantic coast
of North America. The associated rate of change of the regional component, as seen in
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Figure 7: The rate of change for the regional component of the Noisy Input generalised additive model
for the nine proxy sites and the eleven tide gauges along the Atlantic coast of North America. It is
calculated by finding the derivative of the regional component fit. The solid blue line is the mean
rate of change fit, and the shading denotes a 95% credible interval. The x-axis is time in years in the
Common Era (CE), and the y-axis is the rate of change in mm per year.

Figure 7, provides an important visual insight into the rate at which this trend varied over
the past 3,000 years. It is accessed by:

plot(res_ni_gam_decomp,
plot_type = "regional_rate_plot",
plot_caption = FALSE)

4 Summary

In this paper, we have presented an overview of the reslr package and discussed its various
features and design decisions. Our goal was to address the specific needs of the paleo
sea-level community and provide an efficient and flexible R package that caters to different
types of source data, whilst maintaining a simple workflow that does not require the user to
learn too many different functions.

Through two case studies, we demonstrated the simplicity and accessibility of the
package. The first case study examined a single site using the NI spline in time. Our results
showed that the reslr package can provide RSL estimates and associated rate of change
values over time for a single location. In the second case study, we showcased the capabilities
of the reslr package when analysing data from multiple locations. We highlighted its
flexibility, allowing for the decomposition of the relative sea-level signal into different
components. Additionally, we presented a comprehensive method for incorporating tide-
gauge data, which can help to provide valuable insights into recent changes in RSL not
captured by proxy records.

There are several potential extensions for the reslr package. A potential enhancement
involves replacing our current MCMC algorithm, employed via JAGS software (Plummer,
2003), with more efficient alternatives like Integrated Nested Laplace Approximations (INLA:
Rue et al., 2009). Another improvement could be the integration of other instrumental
data sources, such as satellite data, enabling the examination of other variables related to
climate change. Overall, the reslr package offers a powerful toolkit for the paleo sea-level
community, and we anticipate that it will continue to evolve and expand its capability to
meet the evolving needs of researchers in this field.
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6 Appendix

6.1 Example dataset

The reslr package contains a dataset used as an example called NAACproxydata. This dataset
contains proxy records from the Atlantic coast of North America as used in Upton et al.
(2023). The 21 different proxy data sites and the references for each data source can be found
in Table 3. The reslr package contains a dataset used as an example called NAACproxydata.
This dataset contains proxy records from the Atlantic coast of North America as used in
Upton et al. (2023). The 21 different proxy data sites and the references for each data source
can be found in Table 3.

Site Name Reference

Barn Island, Connecticut (Donnelly et al., 2004; Gehrels et al., 2020)
Big River Marsh, Newfoundland (Kemp et al., 2018)
Cape May Courthouse, New Jersey (Kemp et al., 2013; Cahill et al., 2016)
Cedar Island, North Carolina (Kemp et al., 2011, 2017)
Cheesequake, New Jersey (Walker et al., 2021)
Chezzetcook Inlet, Nova Scotia (Gehrels et al., 2020)
East River Marsh, Connecticut (Kemp et al., 2015; Stearns et al., 2023)
Fox Hill Marsh, Rhode Island (Stearns et al., 2023)
Leeds Point, New Jersey (Kemp et al., 2013; Cahill et al., 2016)
Les Sillons, Magdelen Islands (Barnett et al., 2017)
Little Manatee River, Florida (Gerlach et al., 2017)
Nassau, Florida (Kemp et al., 2014)
Pelham Bay, New York (Kemp et al., 2017; Stearns et al., 2023)
Placentia, Newfoundland (Kemp et al., 2018)
Revere, Massachusetts (Donnelly, 2006)
Saint Simeon, Quebec (Barnett et al., 2017)
Sanborn Cove, Maine (Gehrels et al., 2020)
Sand Point, North Carolina (Kemp et al., 2011, 2017)
Snipe Key, Florida (Khan et al., 2022)
Swan Key, Florida (Khan et al., 2022)
Wood Island, Massachusetts (Kemp et al., 2011)

Table 3: Presents the names of all the sites available in the example dataset within the
reslr package. For each site, we include the reference in the literature to the source of the
data.
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Rfssa: An R Package for Functional
Singular Spectrum Analysis
by Hossein Haghbin, Jordan Trinka and Mehdi Maadooliat

Abstract Functional Singular Spectrum Analysis (FSSA) is a non-parametric approach for analyzing
Functional Time Series (FTS) and Multivariate FTS (MFTS) data. This paper introduces Rfssa, an R
package that addresses implementing FSSA for FTS and MFTS data types. Rfssa provides a flexible
container, the funts class, for FTS/MFTS data observed on one-dimensional or multi-dimensional
domains. It accepts arbitrary basis systems and offers powerful graphical tools for visualizing time-
varying features and pattern changes. The package incorporates two forecasting algorithms for
FTS data. Developed using object-oriented programming and Rcpp/RcppArmadillo, Rfssa ensures
computational efficiency. The paper covers theoretical background, technical details, usage examples,
and highlights potential applications of Rfssa.

1 Introduction

In recent times, advancements in data acquisition techniques have made it possible to collect data
in high-resolution formats. Due to the presence of temporal-spatial dependence, one may consider
this type of data as functional data. Functional Data Analysis (FDA) focuses on developing statistical
methodologies for analyzing data represented as functions or curves. While FDA methods are
particularly well-suited for handling smooth continuum data, they can also be adapted and extended to
effectively analyze functional data that may not exhibit perfect smoothness, including high-resolution
data and data with inherent variability. The widely-used R package for FDA is fda (Ramsay et al., 2023),
which is designed to support analysis of functional data, as described in the textbook by Ramsay and
Silverman (2005). Additionally, there are over 40 other R packages available on CRAN that incorporate
functional data analysis, such as funFEM (Bouveyron, 2021), fda.usc (Febrero-Bandle and de la Fuente,
2012), refund (Goldsmith et al., 2023), fdapace (Gajardo et al., 2022), funData (Happ-Kurz, 2020),
ftsspec (Tavakoli, 2015), rainbow (Shang and Hyndman, 2022), and ftsa (Hyndman and Shang, 2023).
One crucial initial requirement for any of these packages is to establish a framework for representing
and storing infinite-dimensional functional observations. The fda package, for instance, employs
the fd class as a container for functional data defined on a one-dimensional (1D) domain. An fd
object represents functional data as a finite linear combination of known basis functions (e.g., Fourier,
B-splines, etc.), storing both the basis functions and their respective coefficients for each curve. This
representation aligns with the practical implementation found in many papers within the field of FDA.
Conversely, several other R packages store functional data in a discrete form evaluated on grid points
(e.g., fda.usc, refund, funData, rainbow, and fdapace). These packages also provide the capability to
analyze functions beyond the one-dimensional case, such as image data treated as two-dimensional
(2D) functions (e.g., refund, fdasrvf, and funData). To the best of our knowledge, packages that
support representation beyond 1D functions utilize the grid point representation for execution and
storage. Moreover, recent packages have been developed to handle multivariate functional data,
which consist of more than one function per observation unit. Examples of such packages include
roahd, fda.usc, and funData. While some recent FDA packages have focused on analyzing and
implementing techniques for Functional Time Series (FTS), where sequences of functions are observed
over time, none of them handle Multivariate FTS (MFTS) or multidimensional MFTS. For example, see
the packages ftsspec, rainbow, and ftsa. In summary, there is still a need for a unified and flexible
container for FTS/MFTS data, defined on either one or multidimensional domains. The funts class in
Rfssa (Haghbin et al., 2023), the package discussed in this article, aims to address this gap. One of
the primary contributions of the package is its capacity to handle and visualize 2-dimensional FTS,
including image data. Furthermore, the package accommodates MFTS, especially when observed
on distinct domains. This flexibility empowers users to analyze and visualize FTS with multiple
variables, even when they do not share the same domain. Notably, the Rfssa package introduces
novel visualization tools (as exemplified in Figure 5). These tools include heatmaps and 3D plots,
thoughtfully designed to provide a deeper understanding of functional patterns over time. They
enhance the ability to discern trends and variations that might remain inconspicuous in conventional
plots. An additional feature of the funts class is its ability to accept any arbitrary basis system as
input for the class constructor, including FDA basis functions or even empirical basis represented
as matrices evaluated at grid points. The classes in the Rfssa package are developed using the S3
object-oriented programming system, and for computational efficiency, significant portions of the
package are implemented using the Rcpp/RcppArmadillo packages. Notably, the package includes
a shiny web application that provides a user-friendly GUI for implementing Functional Singular
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Spectrum Analysis (FSSA) on real or simulated FTS/MFTS data. The Rfssa package was initially
developed to implement FSSA for FTS, as discussed in the work of Haghbin et al. (2021). FSSA extends
Singular Spectrum Analysis (SSA), a model-free procedure commonly used to analyze time series
data. The primary goal of SSA is to decompose the original series into a collection of interpretable
components, such as slowly varying trends, oscillatory patterns, and structureless noise. Notably,
SSA does not rely on restrictive assumptions like stationarity, linearity, or normality (Golyandina and
Zhigljavsky, 2013). It’s worth noting that SSA finds applications beyond the functional framework,
including smoothing and forecasting purposes (Hassani and Mahmoudvand, 2013; de Carvalho and
Rua, 2017). The non-functional version of FSSA, known as SSA, has previously been implemented in
the Rssa package (Golyandina et al., 2015) and the ASSA package (de Carvalho and Martos, 2020).
The Rssa package provides various visualization tools to facilitate the grouping stage, and the Rfssa
package includes equivalent functional versions of those tools (Golyandina et al., 2018). While the
foundational theory of FSSA was originally designed for univariate FTS, it has since been extended
to handle multidimensional FTS data, referred to as Multivariate FSSA (MFSSA) (Trinka et al., 2022).
Furthermore, in line with the developments in SSA for forecasting, two distinct algorithms known
as Recurrent Forecasting (FSSA R-forecasting) and Vector Forecasting (FSSA V-forecasting) were
introduced for FSSA by Trinka et al. (2023). Both of these forecasting algorithms, along with the
capabilities for handling MFSSA, have been seamlessly integrated into the most recent version of the
Rfssa package. The remainder of this manuscript is organized as follows. Section 2 introduces the
FTS/MFTS data preparation theory used in the funts class. Section 3 discusses the FSSA methodology,
including the basic schema of FSSA, FSSA R-forecasting, and FSSA V-forecasting. Technical details of
the Rfssa package are provided in Section 4, where we describe the available classes in the package
and illustrate their practical usage with examples of real data. Section 5 focuses on the reconstruction
stage and FSSA/MFSSA forecasting. In Section 6, we provide a summary of the embedded shiny app.
Finally, we conclude the paper in Section 7.

2 Data preparation in FTS

Define yN = (y1, . . . , yN) to be a collection of observations from an FTS. In the theory of FTS, yi’s
are considered as functions in the space H = L2(T ) where T is a compact subset of R. Let s ∈ T
and consider yi(s) ∈ Rp, the sequence of yN is called (univariate) FTS if p = 1, and multivariate
FTS (or MFTS) if p > 1. In the realm of functional data analysis, we operate under the assumption
that the underlying sample functions, denoted as yi(·), exhibit smoothness for each sample i, where
i = 1, . . . , N. Nevertheless, in practical scenarios, observations are typically acquired discretely at a
set of grid points and are susceptible to contamination by random noise. This phenomenon can be
represented as follows:

Yi,k = yi(tk) + εi,k, k = 1, . . . , K. (1)

In this expression, tk ∈ T , and K denotes the count of discrete grid points across all samples. The εi,k
terms represent i.i.d. random noise. To preprocess the raw data, it is customary to employ smoothing
techniques, converting the discrete observations Yi,k into a continuous form, yi(·). This is typically
performed individually for each variable and sample. One widely used approach is finite basis
function expansion (Ramsay and Silverman, 2005). In this method, a set of basis functions {νi}i∈N is
considered (not necessarily orthogonal) for the function space H. Each sample function yi(·) in (1) is
then considered as a finite linear combination of the first d basis functions:

yi(s) =
d

∑
j=1

cijνj(s). (2)

Subsequently, the coefficients cij can be estimated using least square techniques. By adopting the
linear representation form for the functional data in (2), we establish a correspondence between each
function yi(·) and its coefficient vector ccci = (cij)

d
j=1. As a result, the coefficient vectors ccci can serve to

store and retrieve the original functions, yi(·)’s. This arises from the inherent isomorphism between
two finite vector spaces of the same dimension (in this case, d). Consequently, ccci’s are stored as
the primary attribute of funts objects within the Rfssa package. Take two elements x, y ∈ H with
corresponding coefficient vectors cccx and cccy. Then, the inner product of x, y can be computed in matrix
form as ⟨x, y⟩ = ccc⊤x Gcccy, where G = [⟨νi, νj⟩]di,j=1 is the Gram matrix. It is important to note that G is

Hermitian. Furthermore, because the basis functions {νi}d
i=1 are linearly independent, G is positive

definite, making it invertible (Horn and Johnson, 2012, Thm. 7.2.10). Moreover, let A : H → H

be a linear operator and y = A(x). Then, cccy = G−1Acccx, where A = [⟨A(νj), νi⟩]di,j=1 is called the
corresponding matrix of the operator A. It is worth noting that while the FSSA theory extends to
arbitrary dimensions, practical implementation for dimensions greater than 2 introduces considerable
computational complexity. Moreover, high-dimensional FTS data are relatively rare in real-world
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applications. Therefore, within the Rfssa package, we have chosen to confine the funts object to
support functions observed over domains that are one or two-dimensional. In the Rfssa package,
the task of preprocessing the raw discrete observations and converting those to the funts object is
assigned to the funts(·) constructor.

3 An overview of the FSSA methodology

FSSA is a nonparametric technique to decompose FTS and MFTS, and the methodology can also be
used to forecast such data (Haghbin et al., 2021; Trinka et al., 2022, 2023); it can also be used as a
visualization tool to illustrate the concept of seasonality and periodicity in the functional space over
time.

3.1 Basic schema of FSSA

Basic FSSA consists of two stages where each stage includes two steps. We outline the four steps of the
FSSA algorithm here.

I) First stage: decomposition

1. Embedding
For a positive integer, L < N/2, let HL be the Cartesian product of L copies of H and
define the trajectory operator X : RK → HL with

Xaaa :=
K

∑
j=1

ajxxxj, aaa = (a1, . . . , aK)
⊤ ∈ RK . (3)

where K = N − L + 1 and

xxxj(s) :=
(

yj(s), yj+1(s), . . . , yj+L−1(s)
)⊤

, j = 1, . . . , K, (4)

are called lag-vectors. One may consider the trajectory operator X in (3) as an L × K matrix
with functional entries in the form of

X (s) =




y1(s) y2(s) y3(s) · · · yK(s)
y2(s) y3(s) y4(s) · · · yK+1(s)
y3(s) y4(s) y5(s) · · · yK+2(s)

...
...

...
. . .

...
yL(s) yL+1(s) yL+2(s) · · · yN(s)




. (5)

Note that the antidiagonal elements of the matrix in (5) are all equal. Such matrices are
called Hankel, and since X (s) is a Hankel matrix for any s in the domain, we call X a
Hankel operator. In practice, a main challenge is how to use the original basis of H to
represent the lag-vectors in HL. To do this, one may define a quotient sequence qk, and
a remainder sequence rk, by k = (qk − 1)L + rk, where 1 ≤ rk ≤ L, and 1 ≤ qk ≤ d.
Now, consider ϕϕϕk as a functional vector of length L with all zero functions, except the
rk-th element, which is νqk . Using this definition, the lag-vector xxxj given in (4) can be
represented as a linear combination of {ϕϕϕk}Ld

k=1 with the corresponding coefficient vector
bj = (c1j, . . . , c1,j+L−1, c2j, . . . , c2,j+L−1, . . . , cd,j+L−1)

⊤.

2. FSVD
We apply the functional singular value decomposition (FSVD) to X and obtain a collection
of singular values, {√λi}r

i=1, orthonormal right singular vectors {vi}r
i=1 (that are elements

of RK), and orthonormal left singular functions {ψψψi}r
i=1 (that are elements of HL). The

collection (
√

λi, ψψψi, vi) will be called the ith eigentriple of the FSVD, and r is the rank of X :

X =
r

∑
i=1

Xi =
r

∑
i=1

√
λivi ⊗ψψψi, (6)

where Xi : RK → HL is a rank one elementary operator. To implement the FSVD of X
given in (6), let B := [b1, · · · , bK ], G := [⟨ϕϕϕi, ϕϕϕj⟩HL ]Ld

i,j=1, X := G1/2B, and
(√

λi, uuui, vi
)
’s

be the eigentriples of the SVD of the matrix X. It can be shown that
(√

λi, ψψψi, vi
)

is the ith

eigentriple of the FSVD of X , where the left singular function, ψψψi, is corresponding to the
coefficient vector G−1/2uuui. See (Haghbin et al., 2021) for more details.
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Figure 1: (A): Line plot of Callcenter data; (B): FTS reconstructed using Is = {1, · · · , 7}; (C): FTS
reconstructed by setting I1 = {1}; (D): FTS reconstructed using I2 = {2, 3}; (E): FTS reconstructed
from I3 = {4, 5}; (F): FTS reconstructed from I4 = {6, 7}.

These steps can also be extended to the multivariate case, i.e. MFSSA. See Trinka et al. (2022) for
more details. In the Rfssa package, the results of the decomposition stage are held in an object
from the fssa class. The constructor, fssa(·), performs the decomposition for both FSSA and
MFSSA algorithms and returns an object of class fssa. Further discussion about the attributes
and methods of the fssa class is given in the technical details section.

II) Second stage: reconstruction

3. Grouping
We partition the set of indices {1, . . . , r} into disjoint sets Iq, where q ∈ {1, . . . , m} and
m ≤ r. From here, we obtain the group XIq by combining the respective elementary
operators accordingly:

XIq = ∑
i∈Iq

Xi.

Exploratory plots of singular values, right singular vectors, and left singular functions that
investigate the different modes of variation extracted in the decomposition stage are used
to decide how to form the sets, Iq, and we discuss such plots in further detail in section
five.

4. Hankelization
Since each XIq is not necessarily Hankel, we perform diagonal averaging of the entries to
Hankelize each operator. From each Hankelized XIq , we obtain an FTS, yq

N , that describes
main characteristics of yN such as mean, seasonal, trend, and noise behaviors.

For the reconstruction stage, the Rfssa package provides the function freconstruct(·) which
returns a list of objects of class funts associated with the groups specified by the user. If the
supplied input to the fssa(·) function is an MFTS, the signal extraction process is almost
identical as compared to the univariate case with the exception that now, we have that each
element of the time series is a tuple of functions comprised of elements observed over one or
two-dimensional domains.

As a motivating example, consider the Callcenter dataset in Figure 1(A), which has been previously
discussed in Maadooliat et al. (2015) and is included in the package. This dataset records the number
of calls received by a call center in 1999. Each functional observation corresponds to the square
root of the daily call count, and the entire FTS represents all the days in 1999. When dealing with
time series data exhibiting known periodic patterns, it is a common practice in SSA to choose the
window length, L, as a multiple of this underlying periodicity. This choice ensures that the method
effectively extracts the corresponding periodic components (Golyandina et al., 2001). For our illustra-
tive example using the Callcenter dataset, we specifically opt for a window length of L = 28. This
selection allows us to effectively capture the weekly periodic patterns that inherently exist within
this functional time series (Haghbin et al., 2021). After applying FSSA, we obtain reconstructed FTS
representations under different grouping considerations, as illustrated in Figures 1(B-F). Particularly
noteworthy is the reconstructed FTS obtained using the leading 7 eigentriples of the FSVD, as shown
in Figure 1(B). It is important to mention that the selection of groups in FTS is typically guided by
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Figure 2: The prediction of the last 7 days of the year 1999 for the Callcenter data, based on FSSA
R-forecasting and V-forecasting, and comparing the results with the observed functions.

various SSA-type plotting tools, which rely on the similarity in the harmonic structure of extracted
elementary components. Such SSA-type plots have been available for non-functional time series in the
Rssa package, and analogous tools for the functional case have been developed in Rfssa (Figure 7).
However, it’s worth noting that this extension presented its own set of challenges, both in theory and
implementation. Detailed code for generating the reconstructed functions shown in Figure 1 can be
found in the subsequent sections of this paper.

3.2 FSSA Forecasting

After the decomposition stage, one may perform forecasting instead of reconstruction (Figure 3).
R-forecasting and V-forecasting are two main defined approaches in FSSA/MFSSA (Trinka et al., 2023).

In both forecasting methods, the goal is to obtain the FTS, gq
N+M =

(
gq

1, . . . , gq
N+M

)
, where the first N

terms are close to yq
N and the goal is to forecast the remaining elements, {gq

i }N+M
i=N+1. Forecasts in the

R-forecasting method are obtained using a linear combination of the previous L − 1 elements of gq
N+M.

Consider a positive integer k < r and define V = ∑k
i=1 πi ⊗ πi, where πi ∈ H is the last element of

the left singular function ψψψi. Define Aj : H → H such that Aj = ∑k
i=1 ψj,i ⊗ (I −V)−1 πi, where ψj,i

is the jth component of ψψψi, and I : H → H is the identity operator. Then the R-forecasting can be
obtained using the following equation

gq
i =

{
yq

i , i = 1, . . . , N
∑L−1

j=1 Ajg
q
i+j−L, i = N + 1, . . . , N + M.

(7)

Forecasts in the V-forecasting method are obtained by predicting functional vectors. One may define
an orthogonal projection, ΠΠΠ : HL−1 → HL−1, that projects onto the space spanned by {ψψψ∇

i }k
i=1, where

ψψψ∇
i ∈ HL−1 is formed from the first L − 1 elements of ψψψi. Now let Q : HL → HL be given by

Q (xxx) =

(
ΠΠΠ
(
xxx∆)

∑L−1
j=1 Ajx∆

j

)
, xxx ∈ HL (8)

where xxx∆ contains the last L − 1 components of xxx, and x∆
j is the jth component of xxx∆. The V-forecasting

algorithm is given in the following steps:

1. Define wwwq
j as

wwwq
j =

{
xxxq

j , j = 1, . . . , K

Qwwwq
j−1, j = K + 1, . . . , K + M,

where {xxxq
j }K

j=1 spans the range of operator XIq .

2. Form the operator Wq : RK+M → HL whose range is linearly spanned by the set {wwwq
i }K+M

i=1 .

3. Hankelize Wq in order to extract the FTS gq
N+M.

4. The functions, gq
N+1, . . . , gq

N+M, form the M terms of the FSSA vector forecast.

Continuing from the previous example, we utilized the first 358 days of the year to train the FSSA model
on the Callcenter dataset. Subsequently, we employed the FSSA R-forecasting and V-forecasting
methods to make predictions for the final week (len = 7). Figure 2 illustrates both the actual and
forecasted curves for each day of the week, employing each respective method. Detailed code for
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Function Descriptions Main arguments Returns

funts(·) Create FTS/MFTS objects

Discretely sampled data
or coefficients, basis sys-
tem specifications, a set of
argument values correspond-
ing to the observations in
X, the time specifications
arguments.

An object of class
funts.

fssa(·)
Performs the decompo-
sition (including embed-
ding and FSVD steps)
stage for FTS/MFTS data.

An object of class funts and
window length L.

An object of class
fssa.

freconstruct(·)
Performs the reconstruc-
tion (including grouping
and Hankelization steps)
stage.

An object of class fssa and
a list of numeric vectors in-
cludes indices of elementary
components of a group.

A list of funts objects
reconstructed accord-
ing to the specified
groups.

fforecast(·)
Performs FSSA R-
forecasting or FSSA
V-forecasting.

An object of class fssa, a list
of numeric vectors includes
indices of elementary compo-
nents of a group used for re-
construction and forecasting,
and forecast horizon h.

An object of class
fforecast.

Table 1: A summary of FSSA written functions in the Rfssa package.

this process can be found in the subsequent sections. In the Rfssa package, we offer the fforecast(·)
function designed for the execution of R-forecasting or V-forecasting algorithms. This function expects
an input argument of class fssa and yields an output of class fforecast. The latter comprises a list of
objects of class funts, with each funts representing a forecasted group.

4 Technical details of the Rfssa package

The roadmap of the main functions used in the Rfssa package is given in Figure 3. The inputs and
outputs of these functions are described in Table 1. As it can be seen from Table 1, three classes (funts,
fssa and fforecast) are used to support the return objects of these functions. The funts(·), fssa(·)
and fforecast(·) functions are the constructors of the funts, fssa and fforecast classes, respectively.
In the rest of this section we present these classes with illustrative examples, and later we describe the
reconstruction and forecasting functions in detail.

4.1 The funts class

The funts(·) constructor is used to create an S3 object of class funts. This object is designed to
encapsulate various forms of FTS, including both univariate and multivariate types. It offers a versatile
framework for the creation and manipulation of funts objects, accommodating different basis systems
and dimensions. It accepts the following arguments:

 

 

 

funts() 
 

fforecast() 

freconstruct() 

Data Preparing 

fssa() 
•  

Decomposition 

Reconstruction 

Forecasting 

Figure 3: The roadmap of the Rfssa package.
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- X: A matrix, three-dimensional array, or a list of matrix or array objects. When method="data",
it represents the observed curve values at discrete sampling points or argument values. When
method="coefs", X specifies the coefficients corresponding to the basis system defined in
basisobj. If X is a list, it defines a multivariate FTS, with each element being a matrix or
three-dimensional array object. In matrix objects, rows correspond to argument values, and
columns correspond to the length of the FTS. In three-dimensional array objects, the first and
second dimensions correspond to argument values, and the third dimension to the length of the
FTS.

- basisobj: This argument should be an object of class basisfd, a matrix of empirical basis, or a
list of basisfd or empirical basis objects. In the case of empirical basis, rows correspond to basis
functions, and columns correspond to grid points.

- argval: A vector list of length p, representing a set of argument values corresponding to the
observations in X. Each entry in this list should either be a numeric value or a list of numeric
elements, depending on the dimension of the domain over which the variable is observed. It’s
worth noting that these values can vary from one variable to another. If argval is set to NULL,
the default values are the integers from 1 to n, where n is the size of the first dimension in the X
argument.

- method: This parameter determines the type of the X matrix, and it can take one of two values:
coefs or data.

- start and end: Specify the time of the first and last observations. They can be a single positive
integer or an object of classes Date, POSIXct, or POSIXt, representing a natural time unit.

- tname, vnames and dnames: These parameters accept strings or lists of strings to specify the
names of time, variables, and domains.

The funts(·) constructor offers flexibility to users. Users can either provide their custom basis or
request Rfssa to generate the basis for them, leveraging the capabilities of the fda package. It is
assumed that each variable is observed over a regular and equidistant grid. Furthermore, each
variable in the funts object is assumed to be observed over either a one or two-dimensional domain,
as illustrated in Figure 4. To enhance the representation of time, the funts function introduces two
parameters, namely start and end, which capture the time series duration. This design allows users
to specify time information in a structured and standardized manner. Users have the flexibility to
set start and end using various time and date classes, such as Date, POSIXct, or POSIXt. If users do
not provide the start and end arguments, default values are used, with start=1 and end=N, where
N represents the length of the time series. This default approach aligns with common practices, as
seen in classes like ts in the stats package, as well as fts classes in rainbow or ftsa. An object of class
funts is a list encompassing the following elements:

- N: Represents the length of the time series.

- dimSupp: A list specifying the dimensions of the support domain of the variables.

- time: The time object.

- coefs: A list containing basis coefficients.

- basis: A list of basis systems.

- B_mat: Evaluated basis functions on initial arguments.

- argval: Initial arguments of the observed functions.

As funts object:

coefs :

listargvals :
x)       x1, x2, . . . ,  x   m  x , x1, x2, . . . ,  x   m  x , x1, x2, . . . ,x     m

y1, y1, . . . , y1  , y2, y2, . . . , y2   ,     . . .       y,    my(

listB _mat:





   :     . . .    : 
b1m . . . bdm

b11    . . . bd1

list

Tx1

xmx
y1

ymy

Tx1

y1

Tx1

y1xmx

ymy

xmx

ymy

(x1, x2, . . . , xm)

x1 x2 xmT

  :       :     :      :
c1ᵭ     c2ᵭ            c3ᵭ    . . .




c11    c21 c31    . . .






 

b11    . . .    bdx,1    . . . 
   :     . . .    :       . . .   :
b1m̃     . . .    bdx,m̃    . . .  bᵭm̃

bᵭ1




  :       :     :      :
c1d c2d c3d    . . .




c11    c21 c31    . . .




x(1)

x(2)

x(3)

Figure 4: The main roadmap of funts objects.

The funts class provides essential functionalities for managing FTS objects, ensuring users have
well-defined basic operations. It supports arithmetic operations like addition and multiplication, along
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with indexing methods. Additionally, three generic methods, length(·), print(·), and plot(·), are
available. The eval.funts(·) method allows users to evaluate a funts object on a specified grid. To
determine if an object belongs to the funts class, the is.funts(·) method is provided. Converting
objects from the fda package’s fd class or the rainbow package’s fts class to a funts object is made
easy using the as.funts(·) function. The strength of funts objects lies in their powerful visualization
capabilities within the field of FTS. Users can create two types of plots using the graphical commands
plot(·) and plotly_funts(·). The plot(·) method utilizes base graphics objects to generate FTS plots.
On the other hand, the plotly_funts(·) function offers a versatile plotly platform for visualizing FTS
data, providing several plot types: line, 3Dline, 3Dsurface, and heatmap. These plots make it easier to
detect trends or patterns within each curve’s behavior over time. Furthermore, users can directly apply
the plotly_funts(·) function to objects from the fd, fds, or fts classes in packages like rainbow,
fds, ftsa, or fda, without the need for conversion to funts objects. Additionally, when converting
objects from packages like fds or fts, the xname and yname arguments are automatically captured and
used as the xlab and zlab arguments, ensuring that resulting plots are informative and intuitive. To
demonstrate the capabilities of the Rfssa package for handling FTS, two illustrative examples are
provided. The first example showcases the Callcenter dataset consisting of curves observed over a
one-dimensional domain. In contrast, the second example involves a bivariate FTS dataset, which
includes a sequence of two types of remote sensing images (two-dimensional functional data domain).

Example: Creating funts objects for FTS

The first example uses the raw Callcenter dataset which was discussed before. The funts object can
be made and plotted using the following codes. The generated plots are shown in Figure 5.

# Load necessary libraries
require(Rfssa)
require(fda)
# Load Callcenter data
Call_data <- loadCallcenterData()
# Prepare the data
D <- matrix(sqrt(Call_data$calls)), nrow = 240)
bs1 <- create.bspline.basis(c(0, 23), 22)
# Create a 'funts' object
Call_funts <- funts(D, bs1, start = as.Date("1999-1-1"),

vnames = "Sqrt of Call Numbers",
dnames = "Time (6 minutes aggregated)",
tname = "Date")

xtlab <- list(c("00:00", "06:00", "12:00", "18:00", "24:00"))
xtloc <- list(c(1, 60, 120, 180, 240))
# Generate a line plot using Plotly
plotly_funts(Call_funts, main = "Call Center Data Line Plot",

xticklabels = xtlab, xticklocs = xtloc)
# Generate a heatmap plot using Plotly
plotly_funts(Call_funts, type = "heatmap", main = "Call Center Data Heatmap",

xticklabels = xtlab, xticklocs = xtloc)
# Generate a 3D line plot using Plotly
plotly_funts(Call_funts, type = "3Dline", main = "Call Center Data 3Dline plot",

xticklabels = xtlab, xticklocs = xtloc);
# Generate a 3D surface plot using Plotly
plotly_funts(Call_funts, type = "3Dsurface", main = "Call Center Data 3Dsurface plot",

xticklabels = xtlab, xticklocs = xtloc);

As one can see from Figure 5(A), the overlapping line plot is a common way to view FTS data observed
over a one-dimensional domain, where the curves that are recorded on dates closer to the start of
1999 are given in light blue while functions obtained on later dates are plotted in a darker blue.
The heatmap plot in Figure 5(B) is a newer technique used to visualize FTS data observed over a
one-dimensional domain, allowing the user to see the evolution of the FTS over time instead of relying
on different colorings of the curves to specify date. Such one-dimensional FTS can also be represented
in a interactive 3D view. To obtain such plots the user simply needs to specify type="3Dsurface" or
type="3Dline".
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Figure 5: The plot types of the generated plots by plotly_funts(·)

Example: Creating funts objects for MFTS

The second example considers two collections of images where each image is drawn from a region
southeast of the city of Jambi, Indonesia, located between latitudes of 1.666792◦ S - 1.598042◦ S and
longitudes of 103.608963◦ E - 103.677742◦ E. The images were recorded using the MODerate Resolution
Imaging Spectroradiometer (MODIS) Terra satellite with a resolution of 250 meters every 16 days
starting from February 18, 2000 and ending July 28, 2019. The output of each image is the normalized
difference vegetation index (NDVI) which is used to quantify how much vegetation is present and
enhanced vegetation index (EVI). The NDVI values closer to one being indicative of more vegetation
and values closer to zero indicate less vegetation (see Haghbin et al., 2021, for more details). The
following code can be used to load the data, define a funts object for a MFTS, slice the funts object to
select a specific variable (here NDVI), and plot the smoothed images over time in an animation, that a
snapshot is given in Figure 6.

# Load the Jambi dataset
Jambi <- loadJambiData()
# Extract NDVI and EVI array data
NDVI <- Jambi$NDVI
EVI <- (Jambi$EVI)
# Create a list containing NDVI and EVI array data
Jambi_Data <- list(NDVI, EVI)
# Create a multivariate B-spline basis
require(fda)
bs2 <- create.bspline.basis(c(0, 1), 13)
bs2d <- list(bs2, bs2)
bsmv <- list(bs2d, bs2d)
# Create a funts object
Y_J <- funts(X = Jambi_Data,

basisobj = bsmv,
start = as.Date("2000-02-18"), end = as.Date("2019-07-28"),
vnames = c("NDVI", "EVI"), tname = "Date",
dnames = list(c("Latitude", "Longitude"), c("Latitude", "Longitude")))

# Create a Plotly-based visualization of the NDVI Image
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plotly_funts(Y_J[, 1],
main = "NDVI Image (Jambi)",
xticklabels = list(c("103.61\u00B0 E", "103.68\u00B0 E")),
yticklabels = list(c("1.67\u00B0 S", "1.60\u00B0 S")),
xticklocs = list(c(0, 1)),
yticklocs = list(c(0, 1)),
color_palette = "RdYlGn");

4.2 The fssa Class

Once the funts object is created and L is chosen, one can apply the fssa(·) constructor to obtain an S3
object of class fssa that contains our singular values, left singular functions, and right singular vectors.
An object of class fssa is a list of right singular functions, which is packed in an object of class funts
and the following components:

- values: A numeric vector of singular values.

- L: The specified window length.

- N: The length of the functional time series.

- Y: The original funts object.

The generic plot(·) is developed for the fssa class to help the user make decisions on how to do the
grouping stage of FSSA/MFSSA. This method provides a complete set of visualization tools for the
user to check the quality of the decomposition stage. These SSA-type plots encompass various types,
each providing unique insights into the data:

- "values": Plots the singular values (default).

- "paired": Visualizes pairs of right singular vectors, which is particularly useful for detecting
periodic components.

- "wcor": Generates a plot of the W-correlation matrix for the reconstructed objects.

- "vectors": Displays the right singular vectors, aiding in the detection of period length.

- "lcurves": Showcases the left singular functions, assisting in period length detection.

- "lheats": Heatmap plots of left singular functions are available, designed for funts variables
observed over one or two-dimensional domains. These plots are valuable for identifying
meaningful patterns.

- "periodogram": Periodogram plots of the right singular vectors can be generated, which help
detect the frequencies of oscillations in functional data.
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Figure 6: An NDVI snapshot from the city of Jambi, Indonesia.
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(A) Left Singular Functions (within days)
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(E) Paired Plots of Right Singular Vectors
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Figure 7: (A): Line plot of the left singular functions, used to identify periodic and trend components;
(B): Heatmap of the left singular functions; (C): Scree plot of the singular values often used for
grouping; (D): Right singular vectors, used to identify periodic and trend components; (E): Paired plots
of the right singular vectors, used for grouping and identifying periodicity in the FTS; (F): Weighted
correlation (W-correlation) matrix used for grouping.

While efforts have been made to align these plots in Rfssa with the non-functional versions available
in the Rssa package, there are some fundamental differences. Notably, "lheats" and "lcurves" are
novel plot types introduced in the Rfssa package for functional data. Additionally, "paired" and
"vectors" types are developed based on the right singular vectors. All these plot types utilize the
lattice graphics engine. The following example codes generate these plots for the Callcenter dataset.

Example: performing decomposition stage of FSSA

In the rest of the paper, we will use the pre-generated funts class object datasets such as Callcenter
which are included within the package. These ready-to-use datasets serve as practical examples and
templates, allowing users to test the FSSA procedure without the need to start from scratch with data
preprocessing. As mentioned previously, our approach involves performing FSSA with a lag window
of L = 28. We then generate a variety of SSA-type plots, as illustrated in Figure 7, using the following
code:

# Load the Callcenter dataset
data("Callcenter")
# Perform FSSA:
fssa_results <- fssa(Callcenter, L = 28)
# FSSA plots:
plot(fssa_results, d = 9, type = "lcurves",

main = "(A) Left Singular Functions (within days)")
plot(fssa_results, d = 9, type = "lheats",

main = "(B) Left Singular Functions (between days)")
plot(fssa_results, d = 13, main = "(C) Singular Values")
plot(fssa_results, d = 9, type = "vectors",

main = "(D) Right Singular Vectors")
plot(fssa_results, d = 10, type = "paired",

main = "(E) Paired Plots of Right Singular Vectors")
plot(fssa_results, d = 9, type = "wcor",

main = "(F) W-Correlation Matrix")

The W-correlation matrix in Figure 7(F) is built by measuring the correlation between FTS that are
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reconstructed using the grouping of indices by setting m = r (see the discussion on grouping in
section 2). We also have that Figure 7(E) is a plot of successive right singular vectors against one
another. Using Figures 7(C, E-F), we identify four groups in the Callcenter data such that I1 = {1},
I2 = {2, 3}, I3 = {4, 5}, and I4 = {6, 7}. Specifically, as discussed in Golyandina et al. (2001),
periodic components in FTS typically exhibit a rank of 2, consisting of pairs of harmonic elementary
components (sine and cosine functions with the same frequency). To identify these pairs, we can
examine pairwise scatterplots of the right singular vectors, as illustrated in Figure 7(E). In such
scatterplots, components with identical frequencies, amplitudes, and phases form points that lie
along a circular path. Additionally, the number of vertices in the resulting regular T-vertex polygon
corresponds to the periodicity of the component. In Figure 7(E), subplots 2 vs. 3, 4 vs. 5, and 6 vs.
7 reveal harmonic factors with frequencies of 1/7, 8/14, and 4/7, respectively. For a more detailed
exploration of extracting meaningful components from the extracted signal, additional references in
the SSA literature, such as Golyandina and Zhigljavsky (2013), can be consulted. In addition, using
Figures 7(A-B, D-E), we see clear weekly periodic patterns captured in the decomposition, for example,
the seven distinct curves found in various subplots of Figure 7(A) and the seven corners seen in subplot
2 vs. 3 of Figure 7(E). For interested readers, we provide further results for the decomposition stage and
the fssa object in the GitHub repository of the Rfssa package (https://github.com/haghbinh/Rfssa).

5 Reconstruction and forecasting

After obtaining an object of class fssa, the user may then choose to perform reconstruction using
the freconstruct(·) function or perform forecasting using fforecast(·). The reconstruction and
forecasting functions both return a list of funts objects with length m (number of groups). We note that
even though it is common to perform forecasting using a combination of groups that best reconstruct
the original signal, the user may try forecasting using several different combinations of groups.

5.1 Reconstruction

We start by reconstructing the Callcenter data using the grouping suggested from the FSSA decom-
position. The following code implements the reconstruction methodology and gives the plots of the
reconstruction in Figure 1.

# Define groups and their labels
groups <- list(1, 2:3, 4:5, 6:7, 1:7)
group_labels <- c("(B) First Group",

"(C) Second Group",
"(D) Third Group",
"(E) Fourth Group",
"(F) Extracted Signal")

# Perform FSSA reconstruction
reconstructed_data <- freconstruct(fssa_results, groups)
# Create and visualize plots
for (i in 1:length(groups)) {
print(plotly_funts(reconstructed_data[[i]], main = group_labels[i],

xticklocs = xtlab, xticklabels = xtloc))
}

One may observe the mean behavior (from group I1) in Figure 1(C), and the weekly behaviors (from
groups I2, I3 and I4) in Figures 1(D-F). Note that the weekly trajectories are more well-separated in I4
as opposed to the groups I2 and I3. We consider the last group, Is = {1, · · · , 7}, as the set of indices
corresponding to the leading eigentriples that capture more than 98% of the variation in the signal, to
reconstruct the original FTS in Figure 1(B).

5.2 The fforecast Class

As previously mentioned, in addition to performing reconstruction of the FTS, the package offers the
capability to perform forecasting using an object of class fssa. The constructor for this class, i.e., the
fforecast(·) function, accepts the following arguments:

• U: An object of class fssa holding the decomposition.

• groups: A list of numeric vectors where each vector is used for reconstruction and forecasting.

• len: An integer representing the desired length of the forecasted FTS.
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• method: A character string specifying the type of forecasting to perform, with options including:

– "recurrent" for FSSA R-forecasting.
– "vector" for FSSA V-forecasting.

• only.new: A logical argument, when set to TRUE, returns only the forecasted FTS, otherwise the
entire FTS is returned.

The fforecast(·) function returns an S3 class named fforecast, which has been introduced to
encapsulate the output of the function. This class is designed to provide a more organized and
intuitive structure for handling FTS data. The fforecast class includes the following attributes:

• original_funts: This attribute stores the original FTS object, allowing users to maintain a clear
reference to the original data.

• predicted_time: Stores the forecast time index.
• groups: Contains a list of numeric vectors, where each vector includes indices of elementary

components of a group used for reconstruction and forecasting.
• method: A character string specifying the type of forecasting performed.

