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Editorial
by Simon Urbanek

On behalf of the editorial board, I am pleased to present Volume 15 Issue 3 of the R Journal.

We would like to welcome Emi Tanaka to our executive editorial board. Emi has served as
an Associate Editor for the last two years and kindly agreed to take the role of an Executive
Editor. In addition, we would like to also welcome Ursula Laa, Yanfei Kang and Lucy
D’Agostino McGowan to our Associate Editors team.

The articles in this issue have been carefully copy edited by Adam Bartonicek and Chase
Robertson.

In this issue

News from CRAN, the R Foundation and Bioconductor are included in this issue as well as
a report on the R Project Sprint 2023.

This issue features 14 contributed research articles the majority of which relate to R packages
on a diverse range of topics. All packages are available on CRAN. Supplementary material
with fully reproducible code is available for download from the Journal website. Topics
covered in this issue are

Graphics and visualization

• Coloring in R’s Blind Spot
• Updates to the R Graphics Engine: One Person’s Chart Junk is Another’s Chart

Treasure
• C443: An R Package to See a Forest for the Trees
• GREENeR: An R Package to Estimate and Visualize Nutrients Pressures on Surface

Waters

Bayesian inference

• SSNbayes: An R Package for Bayesian Spatio-Temporal Modelling on Stream Net-
works

• The R Package rater
• bayesassurance: An R Package for Calculating Sample Size and Bayesian Assurance
• Bayesian Inference for Multivariate Spatial Models with INLA

Multivariate statistics

• fasano.franceschini.test: An Implementation of a Multidimensional KS Test in R
• TwoSampleTest.HD: An R Package for the Two-Sample Problem with High-Dimensional

Data
• fnets: An R Package for Network Estimation and Forecasting via Factor-Adjusted

VAR Modelling

Other

• Variety and Mainstays of the R Developer Community
• Two-stage Sampling Design and Sample Selection with the R Package R2BEAT
• mathml: Translate R Expressions to MathML and LaTeX

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=C443
https://CRAN.R-project.org/package=GREENeR
https://CRAN.R-project.org/package=SSNbayes
https://CRAN.R-project.org/package=rater
https://CRAN.R-project.org/package=bayesassurance
https://CRAN.R-project.org/package=fasano.franceschini.test
https://CRAN.R-project.org/package=TwoSampleTest.HD
https://CRAN.R-project.org/package=fnets
https://CRAN.R-project.org/package=R2BEAT
https://CRAN.R-project.org/package=mathml


CONTRIBUTED RESEARCH ARTICLE 4

Simon Urbanek
University of Auckland

https://journal.r-project.org
r-journal@r-project.org

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859

https://journal.r-project.org
mailto:r-journal@r-project.org


CONTRIBUTED RESEARCH ARTICLE 5

Variety and Mainstays of the R Developer
Community
by Lijin Zhang, Xueyang Li, and Zhiyong Zhang

Abstract The thriving developer community has a significant impact on the widespread use of R
software. To better understand this community, we conducted a study analyzing all R packages
available on CRAN. We identified the most popular topics of R packages by text mining the package
descriptions. Additionally, using network centrality measures, we discovered the important packages
in the package dependency network and influential developers in the global R community. Our
analysis showed that among the 20 topics identified in the topic model, Data Import, Export, and
Wrangling, as well as Data Visualization, Result Presentation, and Interactive Web Applications, were
particularly popular among influential packages and developers. These findings provide valuable
insights into the R community.

1 Introduction

Initially started as a personal project by Ross Ihaka and Robert Gentleman (Ihaka and Gentleman,
1996), R has evolved into one of the most widely used and powerful software packages in the field
of data science. It is used across a wide range of academic fields and industries. For example, Lai
et al. (2019) showed that 58% of the papers from 30 ecology journals in 2017 reported using R for data
analysis. Another example is Bioconductor (Gentleman et al., 2004), a popular R software repository
for computational biology and bioinformatics, which has over 2,000 R packages for genetic data
analysis. Moreover, ggplot2 (Wickham, 2011), a well-known R package for data visualization, has been
cited more than 30,000 times. Courses teaching R are also in high demand in data science programs
(Zhang and Zhang, 2021). Fox and Leanage (2016) analyzed the papers published in the Journal of
Statistical Software (JSS) between 1996 and 2016, and found that 75% of the articles were about R,
which demonstrated the dominance of R software projects in JSS.