To streamline user interactions further, we have developed a print(·) method for the fforecast class,
making it more convenient to view and assess forecasted FTS data. To illustrate these enhancements,
consider the continuation of the Callcenter data example in the following:

# Perform FSSA R-forecasting
pr_R <- fforecast(U = fssa_results, groups = c(1:3), len = 14, method = "recurrent")
# Perform FSSA V-forecasting
pr_V <- fforecast(U = fssa_results, groups = list(1,1:7), len = 14, method = "vector",

only.new = FALSE)
plot(pr_R, main = 'R-Forecast (only.new = TRUE)')
plot(pr_V, main = 'V-Forecast (only.new = FALSE)')
print(pr_V)
# FSSA Forecast (fforecast) class:
# Groups: List of 2
# : num 1
# : int [1:7] 1 2 3 4 5 6 7
# Prediction method: vector
# Predicted series length: 14
# Predicted time: Date[1:14], format: "2000-01-01" "2000-01-02" ...
# ---------The original series-----------
# Functional time series (funts) object:
# Number of variables: 1
# Lenght: 365
# Start: 10592
# End: 10956
# Time: Date[1:365], format: "1999-01-01" "1999-01-02" "1999-01-03" ...

The resulted figures are shown in Figure 8. The next example will forecast the Callcenter FTS one
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Figure 8: plot(·) method of fforecast class.

week into the future, based on the first 358 days of the year, by leveraging the FSSA R-forecasting and
V-forecasting methods as the results that had been given in Figure 2.
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# Define the data length
N <- Callcenter$N
U1 <- fssa(Callcenter[1:(N-7)], 28)
# Perform recurrent forecasting using FSSA
fore_R = fforecast(U1, groups = list(1:7), method = "recurrent", len = 7)[[1]]
# Perform vector forecasting using FSSA
fore_V = fforecast(U1, groups = list(1:7), method = "vector", len = 7)[[1]]
# Extract the true call data
true_call <- Callcenter[(N-7+1):N]
# Define weekdays and colors
wd <- c('Sunday', 'Monday', 'Tuesday', 'Wednesday','Thursday', 'Friday', 'Saturday')
clrs <- c("black", "turquoise4", "darkorange")
argvals <- seq(0, 23, length.out = 100);
par(mfrow = c(1,7), mar = c(0.2, 0.2, 2, 0.2));
# Iterate over the days of the week
for(i in 1:7) {

plot(true_call[i], col = clrs[1], ylim = c(0, 5.3),
lty = 3, yaxt = "n", xaxt = "n", main = wd[i]);

plot(fore_R[i], col = clrs[2], lty = 2, add = TRUE);
plot(fore_V[i], col = clrs[3], lty = 5, add = TRUE);

}
legend("top", c("Original", "R-forecasting", "V-forecasting"), col = clrs,

lty = c(3, 2, 5));

More information on these results may be found in the associated literature of Haghbin et al. (2021)
and Trinka et al. (2023).

6 A shiny application

The Rfssa package contains shiny apps for both FSSA and MFSSA methods. Those shiny apps can be
called using the launchApp(·) function, and are also available at http://sctc.mscs.mu.edu/fssa.htm
and http://sctc.mscs.mu.edu/mfssa.htm. Here we present the features of the MFSSA app since the
FSSA app would be a special case of that. The MFSSA shiny app was developed to visualize and
extract the information related to MFTS in a non-parametric framework. The proposed shiny app
provides a friendly GUI for users to implement the Rfssa functionalities and even compare the results
with the non-functional version (Rssa). Figure 9 provides a snapshot of the features available in the
MFSSA shiny app. At the top of the sidebar panel, users may specify the basis functions (B-spline or
Fourier) and the associated degrees of freedom to represent the funts object. Those basis functions
can be visualized in the sub-panel ‘Basis Functions’ under the main panel. The remaining inputs in the
sidebar will be used in other sub-panels. Specifically, ‘Groups’ is an input box for the third step of
the MFSSA algorithm. Each group is specified via a vector (e.g. ’c(1,2,4)’ or ’1:3’) and separated
from other groups by a comma (’,’). The slider ‘d’ is used to specify the dimensions used in MFSSA
(scree, W-correlation, paired, singular vectors & functions, and periodogram plots). The checkbox
(a) ‘Demean’ is used to subtract the mean to obtain mean-zero functions; (b) ‘Dbl Range’ is used to
extend the y-axis to cover all potential mirror functions (e.g. sometimes FPCs may get multiplied
by a negative sign); and (c) ‘Univ. FSSA’ to compare the MFSSA results with marginal FSSA ones
respectively. The ‘Win.L.’ slider specifies the window lengths for the MSSA and the MFSSA. The ‘run
M(F)SSA’ button runs MSSA and MFSSA using the specified parameters for the given dataset. In
general, for the sidebar, the top inputs (above the red line) are mostly to describe the basis functions.
The bottom inputs (below the red line) are used to specify SSA and FSSA parameters. The main panel
includes five sub-panels. Here we briefly describe the features in each of these sub-panels:

• ‘Input Data’: In this sub-panel, the user can either (a) use the functional datasets available in
the Rfssa package (e.g., Callcenter data or remote sensing datasets); (b) simulate MFTS (see
Haghbin et al., 2021, for details on simulation setup); or (c) upload any arbitrary FTS matrix
(where FTS are given in common grid points and are represented in the columns of the data
matrix) to provide the dataset and then analyze it.

• ‘Basis Functions’: As described before, we illustrate the basis functions selected by the user in
this sub-panel.

• ‘Data Analysis’: In this sub-panel, the user can call various tools to

– visualize the MFTS.

– obtain the optimal number of basis functions based on the GCV criteria.
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Figure 9: Snapshot of the MFSSA shiny app

– select a variety of outputs under MSSA and MFSSA, that includes scree plot, W-correlation
plot, paired plots, singular vectors plots, periodogram plots, singular functions (heat
or regular plots), and reconstruction of FTS using different types of plots (heat, regular,
3Dline and 3Dsurface). An example of the 3Dline reconstruction plot for the Callcenter
data is given in Figure 9.

• ‘Forecasting’: This sub-panel would be accessible after the user runs the MFSSA procedure, and
it includes the functionalities of R-forecasting and V-forecasting algorithms.

• ‘Manual’: This sub-panel provides a brief instruction manual to use the MFSSA shiny app.

7 Summary and conclusion

In summary, Rfssa is a pioneering package that brings the power of SSA to the realm of functional
time series, offering novel techniques for decomposition, reconstruction, multivariate analysis, and
functional forecasting. Its flexible data representation and functional context for SSA make it a valuable
addition to the CRAN ecosystem, providing unique capabilities not readily available in other packages.
Notably, the package offers extensive capabilities for analyzing FTS/MFTS data, allowing joint analysis
of smoothed curves and image data across different dimensional domains. The implementations of
the methodologies in the package have been optimized for speed by leveraging the functionalities of
RcppEigen and RSpectra R packages, along with custom C++ code. By utilizing the Rfssa package,
researchers and practitioners can easily apply advanced FSSA-based techniques to their data, yielding
informative results that can significantly enhance decision-making across various applied domains.
The intuitive nature and computational efficiency of the package make it a valuable asset for the FTS
analysis toolkit.

Acknowledgments

The authors would like to express their sincere gratitude to the anonymous reviewers for their valuable
feedback and constructive comments, which greatly contributed to the improvement of this work.

The R Journal Vol. 16/2, June 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=RcppEigen
https://CRAN.R-project.org/package=RSpectra
https://CRAN.R-project.org/package=Rfssa


CONTRIBUTED RESEARCH ARTICLE 97

Additionally, we would like to acknowledge the significant contributions of Dr. S. Morteza Najibi
during the development stages of the first version of the Rfssa package.

References

C. Bouveyron. funFEM: Clustering in the Discriminative Functional Subspace, 2021. URL https://CRAN.R-
project.org/package=funFEM. R package version 1.2. [p82]

M. de Carvalho and G. Martos. ASSA: Applied Singular Spectrum Analysis, 2020. URL https://CRAN.R-
project.org/package=ASSA. R package version 2.0. [p83]

M. de Carvalho and A. Rua. Real-time nowcasting the us output gap: Singular spectrum analysis at
work. International Journal of Forecasting, 33(1):185–198, 2017. [p83]

M. Febrero-Bandle and M. O. de la Fuente. Statistical computing in functional data analysis: The R
package fda.usc. Journal of Statistical Software, 51(4):1–28, 2012. doi: 10.18637/jss.v051.i04. [p82]

A. Gajardo, S. Bhattacharjee, C. Carroll, Y. Chen, X. Dai, J. Fan, P. Z. Hadjipantelis, K. Han, H. Ji, C. Zhu,
H.-G. Müller, and J.-L. Wang. fdapace: Functional Data Analysis and Empirical Dynamics, 2022. URL
https://CRAN.R-project.org/package=fdapace. R package version 0.5.9. [p82]

J. Goldsmith, F. Scheipl, L. Huang, J. Wrobel, C. Di, J. Gellar, J. Harezlak, M. W. McLean, B. Swihart,
L. Xiao, C. Crainiceanu, P. T. Reiss, Y. Chen, S. Greven, L. Huo, M. G. Kundu, S. Y. Park, D. L. Miller,
A.-M. Staicu, E. Cui, and R. Li. refund: Regression with Functional Data, 2023. URL https://CRAN.R-
project.org/package=refund. R package version 0.1.32. [p82]

N. Golyandina and A. Zhigljavsky. Singular Spectrum Analysis for Time Series. Springer Science &
Business Media, Berlin, Heidelberg, 2013. [p83, 93]

N. Golyandina, V. Nekrutkin, and A. A. Zhigljavsky. Analysis of Time Series Structure: SSA and Related
Techniques. Chapman and Hall/CRC, Boca Raton, FL, 2001. [p85, 93]

N. Golyandina, A. Korobeynikov, A. Shlemov, and K. Usevich. Multivariate and 2D extensions of
the Rssa package. Journal of Statistical Software, 67(2):1–78, 2015. doi: 10.18637/jss.v067.i02. URL
http://dx.doi.org/10.18637/jss.v067.i02. [p83]

N. Golyandina, A. Korobeynikov, and A. Zhigljavsky. Singular Spectrum Analysis with R. Springer
Berlin Heidelberg, 2018. [p83]

H. Haghbin, S. Morteza Najibi, R. Mahmoudvand, J. Trinka, and M. Maadooliat. Functional singular
spectrum analysis. Stat, page e330, 2021. doi: https://doi.org/10.1002/sta4.330. e330 STAT-20-
0240.R1. [p83, 84, 85, 90, 95]

H. Haghbin, J. Trinka, S. M. Najibi, and M. Maadooliat. Rfssa: Functional Singular Spectrum Analysis,
2023. URL https://CRAN.R-project.org/package=Rfssa. R package version 3.0.2. [p82]

C. Happ-Kurz. Object-oriented software for functional data. Journal of Statistical Software, 93(5):1–38,
2020. doi: 10.18637/jss.v093.i05. [p82]

H. Hassani and R. Mahmoudvand. Multivariate singular spectrum analysis: A general view and new
vector forecasting approach. International Journal of Energy and Statistics, 01(01):55–83, 2013. doi:
10.1142/S2335680413500051. URL https://doi.org/10.1142/S2335680413500051. [p83]

R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, 2012. [p83]

R. Hyndman and H. L. Shang. ftsa: Functional Time Series Analysis, 2023. URL https://CRAN.R-
project.org/package=ftsa. R package version 6.3.0. [p82]

M. Maadooliat, J. Z. Huang, and J. Hu. Integrating data transformation in principal components
analysis. Journal of Computational and Graphical Statistics, 24(1):84–103, 2015. [p85]

J. O. Ramsay and B. W. Silverman. Functional Data Analysis. Springer Series in Statistics. New York, NY,
2005. ISBN 038740080X. URL http://0-search.ebscohost.com.libus.csd.mu.edu/login.aspx?
direct=true&db=cat06952a&AN=mul.b2395232&site=eds-live. [p82, 83]

J. O. Ramsay, H. Wickham, S. Graves, and G. Hooker. fda: Functional Data Analysis, 2023. URL
https://CRAN.R-project.org/package=fda. R package version 6.1.4. [p82]

The R Journal Vol. 16/2, June 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=Rfssa
https://CRAN.R-project.org/package=funFEM
https://CRAN.R-project.org/package=funFEM
https://CRAN.R-project.org/package=ASSA
https://CRAN.R-project.org/package=ASSA
https://CRAN.R-project.org/package=fdapace
https://CRAN.R-project.org/package=refund
https://CRAN.R-project.org/package=refund
http://dx.doi.org/10.18637/jss.v067.i02
https://CRAN.R-project.org/package=Rfssa
https://doi.org/10.1142/S2335680413500051
https://CRAN.R-project.org/package=ftsa
https://CRAN.R-project.org/package=ftsa
http://0-search.ebscohost.com.libus.csd.mu.edu/login.aspx?direct=true&db=cat06952a&AN=mul.b2395232&site=eds-live
http://0-search.ebscohost.com.libus.csd.mu.edu/login.aspx?direct=true&db=cat06952a&AN=mul.b2395232&site=eds-live
https://CRAN.R-project.org/package=fda


CONTRIBUTED RESEARCH ARTICLE 98

H. L. Shang and R. Hyndman. rainbow: Rainbow Plots, Bagplots and Boxplots for Functional Data, 2022.
URL https://CRAN.R-project.org/package=rainbow. R package version 3.7. [p82]

S. Tavakoli. ftsspec: Spectral Density Estimation and Comparison for Functional Time Series, 2015. URL
https://CRAN.R-project.org/package=ftsspec. R package version 1.0.0. [p82]

J. Trinka, H. Haghbin, and M. Maadooliat. Multivariate functional singular spectrum analysis:
A nonparametric approach for analyzing multivariate functional time series. In Innovations in
Multivariate Statistical Modeling: Navigating Theoretical and Multidisciplinary Domains, pages 187–221.
Springer, 2022. [p83, 84, 85]

J. Trinka, H. Haghbin, H. L. Shang, and M. Maadooliat. Functional time series forecasting: Functional
singular spectrum analysis approaches. Stat, 12(1):e621, 2023. doi: 10.1002/sta4.621. URL https:
//doi.org/10.1002/sta4.621. [p83, 84, 86, 95]

Hossein Haghbin
Artificial Intelligence and Data Mining Research Group, ICT Research Institute
Faculty of Intelligent Systems Engineering and Data Science, Persian Gulf University
Boushehr, Iran
(ORCiD 0000-0001-8416-2354)
haghbin@pgu.ac.ir

Jordan Trinka
Department of Mathematical and Statistical Sciences, Marquette University,
Wisconsin, USA
(ORCiD 0000-0001-9118-5781)
jordantrinka4@hotmail.com

Mehdi Maadooliat
Department of Mathematical and Statistical Sciences, Marquette University,
Wisconsin, USA
(ORCiD: 0000-0002-5408-2676)
mehdi.maadooliat@mu.edu

The R Journal Vol. 16/2, June 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=rainbow
https://CRAN.R-project.org/package=ftsspec
https://doi.org/10.1002/sta4.621
https://doi.org/10.1002/sta4.621
mailto:haghbin@pgu.ac.ir
mailto:jordantrinka4@hotmail.com
mailto:mehdi.maadooliat@mu.edu


CONTRIBUTED RESEARCH ARTICLE 99

mcmsupply: An R Package for Estimating
Contraceptive Method Market Supply
Shares
by Hannah Comiskey and Niamh Cahill

Abstract In this paper, we introduce the R package mcmsupply which implements Bayesian hierar-
chical models for estimating and projecting modern contraceptive market supply shares over time.
The package implements four model types. These models vary by the administration level of their
outcome estimates (national or subnational estimates) and dataset type utilised in the estimation
(multi-country or single-country contraceptive market supply datasets). The mcmsupply package
contains a compilation of national and subnational level contraceptive source datasets, generated
by Integrated Public Use Microdata Series (IPUMS) and Demographic and Health Survey (DHS)
microdata. We describe the functions that implement the models through practical examples. The
annual estimates and projections with uncertainty of the contraceptive market supply, produced
by mcmsupply at a national and subnational level, are the first of their kind. These estimates and
projections have diverse applications, including acting as an indicator of family planning market
stability over time and being utilised in the calculation of estimates of modern contraceptive use.

1 Introduction

Family Planning 2030 (FP2030) is a ‘global movement dedicated to advancing the rights of people
everywhere to access reproductive health services safely and on their own terms’ (FP2030, 2021). One
step towards achieving this goal is to quantify how people are accessing their modern contraceptive
supplies. To date, obtaining estimates of modern contraceptive supply shares in low- and middle-
income countries has relied on large-scale national surveys like the Demographic and Health Surveys
(DHS). However, these DHS are not annually available and in practice, most countries carry out DHS
every 3 to 5 years approximately, with some countries having fewer surveys than this (DHS, 2023). In
previous work, we described a model that provides probabilistic estimates of the contraceptive supply
share over time with uncertainty and examined the model performance at the national administration
division for countries that are participating in FP2030 and have varying amounts of DHS data available
(Comiskey et al., 2024). The original modern contraceptive supply share model (mcmsupply model)
relies on splines, informed by cross-method correlations, to capture temporal variation combined
with a hierarchical modelling approach to estimate country-level parameters. Using a multi-country
dataset, the original mcmsupply model produces estimates of contraceptive supply market shares
at the national level for all countries simultaneously. In this paper, we extend the model to estimate
supply shares using input data from a single-country and to also include estimation at the subnational
administrative division. At the time of writing, this package and models are the first of their kind
to estimate and project modern contraceptive method supply shares at the national and subnational
administration levels using Demographic and Health survey data.

For the remainder of the paper, we will refer to the original modern contraceptive supply share
model as the multi-country national mcmsupply model. The single-country mcmsupply model uses
a scaled-down version of the multi-country approach. It borrows strength from the multi-country
model using modular model runs with informative priors placed on key parameters to provide precise
outcome estimation, even in the absence of data for a particular contraceptive method. Modularization
in Bayesian analysis describes the process within a statistical model where information is restricted to
flow only from the prior to the likelihood. Thus, preventing the ‘contamination’ of key parameters
from suspect data (Lunn et al. (2009) as cited in Plummer (2015)). In the context of our problem,
parameters estimated within the multi-country model are used to inform the priors of the single-
country (either national or subnational administrative division) models. This approach prevents
spurious parameter estimates due to a lack of data for some locations. To summarise how the
single-country and multi-country models are connected to each other, Figure 1 depicts this modelling
relationship at the national administration level. The main differences between the multi-country
and single-country approaches is that for a single-country model, we only have data for one country
(at the national or subnational administration division) and the country-level (in the national model)
or subnational-level (in the subnational model) population parameters are informed by estimates
from the corresponding multi-country model. In contrast to this, the multi-country model uses
national or subnational level data (depending on your administrative level of interest) from many
countries simultaneously to estimate model parameters and the country-level (in the national model)
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or subnational-level (in the subnational model) population parameters are estimated hierarchically.
The mcmsupply package contains vignettes that consider case studies of both single-country and
multi-country model estimation approaches at the national and subnational administration levels.
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Figure 1: A flow chart to illustrate the relationship between the multi-country and single-country
national estimation approaches. The median estimates of the multi-country national model parameters
are used as informative priors in the single-country national model. A legend describing each element
of the schematic is located in the blue box.

The need for a single-country version of the mcmsupply model arose for two primary reasons.
Firstly, there was a demand for improved computational efficiency while ensuring that model accuracy
remains uncompromised when generating projections of modern contraceptive method supply shares
for a single-country. Secondly, the option to accommodate custom data, like incorporating a new
survey dataset, was sought to be included in the estimation process for users who require a more
tailored analysis.

The inclusion of the functionality to estimate supply shares at the subnational level in the mcmsup-
ply package was spurred by the growing interest in subnational estimation among the family planning
community (New et al., 2017; Mercer et al., 2019; Li et al., 2019). The decentralization of family plan-
ning services produces a more equitable and efficient service; however, it also shifts the responsibility
of service delivery to lower-level organisations that may not have the capacity to carry-out the role
(Williamson et al., 2014). Providing subnational-level estimates can lead to a clearer understanding of
localised user preferences, localised user access to family planning commodities and a measure of the
true stability contraceptive supply market at a smaller geographic scale (Bossert and Beauvais, 2002).
These subnational estimates may also be used as part of a localised temperature check for progress
towards the FP2030 goals, which include increasing access to contraceptive methods (Munoz and Ali,
2022).

This paper introduces the R package mcmsupply for estimating and projecting the contracep-
tive supply share at the national and subnational administration divisions using multi-country or
single-country datasets. The package uses tidyverse throughout to carry out data manipulation
and visualisation tasks. The graphics are produced using ggplot2 and dplyr is used for any data
manipulation procedures. The workflow of the package aims to follow a Bayesian workflow (Gelman
et al., 2020). The users are encouraged to explore the data, the model inputs, and the model outputs
using diagnostics and visualisations. The individual elements of the workflow are made as accessible
as possible through the built-in functions, such as the ‘get_data’ and ‘plot_estimates’ functions, and the
code provided in the vignettes to test the convergence of the model parameters. To assess convergence,
we consider the R-hat values of the model parameters using the plot function of rjags, as well as the
individual parameter trace plots (Vehtari et al., 2021a). Figure 2 shows a summary of the different
ways users can use the R functions and input data in mcmsupply to carry out model fitting and
estimation. The national data contained in the package is derived from the DHS microdata (ICF, 2004)
while the subnational data is derived from the IPUMS DHS datasets (Herger Boyle et al., 2022). In the
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‘Implementation and operation’ section, we review the operation and implementation requirements of
the mcmsupply R package. In the ‘Data’ section, a detailed description of the data used within the
mcmsupply R package is provided, as well as an explanation of the data pre-processing functions
get_data and get_modelinputs. ‘The estimation process’ section describes the model fitting and
visualisation functions within the mcmsupply R package. A basic overview of the process model is
provided in ‘Overview of the mcmsupply process models’ with an explanation of some key modelling
parameters. The ‘Model fitting’ section explains the run_jagsmodel function. The run_jagsmodel func-
tion fits models in a Bayesian framework using the JAGS (Just Another Gibbs Sampler) software and
produces estimates with uncertainty for the administration level and dataset type of choice (Hornik
et al., 2003). The ‘Model output’ section describes the plot_estimates function that takes the model
estimates and visualises them using the R package ggplot2 (Wickham, 2016). The ‘Use cases’ section
discusses five use cases for modelling modern contraceptive supply shares using the mcmsupply R
package. Finally, the conclusions are presented.

2 Implementation and operation

mcmsupply contains pre-processing functions to clean and prepare raw input data for model fitting
at the administrative level of choice (national or subnational) using the dataset type of choice (multi-
country or single-country). This R package includes functions to fit Bayesian hierarchical models
using the model inputs. Functionality for post-processing and visualisation of the model estimates
are also included. The model fitting process described uses Just Another Gibbs Sampler (JAGS).
JAGS uses Markov Chain Monte Carlo (MCMC) sampling to produce model estimates for Bayesian
hierarchical models (Hornik et al., 2003). For installation, both R (>=3.5.0) and JAGS (>=4.0.0) are
required. JAGS can be downloaded at https://sourceforge.net/projects/mcmc-JAGS/files/JAGS/.
mcmsupply interacts with JAGS using the wrapper functions supplied by the R package R2jags (Su
and Yajima, 2021). The mcmsupply package dependencies are listed in the package DESCRIPTION file
and will be automatically installed upon installing the main package. There are no minimum RAM,
CPU, or HARDDRIVE requirements apart from what is necessary to store model runs, which varies
case-by-case. This software was run on a MacBook Air using macOS 13.1 with a 1.6 GHz Dual-Core
Intel Core i5 processor and 8GB of memory.

3 Data

3.1 Input data

The mcmsupply package contains the following input data sources:

• Survey data for the national and subnational modern contraceptive supply shares between 1990
and 2022 for a selection of countries participating in the FP2030 initiative.

• Variance-covariance data on the logit scale corresponding to the observed public and commercial
medical modern contraceptive supply shares at the national level between 1990 and 2022 for a
selection of countries participating in the FP2030 initiative.

• Estimated correlations between the rates of change in method supply shares in the public and
private sectors at both the national and subnational administrative divisions. These are derived
based on the method outlined in Comiskey et al. (2023).

• Global and subcontinental parameter estimates obtained from the multi-country model run at
the national and subnational level.

The inst/data-raw folder of the mcmsupply package contains sample R code that was used
to create the model inputs in the case of the covariance arrays, correlations and parameters. This
enables users to recalculate their own single-country model parameters and correlations should
they wish to do so. The code for the creation of the main input contraceptive supply source data is
provided on the mcmsupply github page but the raw data for these datasets cannot be provided.
The raw data may be accessed by users through an application to the DHS program for national
level data, or the IPUMS program, for subnational level data. Help files for the contraceptive supply
source datasets can be accessed by using the command ?mcmsupply::national_FPsource_data and
?mcmsupply::subnat_FPsource_data. The national contraceptive supply source data has data for
33 countries (including participants and non-participants of FP2030) between 1990 and 2022. The
subnational contraceptive supply source data has data for 256 provinces across 24 countries (all
participating in FP2030) between 1990 and 2020. Table 1 is a sample of 6 rows of the subnational
contraceptive supply source data.
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Table 1: The subnational contraceptive supply source data used in the subnational estimation models.
Country and Region list the name of the country and province the observation relates to. The Method
column lists the type of the contraceptive method supplied. The mid-year when the survey was
collected is listed in average_year. The supply sector is found in sector_categories. The observed
proportion and standard error are found in proportion and SE.proportion. The number of respondent
making up each observation are listed in n.

Country Region Method average_year sector_categories proportion SE.proportion n

9512 Zimbabwe Midlands OC Pills 2010.5 Commercial_medical 0.1601738 0.0355722 40
9513 Zimbabwe Midlands OC Pills 2010.5 Other 0.1018543 0.0259602 29
9514 Zimbabwe Midlands OC Pills 2010.5 Public 0.7379720 0.0449851 194
9515 Zimbabwe Midlands OC Pills 2015.5 Commercial_medical 0.1929466 0.0395410 60
9516 Zimbabwe Midlands OC Pills 2015.5 Other 0.0428227 0.0166039 13

9517 Zimbabwe Midlands OC Pills 2015.5 Public 0.7642307 0.0387566 209

Lastly, data on country classification, ISO codes and area groupings is provided in the dataset
Country_and_area_classification (Table 2). The help file for this dataset can be accessed via the R
command ?mcmsupply::Country_and_area_classification.

Table 2: The Country_and_area_classification dataset is the Track20 project country and area classifi-
cation data according to the United Nations Statistical Division, standard country or area codes for
statistical use (M49). This data set is how we classify each country in subcontinental regions. The
name of the country, the International Organization for Standardization (ISO) code for each country,
the continent, sub-continent are listed. Details on whether or not a country is defined as a developing,
located in Sub-Saharan Africa and the status of its participation in FP2020 (now FP2030) are also
provided.

Country or area ISO Code Major area Region Developed region Least developed country Sub-Saharan Africa FP2020

Afghanistan 4 Asia Southern Asia No Yes No Yes
Albania 8 Europe Southern Europe Yes No No No
Algeria 12 Africa Northern Africa No No No No
American Samoa 16 Oceania Polynesia No No No No
Andorra 20 Europe Southern Europe Yes No No No

Angola 24 Africa Middle Africa No Yes Yes No

3.2 Data pre-processing

In mcmsupply, the data processing occurs in two steps: First, the raw input data is retrieved and
preliminary cleaning to the dataset is completed. Secondly, the cleaned data is processed to provide
the model inputs for the Bayesian hierarchical model. This two-step process removes any black-box
element to the model fitting process and allows the user to review the data at both stages and refer to
it later when considering model outputs. The first step involves the get_data function. This function
retrieves the raw data from the stored contraceptive supply source dataset, does data cleaning and
processing to address any issues with missing data and regional naming inconsistencies. Its arguments
are summarized in Table 3. The get_data function carries out several data pre-processing tasks.
For example, it will remove observations where two or more sectors are missing. It also checks to
see if observations across all three sectors sum to one and will replace missing observations with 0
when the total does sum to one. The function transforms the raw data away from the (0,1) boundary
as parameter estimates that lie on the distribution limits cause issues with convergence during the
model estimation process. Finally, the get_data function imputes any missing standard errors using
a binomial approximation. To use the the get_data function, the user first defines whether they
wish to use national or subnational level administrative data via the national argument. National
level data is accessed when the national argument is set to TRUE. When subnational administrative
data is required, the user sets national to FALSE. Similarly, the user defines whether they want to use
multi-country estimation with data from multiple countries or single-country estimation with data
from a single-country via the local argument. The default setting for the local argument is FALSE.
This induces a multi-country estimation, where the outcomes for all the countries in the contraceptive
supply source dataset will be estimated simultaneously. In the event of single-country estimation,
the user sets local to TRUE and indicates their country of interest via the mycountry argument. The
names of the countries listed in the package data can be found in the country_names dataset. The
help file for this dataset can be accessed via the R command ?mcmsupply::country_names. The fp2030
argument controls whether to include countries that are participating in the FP2030 initiative or not.
The default includes only the named FP2030 countries (see country_names) in the dataset. There is
the optional functionality to include a custom dataset. This allows the user to run the model on data
outside of that stored within the package. The surveydata_filepath is a character string that denotes
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the location of the custom dataset. The file must meet a series of internal checks on file type, column
names, suitable data ranges and missing data. When a custom dataset is supplied to get_data, the
function carries out the checks and alerts the user to any differences between what is expected and
what has been supplied. If surveydata_filepath is left as NULL, by default the function uses the stored
national_FPsource_data or subnat_FPsource_data, depending on what administrative level the user
has specified via the national argument (Table 3). The get_data function returns a list containing the
cleaned data and a list of arguments supplied to the function. Storing the arguments of the get_data
function allows the set-up information to flow without requiring the user to repeatedly supply the
same arguments for each step of the modelling process.

Table 3: The arguments of the get_data function. The purpose of this function is to retrieve and clean
the Demographic and Health Survey (DHS) data or custom user supplied data for use in supply share
estimation. The ‘Argument’ column names the function component. Data type describes the argument.
Description explains the purpose of the argument and any default entries.

Argument Data type Description

national Character

It indicates whether the user is interested in using data at the
national or subnational administration level.
This is a binary TRUE or FALSE argument.

Default is TRUE which retrieves national level data, while
FALSE retrieves subnational data.

local Character

It indicates whether the user is interested in using data for a
single population or not.

This is a binary TRUE or FALSE argument.
Default is FALSE.

mycountry Character
This is the name of the country you wish to do single-country
estimation for. The data will only be returned for this country.

Default is NULL.

fp2030 Character

It indicates whether the user is interested in using only
countries participating in FP2030.

This is a binary TRUE or FALSE argument.
Default is TRUE.

surveydata_filepath Character string

Pathway to the location of the custom dataset.
When left as NULL, the function

automatically uses the stored datasets.
Default is NULL.

Step two of the data pre-processing is the get_modelinputs function. This function takes the
cleaned data from the previous step and repackages it into suitable inputs for the model implementa-
tion. The arguments of the function are summarised in Table 4. This function uses the arguments set
in the get_data function as well as additional parameters for the model. These parameters include
the year the user wishes to begin their estimation at and the year they finish on. In the mcmsupply
package, the models use basis splines (B-splines), to capture the complexities in variation of the contra-
ceptive supply source data over time. The use of splines for the estimation of demographic indicators
is growing in popularity. Previous studies used small-area estimation models with splines to capture
complex shapes of demographic spatio-temporal data (Ugarte et al., 2010, 2009). In recent years,
many international health organisations have also used splines for the estimation of key demographic
indicators. These include the estimation and projection of under-5 mortality for United Nations
Children’s Fund (UNICEF) (Sharrow et al., 2019) and the estimation of excess morality due to Covid-19
for the World Health Organisation (WHO) (Knutson et al., 2023). We build on these previous studies to
use penalised regression splines in the mcmsupply R package. B-splines use basis-functions to create
piecewise cubic polynomials. The number of basis functions that are fit to the data is determined by
the number of knots. Knots are the locations along the x-axis where the piecewise polynomials of the
B-splines join. As you increase the number of knots in the basis functions, the B-splines give a tighter
fit to the data. Similarly, if you decrease the number of knots in the basis, you will get a smoother fit to
your data. In the mcmsupply package, the user may alter the number of knots (nsegments) used in the
basis functions. The default number of knots is 12, as was used in Comiskey et al. (2023). This equates
to a knot approximately every 3.5 years. Through validation, it was found that having fewer knots
dis-improved model fit, while more knots did not significantly improve model fit. Like the get_data
function, this function returns a list containing the model inputs and the function arguments.

The R Journal Vol. 16/2, June 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=mcmsupply
https://CRAN.R-project.org/package=mcmsupply


CONTRIBUTED RESEARCH ARTICLE 104

Table 4: The arguments of the get_modelinputs function. The purpose of this function is to get the
model inputs for the JAGS model used for supply share estimation. In the table, the argument name
and data type of the argument is stated, a description of the argument and any default values is then
provided.

Argument Data type Description
startyear Numeric The year you wish to start your estimation at.
endyear Numeric The year you wish to finish your estimation at.

nsegments Numeric The number of knots you wish to include in your basis functions.
Default is 12.

raw_data List
The output of the get_data function, which includes a list

of the function arguments used and the
cleaned contraceptive supply source data.

4 The estimation process

The mcmsupply R package contains four Bayesian models, each of which aims to estimate and
project contraceptive method supply shares over time with uncertainty. These models vary by the
administration level of their outcome estimates (national or subnational estimates) and dataset type
utilised in the estimation (multi-country or single-country contraceptive market supply datasets).
A full mathematical description of all the models contained within mcmsupply is described in the
supplementary material. 1. A summary of each of the parameters and their role within each model
can be found in Table 5 while a visual summary of the national model, using both multi-country and
single-country inputs, can be found in Figure 1.

4.1 Brief model overview

The outcome of interest is the components of a compositional vector ϕq,t,m, which captures the
proportion of contraceptive method m, at time t, in population q supplied across the public and private
sectors.

Let,
ϕq,t,m = (ϕq,t,m,1, ϕq,t,m,2, ϕq,t,m,3), (1)

where,
ϕq,t,m,s is the proportion supplied by the public sector (s =1), the private commercial medical sector
(s=2) and the other private sector (s=3) of modern contraceptive method m, at time t, in population q
(national or subnational).

Figure 3 shows the model set up for the national level models. A similar approach is taken when
estimating modern contraceptive method supply at the subnational administration level. For each
model within the mcmsupply package, the latent variable ψq,m,t,s relies on a spline to capture the
underlying process that generates the data, on the logit scale, for sector s, in year t, for method m and
population q (depending on the administration level of interest) .

ψq,t,m,1 =
K

∑
k=1

βq,m,1,kBq,k(t), (2)

where,
βq,m,1,k is the kth spline coefficient for sector s, method m in population q.
Bq,k(t) is the kth basis function fit to the data for population q.

We assume that in population q, for method m and sector s, the value of spline coefficient at knot
index k∗, aligning with the year t∗, the most recent survey available, is αq,m,s. By doing this, we are
assuming that the αq,m,s parameter will act as the spline coefficient for the reference spline at k∗. We
are then able to calculate the remaining spline coefficients using a random walk model of order 1 on
spline coefficients from the reference index (k∗) using the penalised δq,m,s.

1At the time of publication it is expected that this material will be made available via another open access venue.
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Let,

βq,m,s,k =


αq,m,s k = k∗,

βq,m,s,k+1 − δq,m,s,k k < k∗,
βq,m,s,k−1 + δq,m,s,k−1 k > k∗,

(3)

where,
αq,m,s is the most recently observed supply share, on the logit scale, for sector s , method m, in popula-
tion q. This parameter is estimated hierarchically. The geographical set-up of this estimation process
adapts to match the administrative level of interest. For example, the subnational multi-country
models contain an additional layer of geography (world > subcontinent > country > province) in the
hierarchical set-up that the national models don’t have, which accounts for the subnational adminis-
tration levels.
k is the knot index along the set of basis splines Bq,k(t)
k∗ is the index of the knot that corresponds with t∗, the year index where the most recent survey
occurred in population q.
δq,m,s,k−1 is the first order difference between spline coefficients βq,m,s,K and βq,m,s,K−1. These reflect
the changes in method supply shares over time. Within each sector, the first-order differences are
assumed to be correlated between methods. These correlations were estimated using a maximum a
posteriori estimator for the correlation matrix first described in Azose and Raftery, (2018) and adapted
for method supply shares in Comiskey et al. (2023). These estimated correlations are available as
data for both the national and subnational models. Please see the Data section of this paper for more
details.

Table 5: This table summarises the purpose of each parameter within each of the four models described
in the mcmsupply R package. The four types of models are listed in the ‘Model type’ column. For each
model, the parameters listed in the ‘Parameter name’ column are the default parameters monitored
when the argument jagsparams=NULL is used within the run_jags_model function. ‘Parameter purpose’
explains the role each parameter plays within the estimation process and the notation can be linked
directly to the ‘Model overview’ section of this paper.

Model type Parameter name Parameter purpose

Multi-country national

P The method supply share proportions
across all countries, methods and sectors.

beta.k The set of spline coefficients for (βc,m,s,k)
for all countries, methods and sectors at each knot.

alpha_cms The intercept term (αc,m,s)
for all countries, methods and sectors.

delta.k The first order differences between spline coefficients (δc,m,s,k)
across all knots for all countries, methods and sectors

Single-country national

P The method supply share proportions
for a given country, across all methods and sectors.

alpha_cms The intercept term (αc,m,s) for
the country of interest c, across all methods and sectors.

inv.sigma_delta The precision matrix used in the
multivariate normal prior of δc,1:M,s,k

beta.k The set of spline coefficients (βc,m,s,k) for
the country of interest c, across all methods and sectors at each knot.

Multi-country subnational

alpha_pms The intercept term (αp,m,s)
for all subnational provinces, methods and sectors.

alpha_cms
The intercept term (αc,m,s)

for all countries, methods and sectors.
αc[p],m,s is the expected value of αp,m,s.

inv.sigma_delta
The precision matrix used in the

multivariate normal prior of δp,1:M,s,k

tau_alpha_pms The sector-specific precision
associated with αp,m,s

beta.k
The set of spline coefficients (βp,m,s,k)

across all subnational provinces, methods and sectors at each knot.

delta.k
The first order differences between spline coefficients

across all knots (δp,m,s,k) for all provinces, methods and sectors.

Single-country subnational
P The method supply share proportions for the

subnational provinces in the country of interest, for all methods and sectors.

alpha_pms The intercept term (αp,m,s) for the
subnational provinces in the country of interest, for all methods and sectors.

beta.k
The set of spline coefficients (βp,m,s,k)

for the subnational provinces in the country of interest,
across all methods and sectors at each knot
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Table 6: The arguments of the run_jags_model function. The purpose of this function is to run the
Bayesian hierarchical models stored within the mcmsupply package for either single- or multi-country
datasets at the administration level of interest. The argument name and data type of the argument is
stated, a description and any default values of the argument are then provided.

Argument Data type Description

jagsdata List
The output of the get_modelinputs function.

A list of the initial set-up arguments and the JAGS inputs
required using the data.

jagsparams Vector
A string vector of model parameters to be monitored.

NULL invokes a standard vector to be used
Default is NULL.

n_iter Numeric Number of iterations you wish to run your JAGS model for.
Default is 80000.

n_burnin Numeric Number of burn-in samples you wish to run your JAGS model for.
Default is 10000

n_thin Numeric Number of samples you wish to thin your JAGS sample by.
Default is 35.

Table 7: The arguments of the plot_estimates function. The purpose of this function is to plot the
data alongside the model estimates so that users can visualise their estimated method supply shares.
The argument name and data type of the argument is stated, a description of the argument is then
provided.

Argument Data type Description

jagsdata List A list of the initial set-up arguments and the JAGS inputs required
using the data retrieved in the get_modelinputs function.

model_output List The object assigned to store the list of MCMC results and estimate
summary output from the run_jags_model function.

4.2 Model fitting

The run_jags_model function fits the selected JAGS model to the supplied data and returns a list
of MCMC samples and point summaries for the time-period and locations of interest. Initial set-
up arguments (national, local, mycountry) are inherited from the specification of the previous
get_modelinputs function. The additional inputs of this function are summarised in Table 6. The
jagsdata argument of this function is a list of initial set-up arguments and JAGS model inputs gathered
from the get_modelinputs function. jagsparams is a vector of strings that name the model parameters
the user wishes to monitor within the JAGS model. The default is NULL. When jagsparams = NULL,
the function will refer to a stored vector of parameters to monitor (Table 5). The JAGS parameters of
n_iter = 80000, n_burnin = 10000 and n_thin = 35 ensure that the model has converged and that
the final posterior sample size is 2000 samples. The function get_point_estimates takes the chains
produced by the JAGS model and estimates the median, 95% credible intervals and 80% credible
intervals. The get_point_estimates function runs automatically inside the run_jags_model function
and returns the point summaries as part of the run_jags_model function output. The run_jags_model
function returns a list containing the JAGS output of the model and the point summaries for the
estimates.

4.3 Model output

The user then runs the function plot_estimates. This function visualises the point estimates with
uncertainty alongside the data using the initial set up inputs of the get_modelinputs function and
the output of the run_jags_model function (Table 7). The plot_estimates function returns a list of
ggplot2 objects, one for each country (when using the national model) or subnational region (when
using the subnational model).
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National administration level data:
This data has a geographic breakdown to the country-level and no 
further. It only considers the contraceptive method supply shares 

reflective of the entire nation.

Multi-country estimation: 
Estimate the contraceptive method 
supply shares for all the countries 

present in the data simultaneously.

Example national-level multi-
country estimation:
cleaned_natdata <-
get_data(national=TRUE)

pkg_data <-
get_modelinputs(startyear=199
0, endyear=2025.5, 
nsegments=12, raw_data = 
cleaned_natdata)

mod <-
run_jags_model(jagsdata = 
pkg_data, jagsparams = NULL, 
n_iter = 80000, n_burnin = 
10000, n_thin = 35)

plots <-
plot_estimates(jagsdata = 
pkg_data, model_output = mod) 

Single-country estimation: 
Estimate the contraceptive method 
supply shares for one country only.

Example national-level 
single-country estimation:
cleaned_natdata <-
get_data(national=TRUE, 
local=TRUE, 
mycountry="Nepal")

pkg_data <-
get_modelinputs(startyear=199
0, endyear=2025.5, 
nsegments=12, raw_data = 
cleaned_natdata)

mod <-
run_jags_model(jagsdata = 
pkg_data, jagsparams = NULL, 
n_iter= 20000, n_burnin = 
2000, n_thin = 9)

plots <-
plot_estimates(jagsdata = 
pkg_data, model_output = mod) 

Subnational administration level data:
This data has a geographic breakdown to the province-level. It only 
considers the contraceptive method supply shares reflective of the 

subnational provinces within a country.

Multi-country estimation: 
Estimate the contraceptive method supply 
shares for the provinces in every country  

present in the data simultaneously.

Example subnational-level 
multi-country estimation:
cleaned_data <-
get_data(national=FALSE)

pkg_data <-
get_modelinputs(startyear=1990, 
endyear=2025.5, nsegments=12, 
raw_data = cleaned_data)

mod <- run_jags_model(jagsdata
= pkg_data, jagsparams = NULL, 
n_iter = 80000, n_burnin = 
10000, n_thin = 35)

plots <-
plot_estimates(jagsdata = 
pkg_data, model_output = mod)

Single-country estimation: 
Estimate the contraceptive method 

supply shares for the provinces in one 
country only.

Example subnational-level 
single-country estimation:
cleaned_data <-
get_data(national=FALSE, 
local=TRUE,             
mycountry="Nepal")

pkg_data <-
get_modelinputs(startyear=1990
, endyear=2025.5, 
nsegments=12, raw_data = 
cleaned_data)

mod <- run_jags_model(jagsdata
= pkg_data, jagsparams = NULL, 
n_iter = 40000, n_burnin = 
10000, n_thin = 15)

plots <-
plot_estimates(jagsdata = 
pkg_data, model_output = mod)

Figure 2: A flow chart to illustrate the decision processes that lead to the different estimation types
within the mcmsupply package. The first decision is with respect to the administrative level of the
estimates you wish to create – they may be either national level or subnational level. An explanation of
each division is found on the first row of the figure. The second decision is with respect to the number
of countries you wish to estimate – the user may estimate the proportions for all the countries at once
or only one country. An explanation of each in the context of the specific administrative division
is found on the second row of the figure. A set of sample functions used to estimate and plot the
estimates for each modelling option are located on the third row of the figure

5 Use cases

5.1 Case 1: Estimating contraceptive method supply shares at the national administration
level for multiple countries simultaneously

The first use case describes how the user can estimate modern contraceptive method supply shares
at the national administrative level over time for multiple countries at once (i.e., using the multi-
country national model). This use case is described in national_multicountry_mod found in the
vignettes folder. This vignette takes approximately 12 hours to run when using the recommended
JAGS arguments, on a machine with 1.6 GHz Dual-Core Intel Core i5 processor and 8GB of RAM.
The national_FPsource_data dataset contains observations for 30 countries. The user begins by
accessing the national_FPsource_data dataset through the get_data function with the argument
national=TRUE, and the remaining arguments sets to their default values, to indicate that they are
interested in national-level data for the FP2030 countries present in the data.

cleaned_natdata <- get_data(national = TRUE)

dplyr::glimpse(cleaned_natdata$mydata)

Next, this data is supplied to the get_modelinputs function. This function reshapes the data into a
list of inputs for the JAGS model. At this point, the user must indicate the start and end years they
wish to estimate between. The n_segments argument controls how many knots will be used in the
basis functions. The default number of segments is 12. Lastly, the cleaned national data from the
get_data function is provided to the get_modelinputs function via the raw_data argument.

pkg_data <- get_modelinputs(startyear = 1990,
endyear = 2025.5,
nsegments = 12,
raw_data = cleaned_natdata)

The R Journal Vol. 16/2, June 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 108

This list of data and model inputs is then fed into the JAGS model via the run_jags_model function.
In this instance, the user wishes to monitor the default set of parameters within the JAGS model.
Therefore, they set the jagsparams argument to NULL, which invokes the function to use the default list.
The parameters for running the JAGS model are set via the n_iter, n_burnin and n_thin arguments.
For demonstration purposes in the code below, these arguments are set to low values. However, for
optimal model convergence we recommend increasing the iterations to 80,0000, the burn-in period to
10,000, and the thinning to 35. Please note that for these increased values of arguments, the model
run time is approximately 12 hours. As part of the run_jags_model function, the median and 80%
and 95% credible intervals for the estimates are calculated. To assess convergence, we considered the
convergence diagnostic R̂, as well as the individual parameter trace plots (Vehtari et al., 2021b).

mod <- run_jags_model(jagsdata = pkg_data,
jagsparams = NULL,
n_iter = 80,
n_burnin = 10,
n_thin = 2)

plot(mod$JAGS)

sample_draws <- tidybayes::tidy_draws(mod$JAGS$BUGSoutput$sims.matrix)

var <- sample_draws %>% dplyr::select(.chain, .iteration, .draw,`P[1,2,1,1]`) %>%
dplyr::mutate(chain = rep(1:2, each=mod$JAGS$BUGSoutput$n.keep)) %>%
dplyr::mutate(iteration = rep(1:mod$JAGS$BUGSoutput$n.keep, 2))

ggplot2::ggplot(data=var) +
ggplot2::geom_line(ggplot2::aes(x=iteration, y=`P[1,2,1,1]`, color=as.factor(chain)))

The final JAGS model output and the summary estimates are returned as a list. Finally, these
summary estimates are visualised via the plot_estimates function using the R package ggplot2
(Figure 3).

plots <- plot_estimates(jagsdata = pkg_data,
model_output = mod)
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Figure 3: The plotted posterior point estimates for each of the three sectors (public in blue, private
commercial medical in grey, and private other in gold) for Nepal at the national administrative level
over time with the 80% and 95% uncertainty interval denoted as shaded regions. Time in years is on
the x-axis and the proportion of each contraceptive method supply share is on the y-axis. The survey
observations are plotted as points with their associated standard error, plotted as vertical lines. This
plot was produced using a multi-country set up of the mcmsupply functions.

If the user wishes to pull out specific estimates for a given country and year, they may do so using
the pull_estimates function. The model object, country name and the year of interest are supplied,
the function then returns a tibble of the corresponding estimates.

estimates_2018 <- pull_estimates(model_output = mod, country = 'Nepal', year=2018)

5.2 Case 2: Estimating contraceptive method supply shares at the national administration
level for a single-country

This case considers when the estimates at the national administration level are required for only one
country. Rather than running a multi-country model, which takes several hours, a quicker alternative
is the single-country approach, which takes only a few minutes. The main difference between the
multi-country and single-country model outputs is that the model estimates of the single-country
models have slightly larger uncertainty. This is especially evident where data is absent for a particular
method. For example in Figure 3, the width of the 95% credible intervals over time for implants
estimated by the multi-country national model are smaller than those estimated in the single-country
model (Figure 4). The arguments local and mycountry control the single-country estimation models
in mcmsupply. The user begins as by retrieving the data for Nepal only using the get_data function.
They set local=TRUE and specify which country they are interested in by setting mycountry=Nepal.

cleaned_natdata <- get_data(national = TRUE,
local = TRUE,
mycountry = "Nepal")

These arguments are the only discernible differences in the commands for users, the rest of the
workflow is as described above in Case 1. A complete workflow for this use case can be found in
vignettes/national_singlecountry_mod. The single-country model produces model estimates that
align with those estimated by the multi-country estimation model.
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Figure 4: The plotted posterior point estimates for each of the three sectors (public in blue, private
commercial medical in grey, and private other in gold) for Nepal at the national administrative level
over time with the 80% and 95% uncertainty interval denoted as shaded regions. Time in years is on
the x-axis and the proportion of each contraceptive method supply share is on the y-axis. The survey
observations are plotted as points with their associated standard error, plotted as vertical lines. This
plot was produced using a single-country set up of the mcmsupply functions.

5.3 Case 3: Estimating contraceptive method supply shares at the subnational adminis-
tration level for multiple countries simultaneously

The use case for estimating the contraceptive supply shares via a multi-country model for the sub-
national administration division is given by the vignette subnational_multicountry_models. This
vignette takes approximately 24 hours to run on a machine with 1.6 GHz Dual-Core Intel Core i5
processor and 8GB of RAM. The dataset contains observations for 225 subnational divisions, across 23
countries. The user begins by calling the multi-country dataset at the subnational administration level
via the national argument.

cleaned_subnatdata <- get_data(national = FALSE)

#> Using preloaded dataset!

#> Joining with `by = join_by(Country, average_year)`
#> Joining with `by = join_by(Country)`

The remaining workflow is the same as described above in Case 1 and is not shown here. A
complete workflow for this use case can be found in vignettes/subnational_multicountry_models.

5.4 Case 4: Estimating contraceptive method supply shares at the subnational adminis-
tration level for a single-country

This use case is for considering use of the single-country model at the subnational administrative
division. The user begins by retrieving the data for Nepal using the get_data function by setting the
arguments national=FALSE, local=TRUE and mycountry=‘Nepal’.

cleaned_data <- get_data(national = FALSE,
local = TRUE,
mycountry = "Nepal")
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As in the previous use cases, the JAGS model is run and point summaries are calculated via the
run_jags_model function. The visualisations for the subnational regions of Nepal are returns as a list
via the plot_estimates function. An example of these visualisations is given in Figure 5, where the
estimated median method supply shares for Central region of Nepal are plotted with 80% and 95%
credible intervals over time in each of the methods.
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Figure 5: The plotted posterior point estimates for each of the three sectors (public in blue, private
commercial medical in grey, and private other in gold) taken from the subnational single-country
population for the Central subnational region of Nepal over time with both 80% and 95% uncertainty
denoted as corresponding shaded regions. Time in years is on the x-axis and the proportion of each
contraceptive method supply share is on the y-axis. The survey observations are plotted as points
with their associated standard error, plotted as vertical lines.

5.5 Case 5: Estimating contraceptive method supply shares at the national/subnational
administration level for a single-country using custom data

It is possible to include custom datasets when estimating contraceptive method supply shares at either
the national or subnational administration level. The set-up for using custom data is very similar to
the above processes, with a small difference in the data retrieval step using the get_data function.
When using a custom dataset, the user defines the location of the .xlsx file containing the custom
data.

cleaned_data <- get_data(national = FALSE,
local = TRUE,
surveydata_filepath =
"inst/data-raw/my_custom_data_good.xlsx",

mycountry = "Ethiopia")

The file must be in .xlsx format and match the layout of either the national_FPsource_data or
subnat_FPsource_data datasets, depending on your desired administration level. The get_data
function will carry out a series of internal checks to ensure the custom data matches the stored data
layout. If the custom data is not suitable, the get_data function will return an error and a message to
the user describing the issue with the custom data. A description of each column is given in Table 8.
Once the custom data checks are complete and passed, the regular workflow for fitting an mcmsupply
model continues. The JAGS model inputs are retrieved using the get_modelinputs and the JAGS
model is fit using run_jags_model. The summary estimates are plotted using the plot_estimates
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Table 8: The required columns when supplying custom data to the get_data . The column name
is given, the type of data expected in each column along with a description of the column. The
’Required’ column indicates whether the column belongs in national or subnational custom data files.
The get_data function will carry out a series of internal checks to ensure the custom data matches the
stored data layout.

Column name Data type Description Required
Country Character The name of the country you have the custom data for. National and subnational
Region Character The name of the subnational area you have the custom data for Subnational
Method Character The name of the contraceptive method you have the custom data for National and subnational

average_year Numeric The year that the observation was collected in. National and subnational
sector_categories Character The supply sector of the contraceptive method you have the custom data for. Subnational
sector_category Character The supply sector of the contraceptive method you have the custom data for. National

proportion Numeric The proportion of a given contraceptive method supplied by the observation. National and subnational
SE.proportion Numeric The associated standard error of the proportion supplied by the observation. National and subnational

n Numeric The sample size used to estimate the observation. National and subnational

function without any further changes to the workflow. A vignette of how to run the subnational model
using a custom dataset can be found vignettes/subnational_singlecountry_customdata_models.

6 Discussion

In this paper we have introduced the package mcmsupply. The primary purpose of this package
is to estimate and project modern contraceptive method supply shares from the public, private
commercial medical and private other sectors with uncertainty, for a selection of countries participating
in the FP2030 initiative. The mcmsupply package produces estimates within the period of available
Demographic and Health Survey data for a given country, as well as projections beyond the most
recent data point. The package uses either stored DHS survey data or custom user-supplied survey
data as inputs to the modelling process. The package implements four model types. These models
vary by the administration level of their outcome estimates (national or subnational administration
level) and dataset type utilised in the estimation (multi-country or single-country contraceptive market
supply datasets). The modelling framework uses penalised splines to capture temporal nature of the
data. These splines utilise correlations between changes in method supply shares that exist within the
data. Using splines informed by cross-method correlations allows us to capture the complex shape of
the data without over-fitting. Bayesian hierarchical estimation is another key element of this model
estimation process. We take advantage of the geographical nature of the data, such that the expected
sector, province (subnational level) or country (national level), method-specific supply shares are
informed based on the existing geographical structures in the data. This promotes information sharing
across locations, and better inform estimates in areas where smaller amounts of data are present. Case
studies illustrate how to use the mcmsupply for each of the four potential modelling routes, as well as
how to estimate contraceptive method supply shares using custom user-supplied data.

The mcmsupply package has many benefits to users. Firstly, it is the first of its kind to produce
annual estimates with uncertainty for monitoring contraceptive method supply shares over time at
the national and subnational levels. On average, most countries carry out DHS surveys every 5-6
years, but in some instances the wait time between surveys may be even longer (DHS, 2023). The
family planning community use contraceptive method supply shares to evaluate the stability and
sustainability of a given country’s contraceptive market (Bradley and Shiras, 2022). Contraceptive
method supply share estimates are also pivotal in effectively managing contraceptive commodity
supply-chains through a ‘total market approach’ (TMA). A TMA approach to the family planning
supply market seeks to engage the public, private commercial, and other sectors in a country to
increase family planning users access to vital information, products, and services (Moazzam, 2015;
through the Private Sector , SHOPS). Prior to this package, individuals who required contraceptive
method supply shares for a given country relied on estimates from the most recent DHS survey in the
country, regardless of its age. The mcmsupply package alleviates this issue and provides the family
planning community annual estimates with uncertainty for these contraceptive method supply shares.
Secondly, contraceptive method supply shares estimates are not only a stand -alone family planning
indicator but are also used in the calculation of an another indicator, estimated modern use (EMU)
(Track20, 2020). EMUs aim to measure the proportion of women, aged 15 to 49 years old , who are
currently using any modern method of contraception, and are derived from routinely collected family
planning service statistics (Track20, 2020). Currently, EMU calculations depend on an adjustment that
relies on the most recent DHS survey to provide estimates of the contraceptive supply share market in
a given country. Now this adjustment can instead rely on the annual estimates and projections with
uncertainty produced by the mcmsupply package. This can serve to improve the overall accuracy of
EMUs with respect to their ability to accurately measure modern contraceptive use. In addition, given
the probabilistic nature of the mcmsupply estimates the associated uncertainty can be propagated into
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the EMU calculations.

The last key benefit of the mcmsupply package is the speed at which the user is able to access
individual countries supply share estimates. Using the single-country models, at either the national or
subnational level, provides users with annual estimates of the method supply shares with uncertainty
within minutes. This fast estimation approach is computationally efficient while still producing reliable
estimates. Using priors informed by multi-country model subcontinental and country-level median
parameter estimates, this modelling approach is robust to spurious parameter estimates even when
estimating supply shares for countries with fewer surveys available. This computational efficiency
without a loss of model accuracy makes the mcmsupply package user-friendly and efficient for regular
data analysis.

The mcmsupply is not without its limitations. We remark that the implementation of these models
in JAGS have not been optimised. The multi-country models at the national and subnational levels
take hours to run and are intensive on computer memory and CPU. Hence, improvements such as
matrix operations rather than for-loops would greatly improve the computation efficiency of this
package. Another limitation of this package is that in methods without any survey information, the
uncertainty intervals tend to be large. This is especially evident in the single-country models where
in the absence of data for a given method, the uncertainty of the associated estimates is even larger
than that of the corresponding multi-country model estimates. These limitations inspires our future
work, where we seek to improve the computational efficiency of these models. We would also like
to investigate the potential for incorporating additional covariates into the models, such as average
method pricing for each sector, to improve the uncertainty of model estimates and projections where
no DHS survey data is available. Lastly, we wish to design an R-shiny app that promotes the use of
these model estimates among statistical non-experts within the family planning community.

7 Conclusions

mcmsupply is an R package that estimates the modern contraceptive method supply shares at the
national and subnational administrative divisions over time for countries participating in the Family
Planning 2030 initiative. The package provides the user an easy and accessible way to produce
annual estimates with uncertainty using Bayesian hierarchical penalised spline models with cross-
method correlations at the national and subnational administration levels. These annual estimates
with uncertainty may act as a stand-alone family planning indicator of the stability of the modern
contraceptive supply market or be used to produce alternative family planning indicators, such as
estimated modern use (EMUs) using service statistics (Track20, 2020). To the best of our knowledge,
the package is the first of its kind to estimate these supply shares at both administrative levels. Using
an R package to disseminate this work aligns with the findability, accessibility, interoperability, and
reusability (FAIR) principles of scientific data (Wilkinson et al., 2016). The data used in the package is
cited and explained thoroughly, the code is commented and easy to understand should a user wish to
tweak or review any functionalities, and finally it is reusable by the very nature of the R package.
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Pomdp: A Computational Infrastructure
for Partially Observable Markov Decision
Processes
by Michael Hahsler and Anthony R. Cassandra

Abstract Many important problems involve decision-making under uncertainty. For example, a medi-
cal professional needs to make decisions about the best treatment option based on limited information
about the current state of the patient and uncertainty about outcomes. Different approaches have been
developed by the applied mathematics, operations research, and artificial intelligence communities
to address this difficult class of decision-making problems. This paper presents the pomdp pack-
age, which provides a computational infrastructure for an approach called the partially observable
Markov decision process (POMDP), which models the problem as a discrete-time stochastic control
process. The package lets the user specify POMDPs using familiar R syntax, apply state-of-the-art
POMDP solvers, and then take full advantage of R’s range of capabilities, including statistical analysis,
simulation, and visualization, to work with the resulting models.

1 Introduction

Many important problems require decision-making without perfect information, and where decisions
made today will affect the future. For example, in diabetes prevention and care, the primary care
provider needs to make decisions about screening, early interventions like suggesting lifestyle modi-
fication, and eventually medication for disease management based on a patient’s available medical
history. Especially, screening and lifestyle modifications need to be used early on to be effective in
preventing severe and debilitating diseases later on. This is clearly a difficult problem that involves
uncertainty and requires a long-term view. We have studied this problem using the partially observ-
able Markov decision process approach in (Kamalzadeh et al., 2021) and, in the absence of solvers for
R, we started the development of the pomdp package described in this paper.

A Markov decision process (MDP) is a discrete-time stochastic control process that models how an
agent decides on what actions to take when facing an environment whose dynamics can be adequately
modeled by a Markov process that can be affected by the agent’s behavior (Puterman, 1994). That
is, the environment transitions between a set of states where transition probabilities only depend on
the current state and are conditioned on the agent’s actions. Over time, the agent receives rewards
depending on the actions and the environment’s state. The agent’s objective is to make a plan that
maximizes its total reward earned. A plan can be expressed as a mapping of each possible state to the
best action in that state. The best possible plan is often called the optimal policy. For MDP problems,
the agent is always aware of the state of the environment and can make decisions directly following
such a policy.

A partially observable Markov decision process (POMDP) generalizes the concept of the MDP
to model more realistic situations where the agent cannot directly observe the environment’s state.
Here, the agent must infer the current state using observations that are only probabilistically linked
to the underlying state. The agent can form a belief about what states it may be in and update its
belief when new observations are made. In this setting, the agent has to base its actions on its current
belief. A POMDP can be modeled as a belief MDP where the underlying Markov model uses belief
states instead of the original states of the environment. While the original state space is typically
modeled as a finite set of states, making MDPs readily solvable using dynamic programming, the
agent’s belief is represented by a probability distribution over the states in the form of a continuous
probability simplex and are therefore much more challenging to solve. The volume of the believe
space that POMDPs are operating in grows exponentially with the number of underlying states. This
is called the curse of dimensionality which means that working with problems with a realistic number
of states typically requires the use of approximate algorithms.

Karl Johan Åström first described Markov decision processes with a discrete state space and
imperfect information in 1965 (Åström, 1965). The model was also studied by the operations research
community where the acronym POMDP was introduced (Smallwood and Sondik, 1973). More recently,
the POMDP framework was adapted for automated planning problems in artificial intelligence
(Kaelbling et al., 1998). The POMDP framework is a popular choice when a known Markov process
can adequately approximate system dynamics and the reward function is known. POMDPs have been
successfully applied to model various real-world sequential decision processes. Examples include
numerous industrial, scientific, business, medical and military applications where an optimal or near-
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optimal policy is needed. This includes important applications like machine maintenance scheduling,
computer vision, medical diagnosis, and many more. A detailed review of applications can be found
in (Cassandra, 1998b).

While the (PO)MDP framework is used to find an optimal or near optimal policy, given a model of
system dynamics, the related class of model-free reinforcement learning algorithms, more specifically,
temporal difference learning, Q-learning and its deep learning variations (Sutton and Barto, 2018), learn
unknown system dynamics and the reward function directly from interactions with the environment.
Reinforcement learning methods typically require observable states and perform a large amount of
exploration, where the agent performs sub-optimal actions to learn about the environment. Q-learning
and some algorithms are already available in R packages like ReinforcementLearning (Proellochs
and Feuerriegel, 2020). While these model-free approaches are very powerful for many artificial
intelligence applications, they may not be appropriate for situations where experts already possess
a reasonable amount of knowledge about the system dynamics and where the cost of sub-optimal
actions is very high. For example, the cost of administering the wrong medication in a medical
setting due to exploration by a pure reinforcement learning approach may not be acceptable and a
model-based approach like a POMDP is more appropriate. The R package described in this paper
exclusively focuses on planning with POMDP.

While POMDPs are well studied, the complexity of solving all but very small problems limits
its application. Recent spectacular advances in artificial intelligence applications have lead to more
interest in POMDPs, as shown in the development of new approximate algorithms and by the
frameworks available for various programming languages:

• pomdp-solve (Cassandra, 2015) is a C program to solve POMDPs using exact and approximate
solvers.

• APPL (APPL Team, 2022) provides the fast point-based POMDP solver SARSOP in C++.
• ZMDP software (Smith, 2009) implements several approximate value iteration algorithms in

C++.
• pyPOMDP (Migge and Stollmann, 2013) is a Python 2.x toolbox for solving POMDPs.
• JuliaPOMDP (JuliaPOMDP Team, 2022) is a set of packages for defining and solving MDPs and

POMDPs using the Julia programming language.

R activity around POMDPs has also picked up with the packages sarsop (Boettiger et al., 2021)
and pomdpSolve (Hahsler and Cassandra, 2022) which interface the two popular POMDP solver
programs APPL and pomdp-solver.

In this paper, we present pomdp (Hahsler, 2023) which was co-developed with pomdpSolve
(Hahsler and Cassandra, 2022) to provide R users with a consistent and flexible infrastructure for
solving and working with POMDPs. The package can be used to work with larger POMDP problems
but is limited by the capability of the used solvers. Larger problems also typically lead to very
complicated policies which can be executed by an automatic agent but are not very helpful for a
human user. This paper focuses on features for smaller problems that yield simpler policies. Such
models and policies are better suited for human experts who want to understand the problem and
are interested in improved decision making. For example, a medical researcher who tries to develop
easy-to-follow guidelines for doctors based on experiments with a POMDP model is looking for a
relatively simple and robust model with a simple and understandable policy. This typically means to
consider a model with few states and a small number of different observations. For example, we have
used the package to study diabetes prevention by creating a very small, simplified model to obtain a
policy that is actionable in a primary care setting (Kamalzadeh et al., 2021). A second use of smaller
models is in a classroom or self-study setting where the pomdp package can be used to demonstrate
and study how POMDP models, solvers, and resulting policies work.

2 Background for partially observable Markov decision processes

A POMDP is a discrete-time stochastic control process that can formally be described by the 7-tuple

P = (S, A, T, R, Ω, O, γ),

where

• S = {s1, s2, . . . , sn} is the set of partially observable states of the environment,
• A = {a1, a2, . . . , am} is the set of available actions,
• T describes the system dynamics as the set of transition probabilities T(s′ | s, a) the state

transition s → s′ conditioned on taking ion a.
• R : S × A × S → R is the reward function which can depend on the

the state transition (previous and new state) and the action,

The R Journal Vol. 16/2, June 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=ReinforcementLearning
https://CRAN.R-project.org/package=sarsop
https://CRAN.R-project.org/package=pomdpSolve
https://CRAN.R-project.org/package=pomdp
https://CRAN.R-project.org/package=pomdpSolve
https://CRAN.R-project.org/package=pomdp


CONTRIBUTED RESEARCH ARTICLE 118

• Ω = {o1, o2, . . . , ok} is the set of possible observations,
• O defines the probabilistic connection of observations with the reached states s′ as the set of

observation probabilities O(o | a, s′) conditioned on the action a taken to reach s′, and
• γ ∈ [0, 1] is the discount factor modeling how much the agent prefers immediate rewards over

later rewards.

The used notation follows largely (Kaelbling et al., 1998). Several variations of this notation can
be found in the literature. Sets are often set in calligraphic font and it is also common to see the
observation model denoted by Z instead of O.

The control process proceeds in discrete time steps called epochs as follows. At each time epoch t,
the environment is in some unknown state s ∈ S. The agent chooses an action a ∈ A, which causes
the environment to transition to state s′ ∈ S with probability T(s′ | s, a). Simultaneously, the agent
receives an observation o ∈ Ω, which depends on the action and the new state of the environment
following the conditional probability distribution O(o | a, s′). Finally, the agent receives a reward
R(s, a, s′) depending on the transition. This process repeats till a specified time horizon is reached.
Often, as in the equation below, an infinite horizon is used. The goal of the agent is to plan a policy
that prescribes actions that maximize the expected sum of discounted future rewards, i.e., she chooses
at each time t the action that maximizes

E

[
∞

∑
t=0

γtrt

]
,

where rt = R(st, at, st+1) is the reward at epoch t which depends on the state transition and the
action at that time. Since state transitions are stochastic, the expectation is taken over all trajectories
that the process may take. Infinite horizon problems are guaranteed to converge if the discount factor
γ < 1. For a finite time horizon, the expectation is calculated over the sum up to the end of the time
horizon and a discounted expected final reward (called terminal value) may be added in the final
epoch.

In a POMDP, the agent does not know the state the system is in, but it has to use observations
to form a belief of what states the system could be in. This belief is called a belief state b ∈ B and is
represented in the form of a probability distribution over the states. B is the infinite set of all possible
belief states forming a |S| − 1 simplex. The agent starts with an initial belief b0 (often a uniform
distribution) and then updates the belief when new observations are available. In each epoch, after
observing o, the agent can perform a simple Bayesian update where the updated belief for being in
state s′ written as b′(s′) is

b′(s′) = η O(o|a, s′) ∑
s∈S

T(s′|s, a)b(s),

and

η =
1

∑s′∈S (O(o|a, s′)∑s∈S T(s′|s, a)b(s))
normalizes the new belief state so all probabilities add up to one.

Regular MDPs have (under some assumptions) a deterministic optimal policy that prescribes an
optimal action for each state (Puterman, 1994). Even though the actual states are not observable for
POMDPs, POMDPs also have a deterministic optimal policy that prescribes an optimal action for
each belief state. A policy is a mapping π : B → A that prescribes for each belief state an action. The
optimal policy is given by

π∗ = argmaxπ Vπ(b0)

with

Vπ(b0) = E

[
∞

∑
t=0

γtrt

∣∣∣∣ π, b0

]
.

Vπ(b0) is called the value function given policy π and the agent’s initial belief b0 ∈ B. The
value function for any MDP or POMDP is a piecewise linear function that can be described by the
highest-reward segments of a set of intersecting hyperplanes. The parameters for these hyperplanes
are typically called α-vectors and are a compact way to specify both, the value function and the policy
of the solution of a problem.

For the infinite-horizon case, the policy converges for γ < 1 to a policy that is independent of the
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time step and the initial belief. In this case, the policy can be visualized as a directed graph called the
policy graph. Each node of the graph is related to a hyperplane and represents the part of the belief
space where this hyperplane produces the highest reward in the value function. Each node is labeled
with the action to be taken given by the policy. The outgoing edges are labeled with observations and
specify to what segment of the value function the agent will transition given the previous segment,
the action and the observation. The formulation can be easily extended to the finite-horizon case.
However, the finite-horizon policy depends on the initial belief and the epoch. The finite-horizon
policy forms a policy tree, where each level represents an epoch.

It has to be mentioned that finding optimal policies for POMDPs is known to be a prohibitively
difficult problem because the belief space grows exponentially with the number of states. This issue is
called the curse of dimensionality in dynamic programming. Mundenk (Mundhenk, 2000) has shown
that finding the optimal policy for POMDPs is, in general, an NPPP-complete problem which means
that it is at least as difficult as the hardest problems in NP. Therefore, exact algorithms can be only used
for extremely small problems that are typically of very limited use in practice. More useful algorithms
fall into the classes of approximate value iteration and approximate policy iteration (Cassandra, 1998a;
Hauskrecht, 2000), which often find good solutions for larger problems. To use POMDPs successfully,
the researcher typically needs to experiment with simplifying the problem description and choosing
an acceptable level of approximation by the algorithm.

The solution of POMDPs can be used to guide the agent’s actions. Automatic agents can follow
very complicated policies. Humans often prefer simpler policies, even if they are not optimal but good
enough to robustly improve outcomes. Simpler policies also result from problem simplification and
allowing for a larger degree of approximation by the solver algorithm.

3 Implementation

Package pomdp includes a convenient and consistent way for users to define all components of a
POMDP model using familiar R syntax, solve the problem using several methods and then analyze
and visualize the results. An important design decision is to separate the tasks of defining a problem
and analyzing the policy from the actual solver. The separation between the infrastructure in package
pomdp and the solver code makes sure that additional solvers can be easily added in the future. Solver
code is typically interfaced by writing a standard problem definition file, running an external process,
and reading the results back. This way of interfacing solvers has several advantages:

• Using an external process, rather than directly interfacing the code in R ensures that memory
issues for larger problems do not compromise the running R process itself.

• The separation lets the solver use any available parallelization technique without imposing
limitations by R.

• Most existing solver software accepts a standard problem definition file format.
• The problem definition and the results are typically very small and fast to write and read

compared to the significant amount of time used by the solver.
• Separating problem definition and result analysis from the actual solver lets the user solve larger

problems on a dedicated server.

For communication with the solver, the package supports the widely used POMDP (Cassandra,
2015) file specification and can use POMDPX files (APPL Team, 2022) via package sarsop. This means
that new algorithms that use these formats can be easily interfaced in the future, and that problems
already formulated in these formats can be directly solved using the package. The authors also provide
an initial set of solvers with the companion package pomdpSolve which provides an easy-to-install
distribution of the well-known fast C implementation of a set of solvers originally developed by one
of the co-authors (Cassandra, 2015). The package pomdp currently provides access to the following
algorithms:

• Exact value iteration

– Enumeration algorithm (Sondik, 1971; Monahan, 1982).
– Two pass algorithm (Sondik, 1971).
– Witness algorithm (Littman et al., 1995).
– Incremental pruning algorithm (Zhang and Liu, 1996; Cassandra et al., 1997).

• Approximate value iteration

– Finite grid algorithm (Cassandra, 2015), a variation of point-based value iteration to solve
larger POMDPs (PBVI; see (Pineau et al., 2003)) without dynamic belief set expansion.
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– SARSOP (Kurniawati et al., 2008), Successive Approximations of the Reachable Space
under Optimal Policies, a point-based algorithm that approximates optimally reachable
belief spaces for infinite-horizon problems (via the third-party R package sarsop (Boettiger
et al., 2021)).

While exact methods can only solve very small problems, PBVI and SARSOP can efficiently
find approximate solutions for larger problems with thousands of states and hundreds of different
observations. pomdp uses by default the finite grid algorithm.

The pomdp package provides efficient support by using

• sparse matrix representation based on the Matrix package (Bates et al., 2022) for large transition
and observation matrices of low density,

• fast matrix operations,
• fast C++ implementations of loops using Rcpp (Eddelbuettel, 2013), and
• parallel execution using foreach (Microsoft and Weston, 2022).

The package implements many auxiliary functions to analyze and visualize POMDPs and their
solution. For example, to sample from the belief space, simulate trajectories through a POMDP and
estimate beliefs, fast C++ implementations (using Rcpp (Eddelbuettel, 2013)) and support for parallel
execution using foreach (Microsoft and Weston, 2022) are provided. To represent and visualize policy
graphs the widely used and powerful igraph package (Csardi and Nepusz, 2006) with its advanced
layout options is used. Interactive policy graphs can be produced based on the visNetwork (Almende
B.V. and Contributors and Thieurmel, 2022). While the package does not directly provide functions
to create ggplot2 visualizations (Wickham, 2016) to avoid installing the large number of packages
needed, the manual pages provide examples.

Solving a new POMDP problem with the pomdp package consists of the following steps:

1. Define a POMDP problem using the creator function POMDP() using R syntax,
2. solve the problem using solve_POMDP() which calls an external solver, and
3. analyze and visualize the results with functions like reward(), plot_policy_graph(), and

plot_value_function().

We will now discuss these steps in more detail and then present the complete code for a small toy
example.

3.1 Defining a POMDP problem

The POMDP() creator function has as its arguments the 7-tuple (S, A, T, R, Ω, O, γ), the time horizon
with terminal values, the initial belief state b0 and a name for the model. Default values are an infinite
time horizon (which has no terminal values), and an initial belief state given by a uniform distribution
over all states.

While specifying most parts of the POMDP is straightforward, some arguments can be specified
for convenience in several different ways. Transition probabilities, observation probabilities and the
reward function can be specified in several ways:

• A named list of dense or sparse matrices or the keywords "identity" and "uniform" represent-
ing the probabilities or rewards organized by action.

• As a data.frame representing a table with states, actions and the probabilities or reward values
created with the helper functions

– T_(action, start.state, end.state, probability),
– O_(action, end.state, observation, probability) and
– R_(action, start.state, end.state, observation, value).

NA is used to mean that a value applies to all actions, states or observations.

• An R function with the same arguments as T_(), O_() or R_() that returns the probability or
reward.

More details can be found in the manual page for the constructor function POMDP().

3.2 Accessing Model Data

Several parts of the POMDP description can be defined in different ways. In particular, transition
probabilities, observation probabilities, rewards, and the start belief can be defined using dense
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matrices, sparse matrices, data frames, functions, keywords or a mixture of all of these. The decision
to specify different parts of the description using different formats is typically a result of how it is
easier for the user to specify the part of the model. For example, transition and observation matrices
can typically be represented efficiently as sparse matrices and the keywords uniform and identity,
while rewards are typically more compactly specified as a data frame with rows describing the reward
for a subset of action/state/observation combinations.

To write code that performs computation using this information requires a way to access the data
in a unified way. The package provides accessor functions like:

• start_vector() translates the initial probability vector description into a numeric vector.

• Transition probabilities, observation probabilities, and rewards can be accessed using functions
ending in _matrix(). Given an action, a matrix is returned. The user can request a dense or
sparse matrix using the logical parameter sparse. To reduce the overhead associated with
representing dense matrices in sparse format, sparse matrices are only returned if the density of
the matrix is below 50%. The user can also specify sparse = NULL, which will return the data
in the way it was specified by the user (e.g., a data frame). This saves the cost of conversion.
Functions ending in _val() can be used to access individual values directly.

To allow a user-implemented algorithm direct access to the data in a uniform way, the function
normalize_POMDP() can be used to create a new POMDP definition where transition probabilities,
observation probabilities, rewards, and the start belief are consistently translated to (lists of) matrices
and numeric vectors. Similar access facilities for C++ developers are also available in the package
source code.

3.3 Solving a POMDP

POMDP problems are solved with the function solve_POMDP(). This function uses the low-level
interface in the companion package pomdpSolve to solve a pomdp using the pomdp-solve software
and return a solved instance of the POMDP problem. Since the low-level interfaces vary between
solvers, pomdp will provide additional functions for other popular solvers. For example, for using the
SARSOP solver interfaced in package sarsop, a function solve_SARSOP() is provided.

Solving POMDPs is often done by trial-and-error while simplifying the problem description to
make it tractable. This means that we need to be able to interrupt the solver when it is running too long
or when it runs out of memory. To accomplish this, the problem is transferred to the solver by writing
a POMDP or POMDPX file, the solver software is then run in a separate process, and the results are
read back. This approach results in a more robust interface since the R process is not compromised
by a solver that runs out of memory or is interrupted due to too long run time. However, note that
writing a large problem description file can be quite slow.

The solve_POMDP() and solve_SARSOP() functions require a POMDP model and then allow the
user to specify or overwrite model parameters that are often used in experimentation like the horizon,
the discount rate, and the initial belief state. Additionally, solver-specific parameters like the used
algorithm for pomdp-solve can also be specified.

3.4 Analyzing the solution

The function solve_POMDP() returns a solved instance of the POMDP as a list that contains the original
problem definition and an additional element containing the solution including if the solution has
converged, the total expected reward given the initial belief, and the α-vectors representing the value
function Vπ and the policy π. Keeping the problem definition and the solution together allows the
user to resolve an already solved problem multiple times experimenting with different initial beliefs,
horizons or discount rates, and also to perform analysis that requires both the problem definition and
the solution.

An example of such an analysis is to simulate trajectories for a solved POMDP by following an
ϵ-greedy policy. An ϵ-greedy policy follows the policy given in the solution but with a probability of ϵ
uses a random action instead, which can lead to exploring parts of the belief space that would not
be reached by using only the policy. Such a simulation needs access to the policy in the solution but
also to the original problem description (transaction and observation probabilities). This simulation is
implemented in function simulate_POMDP() and includes fast C++ code using Rcpp (Eddelbuettel,
2013) and a native R implementation supporting sparse matrix representation and sparse matrix
operations. Both implementations support parallelization using foreach (Microsoft and Weston, 2022)
to speed up the simulation.
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Often it is also interesting to test the robustness of a policy on slightly modified problem descrip-
tions or to test the performance of a manually created policy. These experiments are supported using
function add_policy() which provides a convenient way to combine POMDP problem descriptions
with compatible policies.

While the list elements of the solution can be directly accessed, several convenient access and
visualization functions are provided. We provide a plot_value_function() that visualizes the piece-
wise linear value function giving the reward over the belief space simplex as a line chart for two-state
problems. Function plot_belief_space() provides a more flexible visualization of the reward, the
policy-based action, or the policy graph node over the whole belief space. A three-state problem has a
belief space of the form of a 2-simplex which is a triangle and the visualization uses a ternary plot.
The belief space from more than three states cannot be directly visualized, however, projections can be
visualized by fixing the probabilities for all but two or three states.

The function policy() returns the policy as a table (data frame) consisting of one row for each
value function segment with the α-vector and the prescribed action as the last column. If the policy
depends on the epoch, then a list of tables is returned, one for each epoch. If the policy corresponds to
a realizable conditional control plan, then the policy can also be converted into an igraph object using
the function policy_graph() and visualized using the function plot_policy_graph(). The policy
graph shows the prescribed actions and how observations change the agent’s belief state. This is often
very useful for understanding the policy. For general finite-horizon policies, the policy graph is a
policy tree where each level in the tree represents successive epochs. Such trees are often too large
to visualize directly, but the igraph object can be used in many advanced R packages for network
analysis or exported for analysis with external tools.

Further, individual belief updates, the optimal action and the expected reward given a belief can
be calculated using update_belief(), optimal_action(), and reward(). Together with the unified
accessor functions and the POMDP specifications, the user can use these functions to implement more
sophisticated R-based analysis. The source package also contains C++ implementations of these and
the accessor functions. These can be used by an advanced R developer to write fast analysis code or
implement custom solvers.

3.5 Time-dependent POMDPs

For some real-world problems, the transition probabilities, observation probabilities, or rewards may
change depending on the epoch. For example, in a medical application, the transition probability
modeling the chance of getting an infection may increase with the age of the patient. While the
general definition of POMDPs can be easily extended to allow time-dependent transition probabilities,
observation probabilities and reward functions to model changes in the modeled system, most existing
solvers use fixed matrices.

The package pomdp adds a simple mechanism to support time dependence. Time dependence
of transition probabilities, observation probabilities and the reward structure can be modeled by
considering a set of episodes representing epochs with the same settings and then solving these
episodes in reverse order with the accumulated discounted reward of each episode used as the final
reward for the preceding episode. Details on how to specify episodes in time-dependent POMDPs can
be found in the pomdp manual pages.

4 Toy Example: The Tiger problem

We will demonstrate how to use the package with a popular toy problem called the Tiger Problem
(Cassandra et al., 1994). This example is often used to introduce students to POMDPs. The problem is
defined as:

An agent is facing two closed doors, and a tiger is put with equal probability behind one of the
two doors represented by the environment states tiger-left and tiger-right while treasure is put
behind the other door. The available actions are listen for tiger noises or opening a door (actions
open-left and open-right). Listening is neither free (the action has a reward of -1) nor is it entirely
accurate. There is a 15% probability that the agent hears the tiger behind the left door while it is behind
the right door and vice versa. If the agent opens the door with the tiger, it will get hurt (a reward of
-100), but if it opens the door with the treasure, it will receive a positive reward of 10. After a door is
opened, the problem resets (i.e., the tiger is again randomly assigned to a door), and the agent gets
another try. This makes it an infinite horizon problem and we use a discount factor of .75 to guarantee
convergence.
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4.1 Specifying the Tiger problem

The problem can be specified using the function POMDP().

library("pomdp")

Tiger <- POMDP(
name = "Tiger Problem",
discount = 0.75,
states = c("tiger-left" , "tiger-right"),
actions = c("listen", "open-left", "open-right"),
observations = c("tiger-left", "tiger-right"),
start = "uniform",

transition_prob = list(
"listen" = "identity",
"open-left" = "uniform",
"open-right" = "uniform"),

observation_prob = list(
"listen" = matrix(c(0.85, 0.15, 0.15, 0.85), nrow = 2, byrow = TRUE),
"open-left" = "uniform",
"open-right" = "uniform"),

reward = rbind(
R_("listen", NA, NA, NA, -1),
R_("open-left", "tiger-left", NA , NA, -100),
R_("open-left", "tiger-right", NA , NA, 10),
R_("open-right", "tiger-left", NA , NA, 10),
R_("open-right", "tiger-right", NA , NA, -100)

)
)

Note that we use for each component the most convenient specification method. For observations
and transitions, we use a list of distribution keywords and a matrix, while for the rewards, a data frame
created with the R_() function is used. The R_() function accepts the arguments action, start.state,
end.state, observation, and the reward value. A missing value of NA indicates that the reward is
valid for any state or observation.