The R developer community plays an important role in maintaining a healthy ecosystem of R
packages and increasing R’s popularity (Chambers, 2020; Tippmann, 2015). The R ecosystem comprises
of the base packages developed by the R Core team and user-contributed packages (German et al.,
2013). The Comprehensive R Archive Network (CRAN) is a well-known package repository. Fox
(2009) suggested that the CRAN package archive is probably the most important driving force for the
growing usage of R. The package system provides essential tools for users to develop packages and
promotes the sharing of newly-developed methods and ideas throughout the community. Fox (2009)
found that the growth of CRAN packages from 2000 to 2009 was approximately exponential. Since
then, the number of new CRAN packages has slowed down a bit, but has otherwise maintained a
steady pace (Fox and Leanage, 2016). As of 27th November 2022, there are 18898 packages available
on CRAN, more than eight times of the number in 2009.

As the number of CRAN packages increases, the flat organization of these packages (Fox and
Leanage, 2016) makes it difficult for user to identify popular and important packages on CRAN. Silge
et al. (2018) suggested that the huge size of the CRAN package archive has already made it difficult
for users to understand the merits of packages and the relationships among packages. Although
some resources such as CRAN Task Views (Zeileis, 2005) group packages related to specific topics,
they cannot cover the enormous number of CRAN packages or give an overall view of the various
topics covered by the CRAN packages. Moreover, as the number of CRAN packages increases, the
newly-developed packages are often built upon other user-contributed packages. It is, therefore,
essential to explore the package dependency network and identify the influential developers who lead
the R ecosystem.

As such, this study aims to conduct a broad survey of the R developer community. Specifically, the
goal of this paper is two-fold: 1) to investigate the popular topics of the R ecosystem, and 2) to explore
the influential packages and authors in the R developer community.

The large amount of information on CRAN is a challenge but also a great resource for under-
standing the R community. To investigate this community, this paper uses text mining and network
analysis techniques, with a focus on analyzing package descriptions and the relationships between
packages and authors. The paper is structured as follows. First, we analyze the textual data of CRAN
package descriptions to identify the various topics of the R ecosystem. Second, a package dependency
network, an author collaboration network, and a bipartite network of packages and authors are built
to determine which packages and authors play important roles based on the network statistics for the
development of the R ecosystem. Finally, we present a detailed discussion of our findings.
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Figure 1: Word cloud of the top 200 frequently used words in the CRAN package descriptions.

2 Identifying the Main Topics of the R Packages

Our first goal is to understand what kind of topics and methods are currently covered in the packages of
R. For this purpose, we extracted the descriptions of all 18898 packages from CRAN on 27th November
2022. The mean of the length of package descriptions is 60.15 words, ranging from 1 to 1207 words.
Note that data and code of this paper are available at https://github.com/zhanglj37/R_Developer_
Community, with which the results in this article can be replicated. Through text analysis technique,
we explored the frequently used words and phrases to investigate the focuses of R developers, and
conducted topic modeling to identify the main topics of the R ecosystem.

2.1 Data Cleaning

The pre-processing of the package descriptions includes five steps: 1) we converted the upper case
letters to lower cases, 2) we deleted the web links, DOI (Digital Object Identifier) links of publications,
and numbers (e.g., 1993), and 3) we removed the common stopwords (e.g., the, a) and some commonly-
used words with limited meaning (e.g., package, provide, method). Moreover, to unify different forms
of the same root-words, we further 4) singularized plural nouns using the SemNetCleaner package
(Christensen and Kenett, 2019), and 5) lemmatized verbs using the spacyr package (Benoit and Matsuo,
2020).

2.2 Word and Phrase Frequency

In Figure 1, a word cloud depicts the top 200 frequently used words in the package descriptions. Each
of these 200 words was used more than 400 times. Four of them appeared more than 4,000 times (data,
model, analysis, base), and data is the only one appeared more than 10,000 times. These words (e.g., data,
model) are related to data analysis and were also commonly used in data science curricula (Zhang and
Zhang, 2021).

Figure 2 includes the top 30 frequently used one-, two-, and three-word phrases in the package
descriptions, including phrases that are related to statistical models (e.g., regression model, structural
equation modeling), estimation methods (e.g., least squares, maximum likelihood estimation), different types
of datasets (e.g., high dimensional data, gene expression data), and other common and general terms in
data science (e.g., data analysis, variable selection, open source). We also explored the frequently used
four-word phrases, and the top phrases include Markov chain Monte Carlo (141 times), genome wide
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Figure 2: Top 30 frequently used words and phrases in the CRAN package descriptions.

association study (51 times), single cell RNA sequencing (43 times), generalized linear mixed model (36 times),
cox proportional hazards model (30 times), and random effects meta analysis (15 times). Moreover, we
found two informative six-word phrases that represent the journals that were commonly mentioned
in the package descriptions: Journal of the American Statistical Association (22 times) and Journal of
Computational and Graphical Statistics (12 times).