The transition model can be visualized as a graph.

g <- transition_graph(Tiger)

library(igraph)
plot(g,
layout = rbind(c(-1, 0), c(1, 0)), rescale = FALSE,
edge.curved = curve_multiple_directed(g, .8),
edge.loop.angle = pi / 2,
vertex.size = 65
)

The vertices in Figure 1 represent the states and the edges show transitions labeled with actions
and the associated transition probabilities in parentheses. Multiple parallel transitions are collapsed
into a single arrow with several labels to simplify the visualization. The graph shows that the action
listen stays with a probability of 1 in the same state (i.e., listening does not move the tiger). The
actions open-left and open-right lead to a reset of the problem which assigns the tiger randomly to
a state. This is represented by the transitions with a probability of .5.

For more complicated transition models, individual graphs for each action or interactive graphs
using visNetwork can also be plotted.

4.2 Solving the Tiger problem for an infinite time horizon

To solve the problem, we use the default method (pomdp-solve’s finite grid method interfaced in
package pomdpSolve) which performs a form of point-based value iteration that can find approximate
solutions for larger problems.
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Figure 1: Transition model of the Tiger problem.

sol <- solve_POMDP(Tiger)
sol

#> POMDP, list - Tiger Problem
#> Discount factor: 0.75
#> Horizon: Inf epochs
#> Size: 2 states / 3 actions / 2 obs.
#> Start: uniform
#> Solved:
#> Method: 'grid'
#> Solution converged: TRUE
#> # of alpha vectors: 5
#> Total expected reward: 1.933439
#>
#> List components: 'name', 'discount', 'horizon', 'states', 'actions',
#> 'observations', 'transition_prob', 'observation_prob', 'reward',
#> 'start', 'info', 'solution'

The solver returns an object of class POMDP, which contains the solution as an additional list
component. The print function displays important information like the used discount factor, the
horizon, if the solution has converged and the total expected reward. In this case, the total expected
discounted reward for following the policy starting from the initial belief is 1.933. Note that the
optimal policy for infinite-horizon does not depend on the initial belief. The reward for other initial
beliefs can be calculated using the reward() function. For example, the expected reward for a correct
belief that the tiger starts to the left with a probability of 90% is:

reward(sol, belief = c(0.9, 0.1))

#> [1] 4.779814

4.3 Inspecting the Policy

The policy of a solved POMDP is a set of α-vectors representing a segment of the value function and
the associated best action.

policy(sol)
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Figure 2: The policy graph for the converged infinite-horizon solution of the Tiger problem.

#> tiger-left tiger-right action
#> 1 -98.549921 11.450079 open-left
#> 2 -10.854299 6.516937 listen
#> 3 1.933439 1.933439 listen
#> 4 6.516937 -10.854299 listen
#> 5 11.450079 -98.549921 open-right

The returned policy is a list where each element represents the α-vectors for an epoch. The policy
above has only one list element since the solution converged to a solution that is independent of the
epoch.

Smaller policies that correspond to a conditional plan can also be represented as a graph using a
custom plot function.

plot_policy_graph(sol)

The function uses the igraph package (Csardi and Nepusz, 2006) to produce the layout. Figure 2
shows the graph for the optimal policy returned by the solver for the Tiger problem. Each node in
the policy graph represents an α-vector and is labeled by the action prescribed by the policy. Each
segment covers a part of the belief space which represents how much the agent knows about the
location of the tiger based on all previous observations. We use a pie chart inside each node to
show a representative belief point that belongs to the segment. This makes it easier to compare the
beliefs in different nodes with each other. The representative belief points are found with the function
estimate_belief_for_nodes() which uses the solver output and searches along policy trajectories.
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Figure 3: The value function for the solution of the converged Tiger problem.

It is easy to interpret smaller policy graphs. Figure 2 shows that without prior information, the
agent starts at the node marked with initial belief. In this case, the agent believes there is a 50/50
chance that the tiger is behind either door. The optimal action is displayed inside the state and, in this
case, is to listen. The arcs are labeled with observations. Let us assume that the observation is tiger-left.
The agent follows the appropriate arc and ends in a node representing the new range of belief states
with a higher probability of the tiger being to the left. However, the optimal action is still to listen. If
the agent again hears the tiger on the left then it ends up in a node that has a belief of close to 100%
that the tiger is to the left and open-right is the optimal action. The arcs back from the nodes with the
open actions to the initial state reset the problem and let the agent start over.

Typically, small and compact policy graphs are preferable in practice because they make the policy
easier to understand for the decision maker and also easier to follow. For large, more complicated
policy graphs, representation as a graph is difficult leading to issues with node layout and too many
crossing vertices. The package can also plot the graph as an interactive HTML widget with movable
vertices (see the manual page for plot_policy_graph()) to let the user arrange the graph manually.
Larger policy graphs can also be exported in common formats like graphML to be displayed and
analyzed in large-scale network analysis tools like Gephi (Jacomy et al., 2014).

The Tiger problem environment has only two states (tiger-left and tiger-right) with a belief space
forming a 1-simplex which is a line going from a probability of 1 that the tiger is left to a probability of
1 that the tiger is right. Therefore, we can visualize the piecewise linear convex value function as a
simple line chart with the belief on the x-axis.

plot_value_function(sol, ylim = c(0,20))

Figure 3 shows the value function. The x-axis represents the belief, the lines represent the nodes
in the policy graph (the numbers in the legend match the numbers in the graph in Figure 3), and the
piecewise linear value function consists of the line segments with the highest reward. The optimal
action for each segment is shown in the legend. This visualization function is mostly provided to
study small textbook examples with two states. A more versatile function is plot_belief_space()
which can produce ternary plots for problems with three or more states by projecting the belief space
on three states.

Auxiliary functions provided in the package let the user perform many analyses. For example,
we simulate trajectories through the POMDP belief space by following the policy and estimating the
distribution of the agent’s belief.

sim <- simulate_POMDP(sol, n = 50, horizon = 5,
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Figure 4: Belief states reached in 50 simulated trajectories of horizon 5.

belief = c(.5, .5), return_beliefs = TRUE)
plot_belief_space(sol, sample = sim$belief_states, ylim = c(0, 12),

jitter = 5)
lines(density(sim$belief_states[, 1], bw = .01, from = 0 , to = 1))
axis(2); title(ylab = "Density")

Figure 4 shows the five beliefs that are reached in the trajectories as dots and uses jitter and a
density estimate to show how much time the agent has spent in the simulation in different parts of the
belief space. The color of the dots indicates the actions chosen by the policy.

4.4 Solving the Tiger problem for a finite time horizon

To demonstrate how to solve a POMDP problem with a finite time horizon, we set the horizon to 4
epochs, which means that the agent starts with its initial belief and can perform only four actions.
The grid-based method used before finds the optimal policy, but for finite time horizon problems
with negative rewards, the value function and the calculated expected reward is only valid when the
solution converges. To avoid this issue, we use here the incremental pruning algorithm (Zhang and
Liu, 1996; Cassandra et al., 1997).

sol <- solve_POMDP(model = Tiger, horizon = 4, method = "incprune")
sol

#> POMDP, list - Tiger Problem
#> Discount factor: 0.75
#> Horizon: 4 epochs
#> Size: 2 states / 3 actions / 2 obs.
#> Start: uniform
#> Solved:
#> Method: 'incprune'
#> Solution converged: FALSE
#> # of alpha vectors: 26
#> Total expected reward: 0.483125
#>
#> List components: 'name', 'discount', 'horizon', 'states', 'actions',
#> 'observations', 'transition_prob', 'observation_prob', 'reward',
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#> 'start', 'info', 'solution'

policy(sol)

#> [[1]]
#> tiger-left tiger-right action
#> 1 -99.321250 10.678750 open-left
#> 2 -11.820719 4.640094 listen
#> 3 -2.734955 2.600990 listen
#> 4 -1.137420 1.595135 listen
#> 5 0.483125 0.483125 listen
#> 6 1.595135 -1.137420 listen
#> 7 2.600990 -2.734955 listen
#> 8 4.640094 -11.820719 listen
#> 9 10.678750 -99.321250 open-right
#>
#> [[2]]
#> tiger-left tiger-right action
#> 1 -101.312500 8.687500 open-left
#> 2 -20.550156 5.488906 listen
#> 3 -13.450000 4.700000 listen
#> 4 -3.565469 2.157969 listen
#> 5 0.905000 0.905000 listen
#> 6 2.157969 -3.565469 listen
#> 7 4.700000 -13.450000 listen
#> 8 5.488906 -20.550156 listen
#> 9 8.687500 -101.312500 open-right
#>
#> [[3]]
#> tiger-left tiger-right action
#> 1 -100.7500 9.2500 open-left
#> 2 -12.8875 5.2625 listen
#> 3 -1.7500 -1.7500 listen
#> 4 5.2625 -12.8875 listen
#> 5 9.2500 -100.7500 open-right
#>
#> [[4]]
#> tiger-left tiger-right action
#> 1 -100 10 open-left
#> 2 -1 -1 listen
#> 3 10 -100 open-right

The policy has four elements, one for each epoch. Is easier to understand the policy by visualizing
it as a graph.

plot_policy_graph(sol)

The resulting policy graph is shown in Figure 5 as a tree with four levels, one for each time epoch.
The plot function automatically uses a tree layout and adds the epoch as the first number to the node
labels. By default, it also simplifies the representation by hiding belief states which cannot be reached
form the start belief and, therefore, there are more entries in the policy above than there are nodes
in the graph. The root node of the tree represents the initial belief used in the model. The model
starts with a uniform initial belief represented by the evenly split pie chart. The policy shows that
the optimal strategy is to listen and open a door only if we hear the tiger behind the same door twice.
Interestingly, it is optimal never to open a door in the last epoch. The reason is that we cannot reach
a sufficiently high belief of the tiger being behind a single door. The expected reward of this policy
starting at a uniform initial belief is 0.483.

Policy trees for finite-horizon problems are dependent on the agent’s initial belief. To show this,
we produce a new policy tree for an initial belief of 99% that the tiger is to the left by overwriting the
initial belief in the model definition.

sol <- solve_POMDP(model = Tiger, horizon = 4,
initial_belief = c(.99, .01), method = "incprune")

reward(sol, belief = c(.99, .01))
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Figure 5: Policy tree for the Tiger problem solved with a horizon of 4 and a uniform initial belief.
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Figure 6: Policy tree for the Tiger problem solved with a horizon of 4 and an initial belief of 99 percent
that the tiger is to the left.

#> [1] 9.57875

plot_policy_graph(sol, belief = c(.99, .01))

The resulting policy graph with an initial belief indicating that we are very sure that the tiger is to
the left is shown in Figure 6. The graph indicates that it is optimal to open the right door right away
and then wait if we hear the tiger twice in the same location before we open the other door. Under the
strong belief, the agent also expects a much higher reward of 9.579 for the optimal policy.

5 Summary

Partially observable Markov decision processes are an important modeling technique useful for
many applications. Easily accessible software to solve POMDP problems is crucial to support applied
research and instruction in fields including artificial intelligence and operations research. Most existing
libraries need advanced technical expertise to install and offer minimal support to analyze the results.
The pomdp package fills this gap by providing an easily accessible platform to perform experiments
and analyze POMDP problems and the resulting policies.

This paper used a minimalist toy example to show the functionality of the package in a concise
way. Studying and visualizing complicated policies with hundreds or thousands of belief states is an
important topic that has received less attention than improving solver algorithms. R provides a wide
range of tools to compare, analyze, and cluster belief states. We plan to investigate the use of these
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techniques to support explainability of more complicated policies and will implement corresponding
functions in future releases of the package pomdp.

6 Acknowledgments

Farzad Kamalzadeh participated in the development of an early version of the pomdp package and
used it for several applications. He was supported by a Graduate Fellowship and a Niemi Center
Fellowship, both at SMU. His and Michael Hahsler’s work was also supported in part by the National
Institute of Standards and Technology (NIST) under grant number 60NANB17D180.

The authors would also like to thank Carl Boettiger for maintaining the package sarsop and the
anonymous reviewers for their valuable insights.

References

Almende B.V. and Contributors and B. Thieurmel. visNetwork: Network Visualization using ’vis.js’
Library, 2022. URL https://CRAN.R-project.org/package=visNetwork. R package version 2.1.2.
[p120]

APPL Team. APPL: Approximate POMDP planning toolkit, 2022. URL https://bigbird.comp.nus.
edu.sg/pmwiki/farm/appl/. [p117, 119]

D. Bates, M. Maechler, and M. Jagan. Matrix: Sparse and Dense Matrix Classes and Methods, 2022. URL
https://CRAN.R-project.org/package=Matrix. R package version 1.5-3. [p120]

C. Boettiger, J. Ooms, and M. Memarzadeh. sarsop: Approximate POMDP Planning Software, 2021. URL
https://CRAN.R-project.org/package=sarsop. R package version 0.6.9. [p117, 120]

A. R. Cassandra. Exact and Approximate Algorithms for Partially Observable Markov Decision Processes.
PhD thesis, Providence, RI, USA, 1998a. AAI9830418. [p119]

A. R. Cassandra. A survey of POMDP applications. Technical Report MCC-INSL-111-98, Micro-
electronics and Computer Technology Corporation (MCC), 1998b. Presented at the AAAI Fall
Symposium. [p117]

A. R. Cassandra. The POMDP page, 2015. URL https://www.pomdp.org. [p117, 119]

A. R. Cassandra, L. P. Kaelbling, and M. L. Littman. Acting optimally in partially observable stochastic
domains. In Proceedings of the Twelfth National Conference on Artificial Intelligence, Seattle, WA, 1994.
AAAI Classic Paper Award, 2013. [p122]

A. R. Cassandra, M. L. Littman, and N. L. Zhang. Incremental pruning: A simple, fast, exact method
for partially observable Markov decision processes. In UAI’97: Proceedings of the Thirteenth conference
on Uncertainty in artificial intelligence, pages 54––61, August 1997. [p119, 127]

G. Csardi and T. Nepusz. The igraph software package for complex network research. InterJournal,
Complex Systems:1695, 2006. URL https://igraph.org. [p120, 125]

D. Eddelbuettel. Seamless R and C++ Integration with Rcpp. Springer, New York, 2013. doi: 10.1007/978-
1-4614-6868-4. ISBN 978-1-4614-6867-7. [p120, 121]

M. Hahsler. pomdp: Infrastructure for Partially Observable Markov Decision Processes (POMDP), 2023. URL
https://github.com/mhahsler/pomdp. R package version 1.1.3. [p117]

M. Hahsler and A. R. Cassandra. pomdpSolve: Interface to ’pomdp-solve’ for Partially Observable Markov
Decision Processes, 2022. URL https://github.com/mhahsler/pomdpSolve. R package version 1.0.2.
[p117]

M. Hauskrecht. Value-function approximations for POMDPs. Journal Of Artificial Intelligence Research,
13:33–94, 2000. doi: https://doi.org/10.1613/jair.678. [p119]

M. Jacomy, T. Venturini, S. Heymann, and M. Bastian. Forceatlas2, a continuous graph layout algorithm
for handy network visualization designed for the Gephi software. PLOS ONE, 9(6):1–12, 06 2014.
doi: 10.1371/journal.pone.0098679. [p126]

JuliaPOMDP Team. JuliaPOMDP: POMDP packages for Julia, 2022. URL https://github.com/
JuliaPOMDP. [p117]

The R Journal Vol. 16/2, June 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=pomdp
https://CRAN.R-project.org/package=sarsop
https://CRAN.R-project.org/package=visNetwork
https://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/
https://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/
https://CRAN.R-project.org/package=Matrix
https://CRAN.R-project.org/package=sarsop
https://www.pomdp.org
https://igraph.org
https://github.com/mhahsler/pomdp
https://github.com/mhahsler/pomdpSolve
https://github.com/JuliaPOMDP
https://github.com/JuliaPOMDP


CONTRIBUTED RESEARCH ARTICLE 132

L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in partially observable
stochastic domains. Artificial Intelligence, 101(1):99–134, 1998. ISSN 0004-3702. doi: 10.1016/S0004-
3702(98)00023-X. [p116, 118]

F. Kamalzadeh, V. Ahuja, M. Hahsler, and M. E. Bowen. An analytics-driven approach for optimal in-
dividualized diabetes screening. Production and Operations Management, 30(9):3161–3191, September
2021. ISSN 1937-5956. doi: 10.1111/poms.13422. URL https://onlinelibrary.wiley.com/doi/
abs/10.1111/poms.13422. [p116, 117]

H. Kurniawati, D. Hsu, and W. S. Lee. SARSOP: Efficient point-based pomdp planning by approximat-
ing optimally reachable belief spaces. In In Proc. Robotics: Science and Systems, 2008. [p120]

M. L. Littman, A. R. Cassandra, and L. P. Kaelbling. Learning policies for partially observable
environments: Scaling up. In Proceedings of the Twelfth International Conference on International
Conference on Machine Learning, ICML’95, page 362–370, San Francisco, CA, USA, 1995. Morgan
Kaufmann Publishers Inc. ISBN 1558603778. [p119]

Microsoft and S. Weston. foreach: Provides Foreach Looping Construct, 2022. URL https://CRAN.R-
project.org/package=foreach. R package version 1.5.2. [p120, 121]

B. Migge and O. Stollmann. pyPOMDP: POMDP implementation in Python, 2013. URL https:
//bitbucket.org/bami/pypomdp/src/master/. [p117]

G. E. Monahan. A survey of partially observable Markov decision processes: Theory, models, and
algorithms. Management Science, 28(1):1–16, 1982. [p119]

M. Mundhenk. The complexity of optimal small policies. Math. Oper. Res., 25(1):118–129, feb 2000.
ISSN 0364-765X. [p119]

J. Pineau, G. Gordon, and S. Thrun. Point-based value iteration: An anytime algorithm for POMDPs. In
Proceedings of the 18th International Joint Conference on Artificial Intelligence, IJCAI’03, page 1025–1030,
San Francisco, CA, USA, 2003. Morgan Kaufmann Publishers Inc. [p119]

N. Proellochs and S. Feuerriegel. ReinforcementLearning: Model-Free Reinforcement Learning, 2020. URL
https://CRAN.R-project.org/package=ReinforcementLearning. R package version 1.0.5. [p117]

M. L. Puterman. Markov decision processes: Discrete stochastic dynamic programming. In Wiley
Series in Probability and Statistics, 1994. [p116, 118]

R. Smallwood and E. Sondik. The optimal control of partially observable Markov decision processes
over a finite horizon. Operations Research, 21(5):1071–88, 1973. [p116]

T. Smith. ZMDP: Software for POMDP and MDP planning, 2009. URL https://github.com/trey0/
zmdp. [p117]

E. J. Sondik. The Optimal Control of Partially Observable Markov Decision Processes. PhD thesis, Stanford,
California, 1971. [p119]

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. The MIT Press, second edition,
2018. [p117]

H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016. ISBN
978-3-319-24277-4. URL https://ggplot2.tidyverse.org. [p120]

N. L. Zhang and W. Liu. Planning in stochastic domains: Problem characteristics and approximation.
Technical Report HKUST-CS96-31, Hong Kong University, 1996. [p119, 127]

K. Åström. Optimal control of Markov processes with incomplete state information. Journal of
Mathematical Analysis and Applications, 10(1):174 – 205, 1965. ISSN 0022-247X. [p116]

Michael Hahsler
Southern Methodist University
Department of Computer Science
Dallas, TX, USA
https://michael.hahsler.net
ORCiD: 0000-0003-2716-1405
mhahsler@lyle.smu.edu

The R Journal Vol. 16/2, June 2024 ISSN 2073-4859

https://onlinelibrary.wiley.com/doi/abs/10.1111/poms.13422
https://onlinelibrary.wiley.com/doi/abs/10.1111/poms.13422
https://CRAN.R-project.org/package=foreach
https://CRAN.R-project.org/package=foreach
https://bitbucket.org/bami/pypomdp/src/master/
https://bitbucket.org/bami/pypomdp/src/master/
https://CRAN.R-project.org/package=ReinforcementLearning
https://github.com/trey0/zmdp
https://github.com/trey0/zmdp
https://ggplot2.tidyverse.org
https://michael.hahsler.net
https://orcid.org/0000-0003-2716-1405
mailto:mhahsler@lyle.smu.edu


CONTRIBUTED RESEARCH ARTICLE 133

Anthony R. Cassandra
POMDP, Inc
Austin, TX, USA
https://tonycassandra.com
tony.cassandra@gmail.com

The R Journal Vol. 16/2, June 2024 ISSN 2073-4859

https://tonycassandra.com
mailto:tony.cassandra@gmail.com


CONTRIBUTED RESEARCH ARTICLE 134

pencal: an R Package for the Dynamic
Prediction of Survival with Many
Longitudinal Predictors
by Mirko Signorelli

Abstract In survival analysis, longitudinal information on the health status of a patient can be used
to dynamically update the predicted probability that a patient will experience an event of interest.
Traditional approaches to dynamic prediction such as joint models become computationally unfeasible
with more than a handful of longitudinal covariates, warranting the development of methods that
can handle a larger number of longitudinal covariates. We introduce the R package pencal, which
implements a Penalized Regression Calibration (PRC) approach that makes it possible to handle many
longitudinal covariates as predictors of survival. pencal uses mixed-effects models to summarize the
trajectories of the longitudinal covariates up to a prespecified landmark time, and a penalized Cox
model to predict survival based on both baseline covariates and summary measures of the longitudinal
covariates. This article illustrates the structure of the R package, provides a step by step example
showing how to estimate PRC, compute dynamic predictions of survival and validate performance,
and shows how parallelization can be used to significantly reduce computing time.

1 Introduction

Risk prediction models (Steyerberg, 2009) allow to estimate the probability that an event of interest
will occur in the future. Such models are commonly employed in the biomedical field to estimate the
probability that an individual will experience an adverse event, and their output can be used to inform
patients, monitor their disease progression, and guide treatment decisions.

Traditionally, risk prediction models only used covariate values available at the beginning of the
observation period to predict survival. Thus, predictions based on such models could not exploit
information gathered at later time points. Because information about the evolution of time-dependent
covariates may influence the occurrence of the survival outcome, it is desirable to be able to dynami-
cally update predictions of survival as more longitudinal information becomes available.

Dynamic prediction models employ both baseline and follow-up information to predict survival,
and they can be used to update predictions each time new follow-up data are gathered. Three
commonly-used statistical methods for dynamic prediction are the time-dependent Cox model, joint
modelling of longitudinal and survival data, and landmarking approaches.

The time-dependent Cox model (Therneau and Grambsch, 2000) is an extension of the Cox
proportional hazards model that allows for the inclusion of time-dependent covariates. It assumes
the value of a time-dependent covariate to be constant between two observation times, and it is only
suitable for exogenous time-dependent covariates. The model can be estimated using the R package
survival (Therneau and Grambsch, 2000).

Joint models for longitudinal and survival outcomes (Henderson et al., 2000) are shared random
effects models that combine a submodel for the longitudinal covariates (typically linear mixed models)
and one for the survival outcome (usually a Cox model or a parametric survival model). Thanks to the
shared random effects formulation, such models are capable to account for a possible interdependence
between the longitudinal covariates and the survival outcome. However, the estimation of the shared
random effects model is a computationally intensive task that has so far restricted the application of
joint models to problems with one or few longitudinal covariates. Over the years, several alternative
approaches to the estimation of joint models have been proposed, among which are the R packages JM
(Rizopoulos, 2010), JMbayes (Rizopoulos, 2014), joineR (Philipson et al., 2018) and joineRML (Hickey
et al., 2018).

Lastly, landmarking (Van Houwelingen, 2007) is an approach that dynamically adjusts predictions
by refitting the prediction model using all subjects that are still at risk at a given landmark time.
Landmarking typically involves two modelling steps. In the first step, repeated measurements of
the time-dependent covariates up to the landmark time are summarized using either a summary
measure or a suitable statistical model. In the second step, the summaries thus computed are used
as predictors of survival alongside with the time-independent covariates. The simplest form of
landmarking is the last observation carried forward (LOCF) method, which uses the last available
measurement of each longitudinal covariate taken up to the landmark time as summary. The main
advantage of this approach is that it is easy to implement, it is computationally straightforward and,
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thus, it does not require the development of dedicated software. Limitations of LOCF landmarking
include the fact that it discards all previous repeated measurements, failing to make efficient use of
the available longitudinal information, and it does not perform any measurement error correction
on the longitudinal covariates (this may be particularly desirable for biomarkers and diagnostic tests
that are typically subject to measurement error). To overcome these limitations, mixed-effects models
can be used to model the trajectories of the longitudinal covariates (Signorelli et al., 2021; Putter and
van Houwelingen, 2022; Devaux et al., 2023). While Putter and van Houwelingen (2022) focused on
situations with a single longitudinal marker, Signorelli et al. (2021) and Devaux et al. (2023) proposed
two methods, respectively called Penalized Regression Calibration (PRC) and DynForest, that can
deal with a large number of longitudinal covariates. Notably, the estimation of PRC and DynForest is
much more complex than that of LOCF landmarking, warranting dedicated software that can facilitate
the implementation of such methods. PRC is implemented in the R package pencal (Signorelli, 2023),
whereas DynForest in the R package DynForest (Devaux et al., 2023).

In this article we introduce the R package pencal, which implements the PRC approach. PRC
uses mixed-effects models to describe and summarize the longitudinal biomarker trajectories; the
summaries thus obtained are used as predictors of survival in a Cox model alongside with any
relevant time-independent covariate. To account for the possible availability of a large (potentially
high-dimensional) number of time-independent and longitudinal covariates and to reduce the risk of
overfitting the training data, PRC uses penalized maximum likelihood to estimate the aforementioned
Cox model.

The remainder of the article is organized as follow. In the next section we describe the dynamic
prediction problem, the PRC statistical methodology (Signorelli et al., 2021) behind pencal, and the
problem of evaluating the model’s predictive performance. Next we provide a general overview of
the R package, discussing the implementation details of its functions for model estimation, prediction
and performance validation. Furthermore, we provide a step by step example that shows how to use
pencal to implement dynamic prediction on a real-world dataset that comprises several longitudinal
covariates. We present the results of 4 simulations that assess the relationship between computing
time and sample size, number of covariates and number of bootstrap samples used to validate model
performance, showing how parallelization may reduce computing time significantly. Lastly, we
provide some final remarks, and discuss limitations and possible extensions of the current approach.

2 Statistical methods

2.1 Input data and notation

We consider a setting where n subjects are followed from time t = 0 until an event of interest occurs.
For each subject i ∈ {1, ..., n} we observe the pair (ti, δi), where δi is a dummy variable that indicates
whether the event is observed at time t = ti (δi = 1), or the observation of the event is right-censored
at t = ti (δi = 0). Thus, ti corresponds to the survival time if δi = 1, and to the censoring time if δi = 0.

In addition to (ti, δi), we assume that both baseline and follow-up information is collected from
the same subjects, and that the number of variables gathered may be large. We consider a flexible
unbalanced study design where the number and timing of the follow-up times can differ across
subjects. We denote by mi ≥ 1 the number of repeated measurements available for subject i, and by
ti1, ..., timi (tij ≥ 0 ∀j) the corresponding follow-up times. For each subject i we observe:

1. a vector of k baseline (time-fixed) predictors xi = (x1i, ..., xki);

2. mi vectors of p longitudinal (time-varying) predictors yij =
(

y1ij, ..., ypij

)
, j = 1, ..., mi mea-

sured at times ti1, ..., timi . Note that not all longitudinal predictors ought to be measured at every
follow-up time tij, and the number of available measurements is thus allowed to differ across
longitudinal predictors.

2.2 Dynamic prediction of survival

Let Si(t) = P(Ti > t) denote the survival function, i.e., the probability that subject i has not experienced
the event up to time t, and let Si(tB|tA) = P(Ti > tB|Ti > tA), tB ≥ tA denote the conditional
probability that subject i survives up until tB, given that they survived up until tA. Our goal is to
predict the probability of survival of subject i given all the available information up until a given
landmark time tL > 0, namely:

Si(t|tL, xi,Yi(tL)) = P(Ti > t|Ti > tL, xi,Yi(tL)), (1)
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where Yi(tL) = {yi1, ..., yir : tir ≤ tL} denotes all repeated measurements available up to the landmark
time for subject i.

In practice, often one may be interested in computing the predictions of survival in (1) over a
range of q landmark times tL1, tL2, ..., tLq. By doing so, information from more and more repeated
measurements can be incorporated in the prediction model as time passes, and predictions can be
updated based on the latest available information. This approach is referred to as dynamic prediction,
as it involves dynamic updates of model estimates and predictions over time. In this article we
illustrate how to use pencal to compute predictions of the conditional survival probabilities in (1)
for a single landmark time tL. Note that implementing a dynamic prediction approach with pencal
is straightforward, as for each landmark time tLs one simply needs to refit PRC over a dataset that
comprises all repeated measurements available up until t = tLs for the subjects that survived up until
the landmark time tLs (i.e., including subject i if and only if ti ≥ tLs).

2.3 Penalized regression calibration

PRC (Signorelli et al., 2021) is a statistical method that makes it possible to estimate the conditional
survival probabilities in (1) using xi and Yi(tL) as inputs. The estimation of PRC requires a multi-step
procedure that comprises the 3 following steps:

1. model the evolution over time of the longitudinal predictors in Yi(tL) using linear mixed models
(LMM, McCulloch and Searle (2004)) or multivariate latent process mixed models (MLPMM,
Proust-Lima et al. (2013));

2. use the model(s) fitted at step 1 to compute summaries of the trajectories described by the
longitudinal predictors (i.e., the predicted random effects);

3. estimate a penalized Cox model for the survival outcome (ti, δi) using as covariates both the
baseline predictors xi and the predicted random effects computed in step (2).

For simplicity, in this section we describe the version of PRC where in step 1 each longitudinal
covariate is modelled using a separate LMM. This version of the model is referred to as PRC LMM
in Signorelli et al. (2021). Note that alongside with the PRC LMM approach, Signorelli et al. (2021)
also proposed a second approach called PRC MLPMM, where groups of longitudinal covariates are
modelled jointly using the MLPMM. This alternative approach can be of interest when multiple
longitudinal items are employed to measure the same underlying quantity (for example, multiple
antibodies that target the same protein). For the formulation of the PRC MLPMM approach, we refer
readers to Sections 2.1-2.3 of Signorelli et al. (2021) as the notation for steps 1 and 2 using the MLPMM
is significantly more involved.

Denote by I(tL) = {i : ti > tL} the set of subjects that survived up until the landmark time tL. Let
ysi = (ysi1, ..., ysir), where tir ≤ tL denotes the last follow-up time before tL for subject i, be the vector
that comprises all the measurements of the s-th longitudinal variable Ys available up to the landmark
time. In the first step of PRC, we model the evolution over time of each longitudinal covariate Ys
through a linear regression model

ysi = Wsiβs + Zsiusi + εsi, i ∈ I(tL), (2)

where βs is a vector of fixed effect parameters, usi ∼ N(0, Ds) is a vector of random effects,
εsi ∼ N(0, σ2

s Imi ) is the error term vector, and Wsi and Zsi are design matrices associated to βs and usi.
As an example, later in this article we will consider an example where we let ysi depend on the age aij
of subject i at each visit, and include a random intercept and random slope in the LMM:

ysij = βs0 + usi0 + βs1aij + usi1aij + εsij, (3)

where (us0, us1)
T ∼ N(0, Ds) is a vector of random effects that follows a bivariate normal dis-

tribution. We employ maximum likelihood (ML) estimation to estimate βs, Ds and σ2
s in model

(2).

In the second step of PRC, we use the ML estimates from step 1 to derive summaries of the
individual longitudinal trajectories for each biomarker. These are the predicted random effects, which
can be computed as

ûsi = E(usi|Ysi = ysi) = D̂sZT
siV̂

−1
si (ysi − Xsi β̂s), (4)

where V̂si = ZsiD̂sZT
si + σ̂2

s I.

In the third step of PRC, we model the relationship between the survival outcome and the baseline
and longitudinal predictors. This is achieved through the specification of a Cox model where we
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include the baseline predictors xi and the summaries of the longitudinal predictors ûi = (û1i, ..., ûpi)
as covariates:

h(ti|xi, ûi) = h0(ti) exp (γxi + δûi) , (5)

where h0(ti) is the baseline hazard function, and γ and δ are vectors of regression coefficients.
Since our approach allows for the inclusion of a potentially large number of baseline and longitu-
dinal covariates, we estimate model (5) using penalized maximum likelihood (PML, Verweij and
Van Houwelingen (1994)). As penalties we consider the ridge (L2), lasso (L1) and elasticnet penalties.
The elasticnet penalty for model (5) is given by

λ

[
α

(
p

∑
s=1

|γs|+
p

∑
s=1

|δs|
)
+ (1 − α)

(
p

∑
s=1

γ2
s +

p

∑
s=1

δ2
s

)]
, (6)

where λ ≥ 0 and α ∈ [0, 1]. The ridge penalty is obtained by setting α = 0, and the lasso penalty
by fixing α = 1.

2.4 Computation of the predicted survival probabilities

Once models (2) and (5) have been estimated, the predicted survival probabilities Si(t|tL, xi,Yi(tL))
are computed using

Ŝi(t|tL, xi,Yi(tL)) = exp
(
−
∫ t

0
ĥ0(s) exp(γ̂xi + δ̂ûi)

)
, (7)

where ĥ0(s) is the estimated baseline hazard function, γ̂ and δ̂ are the PML estimates of γ and δ
obtained in step 3, and ûi contains the predicted random effects computed in step 2.

For subjects i ∈ I(tL), who are included in the training set and survived up until tL, computation
of (7) is straightforward, since the predicted random effects ûi for such subjects have already been
computed in step 2. Predictions of Si(t|tL, xi,Yi(tL)) for a new subject i = n + 1 who survived up until
tL, but was not part of the training set is a bit more complex: before computing (7), one first needs
to compute the predicted random effects for this new subject using (4). Note that such computation
is feasible if and only if measurements of both baseline and longitudinal covariates (up to tL) are
available for this new subject.

2.5 Evaluation of the predictive performance

We consider the time-dependent area under the ROC curve (tdAUC, Heagerty et al. (2000)), the
concordance index or C index (Pencina and D’Agostino, 2004) and the Brier score (Graf et al., 1999) as
measures of predictive performance. To obtain unbiased estimates of these performance measures,
Signorelli et al. (2021) proposed a cluster bootstrap optimism correction procedure (CBOCP) that
generalizes the use of the bootstrap as internal validation method to problems involving repeated
measurement data. As an alternative to the CBOCP, one may choose to implement a cross-validation
approach instead. Should the user opt for such an alternative, we recommend the use of repeated
cross-validation over simple cross-validation to achieve a level of accuracy comparable to that of the
CBOCP.

3 The R package pencal

In this Section we introduce the functions for the estimation of PRC, the computation of the predicted
survival probabilities and the validation of predictive performance, providing an overview of the
relevant estimation approaches and some important implementation details.

Table 1 provides a side-by-side overview of the functions that can be used to implement the
PRC LMM and PRC MLPMM approaches. Note that while two different functions (one for each
approach) are needed for the three estimation steps and the computation of the survival probabilities,
the evaluation of the predictive performance is implemented in a single function that works with
inputs from both approaches.
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Table 1: Overview of the pencal functions that implement the different modelling steps for the PRC
LMM and PRC MLPMM approaches.

Task PRC LMM PRC MLPMM
Step 1: estimate the mixed-effects models fit_lmms fit_mlpmms
Step 2: compute the predicted random effects summarize_lmms summarize_mlpmms
Step 3: estimate the penalized Cox model fit_prclmm fit_prcmlpmm
Computation of predicted survival probabilities survpred_prclmm survpred_prcmlpmm
Evaluation of predictive performance performance_prc performance_prc

3.1 Model estimation and prediction

The first step of PRC involves the estimation of mixed-effects models for the longitudinal outcomes.
For the PRC LMM approach, this can be done through the fit_lmms function, that proceeds to estimate
p LMMs (one LMM for each of the longitudinal outcomes). Estimation of the LMMs is performed
by maximum likelihood through the lme function from the R package nlme (Pinheiro and Bates,
2000). For the PRC MLPMM approach, the first step involves estimating one MLPMM for each group
of longitudinal covariates. Estimation of the MLPMMs is done by maximum likelihood using the
modified Marquardt algorithm described in Proust-Lima et al. (2013), as implemented in the multlcmm
from the R package lcmm (Proust-Lima et al., 2017).

The second step of PRC requires the computation of the predicted random effects. The function
summarize_lmms implements this for the PRC LMM approach. The function takes the output of
fit_lmms as input, and proceeds to the computation of the predicted random effects using equation
(4). Similarly, the function summarize_mlpmms does the same for the PRC MLPMM approach by taking
the output of fit_mlpmms as input and computing the predicted random effects using the formula
given in equation (4) of Signorelli et al. (2021).

The third step of PRC requires the estimation of a Cox model where the baseline covariates and the
predicted random effects are used as covariates.Estimation of such model can be performed using the
function fit_prclmm for the PRC LMM approach and fit_prcmlpmm for the PRC MLPMM approach.
These functions proceed to the estimation of the aforementioned Cox model by penalized maximum
likelihood through the function cv.glmnet from the R package glmnet (Simon et al., 2011). If the
user chooses the ridge or lasso penalty, then the selection of the value of the tuning parameter λ is
performed through cross-validation as implemented in glmnet. If, instead, the elasticnet penalty is
used, fit_prclmm and fit_prcmlpmm proceed to perform a nested cross-validation procedure to jointly
select the optimal values of the tuning parameters α and λ.

Lastly, the function survpred_prclmm can be used to compute the predicted survival probabilities
as described in equation (7) for the PRC LMM approach. The corresponding function for the PRC
MLPMM approach is survpred_prcmlpmm.

3.2 Computation of the CBOCP

In pencal, the evaluation of the predictive performance of the fitted model is done by estimating the
tdAUC, C index and Brier score through the CBOCP described in Signorelli et al. (2021). For both the
PRC LMM and PRC MLPMM approaches, this can be done through the function performance_prc.
The estimates of the tDAUC, C index and Brier score are computed using functions from the packages
survivalROC (Heagerty and Saha-Chaudhuri, 2022), survcomp (Schröder et al., 2011) and riskRegres-
sion (Gerds et al., 2023), respectively.

The computation of the CBOCP requires the choice of the number of bootstrap replicates B over
which the model should be refitted. This can be done by specifying the argument n.boots inside the
functions that implement the first step of PRC, namely fit_lmms for the PRC LMM approach and
fit_mlpmms for the PRC MLPMM one. The supplied value of n.boots is stored in the output of such
functions, and all subsequent functions inherit this value, automatically performing the computations
necessary for the CBOCP.

If n.boots = 0 (default), the CBOCP is not computed, and performance_prc only returns the
naïve estimates of predictive performance. Values of n.boots ≥ 1 will trigger the computation of the
CBOCP, and the output of performance_prc will additionally include the estimates of the optimism
and the optimism-corrected performance measures. A typical value for B is 100, but in general we
recommend setting B to a value between 50 and 200 (depending on computing time and the desired
level of accuracy, one may also consider larger values of B).
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3.3 User-friendly parallelization

The computation of the CBOCP is by nature repetitive, as it requires to repeat steps 1, 2 and 3 over
B bootstrap samples, and to compute predictions and performance measures both on the bootstrap
sample and on the original dataset to estimate the optimism. Due to this repetitiveness, such compu-
tations can be easily parallelized to reduce computing time. Moreover, also the estimation of the p
LMMs / MLPMMs in step 1 can be trivially parallelized.

With the goal of making it as easy as possible for users to parallelize such computations, the
functions in Table 1 automatically parallelize the aforementioned computations using the %dopar%
operator from the R package foreach (Microsoft and Weston, 2022). The user only needs to specify
the number of cores they want to use for the computation using the argument n.cores; pencal will
automatically take care of the parallelization.

3.4 Classes, methods and further functionalities

Besides the core functions introduced in Table 1, pencal comprises additional functions that are shortly
described hereafter.

Three functions are used to simulate the data that are used in the package documentation to
illustrate typical usage of pencal’s functions. The function simulate_t_weibull is used to generate
survival times from a Weibull distribution using the inverse transformation method. The functions
simulate_prclmm_data and simulate_prcmlpmm_data are used to generate data for the estimation of
PRC LMM and PRC MLPMM, respectively.

S3 classes and methods are implemented for the outputs of each modelling step:

• step 1: fit_lmms and fit_mlpmms return objects of class lmmfit and mplmmfit, respectively. As
the number of longitudinal covariates increases, step 1 of PRC will involve the estimation of
many mixed-effects models: to simplify the extraction of the estimates of each mixed model, we
provide two summary functions, summary.lmmfit and summary.mlpmmfit;

• step 2: summarize_lmms and summarize_mlpmms return objects of class ranefs, for which a
summary.ranefs function is available;

• step 3: fit_prclmm outputs an object of class prclmm, and fit_prcmlpmm one of class prcmlpmm.
For both classes, summary methods (summary.prclmm and summary.mlpmmfit, respectively) are
implemented.

Lastly, it may be sometimes of interest to compare the performance of PRC to that of either a penal-
ized Cox model that only uses baseline values of all covariates, or a penalized Cox model with LOFC
landmarking. The pencox_baseline function provides an interface to estimate these two models and
to compute the associated CBOCP. Its output can be fed to the function performance_pencox_baseline
to obtain the naïve and optimism-corrected estimates of the tdAUC, C index and Brier score for these
two models.

4 Dynamic prediction with pencal: a step by step example

4.1 Loading pbc2data

To illustrate how to use pencal in practice, we employ data from a study from a clinical trial on primary
biliary cholangitis (PBC) conducted by the Mayo Clinic from 1974 to 1984 (Murtaugh et al., 1994).
The trial recorded the first of two survival outcomes, namely liver transplantation or death. In this
example we focus our attention on the prediction of deaths, treating patients who underwent liver
transplantation as right-censored. The data are available in pencal in a list called pbc2data that can be
loaded as follows:

library(pencal)
data(pbc2data)
ls(pbc2data)

#> [1] "baselineInfo" "longitudinalInfo"

pbc2data contains two data frames: baselineInfo records the survival information (ti, δi) and
baseline covariates xi, whereas longitudinalInfo contains repeated measurements of the longitudinal
predictors yi. For simplicity, we rename the two data frames as sdata and ldata:

sdata = pbc2data$baselineInfo
ldata = pbc2data$longitudinalInfo
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4.2 Input data format

As detailed in the Statistical Methods section, estimation of PRC requires the following input data for
each subject i = 1, ..., n:

• a pair (ti, δi) providing the survival outcome for subject i = 1;
• a vector of k baseline covariates xi;
• an mi × p matrix containing all repeated measurements of the p longitudinal predictors. Within

this matrix each column corresponds to a predictor, and each row to the measurements yij
collected at time tij, j ∈ {1, ..., mi} for subject i;

• any longitudinal covariate needed to construct the design matrices Wsi and Zsi that will be used
to estimate the LMMs of equation (2).

Such data should be provided to pencal using two data frames. The first data frame is a data frame
that contains information on the survival outcomes (ti, δi) and the baseline covariates xi. For the PBC2
example, this is the sdata data frame created above:

head(sdata)

#> id time event baselineAge sex treatment
#> 1 1 1.095170 1 58.76684 female D-penicil
#> 3 2 14.152338 0 56.44782 female D-penicil
#> 12 3 2.770781 1 70.07447 male D-penicil
#> 16 4 5.270507 1 54.74209 female D-penicil
#> 23 5 4.120578 0 38.10645 female placebo
#> 29 6 6.853028 1 66.26054 female placebo

This data frame should comprise at least 3 variables: a variable named id that contains subject
identifiers, a variable named time containing the values of ti, and a dummy variable named event
that corresponds to δi (event = 1 for subjects who experience the event at ti, and event = 0 for
right-censored observations). Additionally, it can also contain the baseline covariates xi (if any); in the
example we have k = 3 baseline covariates: baselineAge, sex and treatment.

The second data frame is a dataset in long format that contains the repeated measurements of the
longitudinal predictors yij and of any covariate needed to create the design matrices Wsi and Zsi. In
our example application, such information is stored in ldata:

head(ldata)

#> id age fuptime serBilir serChol albumin alkaline SGOT platelets
#> 1 1 58.76684 0.0000000 14.5 261 2.60 1718 138.0 190
#> 2 1 59.29252 0.5256817 21.3 NA 2.94 1612 6.2 183
#> 3 2 56.44782 0.0000000 1.1 302 4.14 7395 113.5 221
#> 4 2 56.94612 0.4983025 0.8 NA 3.60 2107 139.5 188
#> 5 2 57.44716 0.9993429 1.0 NA 3.55 1711 144.2 161
#> 6 2 58.55054 2.1027270 1.9 NA 3.92 1365 144.2 122
#> prothrombin
#> 1 12.2
#> 2 11.2
#> 3 10.6
#> 4 11.0
#> 5 11.6
#> 6 10.6

This “longitudinal” data frame should contain the following information:

• a variable named id that contains subject identifiers;

• a variable containing the time from baseline tij at which the measurement was collected. In
ldata, we called this variable fuptime (short for: follow-up time). Notice that if the longitudinal
covariates are measured at tij = 0, a row with fuptime = 0 must be included in ldata;

• the p longitudinal predictors (serBilir, serChol, albumin, alkaline, SGOT, platelets and
prothrombin in the example);

• the covariates needed to construct Wsi and Zsi (age in the example).
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4.3 Choice of the landmark time and data preparation

Before proceeding with the estimation of PRC and the computation of the predicted survival prob-
abilities Si(t|tL, xi,Yi(tL)), three preliminary steps are needed. The first involves the choice of the
landmark time tL. Hereafter we choose tL = 2 years, meaning that we want to predict the survival
probability S(t|tL = 2, xi,Yi(2)) for a subject with baseline covariates xi and longitudinal covariates
measured up until two years from baseline Yi(2).

# set the landmark time
lmark = 2

Once tL has been chosen, the second step is to retain for analysis only those subjects that survived
up until the landmark time, i.e. all i : ti ≥ tL:

# remove subjects who had event / were censored before landmark
sdata = subset(sdata, time > lmark)
ldata = subset(ldata, id %in% sdata$id)

Lastly, only repeated measurements taken up to the landmark time (tij ≤ tL) should be retained
for modelling, whereas measurements taken after the landmark time (tij > tL) should be discarded:

# remove measurements taken after landmark:
ldata = subset(ldata, fuptime <= lmark)

4.4 Descriptive statistics, data visualization and transformation

After choosing tL = 2 as landmark time, the number of subjects retained for model estimation is 278,
of which 107 experience the event of interest, whereas the remaining 171 are right-censored:

# number of subjects retained in the analysis:
nrow(sdata)

#> [1] 278

# number of events (1s) and censored observations (0s):
table(sdata$event)

#>
#> 0 1
#> 171 107

The estimated survival probability can be visualized through the Kaplan-Meier estimator in Figure
1 as shown below:

library(survival)
library(survminer)
surv.obj = Surv(time = sdata$time, event = sdata$event)
KM = survfit(surv.obj ~ 1, type = "kaplan-meier")
ggsurvplot(KM, data = sdata, risk.table = TRUE, cumevents = TRUE, legend = 'none')

Spaghetti plots displaying the trajectory described by a longitudinal covariate, as well as density
plots to visualize its marginal distribution, can be created in ggplot2 style using:

library(ggplot2)
library(gridExtra)
traj1 = ggplot(ldata, aes(x = age, y = serBilir, group = id)) +
geom_line(color = 'darkgreen') + theme_classic() + ggtitle('Trajectories of serBilir')

dens1 = ggplot(ldata, aes(x = serBilir)) +
geom_density(adjust=1.5, alpha=.4, fill = 'orange') + theme_classic() +
ggtitle('Density of serBilir')

grid.arrange(traj1, dens1, ncol = 2)

The two charts thus created are shown in Figure 2.

We can observe that some longitudinal covariates exhibit strong skewness, as in the case of
serBilir. Although in principle the LMM can be used to model variables with skewed distributions,
this may sometimes lead to converge problems or poor model fit. It can thus be advisable to transform
such covariates to prevent these problems (but note that this is not a required modelling choice, and
one may alternatively choose to avoid such transformation). For this reason, we log-transform those
longitudinal covariates with skewed distribution before modelling them with LMMs:
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Figure 1: Chart displaying the Kaplan-Meier estimates of the conditional survival probability S(t|2).
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Figure 2: Spaghetti and density charts for the variable serBilir.
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ldata$logSerBilir = log(ldata$serBilir)
ldata$logSerChol = log(ldata$serChol)
ldata$logAlkaline = log(ldata$alkaline)
ldata$logSGOT = log(ldata$SGOT)
ldata$logProthrombin = log(ldata$prothrombin)

4.5 Model estimation

Step 1: estimation of the mixed-effects models

The first step in the estimation of PRC involves modelling the evolution over time of the longitudinal
predictors through mixed-effects models. Hereafter we model each of the longitudinal predictors
using the LMM given in equation (3), which comprises a random intercept and a random slope for
age. Estimation of this model for each longitudinal predictor can be done using the function fit_lmms:

lmms = fit_lmms(y.names = c('logSerBilir', 'logSerChol', 'albumin', 'logAlkaline',
'logSGOT', 'platelets', 'logProthrombin'),

fixefs = ~ age, ranefs = ~ age | id, t.from.base = fuptime,
long.data = ldata, surv.data = sdata, n.boots = 0, n.cores = 8,
verbose = FALSE)

The argument y.names is a character vector used to specify the names of the longitudinal predictors
in ldata. fixefs and ranefs are formulas used to specify the fixed and random effects part of the
LMM using the nlme formula notation (Pinheiro et al., 2022; Gałecki and Burzykowski, 2013). In the
example, fixefs = ~ age determines the inclusion of the fixed effects part βs0 + βs1aij of model (3),
and ranefs = ~ age | id the inclusion of the random effects part usi0 + usi1aij (allowing the random
intercept and random slopes to be correlated).

The arguments long.data and surv.data are used to provide the names of the data frames
containing the longitudinal variables (long.data) and the survival data and baseline covariates
(surv.data) in the data formats described previously. The argument t.from.base is used to specify
the name of the variable in long.data that contains the values of time from baseline; this argument is
used internally to check that the data have been landmarked properly.

The n.boots argument is used to specify the number of bootstrap samples to use for the CBOCP.
For the time being we focus on model estimation and on the prediction of the conditional probabilities,
setting n.boots = 0; later we will show how to compute the CBOCP by setting n.boots = 50. Lastly,
n.cores allows to specify the number of cores to use to parallelize computations (the default is n.cores
= 1, i.e. no parallelization), and verbose is a logical value that indicates whether information messages
should be printed in the console (TRUE, default) or not (FALSE). Additional arguments are described in
the help page, see ?fit_lmms.

The parameter estimates from the mixed models can be obtained from the output of step 1 using
summary. For example, to obtain the parameters of the LMM for albumin we can use:

summary(lmms, yname = 'albumin', what = 'betas')

#> (Intercept) age
#> 3.822741450 -0.005710811

summary(lmms, yname = 'albumin', what = 'variances')

#> id = pdLogChol(age)
#> Variance StdDev Corr
#> (Intercept) 8.864945e-02 0.2977405761 (Intr)
#> age 3.447614e-07 0.0005871639 -0.103
#> Residual 1.257161e-01 0.3545646671

From the output we can deduce that the ML estimates for the LMM involving albumin are
β̂ = (3.823,−0.0057), σ̂u0 = 0.2977, σ̂u1 = 0.00059, and σ̂u0,u1 = −0.103 · 0.2977 · 0.00059. The usual
table with parameter estimates, standard errors and p-values can be obtained with

summary(lmms, yname = 'albumin', what = 'tTable')

#> Value Std.Error DF t-value p-value
#> (Intercept) 3.822741450 0.106163343 566 36.008111 1.614057e-148
#> age -0.005710811 0.002085903 566 -2.737812 6.379534e-03
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Step 2: computation of the predicted random effects

After the ML estimates from the LMM have been computed, the second step of PRC involves the
computation of the predicted random effects ûsi. Such computation can be performed using the
function summarize_lmms:

pred_ranefs = summarize_lmms(object = lmms, n.cores = 8, verbose = FALSE)
summary(pred_ranefs)

#> Number of predicted random effect variables: 14
#> Sample size: 278

Here, the object argument is used to pass the output of fit_lmms to summarize_lmms; n.cores
and verbose are the same as in fit_lmms. The output of summarize_lmms is a list that contains, among
other elements, a matrix with the predicted random effects called ranef.orig, where the row names
display the subject identifiers:

round(pred_ranefs$ranef.orig[1:4, 1:4], 4)

#> logSerBilir_b_int logSerBilir_b_age logSerChol_b_int logSerChol_b_age
#> 2 -0.3830 -0.0017 -0.0712 0.0007
#> 3 -0.1171 -0.0006 -0.5985 0.0049
#> 4 0.1686 0.0009 -0.3704 0.0035
#> 5 0.3800 0.0012 -0.2910 0.0029

From the output we can deduce, for example, that the predicted random intercept and random
slope for logSerBilir and subject 4 are û1,0,4 = 0.1686 and û1,1,4 = 0.0009.

Step 3: estimation of the penalized Cox model

The last step in the estimation of PRC involves the estimation of model (5) through PML. This can be
achieved with the fit_prclmm function:

pencox = fit_prclmm(object = pred_ranefs, surv.data = sdata,
baseline.covs = ~ baselineAge + sex + treatment, penalty = 'ridge',
standardize = TRUE, n.cores = 8, verbose = FALSE)

The object argument is used to pass the output of summarize_lmms to fit_prclmm; surv.data is the
data frame that contains the information about survival data and baseline covariates; baseline.covs is
a formula used to define which baseline covariates xi should be included in model (5) (with associated
regression coefficient γ). The penalty argument is a character that can take one of the following values:

1. penalty = 'ridge' to estimate model (5) using the ridge or L2 penalty within the PML estima-
tion;

2. penalty = 'lasso' to estimate model (5) using the lasso or L1 penalty;
3. penalty = 'elnet' to estimate model (5) using the elasticnet penalty (Zou and Hastie, 2005). If

this penalty is chosen, additional arguments such as n.alpha.elnet and n.folds.elnet can be
specified to determine how to select the additional tuning parameter (α) used by this penalty
through nested cross-validation.

The standardize argument is used to determine whether the predicted random effects should
be standardized prior to inclusion in the Cox model (default is TRUE). By default, fit_prclmm does
not penalize baseline covariates, but this default behaviour can be changed using the argument
pfac.base.covs argument (not shown here).

The n.cores and verbose arguments are the same as in fit_lmms. See ?fit_prclmm for a descrip-
tion of further arguments.

The output of fit_prclmm can be summarized through summary:

summary(pencox)

#> Fitted model: PRC-LMM
#> Penalty function used: ridge
#> Tuning parameters:
#> lambda alpha
#> 1 0.2126761 0
#> Sample size: 278
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#> Number of events: 107
#> Bootstrap optimism correction: not computed
#> Penalized likelihood estimates (rounded to 4 digits):
#> baselineAge sexfemale treatmentD-penicil logSerBilir_b_int logSerBilir_b_age
#> 1 0.0476 -0.2872 -0.0157 0.4341 111.3935
#> logSerChol_b_int logSerChol_b_age albumin_b_int albumin_b_age
#> 1 0.0986 -10.5311 -1.1361 23070.92
#> logAlkaline_b_int logAlkaline_b_age logSGOT_b_int logSGOT_b_age
#> 1 0.0874 -12.5617 0.238 272.246
#> platelets_b_int platelets_b_age logProthrombin_b_int logProthrombin_b_age
#> 1 -0.0011 -0.2046 2.8114 -573.3093

The PML estimates of γ and δ can be obtained through

step3summary = summary(pencox)
ls(step3summary)

#> [1] "coefficients" "data_info" "model_info" "tuning"

step3summary$coefficients

#> baselineAge sexfemale treatmentD-penicil logSerBilir_b_int logSerBilir_b_age
#> 1 0.0475985 -0.287243 -0.01567369 0.4340672 111.3935
#> logSerChol_b_int logSerChol_b_age albumin_b_int albumin_b_age
#> 1 0.0986092 -10.53106 -1.13607 23070.92
#> logAlkaline_b_int logAlkaline_b_age logSGOT_b_int logSGOT_b_age
#> 1 0.08741668 -12.56169 0.2379553 272.246
#> platelets_b_int platelets_b_age logProthrombin_b_int logProthrombin_b_age
#> 1 -0.001122804 -0.2046088 2.811446 -573.3093

4.6 Computing predictions

The function survpred_prclmm can be used to compute the conditional survival probabilities Ŝi(t|tL, xi,Yi(tL)),
t ≥ tL in (7). For the subjects that have been used to estimate PRC, such computation can be performed
using survpred_prclmm as follows:

preds = survpred_prclmm(step1 = lmms, step2 = pred_ranefs, step3 = pencox, times = 3:7)

The step1, step2 and step3 arguments are used to pass the outputs of the 3 estimation steps
to the function; the times argument is a vector with the prediction times at which one wishes to
evaluate the conditional survival probabilities. The predicted survival probabilities are stored in the
predicted_survival element of the function output:

ls(preds)

#> [1] "call" "predicted_survival"

head(preds$predicted_survival)

#> id S(3) S(4) S(5) S(6) S(7)
#> 2 2 0.9398512 0.8867592 0.8329966 0.7813647 0.7008304
#> 3 3 0.8555809 0.7392053 0.6316391 0.5377700 0.4090876
#> 4 4 0.8138498 0.6709525 0.5451302 0.4407852 0.3071611
#> 5 5 0.9460431 0.8981124 0.8492655 0.8020394 0.7277052
#> 6 6 0.9383339 0.8839878 0.8290416 0.7763599 0.6943714
#> 7 7 0.9718724 0.9462254 0.9193945 0.8927316 0.8491681

The function survplot_prc allows to visualize predictions for a sample of individuals:

survplot_prc(step1 = lmms, step2 = pred_ranefs, step3 = pencox,
ids = c(54, 111, 173, 271), tmax = 12)

The ids argument is used to indicate the subjects for whom the curve should be displayed, and
tmax sets the upper limit for the x axis. The chart, displayed in Figure 3, shows the predicted survival
probability Ŝi(t|2) for subjects 54, 111, 173, and 271. Notice that the survival probability up to the 2
year landmark is 1 because our modelling approach conditions on being still at risk at the landmark
time.
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Figure 3: Predicted survival probabilities Ŝi(t|2), t ∈ [2, 12] for subjects i ∈ {54, 111, 173, 271}.

Prediction for new subjects that have not been used for model estimation is a bit more involved, as
it additionally requires to compute the predicted random effects for the new subjects using equation (4)
based on the parameter estimates obtained in the first step of PRC. For illustration purposes, suppose
that we have data from 3 subjects stored in two data frames called new_ldata and new_sdata:

new_ldata = subset(ldata, id %in% c(5, 54, 110))
new_sdata = subset(sdata, id %in% c(5, 54, 110), c('id', 'baselineAge', 'sex', 'treatment'))
head(new_ldata)

#> id age fuptime serBilir serChol albumin alkaline SGOT platelets
#> 23 5 38.10645 0.0000000 3.4 279 3.53 671 113.2 136
#> 24 5 38.65130 0.5448472 1.9 NA 3.28 689 103.9 114
#> 25 5 39.17698 1.0705290 2.5 NA 3.34 652 117.8 99
#> 419 54 39.19888 0.0000000 1.3 288 3.40 5487 73.5 254
#> 420 54 39.69171 0.4928266 1.5 NA 3.22 1580 71.3 112
#> 421 54 40.19001 0.9911291 2.6 NA 3.48 2127 86.8 207
#> prothrombin logSerBilir logSerChol logAlkaline logSGOT logProthrombin
#> 23 10.9 1.2237754 5.631212 6.508769 4.729156 2.388763
#> 24 10.7 0.6418539 NA 6.535241 4.643429 2.370244
#> 25 10.5 0.9162907 NA 6.480045 4.768988 2.351375
#> 419 11.0 0.2623643 5.662960 8.610137 4.297285 2.397895
#> 420 18.0 0.4054651 NA 7.365180 4.266896 2.890372
#> 421 10.9 0.9555114 NA 7.662468 4.463607 2.388763

head(new_sdata)

#> id baselineAge sex treatment
#> 23 5 38.10645 female placebo
#> 419 54 39.19888 female D-penicil
#> 859 110 38.91140 female D-penicil

Note that the variables and their variable type in new_ldata and new_sdata should be the same
as in the ldata and sdata; the only exception to this is that new_sdata does not need to contain
information about survival, so unlike sdata it does not comprise the time and event variables.

To compute predicted probabilities for new subjects, it is once again possible to resort to survpred_prclmm;
now, it is necessary to specify the arguments new.longdata and new.basecovs to supply the data about
the new subjects to survpred_prclmm:

pred_new = survpred_prclmm(step1 = lmms, step2 = pred_ranefs, step3 = pencox, times = 3:7,
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new.longdata = new_ldata, new.basecovs = new_sdata)
pred_new$predicted_survival

#> id S(3) S(4) S(5) S(6) S(7)
#> 5 5 0.9460431 0.8981124 0.8492655 0.8020394 0.7277052
#> 54 54 0.9115188 0.8357020 0.7611779 0.6918065 0.5880763
#> 110 110 0.9505706 0.9064581 0.8612933 0.8174139 0.7478898

4.7 Evaluation of the predictive performance

As explained in the Statistical Methods Section, estimation of the predictive performance in pencal
is done through a CBOCP that allows to obtain unbiased estimates of predictive performance as
measured by the tdAUC, C index and Brier score.

Before computing the (potentially time-consuming) CBOCP, one may want to first have a look
at the naïve (biased) estimates of predictive performance. This can be done using the function
performance_prc:

# naive performance (biased, optimistic estimate)
naive_perf = performance_prc(step2 = pred_ranefs, step3 = pencox, metric = 'tdauc',

times = 3:7, n.cores = 8, verbose = FALSE)

#> Warning in performance_prc(step2 = pred_ranefs, step3 = pencox, metric =
#> "tdauc", : The cluster bootstrap optimism correction has not been performed
#> (n.boots = 0). Therefore, only the apparent values of the performance values
#> will be returned.

Here pred_ranefs is the output of step2 of PRC and pencox the output of step 3. The metric
argument can be used to specify the performance measures to be computed (possible values are tdauc,
c and brier), whereas the times argument is used to specify the time points at which the tdAUC and
Brier score should be evaluated (t = 3, 4, 5, 6, 7 in this example). Notice that when fit_lmms has been
run with n.boots = 0, performance_prc returns a warning to inform users that the CBOCP has not
been performed; for now, we can ignore this warning (which we will address soon by refitting PRC
with n.boots = 50).

naive_perf

#> $call
#> performance_prc(step2 = pred_ranefs, step3 = pencox, metric = "tdauc",
#> times = 3:7, n.cores = 8, verbose = FALSE)
#>
#> $tdAUC
#> pred.time tdAUC.naive optimism.correction tdAUC.adjusted
#> 1 3 0.9439 NA NA
#> 2 4 0.9351 NA NA
#> 3 5 0.9266 NA NA
#> 4 6 0.8981 NA NA
#> 5 7 0.8831 NA NA

From the output we can observe that the naïve estimate of the tdAUC ranges from 0.9439 for
predictions of survival at t = 3 up to 0.8831 for predictions at t = 7. These naïve (in-sample)
measurements of predictive performance may be optimistically biased due to overfitting, i.e., the fact
that they are evaluated using the same data on which PRC was estimated. To correct for this potential
source of bias, below we show how to implement the CBOCP to obtain unbiased estimates of the
tdAUC and C index.

Computation of the CBOCP requires to repeat the 3 estimation steps of PRC for each bootstrap
samples; this can be done by rerunning the functions fit_lmms, summarize_lmms and fit_prclmm with
the same arguments used previously, but setting n.boots within fit_lmms to an integer value larger
than 0. n.boots specifies the number of bootstrap samples to use to compute the CBOCP. In the
example below we set n.boots = 50 (note that larger values of n.boots can increase the accuracy of
the CBOCP estimates, but at the same time they increase computing time).

step1 = fit_lmms(y.names = c('logSerBilir', 'logSerChol', 'albumin', 'logAlkaline',
'logSGOT', 'platelets', 'logProthrombin'),

fixefs = ~ age, ranefs = ~ age | id, t.from.base = fuptime,
long.data = ldata, surv.data = sdata, n.boots = 50, n.cores = 8,
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verbose = FALSE)
step2 = summarize_lmms(object = step1, n.cores = 8, verbose = FALSE)
step3 = fit_prclmm(object = step2, surv.data = sdata,

baseline.covs = ~ baselineAge + sex + treatment,
penalty = 'ridge', n.cores = 8, verbose = FALSE)

Once all computations are finished, it suffices to supply the refitted outputs of step 2 and step 3 to
performance_prc:

# bootstrap-corrected performance (unbiased estimate)
cbocp = performance_prc(step2 = step2, step3 = step3, metric = c('tdauc', 'brier'),

times = 3:7, n.cores = 8, verbose = FALSE)
cbocp

#> $call
#> performance_prc(step2 = step2, step3 = step3, metric = c("tdauc",
#> "brier"), times = 3:7, n.cores = 8, verbose = FALSE)
#>
#> $tdAUC
#> pred.time tdAUC.naive optimism.correction tdAUC.adjusted
#> 1 3 0.9439 -0.0061 0.9378
#> 2 4 0.9351 -0.0150 0.9201
#> 3 5 0.9266 -0.0132 0.9134
#> 4 6 0.8981 -0.0086 0.8895
#> 5 7 0.8831 -0.0118 0.8713
#>
#> $Brier
#> pred.time Brier.naive optimism.correction Brier.adjusted
#> 1 3 0.0571 0.0147 0.0718
#> 2 4 0.0699 0.0271 0.0970
#> 3 5 0.0844 0.0328 0.1172
#> 4 6 0.0953 0.0348 0.1301
#> 5 7 0.1007 0.0416 0.1423

In the outputs above, the columns tdAUC.naive and Brier.naive contain the naïve estimates
of the tdAUC and Brier score; optimism.correction reports the values of the estimated optimism
correction from the CBOCP for the two metrics; finally, tdAUC.adjusted and Brier.adjusted contain
the unbiased estimates of the tdAUC and Brier score.

As expected, the unbiased estimates of predictive performance are somewhat worse than the naïve
ones. For example, the tdAUC estimate for predictions at t = 3 is 0.9378 instead of the naïve estimate
0.9439. Similarly, the Brier score estimate for predictions at t = 3 is 0.0718 instead of the naïve estimate
0.0571.

5 Evaluation of computing time

We now turn our attention to the relationship between the sample size n, number of longitudinal
covariates p and number of bootstrap replicates B on computing time. Furthermore, we look into how
parallel computing may be used to reduce computing time for the CBOCP. To gain insight into these
relationships, we simulate data from the PRC LMM model using the function simulate_prclmm_data
according to four simulation scenarios:

• in simulation 1 we study the effect of n on the estimation of PRC. To this aim, we let n ∈
{100, 200, 400, 600, 800, 1000} and fix p = 10;

• in simulation 2 we study the effect of p on the estimation of PRC by taking p ∈ {5, 10, 20, 30, 40, 50}
and fixing n = 200;

• in simulation 3 we shift our attention to the effect of B on the computing time of the CBOCP. We
let B ∈ {50, 100, 200, 300, 400, 500}, fixing n = 200 and p = 10;

• finally, in simulation 4 we compute PRC and the CBOCP on a dataset where n = 200, p = 50
and B = 50 using an increasing number of cores, namely {1, 2, 3, 4, 8, 16}.

Computations were performed on an AMD EPYC 7662 processor with 2 GHz CPU, using a single
core for simulations 1, 2 and 3, and a number of cores ranging from 1 to 16 in simulation 4. Computing
time was measured using the rbenchmark package (Kusnierczyk, 2012).
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Figure 4: Left and center: average computing time (in seconds) of the estimation of the PRC LMM
model as a function of the sample size n (simulation 1, left) and of the number of longitudinal
predictors p (simulation 2, center). Right: average computing time (in minutes) for the computation of
the CBOCP as a function of B (simulation 3).

The charts in Figure 4 display the average computing time over 10 replications of simulations 1, 2
and 3. In simulation 1, the average computing time increases from 5.80 seconds when n = 100 to 14.01
seconds when n = 1000, so we observe a 2.4-fold increase in computing time as n increases by a factor
of 10. In simulation 2, the average computing time increases from 5.37 seconds when p = 5 to 19.26
seconds when p = 50, yielding a 3.6-fold increase in computing time as p increases by a factor of 10.
Lastly, in simulation 3 the average computing time increases from 3.38 minutes when B = 50 to 32.32
minutes when B = 500, with a 9.6-fold time increase corresponding to a 10-fold increase in B.

Overall, the results of simulations 1 and 2 indicate that computing time for the estimation of PRC
increases linearly with, but less than proportionally to, n and p (meaning that a k-fold increase in n or
p will typically increase computing time by a factor smaller than k). Instead, from simulation 3 we can
observe that the computing time of the CBOCP increases proportionally to B.

The results of simulations 1, 2 and 3 show that whereas the estimation of the PRC model itself
typically requires only a few seconds, the computation of the CBOCP is more intensive and can
require several minutes. This is due to the fact that the CBOCP requires the PRC modelling steps to
be repeated on each bootstrap sample, effectively requiring to compute PRC B + 1 times (once on
the original dataset + B times on the B bootstrap datasets). To reduce the computing time needed to
compute the CBOCP, pencal enables users to easily parallelize computations through the argument
n.cores within fit_lmms, summarize_lmms and fit_prclmm. In simulation 4, we show the effect that
increasing the number of cores has on the computing time of the CBOCP.

Figure 5 shows the average computing time of the CBOCP over 10 replications of simulation 4.
When looking at the total computing time, we can see that increasing the number of cores from 1 to 8
progressively decreases computing time, reducing it from 863.8 seconds without parallelization up to
235.7 seconds when using 8 cores (-68%). The most significant time gains are from 1 to 2 cores (-407.2
seconds) and then from 2 to 3 (-124.4 seconds). Interestingly, further doubling the number of cores
from 8 to 16 proves to be detrimental, increasing computing time from 235.7 to 684.5 seconds.

To understand this initially decreasing, but later increasing pattern, it is useful to consider the
computing time of each of the modelling steps separately. By looking at Figure 5 we notice that step 1,
which involves the estimation of p · (B + 1) LMMs, is the most time-consuming step; its computing
time consistently decreases as the number of cores decreases (from 636.1 to 60.8 seconds).

The same does not apply to step 2, where computing time decreases from 1 to 4 cores (from 192.3
to 93.6 seconds), but then increases considerably when going from 8 (130.4 seconds) to 16 cores (613.2
seconds). This pattern is primarily due to the fact that step 2 mostly involves simple linear algebra:
parallelizing this step on a large number of cores may be detrimental, as the (limited) time gain that
can be achieved by doing these simple computations in parallel may be more than compensated by
the time cost of dispatching the necessary matrices and vectors to many cores and recombining the
results at the end of the parallelization.

As concerns step 3, we can see that it is the lightest step in terms of computing time. The pattern
is consistently decreasing from 1 (35.4 seconds) to 8 cores (8.8 seconds), with a slight increase when
using 16 cores (10.6 seconds).

In conclusion, the results of simulation 4 show how it may be advisable to parallelize computations
to compute the CBOCP, but without using an excessive number of cores (specially for step 2). Our

The R Journal Vol. 16/2, June 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 150

Figure 5: Average computing time (in seconds) for the estimation of the PRC LMM model and the
computation of the CBOCP as a function of the number of cores.

general advice is to use between 3 and 8 cores for optimal performance, nevertheless we emphasize
how the effect of the number of cores on computing time may differ from the patterns in Figure 5
depending on a combination of factors such as n, p, number of repeated measurements per subject,
and B. Furthermore, we notice that within pencal, a different number of cores can be chosen for each
modelling step; in the example of simulation 4, the optimal performance would be achieved using 16
cores for step 1, 4 cores for step 2, and 8 cores for step 3 (but using 8 cores for all 3 steps isn’t much less
efficient).

6 Summary and discussion

The R package pencal provides a user-friendly implementation of Penalized Regression Calibration
(PRC, Signorelli et al. (2021)), a statistical method that can be used to implement dynamic prediction
of time-to-event outcomes in longitudinal studies where both time-independent and longitudinal (i.e.,
time-dependent) covariates are available as possible predictors of survival. The package comprises
functions for the estimation of PRC and the prediction of survival, as well as functions to compute un-
biased estimates of predictive performance through a cluster bootstrap procedure. Because computing
such bootstrap procedure may be time-consuming, the package automatically parallelizes repetitive
computations using the %dopar% operator from the foreach package (Microsoft and Weston, 2022).

pencal focuses on problems where a single survival outcome is measured with right-censoring.
As such, it is not designed to handle interval censoring or competing risks. The modelling of the
longitudinal covariates is performed using either the LMM or the MLPMM, which are linear models
that are mostly suitable for the analysis of continuous outcomes. Implementing generalized linear
mixed models (GLMMs) would make it possible to properly deal with binary and discrete longitudinal
covariates, however the estimation of GLMMs and the computation of the predicted random effects are
more time-consuming and more prone to convergence problems, two aspects that would particularly
complicate the computation of the CBOCP. For this reason we did not pursue GLMMs further, but leave
them as a topic of future research. Users dealing with discrete longitudinal covariates may consider
log-transforming them before modelling with a LMM within pencal (specially if such covariates are
right-skewed and/or exhibit overdispersion). Despite this latter limitation, a recent benchmarking
study showed that PRC outperformed several alternative modelling approaches when applied to
multiple real-world datasets (Signorelli and Retif, 2024).

Two modelling choices deserve particular attention when implementing PRC in specific application
contexts. The first refers to the choice of the covariates to include in the fixed and random effects parts
of the LMM of Equation (2). In principle, one may want to model the response variable as flexibly as
possible, including several fixed effect covariates and multiple random effects in the LMM. However,
when doing this one should consider that the purpose of the LMM is to provide subject-specific
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summaries of the individual trajectories. Thus, the primary goal of the LMM in step 1 is that of obtaining
predicted random effects that are good summaries of how the trajectory of a given subject differs from the
population average. In practice, such purpose may be more easily achieved using a simple mixed model
that allows for a clear interpretation of its random effects, rather than using a complex one where
the interpretation of each random effect may be unclear / complicated. The LMM of equation (3)
(or, alternatively, the same model with follow-up time included as covariate instead of age) is a good
example of simple LMM with clearly interpretable random effects, as the random intercept allows to
distinguish subjects with high and low initial levels of the covariate, and the random slope to identify
subjects with faster and slower progression rates. Therefore, even though fit_lmms makes it possible
to consider complex fixed and random effects formulas, we still advise users to consider simpler mixed
models in step 1 (and to compare the predictive performance of PRC using either approach, eventually
choosing the approach that delivers more accurate predictions if there is a substantial difference).

A second important modelling choice when using pencal is which penalty function should be used
in step 3. In general, this is a modelling choice that may dependent on the specific application and
its features (sample size, number of predictors and number of available repeated measurements per
subject). Signorelli et al. (2021) performed several simulation studies focused on situations with small
sample sizes (n = 100 and n = 300) and sparse data generating processes for the survival outcome,
whose results showed that the ridge and elasticnet penalty yielded better performance than the lasso
penalty. Our experience is that in general the ridge penalty may be preferable both to elasticnet and
the lasso in scenarios with small or moderate sample sizes, where little information is available to
estimate the α tuning parameter of elasticnet or to reliably perform variable selection with the lasso.
Beyond this, it is always possible to use a data-driven approach to choose which penalty to use by
estimating PRC using the 3 different penalties and comparing how this affects predictive performance.

6.1 Software and code availability

The R package pencal can be downloaded from CRAN at cran.r-project.org/package=pencal. The de-
velopment version of the package is available on Github at github.com/mirkosignorelli/pencal_devel.
The code used in the simulations for the evaluation of computing time is available at
github.com/mirkosignorelli/pencal_sims/.
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clarify: Simulation-Based Inference for
Regression Models
by Noah Greifer, Steven Worthington, Stefano Iacus, and Gary King

Abstract Simulation-based inference is an alternative to the delta method for computing the uncertainty
around regression post-estimation (i.e., derived) quantities such as average marginal effects, average
adjusted predictions, and other functions of model parameters. It works by drawing model parameters
from their joint distribution and estimating quantities of interest from each set of simulated values,
which form a simulated “posterior” distribution of the quantity from which confidence intervals can
be computed. clarify provides a simple, unified interface for performing simulation-based inference
for any user-specified derived quantities as well as wrappers for common quantities of interest. clarify
supports a large and growing number of models through its interface with the marginaleffects package
and provides native support for multiply imputed data.

1 Introduction

Although regression models are frequently used in empirical research to study relationships among
variables, often the quantity of substantive interest is not one of the coefficients of the model, but
rather a quantity derived from the coefficients, such as predicted values or average marginal effects.
Quantifying the uncertainty of these derived quantities (i.e., computing standard errors, confidence
intervals, and p-values) requires additional processing. Several methods of doing so exist, including
the delta method, the bootstrap, and simulation-based inference. clarify implements simulation-based
inference, which we describe below along with these other methods.

The delta method involves computing a first-order Taylor series approximation to the variance
of the derived quantity, and standard Wald-based inference relies on computing quantiles based
on the Normal distribution and using them to compute p-values and confidence intervals. clarify
implements an alternative to the delta method — simulation-based inference — which involves
simulating a “posterior” distribution of the derived quantities. Simulation-based inference does not
require understanding Taylor series or the calculus that underlies them, which can make it more
palatable to non-technical audiences and easier to learn for students without necessarily sacrificing
statistical performance (King et al., 2000; Zelner, 2009). Some studies have found that simulation-based
inference performs as well or better than the delta method for computing derived quantities (i.e., with
respect to achieving close to nominal coverage for confidence intervals), especially for complicated
derived quantities and in smaller samples (MacKinnon et al., 2004; Hole, 2007; Herron, 1999). Its
empirical performance has been particularly well-studied in the context of mediation analysis, in
which the quantities of interest are products and ratios of regression coefficients, where it has been
shown to perform well relative to the delta method due to the non-Normality of these quantities
(Tofighi and MacKinnon, 2016; Preacher and Selig, 2012).

The methodology clarify relies on was developed by Krinsky and Robb (1986) and is described in
King et al. (2000) and Herron (1999). Simulation-based inference involves taking draws from a specified
joint distribution of model parameters, computing derived quantities from these draws, and collecting
the derived quantities in a “posterior” distribution, from which uncertainty measures (standard errors
and confidence intervals) can be computed. This method assumes the model parameters are drawn
from a multivariate Normal (or T) distribution with means at the estimated values and covariance
equal to the asymptotic covariance matrix of the estimated values, a standard assumption motivated
by the central limit theorem that underlies usual inference on the original model parameters. Arriving
at the posterior distribution does not require taking any derivatives or making any approximations
beyond those usually used for inference on model parameter estimates, except for the approximation
due to Monte Carlo error induced by sampling from a finite number of simulations (which can always
be reduced by increasing the number of draws at the cost of increased computing time).

The nonparametric bootstrap is another alternative to the delta method for inference that does
not require its analytic approximations (Efron and Tibshirani, 1986); bootstrapping typically involves
re-sampling individuals from the sample, fitting the model in each bootstrap sample, and computing
the quantity of interest from each model. Although bootstrapping tends to work well in practice,
especially for complex and non-Normal estimators, refitting the model repeatedly can be prohibitively
time-consuming and computationally expensive, especially for complicated models or large datasets.
Simulation-based inference only requires the model to be fit once, and the simulations involve taking
draws from a distribution produced from the single set of estimated parameters, making it much
quicker in practice and allowing the user to capitalize on the already valid estimation of the model pa-
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rameters. Methods for computing valid confidence intervals in cases where the quantity of interest has
a complicated distribution are better developed when bootstrapping; however (Efron and Tibshirani,
1986).

More formally, we fit a regression model yi = f (xi; β), such as a linear or other generalized linear
model with model coefficients β. We assume

β̂ ∼ MVN(β, Σβ̂)

where β̂ is the vector of estimates of β and Σβ̂ is their asymptotic covariance matrix. We define a
function τ(β) that represents a quantity of interest derived from the model parameters, and compute its

estimate τ̂(β) as τ(β̂). To perform simulation-based inference, we take M draws β̃(j) for j ∈ (1, . . . , M)
from a multivariate Normal distribution with mean vector µ = β̂ and covariance Σ = Σ̂β̂, where Σ̂β̂ is
an estimate of the asymptotic covariance matrix of the parameter estimates. We use the distribution of

τ̃ = τ(β̃) as the “posterior” distribution of τ̂(β), and compute its variance as

σ̂2
τ̂(β)

=
1

M − 1

M

∑
j=1

(τ̃(j) − ¯̃τ)2

and quantile 100(1 − α)% confidence interval limits as
[
τ̃( α

2 )
, τ̃(1− α

2 )

]
, where τ̃(q) is the qth value of

τ̃ when arranged in ascending order (i.e., the qth quantile of the empirical cumulative distribution func-

tion). Simulation-based Wald-type confidence intervals can be computed as
[

τ(β̂) + σ̂
τ̂(β)

Z α
2
, τ(β̂) + σ̂

τ̂(β)
Z1− α

2

]
,

where Zq is the qth quantile of a standard Normal distribution. The delta method-based Wald-type
confidence intervals use this formula but with the first-order Taylor approximation to the asymptotic
variance: σ̂2

τ̂(β)
= ∇τ(β̂)Σβ̂∇τ′(β̂), where ∇τ(β̂) is the gradient of τ(β) with respect to β evaluated at

β̂.

To compute a p-value for a hypothesis test involving the quantity of interest, i.e., H0 : τ(β) = τ0
with a given null value τ0, we can invert the confidence interval (Thulin, 2021); that is, we find
the largest value of α such that τ0 is within the confidence interval and use that α as the p-value
for the test. For Wald-based inference (either using the simulation-based variance or delta method-
based variance), this is equivalent to performing a standard two-sided Z-test using the test statistic
Z =

(
τ(β̂)− τ0

)
/σ̂

τ̂(β)
. One benefit of using the quantile p-values for inference is that equivalent

tests of the same hypothesis will always yield identical p-values; for example, testing the equality
of two derived quantities will yield the same p-value when comparing the difference between the
quantities against a null hypothesis of 0 and the ratio of the quantities against a null hypothesis of 1,
as each of these hypotheses is true if and only if the other is true.

One would expect simulation-based quantile inference, simulation-based Wald inference, and
delta method-based Wald inference to align when the posterior is Normally distributed around the
estimate, in which case any discrepancies would be due to Monte Carlo error in the simulated values
(and therefore would shrink with increasing draws). However, for low values of α, it may require many
draws for the simulation-based intervals to stabilize; delta method-based intervals are not subject
to this error. There are a few cases in which the results might diverge: in some cases, the first-order
Taylor series approximation to the variance may be poor, though in practice the approximation error is
small and shrinks quickly with increasing sample size. When the posterior distribution is non-Normal
but symmetric around the estimate, the quantile intervals may be more accurate (i.e., in the sense
of achieving closer to nominal coverage) because they do not rely on quantiles from the Normal
distribution (Tofighi and MacKinnon, 2016).

Another potential advantage quantile intervals can have over Wald intervals is that when some
monotonic transformation of the estimate has a symmetric distribution centered around the trans-
formed estimate, the quantile intervals can achieve correct coverage without requiring knowledge
of which transformation is required (Efron and Tibshirani, 1986); this is true of the quantile-based
p-values as well. When the distribution is not centered around the estimate and no monotonic trans-
formation will make it so, though, neither quantile-based nor Wald-based intervals would be expected
to perform well, and quantile intervals could yield even worse coverage than Wald-based intervals, a
phenomenon that occurs in the context of bootstrapping (Efron and Tibshirani, 1986)1. An informal
falsification test for whether such a monotonic transformation exists is whether the median of the

1We thank an anonymous reviewer for pointing out a scenario in which this could occur: for a quantity of
interest with a right-skewed sampling distribution, one would prefer an estimate to the right of the quantity’s
true value to have a confidence interval skewed to the left to capture the bulk of the sampling distribution, but in
practice, a quantile confidence interval would also be skewed to the right. While a symmetric Wald-based interval
may not have adequate coverage, the quantile-based interval could perform even worse.
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simulated estimates is aligned with the point estimate; if it is not, there is no monotonic transformation
that will yield a symmetric quantile interval with the desired coverage.

2 Related Software

Similar functionality exists in the CLARIFY package in Stata2 (Tomz et al., 2003) and used to be avail-
able in the Zelig R package (Imai et al., 2008), though there are differences in these implementations.
clarify provides additional flexibility by allowing the user to request any derived quantity, in addition
to providing shortcuts for common quantities, including predictions at representative values, average
marginal effects, and average dose-response functions (described below). clarify relies on and can
be seen as a companion to the marginaleffects package (Arel-Bundock et al., Forthcoming), which
offers similar functionality but primarily uses the delta method for calculating uncertainty (though
simulation-based inference is supported in a more limited capacity as well).

3 Using clarify

There are four steps to using clarify:

1. Fit the model to the data using modeling functions in supported packages.

2. Use sim() to take draws from the multivariate distribution of the estimated model coefficients.

3. Use sim_apply() or its wrappers sim_setx(), sim_ame(), and sim_adrf() to compute derived
quantities using each simulated set of coefficients.

4. Use summary() and plot() to summarize and visualize the distribution of the derived quantities
and perform inference on them.

In the sections below, we will describe how to implement these steps in detail. First, we will load
clarify using library().

library(clarify)

For a running example, we will use the lalonde dataset in the MatchIt package (Ho et al., 2011),
which contains data on 614 participants enrolled in a job training program or sampled from a survey
(Dehejia and Wahba, 1999). The treatment variable is treat, and the outcome is re78, and all other
variables are confounders. Although the original use of this dataset was to estimate the effect of treat
on re78, we will use it more generally to demonstrate all of clarify’s capabilities. In addition, we will
use a transformation of the outcome variable to demonstrate applications to nonlinear models, for
which the benefits of simulation-based inference are more apparent.

data("lalonde", package = "MatchIt")

# Create a binary outcome variable
lalonde$re78_0 <- ifelse(lalonde$re78 > 0, 1, 0)

head(lalonde)

#> treat age educ race married nodegree re74 re75 re78 re78_0
#> NSW1 1 37 11 black 1 1 0 0 9930.0460 1
#> NSW2 1 22 9 hispan 0 1 0 0 3595.8940 1
#> NSW3 1 30 12 black 0 0 0 0 24909.4500 1
#> NSW4 1 27 11 black 0 1 0 0 7506.1460 1
#> NSW5 1 33 8 black 0 1 0 0 289.7899 1
#> NSW6 1 22 9 black 0 1 0 0 4056.4940 1

2Despite the similar name, the R package clarify and the Stata package CLARIFY differ in several ways, one
of which is that the estimates reported by clarify in R are those computed using the original model coefficients,
whereas those reported by CLARIFY in Stata are those computed as the average of the simulated distribution. The
R implementation avoids the “simulation-induced bias” described by Rainey (2023).
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3.1 1. Fitting the model

The first step is to fit the model. clarify can operate on a large set of models (those supported by
marginaleffects), including generalized linear models, multinomial models, multivariate models, and
instrumental variable models, many of which are available in other R packages. Even if clarify does
not offer direct support for a given model, there are ways to use its functionality regardless (explained
in more detail below).

Because we are computing derived quantities, it is not critical to parameterize the model in such
a way that the coefficients are interpretable, e.g., by using a model with interpretable coefficients or
centering predictors. Below, we will fit a probit regression model for the outcome given the treatment
and confounders. Coefficients in probit regression do not have a straightforward interpretation, but
that does not matter; our quantities of interest can be expressed as derived quantities—functions of
the model parameters, such as predictions, counterfactual predictions, and averages and contrasts of
them.

fit <- glm(re78_0 ~ treat * married + age + educ + race +
nodegree + re74 + re75, data = lalonde,

family = binomial("probit"))

3.2 2. Drawing from the coefficient distribution

After fitting the model, we will use sim() to draw coefficients from their sampling distribution. The
sampling distribution is assumed to be multivariate Normal or multivariate T with appropriate degrees
of freedom, with a mean vector equal to the estimated coefficients and a covariance matrix equal to
the asymptotic covariance matrix extracted from the model. The arguments to sim() are listed below:

sim(fit = , n = , vcov = , coefs = , dist = )

• fit – the fitted model object, the output of the call to the fitting function (e.g., glm())

• n – the number of simulated values to draw; by default, 1000. More values will yield more
replicable and precise results at the cost of speed.

• vcov – either the covariance matrix of the estimated coefficients, a function used to extract it from
the model (e.g., sandwich::vcovHC() for the robust covariance matrix), or a string or formula giv-
ing a code for extracting the covariance matrix, which is passed to marginaleffects::get_vcov().
If left unspecified, the default covariance matrix will be extracted from the model.

• coefs – either a vector of coefficients to be sampled or a function to extract them from the fitted
model. If left unspecified, the default coefficients will be extracted from the model. Typically
this does not need to be specified.

• dist – the name of the distribution from which to draw the sampled coefficients. Can be
"normal" for a Normal distribution or t(#) for a T-distribution, where # represents the degrees
of freedom. If left unspecified, sim() will decide on which distribution makes sense given the
characteristics of the model (the decision is made by insight::get_df() with type = "wald").
Typically this does not need to be specified.

If one’s model is not supported by clarify, one can omit the fit argument and just specify the vcov
and coefs arguments, which will draw the coefficients from the distribution named in dist ("normal"
by default).

sim() uses a random number generator to draw the sampled coefficients from the sampling
distribution, so a seed should be set using set.seed() to ensure results are replicable across sessions.
Using more iterations (i.e., increasing n) yields results that will be more stable across runs even when
a seed is not set.

The output of the call to sim() is a clarify_sim object, which contains the sampled coefficients,
the original model fit object if supplied, and the coefficients and covariance matrix used to sample.

set.seed(1234)

# Drawing 1000 simulated coefficients using an HC2 robust
# covariance matrix
s <- sim(fit, n = 1000,

vcov = "HC2")

s
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#> A `clarify_sim` object
#> - 11 coefficients, 1000 simulated values
#> - sampled distribution: multivariate normal
#> - original fitting function call:
#>
#> glm(formula = re78_0 ~ treat * married + age + educ + race +
#> nodegree + re74 + re75, family = binomial("probit"), data = lalonde)

3.3 3. Computing derived quantities

After sampling the coefficients, one can compute derived quantities on each set of sampled coefficients
and store the result, which represents the “posterior” distribution of the derived quantity, as well as
on the original coefficients, which are used as the final estimates. The core functionality is provided by
sim_apply(), which accepts a clarify_sim object from sim() and a function to compute and return
one or more derived quantities, then applies that function to each set of simulated coefficients. The
arguments to sim_apply() are below:

sim_apply(sim = , FUN = , verbose = , cl = , ...)

• sim – a clarify_sim object; the output of a call to sim().

• FUN – a function that takes in either a model fit object or a vector of coefficients and returns one
or more derived quantities. The first argument should be named fit to take in a model fit object
or coefs to take in coefficients.

• verbose – whether to display a progress bar.

• cl – an argument that controls parallel processing, which can be the number of cores to use or a
cluster object resulting from parallel::makeCluster().

• ... – further arguments to FUN.

The FUN argument can be specified in one of two ways: either as a function that takes in a model fit
object (e.g., a glm or lm object, the output of a call to glm() or lm()) or a function that takes in a vector
of coefficients. The latter will always work but the former only works for supported models. When
the function takes in a model fit object, sim_apply() will first insert each set of sampled coefficients
into the model fit object and then supply the modified model to FUN.

For example, we will let our derived quantity of interest be the predicted probability of the outcome
for participant PSID1. We specify our FUN function as follows:

sim_fun1 <- function(fit) {
predict(fit, newdata = lalonde["PSID1",], type = "response")

}

The fit object supplied to this function will be one in which the coefficients have been set to their
values in a draw from their sampling distribution as generated by sim(). We then supply the function
to sim_apply() to simulate the sampling distribution of the predicted value of interest:

est1 <- sim_apply(s, FUN = sim_fun1, verbose = FALSE)

est1

#> A `clarify_est` object (from `sim_apply()`)
#> - 1000 simulated values
#> - 1 quantity estimated:
#> PSID1 0.9757211

The resulting clarify_est object contains the simulated estimates in matrix form as well as the
estimate computed on the original coefficients. We will examine the posterior distribution shortly, but
first we will demonstrate computing a derived quantity from the coefficients directly.

The race variable is a factor, and the black category is used as the reference level, so it is not
immediately clear whether there is a difference between the coefficients racehispan and racewhite,
which represent the non-reference categories hispan and white. To compare these two directly, we can
use sim_apply() to compute a derived quantity that corresponds to the difference between them.
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sim_fun2 <- function(coefs) {
hispan <- unname(coefs["racehispan"])
white <- unname(coefs["racewhite"])

c("w - h" = white - hispan)
}

est2 <- sim_apply(s, FUN = sim_fun2, verbose = FALSE)

est2

#> A `clarify_est` object (from `sim_apply()`)
#> - 1000 simulated values
#> - 1 quantity estimated:
#> w - h -0.09955915

The function supplied to FUN can be arbitrarily complicated and return as many derived quantities
as one wants, though the slower each run of FUN is, the longer it will take to simulate the derived
quantities. Using parallel processing by supplying an argument to cl can sometimes dramatically
speed up evaluation.

There are several functions in clarify that serve as convenience wrappers for sim_apply() to
automate some common derived quantities of interest. These include:

• sim_setx() – computing predicted values and first differences at representative or user-specified
values of the predictors

• sim_ame() – computing average adjusted predictions, contrasts of average adjusted predictions,
and average marginal effects

• sim_adrf() – computing average dose-response functions and average marginal effects func-
tions

These are described in their own sections below. In addition, there are functions that have methods
for clarify_est objects, including cbind() for combining two clarify_est objects together and
transform() for computing quantities that are derived from the already-computed derived quantities.
These are also described in their own sections below.

3.4 4. Summarize and visualize the simulated distribution

To examine the uncertainty around and perform inference on our estimated quantities, we can use
plot() and summary() on the clarify_est object.

plot() displays a density plot of the resulting estimates across the simulations, with markers
identifying the point estimate (computed using the original model coefficients as recommended by
Rainey (2023)) and, optionally, uncertainty bounds (which function like confidence or credible interval
bounds). The arguments to plot() are below:

plot(x = , parm = , ci = , level = , method = , reference =)

• x – the clarify_est object (the output of a call to sim_apply()).
• parm – the names or indices of the quantities to be plotted if more than one was estimated in

sim_apply(); if unspecified, all will be plotted.
• ci – whether to display lines at the uncertainty bounds. The default is TRUE to display them.
• level – if ci is TRUE, the desired two-sided confidence level. The default is .95 so that the bounds

are at the .025 and .975 quantiles when method (see below) is "quantile".
• method – if ci is TRUE, the method used to compute the bounds. Allowable methods include the

Normal approximation ("wald") or using the quantiles of the resulting distribution ("quantile").
The Normal approximation involves multiplying the standard deviation of the estimates (i.e.,
which functions like the standard error of the sampling distribution) by the critical Z-statistic
computed using (1-level)/2 to create a symmetric margin of error around the point estimate.
The default is "quantile" to instead use quantile-based bounds.

• reference – whether to display a normal density over the plot for each estimate and an indicator
line for the median of the estimate. The default is FALSE to omit them.

Below, we plot the first estimate we computed above, the predicted probability for participant
PSID1:
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plot(est1, reference = TRUE, ci = FALSE)
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Overlaid on the plot in red is a Normal distribution with the same mean and standard deviation
as the simulated values; this is requested by setting reference = TRUE. From the plot, one can see
that the distribution of simulated values is non-Normal, asymmetrical, and not centered around the
estimate, with no values falling above 1 because the outcome is a predicted probability. Given its
non-Normality, the quantile-based bounds may be more appropriate than those resulting from the
Normal approximation, as the bounds computed from the Normal approximation would be outside
the bounds of the estimate. The blue reference line for the median of the estimates is close to the point
estimate, suggesting it is possible for a monotonic transformation to have a symmetric distribution
around the estimate3. The plot itself is a ggplot object that can be modified using ggplot2 syntax.

We can use summary() to display the value of the point estimate, the uncertainty bounds, and other
statistics that describe the distribution of estimates. The arguments to summary() are below:

summary(object = , parm = , level = , method = , null = )

• object – the clarify_est object (the output of a call to sim_apply()).
• parm – the names or indices of the quantities to be displayed if more than one was estimated in

sim_apply(); if unspecified, all will be displayed.
• level – the desired two-sided confidence level. The default is .95 so that the bounds are at the

.025 and .975 quantiles when method (see below) is "quantile".
• method – the method used to compute the uncertainty bounds. Allowable methods include a

Normal approximation ("wald") or using the quantiles of the resulting distribution ("quantile").
See plot() above.

• null – an optional argument specifying the desired null value in a hypothesis test for the
estimates. If specified, a p-value will be computed using either a standard Z-test (if method
is "wald") or an inversion of the uncertainty interval (described below). The default is not to
display any p-values.

We can use summary() with the default arguments on our first clarify_est object to view the
point estimate and quantile-based uncertainty bounds.

summary(est1)

#> Estimate 2.5 % 97.5 %
#> PSID1 0.976 0.890 0.996

Our second estimated quantity, the difference between two regression coefficients, is closer to
Normally distributed, as the plot below demonstrates (and would be expected theoretically), so we
will use the Normal approximation to test the hypothesis that the difference differs from 0.

plot(est2, reference = TRUE, ci = FALSE)

3In fact, we know the inverse link function for the model (i.e., the Normal distribution function qnorm()) is such
a transformation in this case; marginaleffects and other packages that implement the delta method for confidence
intervals around model predictions typically automatically compute confidence intervals on the transformed
predictions before transforming the intervals back using the model’s link function. As long as such a transformation
exists, the quantile intervals will be as valid as those that rely on transforming and back-transforming.
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summary(est2, method = "wald", null = 0)

#> Estimate 2.5 % 97.5 % Std. Error Z value P-value
#> w - h -0.0996 -0.5352 0.3361 0.2223 -0.45 0.65

The uncertainty intervals and p-values in the summary() output are computed using the Normal
approximation because we set method = "wald", and the p-value for the test that our estimate is equal
to 0 is returned because we set null = 0. Note that the Normal approximation should be used only
when the simulated posterior distribution is both close to Normal and centered around the estimate
(i.e., when the mean of the simulated values [red vertical line] coincides with the estimate computed
on the original coefficients [black vertical line]). In such cases, however, the delta method will likely
perform as well, if not better, and all of its other benefits apply (i.e., it is computationally quicker and
not subject to Monte Carlo error).

4 sim_apply() Wrappers: sim_setx(), sim_ame(), sim_adrf()

sim_apply() can be used to compute the simulated posterior distribution for an arbitrary derived
quantity of interest, but there are some quantities that are common in applied research and may
otherwise be somewhat challenging to program by hand, so clarify provides shortcut functions
to make computing these quantities simple. These functions include sim_setx(), sim_ame(), and
sim_adrf(). Each of these can be used only when regression models compatible with clarify are
supplied to the original call to sim().

Like sim_apply(), each of these functions is named sim_*(), which signifies that they are to be
used on an object produced by sim() (i.e., a clarify_sim object). (Multiple calls to these functions
can be applied to the same clarify_sim object and combined; see the cbind() section below.) These
functions are described below.

4.1 sim_setx(): predictions at representative values

sim_setx() provides an interface to compute predictions at representative and user-supplied values
of the predictors. For example, we might want to know what the effect of treatment is for a “typical”
individual, which corresponds to the contrast between two model-based predictions (i.e., one under
treatment and one under control for a unit with “typical” covariate values). This functionality mirrors
the setx() and setx1() functionality of Zelig (which is where its name originates) and provides
similar functionality to functions in modelbased, emmeans, effects, and ggeffects.

For each predictor, the user can specify whether they want predictions at specific values or at “typ-
ical” values, which are defined in clarify as the mode for unordered categorical and binary variables,
the median for ordered categorical variables, and the mean for continuous variables. Predictions for
multiple predictor combinations can be requested by specifying values that will be used to create a
grid of predictor values, or the grid itself can be supplied as a data frame of desired predictor profiles.
In addition, the “first difference,” defined here as the difference between predictions for two predictor
combinations, can be computed.

The arguments to sim_setx() are as follows:

sim_setx(sim = , x = , x1 = , outcome = , type = , verbose = , cl = )

• sim – a clarify_sim object; the output of a call to sim().
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• x – a named list containing the requested values of the predictors, e.g., list(v1 = 1:4, v2 =
"A"), or a data frame containing the desired profiles. Any predictors not included will be set at
their “typical” value as defined above.

• x1 – an optional named list or data frame similar to x except with the value of one predictor
changed. When specified, the first difference is computed between the covariate combination
defined in x (and only one combination is allowed when x1 is specified) and the covariate
combination defined in x1.

• outcome – a string containing the name of the outcome of interest when a multivariate (multiple
outcome) model is supplied to sim() or the outcome category of interest when a multinomial
model is supplied to sim(). For univariate (single outcome) and binary outcomes, this is
ignored.

• type – a string containing the type of predicted value to return. In most cases, this can be left
unspecified to request predictions on the scale of the outcome.

• verbose – whether to display a progress bar.

• cl – an argument that controls parallel processing, which can be the number of cores to use or a
cluster object resulting from parallel::makeCluster().

Here, we will use sim_setx() to examine predicted values of the outcome for control and treated
units, at re75 set to 0 and 20000, and race set to “black”.

est3 <- sim_setx(s,
x = list(treat = 0:1,

re75 = c(0, 20000),
race = "black"),

verbose = FALSE)

When we use summary() on the resulting output, we can see the estimates and their uncertainty
intervals (calculated using quantiles by default).

summary(est3)

#> Estimate 2.5 % 97.5 %
#> treat = 0, re75 = 0 0.667 0.558 0.772
#> treat = 1, re75 = 0 0.712 0.617 0.790
#> treat = 0, re75 = 20000 0.938 0.700 0.994
#> treat = 1, re75 = 20000 0.953 0.747 0.996

To see the complete grid of the predictor values used in the predictions, which helps to identify
the “typical” values of the other predictors, we can access the "setx" attribute of the object:

attr(est3, "setx")

#> treat married age educ race nodegree re74
#> treat = 0, re75 = 0 0 0 27.36319 10.26873 black 1 4557.547
#> treat = 1, re75 = 0 1 0 27.36319 10.26873 black 1 4557.547
#> treat = 0, re75 = 20000 0 0 27.36319 10.26873 black 1 4557.547
#> treat = 1, re75 = 20000 1 0 27.36319 10.26873 black 1 4557.547
#> re75
#> treat = 0, re75 = 0 0
#> treat = 1, re75 = 0 0
#> treat = 0, re75 = 20000 20000
#> treat = 1, re75 = 20000 20000

We can plot the distributions of the simulated values using plot(), which also separates the
predictions by the predictor values (it is often clearer without the uncertainty bounds). The var
argument controls which variable is used for faceting the plots.

plot(est3, var = "re75", ci = FALSE)
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One can see again how a delta method or Normal approximation may have yielded uncertainty
intervals outside the plausible range of the estimate without applying knowledge of the correct
transformation to avoid doing so.

If a continuous variable with many levels is included in the grid of the predictors, something like a
dose-response function for a typical unit can be generated. Below, we set re75 to vary from 0 to 20000
in steps of 2000.

est4 <- sim_setx(s,
x = list(treat = 0:1,

re75 = seq(0, 20000, by = 2000),
race = "black"),

verbose = FALSE)

When we plot the output, we can see how the predictions vary across the levels of re75:

plot(est4)

0.6

0.7

0.8

0.9

1.0

0 5000 10000 15000 20000
re75

E
[Y

|r
e7

5]

treat = 0

treat = 1

We will return to display average dose-response functions using sim_adrf() later.

Finally, we can use sim_setx() to compute first differences, the contrast between two covariate
combinations. We supply one covariate profile to x and another to x1, and sim_setx() simulates the
two predicted values and their difference. Below, we simulate the first difference for a treated and
control unit who has re75 of 0 and typical values of all other covariates:

est5 <- sim_setx(s,
x = list(treat = 0, re75 = 0),
x1 = list(treat = 1, re75 = 0),
verbose = FALSE)

When we use summary(), we see the estimates for the predicted values and their first difference
(“FD”):

summary(est5)
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#> Estimate 2.5 % 97.5 %
#> treat = 0 0.7856 0.7039 0.8558
#> treat = 1 0.8213 0.7111 0.8995
#> FD 0.0357 -0.0598 0.1188

It is possible to compute first differences without using x1 by using transform(), which we
describe later.

4.2 sim_ame(): average adjusted predictions and average marginal effects

Using predicted values and effects at representative values is one way to summarize regression models,
but another way is to compute average adjusted predictions (AAPs), contrasts of AAPs, and average
marginal effects (AMEs). The definitions for these terms may vary and the names for these concepts
differ across sources, but here we define AAPs as the average of the predicted values for all units after
setting one predictor to a chosen value, and we define AMEs for binary predictors as the contrast of
two AAPs and for continuous predictors as the average of the instantaneous rate of change in the AAP
corresponding to a small change in the predictor from its observed values across all units4 (Long and
Freese, 2014).

The arguments to sim_ame() are as follows:

sim_ame(sim = , var = , subset = , by = , contrast = , outcome = ,
type = , eps = , verbose = , cl = )

• sim – a clarify_sim object; the output of a call to sim().

• var – the name of the focal variable over which to compute the AAPs or AMEs, or a list
containing the values for which AAPs should be computed.

• subset – a logical vector, evaluated in the original dataset used to fit the model, defining a
subset of units for which the AAPs or AMEs are to be computed.

• by – the name of one or more variables for which AAPs should be computed within subgroups.
Can be supplied as a character vector of variable names or a one-sided formula.

• contrast – the name of an effect measure used to contrast AAPs. For continuous outcomes,
"diff" requests the difference in means, but others are available for binary outcomes, including
"rr" for the risk ratio, "or" for the odds ratio, and "nnt" for the number needed to treat, among
others. If not specified, only AAPs will be computed if the variable named in var is categorical
or specific values of the focal variable are specified in var. Ignored when the variable named
in var is continuous and no specific values are specified because the AME is the only quantity
computed. When var names a multi-category categorical variable, contrast cannot be used;
see the section describing transform() for computing contrasts with them.

• outcome – a string containing the name of the outcome of interest when a multivariate (multiple
outcome) model is supplied to sim() or the outcome category of interest when a multinomial
model is supplied to sim(). For univariate (single outcome) and binary outcomes, this is
ignored.

• type – a string containing the type of predicted value to return. In most cases, this can be left
unspecified to request predictions on the scale of the outcome (e.g., probabilities for binary
outcomes).

• eps – the value by which the observed values of the variable named in var are changed when it
is continuous to compute the AME. This usually does not need to be specified.

• verbose – whether to display a progress bar.

• cl – an argument that controls parallel processing, which can be the number of cores to use or a
cluster object resulting from parallel::makeCluster().

Here, we will use sim_ame() to compute the AME of treat just among those who were treated
(in causal inference, this is known as the average treatment effect in the treated, or ATT (Greifer and
Stuart, 2023)). We will request our estimate to be on the risk ratio scale.

4In marginaleffects, AAPs are computed using avg_predictions(), AMEs for binary variables are computed
using avg_comparisons(), and AMEs for continuous variables are computed using avg_slopes(). AAPs are
sometimes known as average “counterfactual” predictions.
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est6 <- sim_ame(s,
var = "treat",
subset = treat == 1,
contrast = "rr",
verbose = FALSE)

We can use summary() to display the estimates and their uncertainty intervals. Here, we will also
use null to include a test for the null hypothesis that the risk ratio is equal to 1.

summary(est6, null = c(`RR` = 1))

#> Estimate 2.5 % 97.5 % P-value
#> E[Y(0)] 0.687 0.608 0.760 .
#> E[Y(1)] 0.755 0.685 0.809 .
#> RR 1.100 0.949 1.255 0.21

Here we see the estimates for the AAPs, E[Y(0)] for the expected value of the outcome setting
treat to 0 and E[Y(1)] for the expected value of the outcome setting treat to 1, and the risk ratio RR.
The p-value on the test for the risk ratio aligns with the uncertainty interval containing 1.

If we instead wanted the risk difference or odds ratio, we would not have to re-compute the AAPs.
Instead, we can use transform() to compute a new derived quantity from the computed AAPs. The
section on transform() demonstrates this.

We can compute the AME for a continuous predictor. Here, we will consider age (just for demon-
stration; this analysis does not have a valid interpretation).

est7 <- sim_ame(s,
var = "age",
verbose = FALSE)

We can use summary() to display the AME estimate and its uncertainty interval.

summary(est7)

#> Estimate 2.5 % 97.5 %
#> E[dY/d(age)] -0.00605 -0.00940 -0.00259

The AME is named E[dY/d(age)], which signifies that a derivative has been computed (more
precisely, the average of the unit-specific derivatives). This estimate can be interpreted like a slope in a
linear regression model, but as a single summary of the effect of a predictor it is often too coarse to
capture nonlinear relationships. The section below explains how to compute average dose-response
functions for continuous predictors, which provide a more complete picture of their effects on an
outcome.

Below, we will examine effect modification of the ATT by the predictor married using the by
argument to estimate AAPs and their ratio within levels of married:

est6b <- sim_ame(s,
var = "treat",
subset = treat == 1,
by = ~married,
contrast = "rr",
verbose = FALSE)

summary(est6b)

#> Estimate 2.5 % 97.5 %
#> E[Y(0)|0] 0.691 0.612 0.768
#> E[Y(1)|0] 0.733 0.655 0.796
#> RR[0] 1.061 0.909 1.234
#> E[Y(0)|1] 0.668 0.556 0.769
#> E[Y(1)|1] 0.848 0.676 0.940
#> RR[1] 1.270 0.948 1.583

The presence of effect modification can be tested by testing the contrast between the effects
computed within each level of the by variable; this is demonstrated in the section on transform()
below.
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4.3 sim_adrf(): average dose-response functions

A dose-response function for an individual is the relationship between the set value of a continuous
focal predictor and the expected outcome. The average dose-response function (ADRF) is the average
of the dose-response functions across all units. Essentially, it is a function that relates the value of the
predictor to the corresponding AAP of the outcome, the average value of the outcome were all units to
be set to that level of the predictor. ADRFs can be used to provide additional detail about the effect of
a continuous predictor beyond a single AME.

A related quantity is the average marginal effect function (AMEF), which describes the relationship
between a continuous focal predictor and the AME at that level of the predictor. That is, rather than
describing how the outcome changes as a function of the predictor, it describes how the effect of the
predictor on the outcome changes as a function of the predictor. It is essentially the derivative of the
ADRF and can be used to identify at which points along the ADRF the predictor has an effect.

The ADRF and AMEF can be computed using sim_adrf(). The arguments are below:

sim_adrf(sim = , var = , subset = , by = , contrast = , at = ,
n = , outcome = , type = , eps = , verbose = , cl = )

• sim – a clarify_sim object; the output of a call to sim().
• var – the name of the focal variable over which to compute the ADRF or AMEF.
• subset – a logical vector, evaluated in the original dataset used to fit the model, defining a

subset of units for which the ARDF or AMEF is to be computed.
• by – the name of one or more variables for which the ADRF or AMEF should be computed

within subgroups. Can be supplied as a character vector of variable names or a one-sided
formula.

• contrast – either "adrf" or "amef" to request the ADRF or AMEF, respectively. The default is
to compute the ADRF.

• at – the values of the focal predictor at which to compute the ADRF or AMEF. This should be
a vector of values that the focal predictor can take on. If unspecified, a vector of n (see below)
equally spaced values from the minimum to the maximum value of the predictor will be used.
This should typically be used only if quantities are desired over a subset of the values of the
focal predictor.

• n – if at is unspecified, the number of points along the range of the focal predictor at which to
compute the ADRF or AMEF. More yields smoother functions, but will take longer and require
more memory. The default is 21.

• outcome – a string containing the name of the outcome of interest when a multivariate (multiple
outcome) model is supplied to sim() or the outcome category of interest when a multinomial
model is supplied to sim(). For univariate (single outcome) and binary outcomes, this is
ignored.

• type – a string containing the type of predicted value to return. In most cases, this can be left
unspecified to request predictions on the scale of the outcome.

• eps – the value by which the observed values of the variable named in var are changed when it
is continuous to compute the AMEF. This usually does not need to be specified.

• verbose – whether to display a progress bar.
• cl – an argument that controls parallel processing, which can be the number of cores to use or a

cluster object resulting from parallel::makeCluster().

Here, we will consider age (just for demonstration; this analysis does not have a valid interpreta-
tion) and compute the ADRF and AMEF of age on the outcome. We will only examine ages between
18 and 50, even though the range of age goes slightly beyond these values. First, we will compute the
ADRF of age, which examines how the outcome would vary on average if one set all units’ values of
age to each value between 18 and 50 (here we only use even ages to speed up computation).

age_seq <- seq(18, 50, by = 2)

est8 <- sim_adrf(s,
var = "age",
contrast = "adrf",
at = age_seq,
verbose = FALSE)

We can plot the ADRF using plot().

plot(est8)
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From the plot, we can see that as age increases, the expected outcome decreases.

We can also examine the AAPs at the requested ages using summary(), which will display all the
estimated AAPs by default, so we will request just the first 4 (ages 18 to 24):

summary(est8, parm = 1:4)

#> Estimate 2.5 % 97.5 %
#> E[Y(18)] 0.821 0.771 0.858
#> E[Y(20)] 0.811 0.764 0.845
#> E[Y(22)] 0.800 0.757 0.832
#> E[Y(24)] 0.788 0.749 0.817

Next, we will compute the AMEF, the effect of age at each level of age.

est9 <- sim_adrf(s,
var = "age",
contrast = "amef",
at = age_seq,
verbose = FALSE)

We can plot the AMEF using plot():

plot(est9)
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From the plot, we can see the AME of age decreases slightly but is mostly constant across values
of age, and the uncertainty intervals for the AMEs consistently exclude 0.

5 Transforming and Combining Estimates

Often, our quantities of interest are not just the outputs of the functions above, but comparisons
between them. For example, to test for moderation of a treatment effect, we may want to compare
AMEs in multiple groups defined by the moderator. Or, it might be that we are interested in an
effect described using a different effect measure than the one originally produced; for example, we
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may decide we want the risk difference AME after computing the risk ratio AME. The functions
transform() and cbind() allow users to transform quantities in a single clarify_est object and
combine two clarify_est objects. These are essential for computing quantities that themselves are
derived from the derived quantities computed by the sim_*() functions.

5.1 transform()

transform() is a generic function in R that is typically used to create a new variable in a data frame
that is a function of other columns. For example, to compute the binary outcome we used in our
model, we could have run the following5:

lalonde <- transform(lalonde,
re78_0 = ifelse(re78 == 0, 1, 0))

Similarly, to compute a derived or transformed quantity from a clarify_est object, we can use
transform(). Here, we will compute the risk difference AME of treat; previously, we used sim_ame()
to compute the AAPs and the risk ratio.

est6 <- transform(est6,
RD = `E[Y(1)]` - `E[Y(0)]`)

Note that we used tics (`) around the names of the AAPs; this is necessary when they contain
special characters like parentheses or brackets. An alternative is to use the shortcut names .b#, where #
is replaced with a number (e.g., as .b1, .b2, etc.) corresponding to the index of the quantity referenced.
For example, because E[Y(1)] and E[Y(0)] are the second and first computed quantities, respectively,
the above code could be replaced with

est6 <- transform(est6,
RD = .b2 - .b1)

which will yield identical results6.

When we run summary() on the output, the new quantity, which we named “RD”, will be displayed
along with the other estimates. We will also set a null value for this quantity.

summary(est6, null = c(`RR` = 1, `RD` = 0))

#> Estimate 2.5 % 97.5 % P-value
#> E[Y(0)] 0.6866 0.6081 0.7596 .
#> E[Y(1)] 0.7551 0.6850 0.8088 .
#> RR 1.0998 0.9485 1.2554 0.21
#> RD 0.0685 -0.0382 0.1580 0.21

As mentioned previously, one benefit of using simulation-based inference with p-values computed
from inverting the confidence intervals is that the p-values for testing the same hypothesis with the
risk difference and risk ratio (and any other effect measure for comparing a pair of values) will always
exactly align, thereby ensuring inference does not depend on the effect measure used. In contrast,
Wald-type inference (based on either the simulation-derived or delta method standard error) is not
invariant to transformations of the quantity of interest.

The same value would be computed if we were to have called sim_ame() on the same clarify_sim
object and requested the risk difference using contrast = "diff"; using transform() saves time
because the AAPs are already computed and stored in the clarify_est object.

We can use transform() along with the by variable in sim_ame() to compute the contrast between
quantities computed within each subgroup of married. Previously we used by to compute the risk
ratio ATT within levels of married; here we will compute the ratio of these risk ratios to assess the
presence of effect modification.

5Users familiar with the tidyverse will note the similarities between transform() and dplyr::mutate(); only
transform() can be used with clarify_est objects.

6Note that if a quantity is named .b#, e.g., .b1, it can only be referred to using the positional shortcut and not
its name. That is, the positional shortcut takes precedence over the names of the quantities.

The R Journal Vol. 16/2, June 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 169

est6b |>
transform(`RR[1]/RR[0]` = `RR[1]` / `RR[0]`) |>
summary(parm = c("RR[0]", "RR[1]", "RR[1]/RR[0]"),

null = 1)

#> Estimate 2.5 % 97.5 % P-value
#> RR[0] 1.061 0.909 1.234 0.434
#> RR[1] 1.270 0.948 1.583 0.094 .
#> RR[1]/RR[0] 1.196 0.908 1.516 0.174
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

RR[1]/RR[0] contains the ratio of the risk ratios for married = 1 and married = 0. Here we also
include a test for whether each of the risk ratios and their ratio differs from 1, which is equivalent to
testing whether the risk ratios differ across levels of married.

5.2 cbind()

cbind() is another generic R function that is typically used to combine two or more datasets colum-
nwise (i.e., to widen a dataset). In clarify, cbind() can be used to combine two clarify_est objects
so that the estimates can be examined jointly and so that it is possible to compare them directly. For
example, if we were to compute AMEs in two subgroups using subset and wanted to compare them,
we would call sim_ame() twice, one for each subset (though in practice it is more effective to use by;
this is just for illustration), as demonstrated below:

# AME of treat with race = "black"
est10b <- sim_ame(s, var = "treat", subset = race == "black",

contrast = "diff", verbose = FALSE)
summary(est10b)

#> Estimate 2.5 % 97.5 %
#> E[Y(0)] 0.6677 0.5813 0.7529
#> E[Y(1)] 0.7439 0.6661 0.8016
#> Diff 0.0762 -0.0359 0.1700

# AME of treat with race = "hispan"
est10h <- sim_ame(s, var = "treat", subset = race == "hispan",

contrast = "diff", verbose = FALSE)
summary(est10h)

#> Estimate 2.5 % 97.5 %
#> E[Y(0)] 0.8266 0.7146 0.8990
#> E[Y(1)] 0.8971 0.7888 0.9527
#> Diff 0.0704 -0.0223 0.1387

Here, we computed the risk difference for the subgroups race = "black" and race = "hispan".
If we wanted to compare the risk differences, we could combine them and compute a new quantity
equal to their difference. We will do that below.

First, we need to rename the quantities in each object so they do not overlap; we can do so using
names(), which has a special method for clarify_est objects.

names(est10b) <- paste(names(est10b), "b", sep = "_")
names(est10h) <- paste(names(est10h), "h", sep = "_")

Next, we use cbind() to bind the objects together.

est10 <- cbind(est10b, est10h)
summary(est10)

#> Estimate 2.5 % 97.5 %
#> E[Y(0)]_b 0.6677 0.5813 0.7529
#> E[Y(1)]_b 0.7439 0.6661 0.8016
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#> Diff_b 0.0762 -0.0359 0.1700
#> E[Y(0)]_h 0.8266 0.7146 0.8990
#> E[Y(1)]_h 0.8971 0.7888 0.9527
#> Diff_h 0.0704 -0.0223 0.1387

Finally, we can use transform() to compute the difference between the risk differences:

est10 <- transform(est10,
`Dh - Db` = Diff_h - Diff_b)

summary(est10, parm = "Dh - Db")

#> Estimate 2.5 % 97.5 %
#> Dh - Db -0.00575 -0.06833 0.04103

Importantly, cbind() can only be used to join together clarify_est objects computed using the
same simulated coefficients (i.e., resulting from the same call to sim()). This preserves the covariance
among the estimated quantities, which is critical for maintaining valid inference. That is, sim() should
only be called once per model, and all derived quantities should be computed using its output.

6 Using clarify with Multiply Imputed Data

Multiple imputation is a popular method of estimating quantities of interest in the presence of missing
data and involves creating multiple versions of the original dataset, each with the missing values
imputed with estimates from an imputation model. Simulation-based inference in multiply imputed
data is relatively straightforward. Simulated coefficients are drawn from the model estimated in each
imputed dataset separately, and then the simulated coefficients are pooled into a single set of simulated
coefficients. In Bayesian terms, this would be considered “mixing draws” and is the recommended
approach for Bayesian analysis with multiply imputed data (Zhou and Reiter, 2010).

Using clarify with multiply imputed data is simple. Rather than using sim(), we use the function
misim(). misim() functions just like sim() except that it takes in a list of model fits (i.e., containing
a model fit to each imputed dataset) or an object containing such a list (e.g., a mira object from
mice::with() or a mimira object from MatchThem::with()). misim() simulates coefficient distributions
within each imputed dataset and then appends them together to form a single combined set of
coefficient draws.

sim_apply() and its wrappers accept the output of misim() and compute the desired quantity
using each set of coefficients. When these functions rely on using a dataset (e.g., sim_ame(), which
averages predicted outcomes across all units in the dataset used to fit the model), they automatically
know to associate a given coefficient draw with the imputed dataset that was used to fit the model
that produced that draw. In user-written functions supplied to the FUN argument of sim_apply(), it is
important to correctly extract the dataset from the model fit. This is demonstrated below.

The final estimates of the quantity of interest are computed as the mean of the estimates computed
in each imputed dataset (i.e., using the original coefficients, not the simulated ones), which is the
same quantity that would be computed using standard pooling rules. This is not always valid for
non-collapsible estimates, like ratios, and so care should be taken to ensure the mean of the resulting
estimates has a valid interpretation (this is related to the transformation-induced bias described by
Rainey (2017)).

The arguments to misim() are as follows:

misim(fitlist = , n = , vcov = , coefs = , dist = )

• fitlist – a list of model fits or an accepted object containing them (e.g., a mira object from
mice::with())

• n – the number of simulations to run for each imputed dataset. The default is 1000, but fewer can
be used because the total number of simulated quantities will be m * n, where m is the number
of imputed datasets.

• vcov, coefs, dist – the same as with sim(), except that a list of such arguments can be supplied
to be applied to each imputed dataset.

Below we illustrate using misim() and sim_apply() with multiply imputed data. We will use the
africa dataset from the Amelia package.
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library(Amelia)
data("africa", package = "Amelia")

# Multiple imputation
a.out <- amelia(x = africa, m = 10, cs = "country",

ts = "year", logs = "gdp_pc", p2s = 0)

# Fit model to each dataset
model.list <- with(a.out, lm(gdp_pc ~ infl * trade))

# Simulate coefficients, 100 draws per imputation
si <- misim(model.list, n = 100)

si

#> A `clarify_misim` object
#> - 4 coefficients, 10 imputations with 100 simulated values each
#> - sampled distributions: multivariate t(116)

The function we will be applying to each imputed dataset will be one that computes the AME of
infl. (We will run the same analysis afterward using sim_ame().)

sim_fun <- function(fit) {
# Extract the original dataset using get_predictors()
X <- insight::get_predictors(fit)

p0 <- predict(fit)

# Predictions after perturbing infl slightly
p1 <- predict(fit, newdata = transform(X, infl = infl + 1e-5))

c(AME = mean((p1 - p0) / 1e-5))
}

est_mi <- sim_apply(si, FUN = sim_fun, verbose = FALSE)

summary(est_mi)

#> Estimate 2.5 % 97.5 %
#> AME -5.75 -8.82 -2.26

Note that sim_apply() “knows” which imputation produced each set of simulated coefficients, so
using insight::get_predictors() on the fit supplied to sim_fun() will use the right dataset. Care
should be taken when analyses restrict each imputed dataset in a different way (e.g., when matching
with a caliper in each one), as the resulting imputations may not refer to a specific target population
and mixing the draws may be invalid.

Below, we can use sim_ame():

est_mi2 <- sim_ame(si, var = "infl", verbose = FALSE)

summary(est_mi2)

#> Estimate 2.5 % 97.5 %
#> E[dY/d(infl)] -5.75 -8.82 -2.26

We get the same results, as expected.

Note that misim() is compatible with model fit objects from mice, Amelia, MatchThem, and any
other package that produces a list of model fit objects with each corresponding to the output of a
model fit to an imputed dataset.

7 Comparison to Other Packages

Several packages offer methods for computing interpretable quantities from regression models, in-
cluding emmeans (Lenth, 2024), margins (Leeper, 2021), modelbased (Makowski et al., 2020), and
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marginaleffects (Arel-Bundock et al., Forthcoming). Many of the quantities computed by these pack-
ages can also be computed by clarify, the primary difference being that clarify uses simulation-based
inference rather than delta method-based inference.

marginaleffects offers the most similar functionality to clarify, and clarify depends on functional-
ity provided by marginaleffects to accommodate a wide variety of regression models. marginaleffects
also offers simulation-based inference using marginaleffects::inferences() and support for ar-
bitrary user-specified post-estimation functions using marginaleffects::hypotheses(). However,
clarify and marginaleffects differ in several ways. The largest difference is that clarify supports
iterative building of more and more complex hypotheses through the transform() method, which
quickly computes new quantities and transformations from the existing computed quantities, whereas
marginaleffects only supports a single transformation and, as of version 0.20.0, cannot use simulation-
based inference for these quantities.

Because of clarify’s focus on simulation, it provides functionality directly aimed at improving
simulation-based inference, including plots to view the distributions of simulated values and support
for parallel processing. clarify also provides support for simulation-based inference of multiply
imputed data, which does not require any special pooling rules.

There are areas and cases where marginaleffects may be the better choice than clarify or where
the differences between the packages are of little consequence. marginaleffects focuses on providing a
complete framework for post-estimation using model predictions, whereas clarify is primarily focused
on supporting user-defined functions, with commonly used estimators offered as a convenience. In
cases where the delta method is an acceptable approximation (e.g., for quantities computed from linear
models or other quantities known to be approximately Normally distributed in finite samples), using
the delta method through marginaleffects will be much faster, more accurate, and more replicable than
the simulation-based inference clarify provides. For the quantities easily computed by marginaleffects
that support simulation-based inference through marginaleffects::inferences(), using marginal-
effects can provide a more familiar and flexible syntax than clarify might offer. Ultimately, the user
should use the package that supports their desired syntax and mode of inference.

8 Conclusion

clarify provides functionality to facilitate simulation-based inference for deriving quantities from
regression models. This framework provides an alternative to the delta method that can yield
confidence intervals with coverage closer to nominal for some quantities of interest. While we
do not claim that simulation-based inference should be universally preferred over delta method-based
inference, there are cases in which it can retain some advantageous properties, and we hope the
availability of these methods in clarify encourages additional research on when those properties can
be realized and facilitates empirical work that takes advantage of these properties.
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FuzzySimRes: Epistemic Bootstrap – an
Efficient Tool for Statistical Inference
Based on Imprecise Data
by Maciej Romaniuk, Przemysław Grzegorzewski, Abbas Parchami

Abstract The classical Efron’s bootstrap is widely used in many areas of statistical inference, including
imprecise data. In our new package FuzzySimRes we adapted the bootstrap methodology to the
epistemic fuzzy data, i.e. fuzzy perceptions of the usual real-valued random variables. The epistemic
bootstrap algorithms deliver real-valued samples generated randomly from the initial fuzzy sample.
Then, these samples can be utilized directly in various statistical procedures. Moreover, we imple-
mented a practically oriented simulation procedure to generate synthetic fuzzy samples and provided
a real-life epistemic dataset ready to use for various techniques of statistical analysis. Some examples
of their applications, together with the comparisons of the epistemic bootstrap algorithms and the
respective benchmarks, are also discussed.

1 Introduction

Efron’s bootstrap (Efron and Tibshirani, 1993) is a simple but very powerful tool. This useful resam-
pling method is successfully applied in statistical inference, including estimation, hypotheses testing,
and other data analysis techniques, e.g., Davison and Hinkley (1997); James et al. (2021); Romaniuk
(2019).

In our package FuzzySimRes we adapted the classical bootstrap algorithm to a special kind of
imprecise data, i.e. the epistemic random fuzzy numbers (see Couso and Dubois (2014)), which
might be treated as fuzzy perceptions of the usual real-valued random variables. This way, a special
resampling methodology, known as the epistemic bootstrap, can be introduced (Grzegorzewski and
Romaniuk, 2021, 2022a,c). Following the suggested methods we can generate random real-valued
samples based on the initial fuzzy sample. Such a “change of a viewpoint” from the “fuzzy world”
to its “clear” (i.e. real-value) counterpart can be a very useful and important tool. This allows all
commonly used classical statistical methods (developed for real-valued samples), including statistical
tests, estimation procedures, etc., to be directly and easily adapted to fuzzy epistemic samples.

Please note that statistical inference for the fuzzy data is usually underdeveloped, poses some
problems, and leads to discussions about the intuitions, solutions, etc. (e.g., concerning the different
approaches to the p-value).

We provide some useful functions in our package FuzzySimRes. They are related to a practically
oriented simulation of various types of fuzzy numbers (FNs), the epistemic bootstrap itself, and its
applications related to the estimation of important statistical measures of the initial sample, and the
one- and two-sample statistical tests. Additionally, we provide the real-life dataset of the epistemic FNs,
which can be useful in comparing various approaches to fuzzy statistical inference. Based on the two
general epistemic bootstrap functions, users of FuzzySimRes can build their own “epistemic bootstrap
statistical tools” to fit their purposes (e.g., the necessity of using tests other than the Kolmogorov-
Smirnov one).

In the following, we briefly compare FuzzySimRes package with other existing ones and introduce
a necessary notation. Then, the functions implemented in the package are illustrated with the respective
examples. Finally, the outcomes of these functions are compared taking into account some benchmarks
for different statistical problems using both the synthetic and real-life data.

1.1 A brief review of related packages

There are some packages related to fuzzy numbers and their statistical analysis. Firstly, we should
mention FuzzyNumbers (Gagolewski and Caha, 2021). This library aims to provide S4 classes
and methods for FNs. They can be used to construct different types of FNs (e.g., triangular or
trapezoidal ones), compute arithmetic operators for fuzzy values, calculate their approximations,
and find different characteristics of FNs (like the possibility and necessity values, expected interval,
ambiguity, membership functions among many others) for arbitrary FNs or some of their special
types, etc. Notably, our package FuzzySimRes uses S4 objects describing FNs derived from this
package. However, there are no special functions devoted to simulations or resampling methods in
FuzzyNumbers package. Therefore, it can be seen as a kind of “foundation” to deal with FNs.
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The next package, FuzzySTs (Berkachy and Donzé, 2020) is a collection of various statistical
tools, like fuzzification methods, numerical estimations of fuzzy statistical measures and bootstrap
distribution of the likelihood ratio, testing hypotheses by fuzzy confidence intervals and estimation of
the fuzzy p-values for epistemic fuzzy data. These approaches are related to fuzzy notions, like fuzzy
p-values, resulting in the strictly fuzzy output (Berkachy and Donzé, 2019).

And SAFD (Trutschnig et al., 2013) package joins two kinds of functions. Similarly to FuzzyNum-
bers, it provides basic operations on FNs (like the sum, mean, etc.), but it also contains some strictly
statistical functions. They allow us to simulate FNs and perform bootstrap tests for the equality of the
means. As for the simulation function, this is an implementation of the second procedure described by
González-Rodríguez et al. (2009), where a respective basis is perturbated stochastically to generate a
new polygonal fuzzy number. There are important theoretical and practical differences (Parchami
et al., 2024) between this approach and the one applied in FuzzySimRes package. The statistical
tests in SAFD library are exclusively based on the classical bootstrap as described by Colubi (2009);
Montenegro et al. (2004).

On the other hand, Sim.PLFN (Parchami, 2017) can be seen as a kind of “ancestor” of our package.
It allows only to simulation of some kinds of FNs some kinds of FNs, especially so-called piecewise
linear FNs (Coroianu et al., 2013), and calculates a few basic operators (like the sum, mean, and
variance) for them.

Another package, FuzzyStatTra (Lubiano and de la Rosa de Saa, 2017), also provides basic sta-
tistical functions for FNs like calculation of the mean and medians, indexes, and various distance
measures. Some simulation procedures are also included there, but they are intended for special cases
of dependent and independent components described by Sinova et al. (2016). Therefore, they can not
be considered as “multi-purpose” generation functions when the probability distributions are selected
by the user.

We should also mention our previous package, FuzzyResampling (Romaniuk et al., 2022) that pro-
vides various resampling algorithms other than the classical bootstrap (Romaniuk and Grzegorzewski,
2023). The main aim of these approaches is to overcome a problem with repetition of a few distinct
values (which is commonly seen in the case of the Efron’s bootstrap) and to create FNs, which are
“similar” (in the sense of some characteristics of FNs) but not “the same” as values from the initial
sample (Grzegorzewski et al., 2020; Romaniuk and Hryniewicz, 2019; Grzegorzewski and Romaniuk,
2022b). Additionally, the tests for the means related to the approach presented by Lubiano et al. (2016)
but based on these new resampling methods are also provided.

Nevertheless, FuzzySimRes has some unique features. Firstly, it adds very useful simulation
functions (as its acronym – Fuzzy Simulations and Resampling – suggests) to complete FuzzyNumbers
in this field. These procedures are very intuitive and practically oriented as noted by Parchami et al.
(2024) (contrary to, e.g., SAFD that adds some random noise without keeping track of important
characteristics of the input FNs). Secondly, the so-called epistemic bootstrap is implemented there.
Apart from ready-to-use general epistemic bootstrap functions, special procedures are provided for
the estimation of parameters of the underlying statistical model, together with an interface that can be
used with various classical statistical tests. The epistemic bootstrap is a relatively new idea and the
respective algorithms were not implemented in other publicly available software packages (including
R itself). It should be noted, that this approach is completely different when compared with the
ontic-oriented resampling procedures from FuzzyResampling that can be seen as a “generalization” of
the classical bootstrap procedure (Grzegorzewski et al., 2020; Grzegorzewski and Romaniuk, 2022b).

1.2 Epistemic fuzzy numbers

In the following, we recall some basic concepts and notations concerning fuzzy numbers. For a more
detailed introduction, we refer the reader to, e.g., Ban et al. (2015).

A fuzzy number (abbreviated further as FN) is an imprecise value characterized by a mapping
Ã : R → [0, 1] (a membership function), such that its α-cut defined by

Ãα =

{
{x ∈ R : Ã(x) ⩾ α} if α ∈ (0, 1],
cl{x ∈ R : Ã(x) > 0} if α = 0,

(1)

is a nonempty compact interval for each α ∈ [0, 1]. Operator cl in (1) denotes the closure. Every FN is
completely characterized both by its membership function Ã(x) and a family of α-cuts {Ãα}α∈[0,1].
There are two special α-cuts: the core Ã1 = core(Ã), which contains all values fully compatible
with the concept described by Ã, and the support Ã0 = supp(Ã) on real line, for which values are
compatible to some extent with the concept modeled by Ã. A family of all FNs will be denoted
by F(R).
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There are many possible shapes of the membership functions. A special family of the LR-fuzzy
numbers is defined by

Ã(x) =



0 if x < a1,

L
(

x−a1
a2−a1

)
if a1 ⩽ x < a2,

1 if a2 ⩽ x < a3,

R
(

a4−x
a4−a3

)
if a3 ⩽ x < a4,

0 if x ⩾ a4,

(2)

where L, R : [0, 1] → [0, 1] are continuous and strictly increasing function such that L(0) = R(0) = 0
and L(1) = R(1) = 1, and a1, a2, a3, a4 ∈ R, where a1 ⩽ a2 ⩽ a3 ⩽ a4. If L and R are linear functions,
i.e. L

(
x−a1
a2−a1

)
= x−a1

a2−a1
and R

(
a4−x
a4−a3

)
= a4−x

a4−a3
, we get a trapezoidal fuzzy number (denoted further

on as TPFN). Moreover, if a2 = a3 then we have a triangular fuzzy number (abbreviated as TRFN). In
these two cases, we can simply write A = (a1, a2, a3, a4) (for TPFN) or A = (a1, a2, a4) (for TRFN) to
fully describe such FNs.

Another type of the LR-fuzzy number is known as the k-knot piecewise linear fuzzy number
(Coroianu et al., 2019) (or polygonal fuzzy number, see Báez-Sánchez et al. (2012), abbreviated further
as PLFN), which is suitable especially in an approximation of more complex FNs. In this case, L and R
functions are polygons consisting of k ∈ N segments.

Fuzzy numbers are used to model the results of various experiments that cannot be precisely
described, qualified, or measured. But in many cases, we have to draw conclusions and make decisions
based on data whose uncertainty comes both from randomness (which classical statistics copes with)
and lack of precision (for which the fuzzy set theory is perfect for modeling). To model such data one
can use fuzzy random variables, known also as random fuzzy numbers (Parchami et al., 2024).

It should be noted here that we can look at fuzzy random variables from two different perspectives:
ontic or epistemic (e.g. Couso and Dubois (2014)). The first concerns data that appear to be essentially
fuzzy in value, while the second refers to situations where, although precise (accurate) data values
exist, they are imprecisely observed (e.g. due to imperfections in measuring devices, inaccuracies
caused by people performing the measurements, or how results are reported), so their true actual
values remain unknown. This second kind of imprecision is widespread in real-life problems met in
engineering, science, and other applications, so further on we limit our attention only to epistemic
data.

Following the definition by Kwakernaak (1978) and Kruse (1982) a fuzzy random variable X̃ can
be considered as a fuzzy perception of the unknown random variable X, called the original of X̃. More
precisely, given a probability space (Ω,F , P), a mapping X : Ω → F(R) is said to be a fuzzy random
variable (f.r.v.) if for each α ∈ [0, 1] (inf Xα) : Ω → R and (sup Xα) : Ω → R are real-valued random
variables on (Ω,F , P). Similarly, a fuzzy random sample X̃1, . . . , X̃n is a fuzzy perception of a random
sample X1, . . . , Xn of the usual real-valued random variables. For more details, we refer the reader to
Kwakernaak (1978); Kruse (1982).

1.3 Epistemic vs classical bootstrap

There are important differences between the classical Efron’s bootstrap (Efron and Tibshirani, 1993)
and its epistemic counterpart (Grzegorzewski and Romaniuk, 2021, 2022c, 2024). In the classical
bootstrap approach, the initial sample is then directly resampled. Therefore, in the case of fuzzy
input, the output also consists of the same FNs as in the primary sample (with possible repetitions
or omitting some of them). This procedure can be very useful in statistical inference (see, e.g., (Gil
et al., 2006; Lubiano et al., 2016; Montenegro et al., 2004)) but the respective statistical tests (or other
statistical procedures like the estimation) have to be specially developed for fuzzy-valued samples.
Therefore, there is a need to construct “almost completely new” statistical solutions taking into account
various distance measures for fuzzy sets existing in the literature, more complex definitions of the
expected value, possible problems with difference operator, etc. (Ban et al., 2015; Heilpern, 1992).
Resampling procedures existing in FuzzyResampling package can be seen as a kind of generalization
of this classical bootstrap (in the same manner as the smoothed bootstrap in the case of real-valued
samples). They aim to preserve some important characteristics of FNs (like the value, ambiguity, etc.)
but with an alternation of FNs from the initial sample into ”new” values occurring in the generated
samples (Grzegorzewski et al., 2020; Grzegorzewski and Romaniuk, 2022b). However, we are still
obtaining fuzzy-valued outputs for these methods.

On the other hand, in the epistemic bootstrap, a completely real-valued (i.e. “crisp”) sample is
generated from a fuzzy-valued initial sample. It allows to use of directly highly developed statistical
tools for real-valued data (various statistical tests, point or interval estimators, etc.) without the
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need for transforming them into a “new fuzzy world”. Consequently, knowing statistical tools with
suitable good properties, the areas of possible applications of epistemic fuzzy data may substantially
expand. To explain it better, consider the following goodness-of-fit testing problem. In Lubiano et al.
(2016) and Lubiano et al. (2017), the outcomes of the well-known questionnaire TIMSS-PIRLS 2011
performed by Spanish primary school pupils were considered, while in Ramos-Guajardo et al. (2019)
experts’ perceptions about different characteristics of the Gamonedo blue chees were discussed. In
both cases, researchers dealt with subjective valuations expressed in natural language, which are
inherently imprecise, and therefore modeled using ontic fuzzy sets. Thus, the problems mentioned
above required the construction of appropriate statistical tools that would enable inferences to be
made based on this type of data. Meanwhile, the epistemic variants of the classical Kolmogorov-
Smirnov and Cramer-von Mises tests were directly used for fuzzy data concerning the lifetimes
of street light equipment (Hesamian and Taheri, 2013) and electronic circuit thickness (Faraz and
Shapiro, 2010) in Grzegorzewski and Romaniuk (2024). The obtained results were consistent with
predictions concerning these real-life samples, like the behavior of the probability distributions of their
originals (Gibbons and Chakraborti, 2010). The example related to the electronic circuit thickness is
also considered further in this paper. Some other applications can be also found in (Grzegorzewski
and Romaniuk, 2022a,c,b, 2024).

Moreover, using brute computational force, we can easily improve the quality of the outputs.
However, the results are quite satisfactory also for the limited number of α-cuts. For instance, using
even 10 α-cuts leads to the p-values for the epistemic versions of the goodness-of-fit tests (like
the Kolmogorov-Smirnov or Cramer-von Mises tests) very close to their respective benchmarks
(Grzegorzewski and Romaniuk, 2024).

2 Overview of FuzzySimRes package

Firstly, we briefly discuss the functions implemented in FuzzySimRes package. They can be roughly
divided into four groups:

1. random generation of FNs of various types,

2. general epistemic bootstrap procedures,

3. epistemic estimation of basic population characteristics from fuzzy samples,

4. interface to statistical tests based on the epistemic bootstrap.

Moreover, a set of real-life epistemic fuzzy data is also included in the package. All examples in R can
be reproduced using the supplementary file.

Taking into account the above-mentioned types of functions, there are many possible applications
of FuzzySimRes package:

1. Generation of synthetic fuzzy samples according to the specified probability distributions. Such
samples can be then used to check the validity and quality of new statistical tools for FNs in a
strictly controlled “environment”, e.g., to plot power curves for a statistical test (Grzegorzewski
and Romaniuk, 2022c) or to check the influence of different model parameters on the estimated
p-values (Grzegorzewski and Romaniuk, 2024).

2. Estimation is one of the key problems in statistical inference. The same applies to fuzzy-
valued data, especially in the epistemic case. Then, our considerations about the mean or the
standard deviation related to the respective originals of the fuzzy random sample can give us
the necessary insight into the parameters of the underlying statistical model (Grzegorzewski
and Romaniuk, 2021, 2022c).

3. Statistical tests are the next important subject in statistical inference. To accept or reject the null
hypothesis, the respective statistical test has to be developed. As it was previously mentioned,
the epistemic bootstrap allows for direct application of the widely known real-valued tests
instead of their “fuzzy-oriented” counterparts. Therefore, e.g., the classical goodness-of-fit
Kolmogorov-Smirnov or Cramer-von Mises tests can be directly used with the interface provided
by FuzzySimRes package (Grzegorzewski and Romaniuk, 2022a, 2024).

4. Real-life fuzzy data are also important to develop statistical procedures. Synthetic samples are
very useful, but some problems are only visible when the data are provided by a “true source”.
In FuzzySimRes package, there is a special set of such data used to construct a fuzzy statistical
control chart (Faraz and Shapiro, 2010) and check the quality of statistical tests based on the
epistemic bootstrap (Grzegorzewski and Romaniuk, 2024).

The general workflow for some possible applications (black lines) and the internal order of
invoking functions (orange lines) from FuzzySimRes package can be found in Fig. 1.
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Figure 1: General workflow for possible applications and invoking the functions from FuzzySimRes
package.

2.1 Generation of the initial sample

In many cases, synthetic samples of predefined properties are necessary to analyze statistical methods
numerically. Two functions in FuzzySimRes allow the generation of random fuzzy variables. The first
one

SimulateFuzzyNumber(originalPD,parOriginalPD,incrCorePD,
parIncrCorePD,suppLeftPD,parSuppLeftPD,
suppRightPD,parSuppRightPD,knotNumbers = 0,
type = "trapezoidal",...)

is used to generate randomly a single TPFN (for type = "trapezoidal"), TRFN (type = "triangular"),
or PLFN (type = "PLFN", respectively). All these types of FNs utilize the respective S4 objects from
FuzzyNumbers.

To simulate a TPFN X̃, five independent real-valued random variables are necessary: X for its
“true value” (i.e., its original), Cl , Cr – the left and right increment of the core, Sl , Sr – the left and right
increment of the support, respectively. To generate these random variables the functions derived from
stats (R Core Team, 2023) with the respective parameters are used (see Table 1), e.g., to draw randomly
the original X, the function originalPD with the parameters parOriginalPD should be applied.

Random variable Function Parameters
X originalPD parOriginalPD
Cl , Cr incrCorePD parIncrCorePD
Sl suppLeftPD parSuppLeftPD
Sr suppRightPD parSuppRightPD

Table 1: Random variables used to simulate a TPFN.

As a result we obtain a random TPFN given by (X − Cl − Sl , X − Cl , X + Cr, X + Cr + Sr) (see
also Grzegorzewski and Romaniuk (2022a) for the similar procedure). Obviously, for a TRFN we
have Cl = Cr = 0 without using the respective parameters in SimulateFuzzyNumber. In the case of a
PLFN, the number of knots knotNumbers should be greater than zero, and then the specially truncated
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probability distributions for both arms of the support are applied. The function SimulateFuzzyNumber
returns both the generated FN (as value in the output list) and its random original X (as original).

Let us initialize a random seed and generate a TPFN with the “true origin” described by the normal
distribution with the expected value µ = 0 and standard deviation σ = 1 (denoted by N(µ, σ)), the
increments of the core given by the uniform distribution on the interval (0, 0.6) (denoted by U(0, 0.6))
and the increments of the support from U(0, 1):

# seed PRNG
> set.seed(123456)

> SimulateFuzzyNumber(originalPD="rnorm",parOriginalPD=list(mean=0,sd=1),
+ incrCorePD="runif",parIncrCorePD=list(min=0,max=0.6),
+ suppLeftPD="runif",parSuppLeftPD=list(min=0,max=1),
+ suppRightPD="runif",parSuppRightPD=list(min=0,max=1),
+ type="trapezoidal")

$original
[1] 0.6857515

$value
Trapezoidal fuzzy number with:

support=[-0.316967,1.10087],
core=[0.480817,0.902528].

The second function generates a sample of n independent FNs similarly to SimulateFuzzyNumber:

SimulateSample(n = 1,originalPD,parOriginalPD,incrCorePD,
parIncrCorePD,suppLeftPD,parSuppLeftPD,
suppRightPD,parSuppRightPD,knotNumbers = 0,
type = "trapezoidal")

This function returns a list of simulated FNs together with a vector of their respective originals. Let us
generate 10 TPFNs given by the same distributions as in the previous example and print the second
simulated value and its “true origin”:

# seed PRNG
> set.seed(123456)

> sample1 <- SimulateSample(n=10,originalPD="rnorm",
+ parOriginalPD=list(mean=0,sd=1),
+ incrCorePD="runif",parIncrCorePD=list(min=0,max=0.6),
+ suppLeftPD="runif",parSuppLeftPD=list(min=0,max=1),
+ suppRightPD="runif",parSuppRightPD=list(min=0,max=1),
+ type="trapezoidal")

> sample1$original[2]

[1] -1.301602

> sample1$value[2]

$X2
Trapezoidal fuzzy number with:

support=[-1.937,-0.229014],
core=[-1.40214,-0.822808].

> plot(sample1$value[[2]])

The obtained graph of this exemplary FN can be found in Fig. 2.

2.2 Epistemic bootstrap

All of the functions described in further sections use two main procedures related to the epistemic
bootstrap (Grzegorzewski and Romaniuk, 2021, 2022a,c, 2024).

The first one
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Figure 2: Example of the generated TPFN.

EpistemicBootstrap(fuzzySample, cutsNumber = 1,...)

applies the standard epistemic bootstrap (abbreviated as std) to a single value or a whole list of FNs
given by fuzzySample. This procedure firstly generates uniformly a list of α-cuts (their number is
specified by cutsNumber). Then, it generates a sample from each of the input FNs, corresponding to
the aforementioned list of the α-cuts. A final output is given as a real-valued matrix, with the number
of rows that is equal to cutsNumber, and the number of columns designated by the initial sample size.

This way, we obtain b real-valued bootstrap samples X∗j =
(

X∗j
1 , . . . , X∗j

n

)
, based on the initial fuzzy

sample X̃ = (X̃1, . . . , X̃n), where j = 1, . . . , b and b is equal to cutsNumber.

Let us apply the epistemic bootstrap with 3 α-cuts for the previously generated sample1, and then
show the output rounded to 4 decimal places:

> set.seed(123456)

> epistemicOutput <- EpistemicBootstrap(sample1$value, cutsNumber = 3)

> round(epistemicOutput,digits = 4)

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
0.7978 0.5323 -1.0784 0.6744 0.8553 0.9501 1.1755 0.6460 -0.5347 -0.0049 1.5937
0.7536 0.5253 -1.4512 1.4851 0.8546 0.9337 1.4773 0.6576 -0.3149 -0.0022 1.8909
0.3913 0.1991 -0.4767 1.1215 0.9443 -0.0089 0.8814 0.4538 0.0633 -0.9345 1.1242

The first column shows α-cuts drawn randomly, while the rest columns contain values generated from
each α-cut.

The second function

AntitheticBootstrap(fuzzySample, cutsNumber = 1,...)

applies the so-called antithetic epistemic bootstrap (denoted further on by anti). Instead of drawing a
single value from the given α-cut of each FN, we generate two values: one from this α-cut and the
other from (1 − α)-cut, and then we determine their average. As indicated in Grzegorzewski and
Romaniuk (2022a,c), the antithetic approach improves the quality of some statistical inference methods.
An example of how to use this function can be found in the supplementary file.

The epistemic bootstrap produces a real-valued sample based on the initial fuzzy values. Therefore,
it can be easily applied to estimate various statistical measures of the input values (like the mean) or
to conduct many “classical” (i.e. real-valued) statistical tests.

2.3 Estimation of parameters

Estimation of basic population parameters (like the mean) is a fundamental task of most statistical
inference problems. Given fuzzy data, we can easily adapt the epistemic bootstrap to estimate the
quantities of interest (see (Grzegorzewski and Romaniuk, 2022c)).

A general function
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EpistemicEstimator(fuzzySample,estimator = "sd",cutsNumber = 1,bootstrapMethod = "std",
trueValue = NA,...)

can be used to determine the desired estimate from the fuzzySample of the specified function in
estimator. Both the classical epistemic approach (bootstrapMethod = "std") and its antithetic
counterpart (bootstrapMethod = "anti") are available. Since the mean is the most used statistical
parameter, it can be obtained using a special function

EpistemicMean(fuzzySample,cutsNumber = 1,bootstrapMethod = "std",trueValue = NA,...)

instead of the general command.

Besides estimates, the standard error (SE) and the mean squared error (MSE) of the considered
estimators are also calculated. The SE is estimated (for b > 1) using the formula

ŜE =

√√√√ 1
b − 1

b

∑
k=1

(
θ̂
(
X∗k

)
− ¯̂θ

)2
, (3)

where θ̂
(

X∗k
)

is the estimator of θ based on the epistemic bootstrap sample for the k-th α-cut, and ¯̂θ

is the overall mean for θ̂
(
X∗1) , . . . , θ̂

(
X∗b

)
. If the true (but usually unknown) value of θ is set with

trueValue, then the MSE is estimated by

M̂SE =
1
b

b

∑
k=1

(
θ̂
(

X∗k
)
− θ

)2
. (4)

Let us estimate the median and its SE for sample1 using 100 α-cuts and the classical epistemic
bootstrap:

> set.seed(56789)

> EpistemicEstimator(sample1$value, estimator = "median",cutsNumber = 100)

$value
[1] 0.6287525

$SE
[1] 0.1705336

$MSE
[1] NA

To estimate the variance using bootstrap, instead of the classical well-known formula, its more
sophisticated and specially corrected variant (Grzegorzewski and Romaniuk, 2022c) can be used with
the function

EpistemicCorrectedVariance(fuzzySample,cutsNumber = 1,bootstrapMethod = "std",...)

As noted in Grzegorzewski and Romaniuk (2022c), this estimator can more closely approximate the
desired value, e.g., we have

> set.seed(56789)

> EpistemicCorrectedVariance(sample1$value, cutsNumber = 100$)

[1] 0.8729738

2.4 Statistical tests

The real-valued samples generated by the epistemic bootstrap can be also used for hypothesis testing.
However, given several bootstrap samples, one has to clarify how to merge the obtained test statistics
or the p-values (Grzegorzewski and Romaniuk, 2022a). FuzzySimRes contains a general function

EpistemicTest(sample1, sample2, algorithm = "avs", ...)

that can be used to activate one of the specially tailored procedures.

By setting algorithm = "avs" the averaging statistic (abbreviated as avs) is activated and the
function
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AverageStatisticEpistemicTest(sample1,sample2,bootstrapMethod = "std",
test = "ks.test",cutsNumber = 1,criticalValueFunction = "KSTestCriticalValue",...)

is used. Similarly, by setting algorithm = "ms" the function

MultiStatisticEpistemicTest(sample1,sample2,bootstrapMethod = "std",
test = "ks.test",cutsNumber = 1,combineMethod = "simes",...)

and multi-statistic method (denoted by ms) are applied. Finally, for algorithm = "res" the resampling
algorithm (abbreviated as res) together with the function

ResamplingStatisticEpistemicTest(sample1,sample2,bootstrapMethod = "std",
test = "ks.test",cutsNumber = 1,K = 1,combineMethod = "simes",...)

run. The above functions can be applied to both one-sample and two-sample statistical tests, where the
relevant samples are entered as lists of fuzzy values. For the one-sample case, sample2=NULL should
be set.

To use a statistical test, one has to specify the name of the respective function in test (e.g.,
test="ks.test" for ks.test from stats activates the Kolmogorov-Smirnov goodness-of-fit test, abbre-
viated further on as the KS test). User-defined functions can be also used if they have at least one or
two parameters (x for one- or x,y for two-sample case, namely) and return a list of at least two values
(statistic for the output test statistic, and p.value for the calculated p-value). In the case of the avs
approach, the additional parameter criticalValueFunction is required with the name of the function
calculating the p-value for a specified critical level of the considered test statistic. For the KS test, such
a procedure is given by KSTestCriticalValue available in FuzzySimRes.

To conduct the test, the classical epistemic approach (bootstrapMethod = "std") or its antithetic
version (bootstrapMethod = "anti") can be applied. The p-values (in the case of ms or res methods)
are aggregated with the algorithm specified in combineMethod. Besides combineMethod="mean", i.e.
the simple averaging of p-values, all other methods are as in the package palasso (Rauschenberger
et al., 2020).

Let us generate the second sample with the small shift in location and compare it with the
previously generated sample1 using the two-sample KS test with the anti and ms approaches for 100
α-cuts:

> set.seed(56789)

> sample2 <- SimulateSample(n=10,originalPD="rnorm",
+ parOriginalPD=list(mean=0.5,sd=1),
+ incrCorePD="runif",parIncrCorePD=list(min=0,max=0.6),
+ suppLeftPD="runif",parSuppLeftPD=list(min=0,max=1),
+ suppRightPD="runif", parSuppRightPD=list(min=0,max=1),
+ type="trapezoidal")

> EpistemicTest(sample1$value,sample2$value,algorithm = "ms",
+ bootstrapMethod="anti",cutsNumber=100)

[1] 0.1873127

An example of the one-sample KS test can be found in the supplementary file.

2.5 Real-life dataset

FuzzySimRes provides a fuzzy epistemic dataset controlChartData concerning electronic circuit
thickness, which is one of the most important quality characteristics in the production of the electronic
boards for vacuum cleaners (see Faraz and Shapiro (2010) for the relevant source). This dataset is
given as a list of 90 TRFNs and contains 30 samples, each of size three. Every observation has its own
label X.y.z, where y is a sample number, and z stands for the element number in a sample, e.g.

> controlChartData$X.1.2$

Trapezoidal fuzzy number with:
support=[70.19,74.15],

core=[71.4,71.4].

is the second value in the first sample.
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3 Statistical applications with the package

As it was mentioned, the epistemic bootstrap provides real-valued samples generated from the initial
fuzzy sample. It enables us to apply many classical statistical methods instead of using procedures
specifically designed for fuzzy data (usually underdeveloped in the R environment). In the following,
we present some statistical applications of such approaches for both synthetic and real-life datasets.

In the first case, using SimulateSample, the respective samples are generated from the probability
distributions described in Table 2. Available TPFNs are grouped by their types, wherein the normal
distribution with the mean µ and standard deviation σ is denoted by N(µ, σ), the uniform distribution
on the interval (a, b) – by U(a, b), the exponential distribution with the parameter λ – by Exp(λ),
the Weibull distribution with the shape k and scale λ parameters – by Weib(k, λ), and the Gamma
distribution with the shape α and rate β parameters – by Γ(α, β), respectively. In the case of the real-life
dataset, the data controlChartData embedded in FuzzySimRes is applied.

In the following, only some of the results are presented in the tables and graphs to reduce the
overall length of the paper. All of the outputs can be found in the supplementary script file.

Type X Cl , Cr Sl Sr

F(N,U,U,U) N(0, 1) U(0, 0.6) U(0, 1) U(0, 1)
F(Weib,Exp,Exp,Exp) Weib(2, 1) Exp(5) Exp(5) Exp(4)
F(Γ,U,U,U) Γ(2, 2) U(0, 0.6) U(0, 0.8) U(0, 0.8)

Table 2: Scenarios for simulating fuzzy random variables.

3.1 Comparison of estimators

We start with a comparison of some estimators of the mean, variance, and median for both epistemic
approaches, i.e., the std and anti. For all types of the TPFNs mentioned in Table 2, the function
EpistemicEstimator was applied with b = 100 α-cuts. To limit the randomness impact, each numerical
experiment was repeated m = 1000 times. Both small (n = 10) and moderate (n = 100) samples were
considered.

Since the function SimulateSample produces also the “true values” of the fuzzy samples (i.e., their
originals), it gives an opportunity (quite exceptional in real-life applications) to compare the epistemic
bootstrap estimators based on fuzzy samples with the results related to these originals. Then, we can
calculate the respective error – Originals Absolute Error (abbreviated as OAE) – that measures the
absolute difference between the epistemic bootstrap estimator θ̂∗j based on the j-th synthetic sample

and its counterpart θ̂o
j obtained from the originals for this j-th sample, i.e.,

OAE =
1
m

m

∑
j=1

∣∣∣θ̂∗j − θ̂o
j

∣∣∣ , (5)

where m is the number of simulations.

In general, it seems that the anti approach gives better results – the resulting estimates are closer
to their “true” values and the respective errors are lower (see Table 3 and the supplementary file).
To facilitate the understanding of Table 3, the best outputs (i.e., the estimators that are the closest to
the respective true values of the parameters, and the lowest errors in each case) are given in boldface
there. Of course, the answers may vary for the different error measures (e.g., sometimes the OAE
is slightly lower for the std approach). However, the anti method clearly provides the significant
improvement measured with the SE, slightly less important (but still visible) in the case of the MSE.
Taking into account the low additional numerical burden of this approach when it is compared with
the std method (i.e. generation of two values: from the α-cut and its (1 − α) counterpart instead of
only a single drawing), the anti algorithm should be recommended to users. The above-mentioned
conclusions are similar to the ones discussed in Grzegorzewski and Romaniuk (2021, 2022c).

3.2 Detection of the difference in location

Then, we conducted the power analysis for the two-sample KS test taking into account all the con-
sidered epistemic bootstrap approaches. Two independent samples corresponding to the types of
the TPFNs from Table 2 were generated and the deterministic shift was added to the second sample.
As previously, both the small (n = 10) and moderate (n = 100) samples were considered, and each
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Mean Variance Median
std anti std anti std anti

F(N,U,U,U), n = 10
Value -0.0055 -0.0053 1.1476 1.0854 -0.0034 -0.0038
SE 0.1089 0.0760 0.2424 0.1595 0.1797 0.1347
MSE 0.1145 0.1078 0.3469 0.2972 0.1602 0.1522
OAE 0.0407 0.0405 0.1555 0.1105 0.0874 0.0819
F(N,U,U,U), n = 100
Value 0.0016 0.0016 1.1472 1.0850 0.0004 0.0006
SE 0.0345 0.0242 0.0999 0.0498 0.0705 0.0573
MSE 0.0115 0.0110 0.0526 0.0305 0.0179 0.0168
OAE 0.0135 0.0134 0.1480 0.0860 0.0405 0.0375
F(Weib,Exp,Exp,Exp), n = 10
Value 0.8917 0.8912 0.2884 0.2671 0.8536 0.8517
SE 0.0636 0.0440 0.0728 0.0478 0.0941 0.0706
MSE 0.0272 0.0251 0.0287 0.0222 0.0398 0.0378
OAE 0.0409 0.0412 0.0716 0.0553 0.0609 0.0621
F(Weib,Exp,Exp,Exp), n = 100
Value 0.8864 0.8865 0.2828 0.2614 0.8417 0.8387
SE 0.0203 0.0141 0.0295 0.0152 0.0359 0.0290
MSE 0.0029 0.0027 0.0068 0.0037 0.0044 0.0041
OAE 0.0127 0.0127 0.0676 0.0462 0.0252 0.0247

Table 3: Numerical comparison of the estimators (for the mean, variance, and median) and their errors
(the standard error – SE, the mean squared error – MSE, and the originals absolute error – OAE) based
on the epistemic bootstrap (the standard – std, and the antithetic epistemic bootstrap – anti).

numerical experiment was repeated m = 1000 times. Besides the estimation of the null hypothesis
rejection percentage for the significance level α = 0.05, the p-values for the increasing shift were also
obtained and aggregated by simple averaging.

Using SimulateSample which delivers the originals of the simulated fuzzy sample, we can compare
the results of the epistemic bootstrap tests with their “crisp” counterpart, so the results of the classical
two-sample KS test serve us as a benchmark. We can see that the estimated p-values (see Fig. 3) and
power curves (see Fig. 5) for the moderate sample of TPFNs described by F(N,U,U,U) are very close to
their respective benchmarks, especially for the shift larger than 0.75. To visualize the results better,
the differences in p-values and power curves between the epistemic bootstrap approaches and the
classical KS test were also calculated (see Fig. 4 and 6, respectively).
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Figure 3: Estimated p-values of the two-
sample epistemic and “crisp” KS tests for
F(N,U,U,U), n = 100, and shift in location.
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Figure 4: Differences in estimated p-values
between the two-sample epistemic and “crisp”
KS tests for F(N,U,U,U), n = 100, and shift in
location.

In general, the estimation error for p-values is lower when the ms or res approaches are used
(especially when they are combined with the anti method), and the power curves are closer to the
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Figure 6: Differences in power curves between
the two-sample epistemic and “crisp” KS tests
for F(N,U,U,U), n = 100, and shift in location.

respective benchmarks for the avs and ms algorithms (the anti method has also a beneficial effect).
Additional examples can be found in the supplementary file and Grzegorzewski and Romaniuk
(2022a).

3.3 Detection of the difference in scale

Next, we conducted the power study of tests to detect the difference in dispersion. This case was
modeled by gradually increasing the standard deviation of the second sample when the first one is
simulated according to F(N,U,U,U) type.

As previously, the p-values and power curves (see Fig. 7 and 9) were estimated for the moderate
sample and the respective simulation parameters: m = 1000, α = 0.05, and b = 100. A comparison of
the epistemic bootstrap approaches and our benchmark (i.e., the two-sample “crisp” KS test) was also
done (see Fig. 8 and 10, respectively). It seems that the estimation error of p-values is lower for the ms
or res approach and the power curves are closer to the respective results of the “crisp” KS test for the
avs and ms algorithms. Thus, the anti method again improves the results.

An additional example for the small sample is provided in the supplementary file.
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Figure 7: Estimated p-values of the two-
sample epistemic and “crisp” KS tests for
F(N,U,U,U), n = 100, difference in scale.
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Figure 8: Differences in estimated p-values
between the two-sample epistemic and “crisp”
KS tests for F(N,U,U,U), n = 100, difference in
scale.

3.4 Goodness-of-fit test in quality control

Finally, we applied the KS two-sample test for the manufacturing data embedded in FuzzySimRes.
These fuzzy data can be used to build the respective control charts to check the behavior of the
underlying process (Faraz and Shapiro, 2010). But in our experiment, the sample was divided
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randomly into two parts to check if they came from the same distribution (so they were “not statistically
different”).

> set.seed(5678)
> randomSetsCCD <- sample(length(controlChartData),length(controlChartData)/2)

> EpistemicTest(controlChartData[randomSetsCCD],controlChartData[-randomSetsCCD],
+ algorithm="avs",cutsNumber=1000)

[1] 0.3319477

> EpistemicTest(controlChartData[randomSetsCCD],controlChartData[-randomSetsCCD],
+ algorithm="ms",combineMethod="mean",cutsNumber=1000)

[1] 0.433548

> EpistemicTest(controlChartData[randomSetsCCD],controlChartData[-randomSetsCCD],
+ algorithm="res",combineMethod="mean",cutsNumber=1000,K=200)

[1] 0.4616578

As we can see, all of the considered algorithms do not reject the null hypothesis for the KS test,
even for high significance levels. These results are consistent with the findings in Faraz and Shapiro
(2010). Moreover, as Grzegorzewski and Romaniuk (2024) described, the epistemic KS test clearly
indicates the issues caused by the troublesome 21st subsample. It makes the process out of control and
results in the lower p-values in the goodness-of-fit tests.

4 Conclusions

FuzzyResampling package delivers resampling methods developed to overcome some shortcomings
of the classical Efron’s bootstrap in the fuzzy environment (see also Romaniuk and Grzegorzewski
(2023)). However, this package was intended for the ontic fuzzy data.

Meanwhile, FuzzySimRes is a package that has a completely new purpose. The proposed epistemic
bootstrap methods allow the generation of real-valued samples from the epistemic fuzzy data, which
can then be directly utilized as input values for the various classical statistical procedures (like
estimators, tests, etc.). It seems that the proposed methods combined with some well-known statistical
techniques can be competitive with available fuzzy procedures which are not too popular among
practitioners. Moreover, as was shown in the respective examples, the results of the suggested
approaches implemented to imprecise data are comparable with their counterparts – the benchmarks
related to the real-valued originals of the fuzzy perceptions.

Of course, further investigations on epistemic bootstrap are still required. They can be aimed both
at new resampling epistemic procedures and their applications in statistical inference and machine
learning.
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Fast and Flexible Search for Homologous
Biological Sequences with DECIPHER v3
by Erik S. Wright

Abstract The rapid growth in available biological sequences makes large-scale analyses increasingly
challenging. The DECIPHER package was designed with the objective of helping to manage big
biological data, which is even more relevant today than when the package was first introduced. Here,
I present DECIPHER version 3 with improvements to sequence databases, as well as fast and flexible
sequence search. DECIPHER now allows users to find regions of local similarity between sets of DNA,
RNA, or amino acid sequences at high speed. I show the power of DECIPHER v3 by (a) comparing
against BLAST and MMseqs2 on a protein homology benchmark, (b) locating nucleotide sequences in
a genome, (c) finding the nearest sequences in a reference database, and (d) searching for orthologous
sequences common to human and zebrafish genomes. Search hits can be quickly aligned, which
enables a variety of downstream applications. These new features of DECIPHER v3 make it easier to
manage big biological sequence data.

1 Introduction

Searching is one of the most common operations in biological sequence analysis with a wide variety
of applications. The Biostrings package includes the Aho-Corasick, Boyer-Moore, and Shift-Or
algorithms that are frequently used for matching short sequences with relatively few differences, such
as oligonucleotide probes or primers. More difficult queries typically rely on calling programs outside
of R. For example, error-prone long reads can be rapidly mapped with programs that make use of
seed-and-extend approaches to identify matching regions between longer sequences (Sahlin et al.,
2023). More distantly related homologs can be found with BLAST (Altschul et al., 1997) or quicker
alternatives DIAMOND (Buchfink et al., 2021), LAST (Kielbasa et al., 2011), and MMseqs2 (Steinegger
and Soding, 2017). The ubiquity of these tools in sequence analyses attests to the importance of
searching through biological sequences.

BLAST is perhaps the most commonly used bioinformatics tool. With over 30 years since its first
release, BLAST still represents the gold standard of sensitivity and specificity for sequence search,
and competitors typically compare themselves to BLAST’s speed and accuracy. Both DIAMOND
version 2 and MMseqs2 offer modes with accuracy rivaling BLAST and several fold its speed for
practical search tasks. There is a clear trade-off between search sensitivity and speed, with different
programs specializing at opposite ends of the spectrum. Improved sensitivity can be obtained by
converting initial search hits into a profile and iteratively repeating the search, which is the basis of
programs such as HHblits (Remmert et al., 2011), PSI-BLAST (Altschul et al., 1997), and PHMMER
(Eddy, 2011). Greater speed is achievable when sensitivity is less of a concern, such as when mapping
nearly identical short reads to a genome. For example, the Rsubread package maps and quantifies
short reads from R using the fast subread aligner (Liao et al., 2019).

To my knowledge, there is currently no R-based implementation of a generalized homology search
program, although there exist interfaces to external programs that can be called from within R. The
DECIPHER package is a natural fit for large-scale homology search because of its functionality for
managing big biological data (Wright, 2016). With this in mind, here I introduce DECIPHER v3 with
the addition of general-purpose search and improvements to sequence databases. DECIPHER can
now find locally homologous regions between two sets of nucleotide or protein sequences, report
their scores and, if desired, align the search hits. In the examples below, I show the application of
DECIPHER’s search functions to common search problems. DECIPHER v3 is available from the
Bioconductor package repository.

2 Design of the sequence search algorithm implemented in DECIPHER

The development of search functionality within DECIPHER was inspired by user experiences with
BLAST. First, BLAST is very sensitive but relatively slow for large sets of query and target sequences.
Alternative search programs showed it was possible to exceed BLAST’s speed, potentially at the
expense of sensitivity. Second, BLAST results are limited by multiple parameters that have led to
misinterpretation (Gonzalez-Pech et al., 2019; Shah et al., 2019; Madden et al., 2019). Third, reliance on
BLAST requires running software outside of the R environment, and it would be preferable to have
similar functionality available within R. These issues guided the development of fast and versatile
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Figure 1: Overview of the main parameters and functions comprising homology search in DECIPHER.

search and pairwise alignment functions in DECIPHER.

As shown in Figure 1, homology search in DECIPHER v3 is separated into three functions:
indexing the target sequences with IndexSeqs, searching a query (pattern) for significant target
(subject) hits with SearchIndex, and, optionally, aligning those hits with AlignPairs. The statistical
basis for DECIPHER’s heuristic search algorithm is related to that of BLAT (Kent, 2002). Assuming
equal frequencies of letters from an alphabet of size A, the probability of finding at least one match of
length k among T target k-mers is: probability = 1− (1− (1/A)k)T . When this probability is near zero,
as is typically the case when 4 ≥ A ≤ 20 and k > 1, it can be approximated as T/Ak. It is convenient
to score using the negative log-likelihood of probability: − loge(probability) ≈ k ∗ loge(A)− loge(T).
The k ∗ loge(A) term can be replaced with the negative loge of the normalized frequency ( f ) expected
for a specific k-mer when k is variable in length or alphabet composition is non-uniform (i.e., f ≈ A−k).

This scoring approach can be extended to approximate the probability of finding multiple k-mer
matches within a region of a given size (Kent, 2002). However, the existence of insertions or deletions
(i.e., gaps) between matches complicates the application of an analytical scoring approach. Hence,
DECIPHER uses a search formula with empirical costs for the number of positions (sep) and gaps (gap)
between chained matches. The final scoring formula for a hit between a query and target sequence is:

score =
n

∑
i=1

(− loge( f )) +
n−1

∑
i=1

(sepCost ∗ √sep) +
n−1

∑
i=1

(gapCost ∗ √gap)− loge(Q)− loge(T/step)

Where f is the expected frequency of the ith k-mer match, sep is the number of positions separating
neighboring (i.e., i and i + 1) matches, gap is the minimum length of insertions or deletions (indels)
between neighboring matches, Q is the number of k-mers queried, and T is the number of k-mers in
the target sequence, and step is the staggering between adjacent k-mers recorded in the inverted index.

Affine (i.e., constant plus linear) gap penalties are popular for sequence alignment, although it is
known that the distribution of indel lengths is approximated by a Zipfian distribution (Wygoda et al.,
2024). In the absence of alignment it is only feasible to estimate the total number of gaps between
k-mers rather than their individual lengths. For this reason, the square root function was selected
to penalize distances between adjacent k-mer matches in SearchIndex. The square root functional
form gradually decreases the marginal penalty for longer distances, which reflects the diminishing
probability of observing longer gaps. Since the probability of gaps relative to mismatches is unknown,
both sepCost and gapCost are empirically optimized parameters.

The score for each hit represents the significance of the match, with scores above minScore defined
as significant. To correct for multiple testing, the default minimum score for reporting hits is loge(D −
T + 1), where D is the number of unmasked positions in the database. By default, masking is applied
to low complexity, ambiguous, and repeat regions of both the query and target sequences to avoid
false positive hits within regions that are not due to common descent (i.e., homology). Masking is also
applied to target k-mers that are far more numerous than expected in order to accelerate the search
process. Since all remaining positions are fully indexed, DECIPHER’s search functions guarantee that
all matches of at least length k are scored. Protein matches are found in a reduced amino acid alphabet
with residue groups: {A}, {C}, {D, E}, {F, W, Y}, {G}, {H}, {I, L, M, V}, {N}, {P}, {Q}, {R, K}, and {S, T}.

The SearchIndex algorithm is written in C code and begins by calculating the normalized expected
frequency ( f ) for every k-mer. Query (pattern) sequences are processed in parallel if DECIPHER was
compiled with OpenMP enabled and processors is not 1. After masking each query, the locations of all
matching unmasked target (subject) k-mers are extracted from the inverted index and sorted by their
location within each target sequence. Next, k-mers with starting positions separated by exactly the
step size are collapsed into contiguous matches by combining their scores. If subject sequences are
provided to SearchIndex then the matches are extended to the left and right until encountering their
nearest neighbor or their score decreases. Matches between query and target sequences are chained
together using dynamic programming (Abouelhoda and Ohlebusch, 2003). The minimum score is
applied to the set of top scoring chains to generate the candidate hit set (Fig. 2). Top scoring hits are
returned after imposing any user-specified limits on the number of hits per target (perSubjectLimit)
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Figure 2: Matches between a query sequence and each target sequence in a database are chained
into high scoring hits. Hits are scored based on the number of positions separating matches and the
minimum number of implied gaps between matches.

and query (perPatternLimit) for each sequence queried.

The selection of an appropriate value for k-mer length (i.e., k) is critically important to balance
sensitivity and search speed. An advantage of DECIPHER’s scoring formulation is that is possible to
approximate sensitivity at a value of k for the objective of finding homologous matches of length Q
with a given percent identity (PID). If k is unknown, the IndexSeqs function allows users to provide
their goal sensitivity, Q, and PID to automatically estimate a reasonable value for k. Relatedly, a step
size (s) between target k-mers of greater than one position can be provided to make k-mers partly
overlapping or non-overlapping, which reduces the amount of memory required for the inverted
index at the expense of decreased sensitivity.

3 Comparing programs on a protein search benchmark

Homology search programs are typically compared on benchmarks composed of sequences assigned to
protein families based on their structures (Fox et al., 2014). To this end, I downloaded the set of 93,153
non-redundant amino acid sequences from the SCOPe (v2.08) database, which contains representative
sequences from 5,047 protein families. Families may contain homologous sequences with very high or
low similarity, representing a wide gamut of search cases. To create an independent test set, I withheld
a single protein from each of the 4,041 protein families with more than one representative sequence. I
constructed a matching decoy set by reversing the held-out proteins, as this is a common benchmarking
approach since proteins do not evolve by reversal (Steinegger and Soding, 2017). Therefore, the final
query set consisted of 8,082 sequences and the target set contained 89,112 sequences.

Ideally, all sequences in the same family as the query sequence would be found with higher scores
than any sequences in the decoy set. For each search, accuracy can be approximated as the fraction of a
protein’s family that was given higher scores than the highest scoring false positive hit to the matching
decoy protein, an accuracy measure commonly known as AUC1 (Buchfink et al., 2021). Figure 3
shows that providing SearchIndex with subject (target) sequences for k-mer extension improved
accuracy at the expense of approximately 2- to 3-fold slower search speed. As expected, lower values of
k-mer length and step size improved accuracy and decreased search speed. Impressively, DECIPHER
showed comparable accuracy and speed to MMseqs2 (release 15-6f452) at some values of k-mer length
and step size. Both programs were less sensitive than protein BLAST (v2.15.0), but able to achieve
much higher speeds under some parameterizations. All programs accurately detected the vast majority
of true positives above 40% identity (Fig. 3) despite the short lengths of many SCOPe sequences.

4 Example 1: Locating nucleotide sequences in a genome

A common application of sequence search is to find the location of nucleotide sequences in a genome.
This may include query sequences that are long or short, contiguous or discontiguous (e.g., exons),
and similar or distant to the genome. Consider the case of locating promoter elements in a bacterial
genome. Here, the query sequences are relatively short but may contain mismatches or indels at
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Figure 3: The SCOPe database of amino acid sequences assigned to protein families was used to
compare search programs. (A) Speed is shown relative to protein BLAST (horizontal gray line) for
easier comparison. All programs were configured to use the maximum available processor threads.
DECIPHER achieved greater accuracy (average AUC1) with inclusion of subject sequences to allow
extension of k-mer matches. The value of k-mer length (k) is shown on each DECIPHER point. Lower
values of k and step size improved accuracy at the expense of speed. MMseqs2 results are shown
across a range of user-specified sensitivities from −s 1 to −s 10, with the default of 5.7 shown as a
point. BLAST was run under its default settings, which reports hits with E-values less than 10. (B) The
average fraction of true positives given higher scores than those of their corresponding decoy false
positive increases with percent identity between the true positives and query sequences. DECIPHER
results are shown at different k-mer lengths for a step size of 1 when supplying the subject sequences
(i.e., the black line in (A)). MMseqs2 and BLAST results are shown at their default settings.

some sites relative to the genome. As a case study, I downloaded the set of 1,440 confirmed and
strong confidence promoters in the E. coli genome from RegulonDB (Salgado et al., 2024). Given that
promoters can map to the forward or reverse strand, it is necessary to build an index from both strands
using IndexSeqs. Since the optimal value for k is unknown, it is possible to instead specify the goal of
90% sensitivity for query sequences of length 60 nucleotides and 80% identity to the genome, resulting
in an estimated k of 5. Then, SearchIndex can be used to obtain a data frame containing hits meeting
the minimum score:

query <- readDNAStringSet("<<path to promoters.fas>>")
target <- readDNAStringSet("<<path to genome.fas>>")
target <- c(target, reverseComplement(target)) # search both stands
index <- IndexSeqs(target, sensitivity=0.9, percentIdentity=80, patternLength=60)
hits <- SearchIndex(query, index, perSubjectLimit=0, processors=NULL) # use all CPUs

Performing this search for 1,440 promoter sequences of length 60 takes 4.1 seconds on a machine
with 16 processor cores and 45 seconds using a single processor. In contrast, searching for a single
promoter using the Biostrings function matchPattern takes 6.7 seconds when allowing for up to
12 mismatches or gaps (i.e., ≥ 80% identity). This equates to a speedup of over 2,000-fold with
16 processors or 200-fold with a single processor using DECIPHER. Alternatively, the Biostrings
function matchPDict can search for all patterns without indels in 22 seconds. The SearchIndex function
finds 1,593 significant hits, while the matchPattern function finds 1,478 matches and the matchPDict
function finds 1,455 matches. All matchPDict matches are found by matchPattern, and all but one of
the matchPattern matches overlap with a hit found by SearchIndex.

5 Example 2: Aligning to the nearest neighbor in a reference database

Perhaps the most common use of biological sequence search is to find homologous sequences in a
reference set. For example, the online BLAST search tool allows selection from a wide variety of
databases, including many that are taxon or gene specific. To test the use of DECIPHER for this
purpose, I downloaded the set of 17,103 sequences that are part of the Fungi Internal Transcribed
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Figure 4: The scores output by SearchIndex and AlignPairs for each hit (point) show similar correlations
with percent identity. Lower read (query) coverage often resulted in higher percent identities for the
same score, implying the hit corresponded to a smaller aligned region with higher PID.

Spacer (ITS) project (BioProject PRJNA177353), which serves as a marker region for fungal taxonomy
(Schoch et al., 2014) and is searchable from BLAST’s online tool. As a query, I downloaded a set
of 4,823 unique ITS reads (SRA accession SRR5098782) obtained from the gut of a healthy human
subject as part of the Human Microbiome Project (Nash et al., 2017). Since every read is expected to be
homologous to every reference sequence, it is useful to limit the number of hits per read by specifying
a perPatternLimit.

index <- IndexSeqs(reference, K=8L, processors=NULL)
hits <- SearchIndex(reads, index, perPatternLimit=100, processors=NULL)
aligned <- AlignPairs(reads, reference, hits, processors=NULL)
PID <- 100*aligned$Matches/aligned$AlignmentLength
coverage <- 100*(aligned$Matches + aligned$Mismatches)/width(reads)[aligned$Pattern]

Searching the inverted index required 14 seconds using 16 processors and a k-mer length of 8. This
resulted in 475,443 search hits, which were aligned by AlignPairs in 3.7 seconds using 16 processors.
Alignment provides a means to easily calculate the PID between each query/target hit, making it
straightforward to determine the nearest reference sequence to each read using R code. There are
multiple ways to formulate PID (Raghava and Barton, 2006), all of which are possible to calculate
from the metadata output by AlignPairs. Here, we will compute PID of the alignment, which is
correlated with the scores output by SearchIndex and AlignPairs (Fig. 4). This example illustrates
the power and speed offered by the new search functions in DECIPHER v3.

6 Example 3: Searching for homology between genomes

Determination of orthology represents a challenging application of sequence search, as establishing
homology is difficult in the presence of substantial sequence divergence. As an example, I used
DECIPHER’s search functions to find orthologous proteins in humans and zebrafish (Danio rerio),
which share a common ancestor approximately 450 million years ago (Bi et al., 2021). Many studies use
reciprocal best hits to define orthologs by intersecting the best hit for each sequence from a first (query)
genome to a second (target) genome with the best hit in the other direction (Hernandez-Salmeron and
Moreno-Hagelsieb, 2020). Writing a ReciprocalSearch function in R is straightforward, given the two
sets of sequences, k-mer length (k), and step size (s):

ReciprocalSearch <- function(seqs1, seqs2, k, s, CPUs=NULL) { # bidirectional searching
index1 <- IndexSeqs(seqs2, K=k, step=s, verbose=FALSE, processors=CPUs)
hits1 <- SearchIndex(seqs1, index1, perPatternLimit=1, verbose=FALSE, processors=CPUs)
index2 <- IndexSeqs(seqs1, K=k, step=s, verbose=FALSE, processors=CPUs)
hits2 <- SearchIndex(seqs2, index2, perPatternLimit=1, verbose=FALSE, processors=CPUs)
m <- match(hits1$Pattern, hits2$Subject) # intersect the best hits
w <- which(!is.na(m))
w <- w[hits1$Subject[w] == hits2$Pattern[m[w]]]
hits1[w,]

}
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Figure 5: More orthologous pairs were predicted when searching protein (amino acid) sequences rather
than their corresponding coding (nucleotide) sequences. Lower values of k-mer length and, especially,
step size permitted the identification of a greater number of putative orthologs with or without
matching protein annotations. The approximate p-value (one-sided binomial test) for observing a
given number of matched annotations by chance is shown above each bar.

Since many animal proteins are isoforms, I reduced each set to the unique protein sequences having
distinct protein names and distinct gene names, maintaining the longest isoform per gene. This process
resulted in 20,169 human proteins (BioProject PRJNA559484) and 23,005 zebrafish proteins (BioProject
PRJNA11776). Applying the reciprocal search strategy predicted substantially more orthologs when
searching with protein rather than their corresponding coding (nucleotide) sequences (Fig. 5). Consis-
tent with the previous results, smaller k-mer lengths generally provided more orthologous hits, while
increasing step size had a more detrimental effect than increasing k-mer length.

Additional information is required to determine whether the greater number of reciprocal best
hits is due to more correct or incorrect predictions. It is possible to use annotation agreement as a
proxy for the quality of orthology predictions (Altenhoff et al., 2016). In total, 3,481 distinct protein
names are common to human and zebrafish genomes, and the remaining proteins either lack a protein
name, are without an ortholog in the other species, or follow alternative nomenclature. The total
number of predicted orthologous pairs was correlated with the number of matching annotations, with
putative protein orthologs having far more matched annotations than predicted nucleotide orthologs.
Furthermore, increases in matched annotations were statistically significant (Fig. 5). These results
confirm the expectations that amino acid search provides greater sensitivity than nucleotide search
and lower values of step size improve sensitivity.

7 Coupling search to improved sequence databases in DECIPHER v3

The requirement for in-memory indexing is a downside of DECIPHER’s search functions relative
to BLAST for large target databases. For example, loading all chromosomes of the complete human
genome into memory requires 2.9 GB per strand before even building an inverted index. To mitigate
this downside, users can construct workflows that process queries in subsets, such as searching
individual chromosomes one at a time. For example, it is possible to search a database connection
(dbConn) in batches of a given number of sequences (i.e., batchSize in the example below):

n <- 0
batchSize <- 1000
repeat {
seqs <- SearchDB(dbConn, limit=paste(n, batchSize, sep=","))
hits <- SearchIndex(seqs, index)
# do something with hits here before the next batch
if (length(seqs) < batchSize)
break

n <- n + batchSize
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}

Since inception, DECIPHER has supported the curation of large amounts of biological sequences
through SQLite databases. DECIPHER v3 now supports multiple SQL database engines. This is
accomplished by relying on generic SQL syntax in conjunction with an interface to the DBI package
such as RMariaDB, RPostgres, or RSQLite. Supporting multiple database drivers allows users to
tailor their database configuration to their needs. While SQLite is portable and straightforward to
configure, other database types allow multiple users and distributed systems. This empowers users to
construct more complex workflows by accessing or updating subsets of a large sequence database.

8 Discussion

The new search functions in DECIPHER v3 have a wide variety of potential applications. Here, I
showed how users can control the trade-off between speed and accuracy by adjusting k-mer length
and step size. The search functions described above are parallelized with OpenMP, which provides a
substantial speed-up when multiple processors are enabled. Since all searches are in-memory, they can
be used in conjunction with DECIPHER’s database functionality to create adaptable and distributable
workflows. Unlike application-specific search tools, I designed DECIPHER’s search functions to be
highly flexible and empower users with more control. My hope is that these search functions will be
useful for creating customized workflows within the R environment.

A nice feature of BLAST is its general purpose use, which is mirrored by DECIPHER’s search
functions. Some alternative search methods make assumptions about the relative length of the query
versus target sequences and the degree to which they overlap. For example, short read alignment
methods typically expect the query (i.e., read) to be much shorter than the target (i.e., genome).
Similarly, protein search can be accelerated by assuming the query and target sequences have similar
lengths, because it is possible to constrain the search space to matches between similar positions
in the query and target sequences. This assumption fails to hold if query or target sequences are
incomplete or truncated. In contrast, DECIPHER’s search functions are intended to find all hits
sharing a significant set of (unmasked) k-mers.

As was used here, most benchmarks for homology inference are created to gauge how well a
program can identify structurally similar protein domains at very low percent identity (Saripella et al.,
2016). Structure-based search methods, such as DeepBLAST (Hamamsy et al., 2023) and Foldseek (van
Kempen et al., 2023), outperform sequence-based search methods on these benchmarks. This result
has led some to question whether protein BLAST is now obsolete (Al-Fatlawi et al., 2023). However,
domain-based benchmarks only represent a fraction of the situations where search is commonly used.
Many use cases involve finding full-length proteins in a proteome (Hernandez-Salmeron and Moreno-
Hagelsieb, 2020) or short nucleotide sequences in a genome (Marrama et al., 2023). DECIPHER’s
search functionality was designed to provide dependable search for these common use cases, as well
as many others.

The main strength of DECIPHER‘s search functions is their versatility. The main weakness is also
their versatility, because the functions are not tailored for any particular purpose. Specific applications,
such as paired-end read mapping, would require customized R code to process the results. For
example, DECIPHER does not automatically output BAM or SAM files that are common in mapping
applications, although similar information is contained within the functions’ outputs. In this sense,
DECIPHER is best suited for R users who have the inclination, time, and ability to develop code
around its functions. I anticipate that the new features in DECIPHER v3 will further encourage and
empower users to perform bioinformatics in the R environment.
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Bioconductor Notes, June 2024
by Maria Doyle, Bioconductor Community Manager, and Bioconductor Core Developer Team

Abstract We discuss general project news.

1 Introduction

Bioconductor provides tools for the analysis and comprehension of high-throughput genomic data.
The project has entered its twentieth year, with funding for core development and infrastructure
maintenance secured through 2025 (NIH NHGRI 2U24HG004059). Additional support is provided by
NIH NCI, Chan-Zuckerberg Initiative, National Science Foundation, Microsoft, and Amazon. In this
news report, we give some updates on core team and project activities.

2 Software

In May 2024, Bioconductor 3.19 was released*. It is compatible with R 4.4 and includes 2289 software
packages, 431 experiment data packages, 928 up-to-date annotation packages, 30 workflows, and
5 books. Books are built regularly from source, ensuring full reproducibility; an example is the
community-developed Orchestrating Single-Cell Analysis with Bioconductor.

*Note: Bioconductor 3.20 was subsequently released in October 2024. For details on the latest release, visit
the Bioconductor website.

3 Community and Impact

3.1 CZI EOSS6 Grants Announcement

In June 2024, the Chan Zuckerberg Initiative (CZI) announced funding for five Bioconductor projects as
part of the EOSS Cycle 6. These projects focus on advancing training accessibility, developer support,
GPU computing, resource tagging with ontologies, and the expansion of Tidyomics tools. For more
details on each project and its collaborators, see the blog post here.

3.2 CZI Open Science Meeting Highlights

On June 12–14, 2024, Bioconductor members attended the Chan Zuckerberg Initiative (CZI) Open
Science Meeting in Boston. This gathering provided an opportunity for current CZI Open Science
grantees to connect and share their progress. Bioconductor was recognised as one of the top open-
source software projects in the CZ Software Mentions dataset. For more details, see the blog post
here.

3.3 CSAMA 2024: Biological Data Science Summer School

The 20th edition of CSAMA (Computational Statistics for Biological Data Analysis) Summer School
took place in Bressanone-Brixen, Italy, from June 23–28, 2024. This intensive course covered advanced
analysis of molecular data using the R/Bioconductor ecosystem. Faculty included Robert Gentle-
man, co-founder of R and Bioconductor, and Vince Carey, current Bioconductor lead, highlighting
Bioconductor’s role in open-source training.

4 Conferences

4.1 BioC2024 Reminder

The annual Bioconductor Conference (BioC2024) is fast approaching! This year’s event will be held in
Grand Rapids, Michigan, from July 24–26, 2024. Featuring keynote talks, interactive workshops, and
ample opportunities for community engagement, BioC2024 is a must-attend event for Bioconductor
users and developers alike. Visit the conference website to register and learn more.
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4.2 EuroBioC2024 Reminder

Planning is well underway for EuroBioC2024, the European Bioconductor Conference, scheduled for
September 4–6, 2024, in Oxford, UK. Like BioC2024, EuroBioC2024 will include keynote presentations,
hands-on workshops, and plenty of opportunities for networking with members of the Bioconductor
community. For details and updates, visit the conference website.

5 Using Bioconductor

Start using Bioconductor by installing the most recent version of R and evaluating the commands

if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")

BiocManager::install()

Install additional packages and dependencies, e.g., SingleCellExperiment, with

BiocManager::install("SingleCellExperiment")

Docker images provides a very effective on-ramp for power users to rapidly obtain access to
standardized and scalable computing environments. Key resources include:

• bioconductor.org to install, learn, use, and develop Bioconductor packages.
• A list of available software linking to pages describing each package.
• A question-and-answer style user support site and developer-oriented mailing list.
• A community slack workspace (sign up) for extended technical discussion.
• The F1000Research Bioconductor gateway for peer-reviewed Bioconductor workflows as well

as conference contributions.
• The Bioconductor YouTube channel includes recordings of keynote and talks from recent

conferences, in addition to video recordings of training courses.
• Our package submission repository for open technical review of new packages.

Upcoming and recently completed events are browsable at our events page.

The Technical and and Community Advisory Boards provide guidance to ensure that the project
addresses leading-edge biological problems with advanced technical approaches, and adopts practices
(such as a project-wide Code of Conduct) that encourages all to participate. We look forward to
welcoming you!

We welcome your feedback on these updates and invite you to connect with us through the
Bioconductor Slack workspace or by emailing community@bioconductor.org.

Maria Doyle, Bioconductor Community Manager
University of Limerick

Bioconductor Core Developer Team
Dana-Farber Cancer Institute, Roswell Park Comprehensive Cancer Center, City University of New York, Fred
Hutchinson Cancer Research Center, Mass General Brigham
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Changes on CRAN
2024-07-01 to 2024-09-30

by Kurt Hornik, Uwe Ligges, and Achim Zeileis

1 CRAN growth

In the past 3 months, 473 new packages were added to the CRAN package repository.
144 packages were unarchived, 207 were archived and 1 had to be removed. The following
shows the growth of the number of active packages in the CRAN package repository:
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On 2024-09-30, the number of active packages was around 21414.

2 Changes in the CRAN Repository Policy

Similar to providing ORCID identifiers for individual authors and contributors in R pack-
ages, the policy now encorages to provide ROR identifiers (from the Research Organization
Registry, https://ror.org/) in a package’s DESCRIPTION file in case there are organizations
among the authors and contributors.

The policy now points out explicitly that package names on CRAN are persistent and in
general it is not permitted to change a package’s name.

3 CRAN package submissions

From July 2024 to September 2024 CRAN received 6705 package submissions. For these,
10875 actions took place of which 7759 (71%) were auto processed actions and 3116 (29%)
manual actions.

Minus some special cases, a summary of the auto-processed and manually triggered
actions follows:
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archive inspect newbies pending pretest publish recheck waiting

auto 2184 724 1459 219 0 2001 736 364
manual 1255 22 24 49 63 1282 351 58

These include the final decisions for the submissions which were

archive publish

auto 2046 (31.2%) 1717 (26.2%)
manual 1235 (18.8%) 1564 (23.8%)

where we only count those as auto processed whose publication or rejection happened
automatically in all steps.

4 CRAN mirror security

Currently, there are 94 official CRAN mirrors, 73 of which provide both secure downloads
via ‘https’ and use secure mirroring from the CRAN master (via rsync through ssh tunnels).
Since the R 3.4.0 release, chooseCRANmirror() offers these mirrors in preference to the others
which are not fully secured (yet).

5 CRAN Task View Initiative

There is one new task view:

• Dynamic Visualizations and Interactive Graphics: Maintained by Sherry Zhang, Di-
anne Cook, Ian Lyttle.

Currently there are 46 task views (see https://CRAN.R-project.org/web/views/), with
median and mean numbers of CRAN packages covered 110 and 123, respectively. Overall,
these task views cover 4741 CRAN packages, which is about 21% of all active CRAN
packages.
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Changes in R
by Tomas Kalibera and Sebastian Meyer

Abstract We present selected changes in the development version of R, which is referred to
as R-devel and is to become R 4.5. We also provide some statistics on bug tracking activities
in 2024, which covers 4 months before the release of R 4.4 and 8 months of work on R-devel.

1 Selected changes in R-devel

R 4.5.0 is due to be released around April 2025. The following gives a selection of changes in
R-devel, which are likely to appear in the new release.

For a more complete list of changes, run news(is.na(Version)) in R-devel or inspect
the nightly rendered version of the NEWS.Rd source file at https://CRAN.R-project.org/
doc/manuals/r-devel/NEWS.html or its RSS feed at https://developer.R-project.org/
RSSfeeds.html. The bundled R News give concise descriptions of a large number of changes,
including many smaller ones.

1.1 Selected user-visible changes

• R packages for installation are now downloaded in parallel, which improves the
download speed, on some systems by a large factor.

Existing support for simultaneous download in download.files() has been improved
and functions install.packages() and download.packages() now use it with the
default download method (libcurl). Downloading a single file requires a number of
handshakes between the client and the server, which may be expensive especially on
connections with large latencies. With simultaneous download, existing connections
to the same server may be re-used and handshakes be made in parallel with each other
and with other transfers. The actual speedup depends on network characteristics, but
significant speedups have been observed both with some very good as well as with
some rather poor network connections.

The speedups are bigger when HTTP version 2 is used, which depends on the server
(many CRAN mirrors support it) and when the curl library used on the client supports
it (on Unix and macOS it typically does, on Windows the upcoming Rtools45 will
support it).

More details about this work can be found in a blog post at https://blog.r-project.
org/2024/12/02/faster-downloads. The previous implementation of simultaneous
download has been improved to be more careful about available resources, particularly
available file handles.

The implementation of R internet timeout has been improved to allow parallel down-
loads of many files, though there is a semantic gap between an absolute-time timeout in
R and simultaneous download, where transfers may be delayed by ongoing transfers
and various connection assets may be re-used between transfers.

The status reporting for simultaneous transfers in download.file() has been improved
so that the caller can easily find out which individual transfers have succeeded. The
simultaneous download can be used directly also for other files, not only R packages.

• One can now enter and edit arbitrarily long input lines in the R console on Linux and
macOS (when the Readline library is used, which is normally the case) and in Rterm
on Windows. Arbitrarily long input lines can also be used in Rgui on Windows, but
only the last segment can be edited. In previous versions of R, there was a hard-coded
limit of about 4K bytes, which worked fine for input entered manually, but some users
ran into problems when pasting generated code. On some systems the input was
truncated, with Rgui on Windows it could also be corrupted.
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More details about this work can be found in a blog post at https://blog.r-project.
org/2024/08/30/long-input-lines. The R parser itself is always invoked on a fixed-
length prefix of the input. When the prefix turns out too short to make any progress
parsing, the parser is re-started with a longer prefix and the length is potentially
unlimited. This iterative mechanism is exposed in Rgui on Windows, when the user
can enter additional segments of the line, but then cannot edit the previous segment
anymore. Still, several bugs leading to input corruption were found during this work
and fixed.

Readline, used on Linux and macOS in R, allows to edit lines of arbitrary length, so
an intermediate layer has been implemented which provides the input to the parser
using that iterative mechanism. Rterm on Windows uses a rewrite of getline library,
which has been extended to support editing lines of arbitrary length, and again an
intermediate layer has been implemented to provide that to the parser.

• Support for the SHA-256 hashing algorithm has been added to R’s tools package
via function sha256sum(). It allows hashing files on disk and raw vectors of bytes
in memory. The underlying implementation used is public domain code written by
Ulrich Drepper. SHA-256 from the SHA-2 family of hash functions is considered more
secure than MD5 (md5sum()) and hence is more appropriate whenever the aim is to
detect not only accidental data corruption, but also malicious modification. SHA-256
is generally slower to compute than MD5 and the checksum is twice as long (MD5 is
128-bit). md5sum() has been extended to also support computation of a hash of raw
vector of bytes in memory, so that it has the same interface as sha256sum().

• R now supports zstd compression. Function zstdfile() has been added which
allows to create R connections to read from and write to zstd-compressed files. One
can use zstd compression with serialization and there is also some support for zstd
compression in the tar() and untar() functions. The zstd compression support is
currently optional in R builds: it is only included when the zstd library is available at
build time on Unix. On Windows, the zstd library is part of Rtools so zstd support is
always available.

With the default tuning options used currently in R, zstd offers typically slightly worse
compression than xz, but is faster. The tradeoffs, however, become different with other
tuning options.

• There is a new wrapper function grepv(...), short hand for grep(..., value =
TRUE), to return the matching elements themselves rather than their indices.

• A PDF document may include metadata in the so-called document information dictio-
nary. For instance, PDF documents produced by R’s pdf() device always set "R" as
Creator and by default use "R Graphics Output" as Title. An additional argument
author has now been added to set the Author entry (omitted by default), possibly via
pdf.options() in an R profile or init script. Furthermore, the new logical arguments
timestamp (setting CreationDate and ModDate) and producer ("R <major>.<minor>")
can be set to FALSE to disable the corresponding metadata fields. Disabling automatic
timestamps simplifies tracking uncompressed PDF output in version control systems.

• R CMD check gains an option --run-demo to check the R scripts in the demo directory
similar to those in tests. This means demos are run, potentially compared to reference
output in corresponding .Rout.save files, and it is checked that required R packages
are declared in the DESCRIPTION file. Whereas package tests are not installed by default,
demos are and are thus exposed to users, so package maintainers should ensure they
work. The new check option provides an alternative to including demo() calls in exam-
ples or test scripts. Demos may be interactive (e.g., some await a browser response,
require authentication, or contain instructions for special data or software setups) and
are sometimes used for computationally intensive examples (e.g., replication scripts
from associated publications), so R CMD check does not run demo scripts by default
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(similar to \donttest examples, which are only checked with option --run-donttest).
Package maintainers could add an explicit condition such as if (!interactive())
quit() to demo scripts that require interaction, so (occasional) checks with --run-demo
can be used to cover the others.

At the time of writing, 603 (3%) of 22133 packages on CRAN contained a demo direc-
tory. Of these packages, 117 used undeclared packages in demo scripts. Experiments
showed that dozens indeed required an interactive user or a special setup, and oth-
ers did not complete within 90 minutes (the chosen timeout on the test system). Of
the remaining 504 packages, 346 (69%) produced noteworthy errors: a considerable
amount of 275 packages failed a demo with “could not find function” or “object not
found” errors, often simply because the script forgot to attach the own package, and
sometimes because functionality has been removed in the meantime. Remaining
issues include coding errors that are catched in recent versions of R (e.g., length > 1
conditions), dead URLs, or breakage that is likely caused by changes in dependencies.

1.2 Selected low-level changes

A number of changes in R-devel — perhaps more than usual — are low-level and invisible
to R users, but important for the reliability and maintainability of R and R packages now
and in the future. Some changes of this kind are listed here.

• Progress has been made on improving the C API for R packages and embedding
applications. The interface has evolved organically over the years, sometimes exposing
more than necessary or helpful. With some functions it is too easy to make errors
leading to segfaults or incorrect results. Some functions expose too much internal
structure or behavior, which needs to be changed occasionally to be able to maintain
and improve R itself.

The interface is defined in the ‘Writing R Extensions’ manual, see RShowDoc("R-exts")
in your version of R or online at https://CRAN.R-project.org/manuals.html: what is
mentioned there and is available in installed header files (in directory R.home("include"))
is in the API. Most internal functions not in the API are “hidden” in the dynamic
libraries, which prevents their accidental use. In R-devel they are now hidden also on
macOS, previously only on Windows and Linux.

Some non-API functions currently have to remain unhidden, because they are needed
by base R packages that are part of the R distribution and are maintained with R. The
cleanup involved hiding some functions that were unnecessarily exposed, replacing
some functions with safer alternatives, and adding some to the API by documenting
them. This required cooperation of package authors and was tested and tuned on
CRAN and Bioconductor packages.

The ‘Writing R Extensions’ manual has been improved so that functions/symbols in
the API are explicitly flagged to be in the (regular) API, Fortran API (for Fortran code),
experimental API (subject to change, so users must be prepared to adapt much more
than with other categories), or embedding API (only for applications embedding R,
including front-ends). There is now internal functionality in R that can query if a given
symbol is in the API, which allows stricter checking.

• R includes a number of workarounds for bugs in the iconv library shipped with recent
versions of macOS. The library is used for encoding conversions, e.g., when converting
between Latin-1 and UTF-8. Despite most R installations today use UTF-8 as the
native encoding, such conversions are still happening, e.g., for plot labels and when
importing historical data from legacy file formats.

The iconv implementation that appeared in macOS 14.0 changed the behavior with
characters not representable in the target encoding, but also caused crashes with le-
gitimate use and caused incorrect conversions (garbage in output), which has been
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detected by R developers and users. The bugs lead to incorrect behavior with con-
version state reset, with incremental conversion of an input stream, and with treat-
ing byte-order marks. The details can be found in a blog post at https://blog.r-
project.org/2024/12/11/problems-with-iconv-on-macos.

The current CRAN builds of R for macOS use a static build of the iconv library that
existed in earlier versions of macOS (still truly GNU libiconv 1.11), so are not yet
exposed to these problems. However, users building R from source on macOS would
run into them if not applying workarounds. R 4.4 already included some of these
workarounds, but R-devel includes more and the previous ones have been improved.
Also, R-devel fixes a problem of interaction between one of the older workarounds
and an iconv bug causing a problem even in the CRAN builds.

As iconv would usually be linked dynamically when building R from source, the
workarounds are based on runtime tests that are executed on first use of encoding
conversion functions. Hopefully these bugs will eventually be fixed upstream in
macOS, so that these workarounds can be removed. They represent a surprisingly
large amount of code.

• The detection of invalid memory accesses caused by attempts to access elements of
empty vectors has been enabled by default and improved to be more robust to different
inlining decisions by the compiler. Such an access now causes an immediate crash of
R and can be easily located using a debugger. This is achieved via “poisoning”: a data
pointer to an empty R vector is intentionally returned invalid.

Invalid memory accesses can otherwise lead to crashes later in the computation or to
incorrect results. As a result of this change, a large number of memory access bugs
have been found in CRAN packages and reported to CRAN maintainers. If packages
from other repositories, where regular checking against R-devel is not in place, start
crashing with R 4.5, this is one of the possible causes.

The amount of related changes in R-devel is small, but the effort debugging packages
and providing fixes or advice to package maintainers has been significant.

• R-devel on Windows has been updated so that it can be built also with some alternative
Msys2 toolchains, not only with Rtools. This required changes in the make files and
is based on pkg-config, which is used for figuring out library dependencies and C
preprocessor options. It simplifies testing of the Windows-specific code in R with
newer compilers (newer than currently in Rtools) and it allows using sanitizers on this
code. Also, newer compilers with better diagnostics may find problems relevant also
for the current compilers in Rtools. R-devel has been tested on Windows with some of
the Msys2 toolchains and sanitizers. In previous years, some alternative toolchains
have also been tested, but it required ad-hoc manual modification of the make files in
the R sources.

This support can also be used for testing package code with alternative toolchains,
which however requires some Windows-specific knowledge. It is essential that all
code in use is built by the same toolchain, so for these experiments, one needs to
start with an empty library. Also, Msys2 uses dynamic linking, so one can only run
(test) the result with the corresponding Msys2 toolchain environment. More details
are available in a blog at https://blog.r-project.org/2025/01/28/alternative-
toolchains-on-windows.

• C23 is a new C standard that brings several new features to the language, including
bool, true and false keywords. It is the default standard used by GCC 15, which
is expected to be released as stable around the release of R 4.5 . R-devel, as well as
the upcoming third patch release of R 4.4, has been made installable with the current
pre-release version of GCC 15 and also with older compilers when the C23 standard is
selected explicitly.

R packages affected by this change may either choose to explicitly require some older
C standard (possibly C17), or better be updated to work also with C23. R-devel has
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been switched to use C23 always when the compiler supports it, even when it is not
the default standard of the compiler. This change has been tested on CRAN and
Bioconductor packages and fixes were provided to the maintainers.

In addition to the general need of updating code to newer standards so that it can be
maintained in the future (say, when other components, e.g., libraries, would use newer
standards), some of the C23 features may be useful in R, such as the bool type. See
‘Writing R Extensions’, Section 1.2.5 (online version), for more details on the use of C
standards with R.

• Further progress has been made on getting rid of symbol remapping, i.e., automated
renaming of C symbols like allocVector() to Rf_allocVector() done by R headers.
The remapping causes problems when it accidentally modifies code included via C
preprocessor headers. The risks can be minimized by including headers in a certain
order, but it is an additional constraint package authors need to think about, and in
practice, the conflicts are a common cause of package compilation errors arising after
updates of the toolchain, OS, or a library.

The remapping in R-devel has been disabled for C++ code in packages, because most
of the conflicts happened to be found with C++ code. The remapping still remains
available and is done by default for C code, but it is recommended not to use the
remapping in new C code. The ‘Writing R Extensions’ manual has been updated to use
full names of the functions including the prefixes; see Section 6 (“The R API”, online
version), for more details on the re-mapping situation in R-devel.

Similarly, “strict R headers” are now the default, which means that legacy definitions
of Calloc, Realloc, Free and PI have been removed. One can still use these allocation
functions with the R_ prefix, and M_PI is a standard replacement for PI.

Like with other similar tasks, this required only relatively small changes in R itself, but
most of the effort has been spent on testing with CRAN and Bioconductor packages
and helping the package maintainers with the necessary updates.

2 Bug statistics for 2024

Summaries of bug-related activities over the past year were derived from the database
underlying R’s Bugzilla system. Overall, 183 new bugs or feature requests (15%) were
submitted in 2024, very much like in the previous two years. The top 5 selected components
for these reports were “Documentation”, “Low-level”, “Misc”, “Language”, and “Graphics”,
where the first and last increased their rank compared to 2023.

A total of 107 contributors added 742 comments on 250 different reports; 149 reports
were closed. Whereas the number of new submissions remained at the same level, open
issues were handled at a slower rate compared to 2023, with a decrease in the numbers of
closures (–27%), comments (–21%), and contributors (–11%). Compared to 2022, there is also
a decrease in bug closures and comments, but it is smaller (–13% closures, –15% comments,
–13% contributors).

The numbers of comments and different contributors in the bug tracking system may
be influenced by ‘R Dev Days’ organized by the R Contribution Working Group: the bugs
are pre-discussed at those events mostly outside the core system, which later receives
summarized comments. An ‘R Dev Day’ organized just after UseR 2024 had 8 R Core Team
members present, so some “comments” were exchanged in person.

The monthly numbers shown in Figure 1 suggest that more issues were closed in
April/May, July/August and November. April/May was around the release of R 4.4,
but also one of the ‘R Dev Days’ took place. July/August covers the UseR! 2024 conference
with an attached R Core Team meeting and ‘R Dev Day’.

As every year, not all bug reports go through R Bugzilla. Some are picked up from the
R-devel, R-pkg-devel or R-help mailing lists. Some come via private communication by
e-mail or in person. A number of bugs are always discovered by the R Core Team when
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Figure 1: Bug tracking activity by month in 2024.

testing changes in R or packages; these bugs are usually not reported by any channel, but
are fixed directly.
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R Foundation News
by Torsten Hothorn
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