2.3 Topic Modeling

To identify relevant thematic features of the CRAN R packages, we conducted topic modeling based
on the package descriptions using the topicmodels (Grün and Hornik, 2011) package. We used the
Latent Dirichlet allocation (LDA; Blei et al., 2003) method to reveal the latent structures in R package
descriptions. LDA assumes that each document (i.e., the description document of each package) is a
mixture of topics, and each topic consists of a mixture of words (Silge and Robinson, 2017).

To fit the model, we first determined the number of topics. For each specified number of topics,
ranging from 2 to 30, we built the LDA models with 100 different random number seeds to improve
the robustness of results. In each replication, the 5-fold cross-validation technique was employed. We
assessed the performance of the LDA models by calculating their perplexity under different numbers
of topics. A low perplexity score indicates better model performance (Bao and Datta, 2014). Results
suggest that the best fit to the data was a model with 19 topics, followed by the 21- and 20-topic models
(Figure 3). In the 100 replications of analysis, the 19-topic model was selected as the best model most
frequently, followed by the 21-, 20-, 18-, and 17-topic models. By exploring the meaning of each topic
in each model, we found that the model with 20 topics offered the best interpretability. The 21-topic
model identified three topics which are hard to distinguish because they were all about mixed models,
Bayesian analysis, linear regression, and psychometrics. Compared to the 19-topic model, the 20-topic
model was easier to interpret because it clearly separated the topics of Generalized Linear Modeling and
Mixed Models, and Psychometrics. We also examined the inflection points in the performance curve
(Figure 3). We found that the 9-topic and 10-topic models could not clearly differentiate many topics,
resulting in many similar topics with overlapping components. Therefore, we finally adopted the
20-topic model.

The R package ctv (CRAN Task Views) introduces the relevant packages of 42 topics (e.g., Bayesian
Inference, Chemometrics, Econometrics). We further compared the identified 20 topics with the topics
classified in the CRAN Task Views and highlighted their connections in Table 1. In detail, the main
topics recovered from the 20-topic LDA model, in no particular order, were listed below.

1. Supporting Packages Keywords of this topic include data, book, support, ISBN(International
Standard Book Number), tool, and publication. This topic pertains to packages that offer supporting
functions for other packages (e.g., iemisc) and/or provide supplementary materials (e.g., datasets) for
books, courses, and other packages (e.g., EnvStats, AER, uwo4419, ACSWR, mosaic).
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Figure 3: Mean perplexities of topic models with different number of topics.

2. Causal Inference This topic deals with causal inference, and its keywords include effect, treatment,
causal, outcome, propensity, and intervention. Packages of this topic are related to the CRAN Task View of
Causal Inference. Example packages are CBPS which contains methods for moments-based propensity
score estimation, BCEE for Bayesian Causal Effect Estimation, and CausalGAM for estimation of
causal effects with generalized additive models.

3. Numerical Mathematics Keywords of this topic include matrix, sparse, covariance, correlation,
vector, row, column, and decomposition. It is related to a CRAN Task View of Numerical Mathematics.
Packages identified by this topic include Matrix, a core package for sparse and dense matrix classes
and methods, PRIMME, an R interface to a C library for computing eigenvalues, SparseM, a package
with sparse linear algebra functions.

4. Classification This topic is about classification and includes keywords such as variable, split,
random, forest, tree, category, and feature. Example packages include randomForest for classification
based on a forest of trees, tree containing functions for classification and regression trees, rpart for
recursive partitioning and regression trees, and C50 for fitting C5.0 classification trees and rule-based
models. Some of the packages identified by this topic can be found in the CRAN Task View of Machine
Learning and Statistical Learning.

5. Regression Analysis and Regularization This topic is about regression analysis and regulariza-
tion, with words such as linear, regression, model, L1, lasso, ridge, shrinkage, procedure, and regularization
appearing with high probability. It is related to the packages for regularization methods and regression
models (e.g., glmnet for lasso and elastic-net regularized generalized linear models (GLMs), penalized
for applying ridge and lasso regularization in GLMs and Cox proportional hazards models, and bravo
for Bayesian variable selection with ultra-high dimensional linear regression models.).

6. Genetics Keywords of this topic include terms related to genetics, such as gene, RNA (Ribonucleic
Acid), DNA (DeoxyriboNucleic Acid), sequence, cell, and phenotype. This topic identifies the packages for
analyzing biological data, especially genetic data (e.g., jetset, Seurat, scBio).

7. Datasets High probability words of this topic include data, survey, questionnaire, sample, collection,
census, and report. This topic is mainly about a special kind of packages for providing datasets
(especially survey data) instead of functions for statistical methods. For example, spiR is for social
progress index data, PakPMICS2018 is for survey data of a specific project conducted from 2017 to
2018, USpopcenters is about united stats centers of population data.
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Table 1: Relevant CRAN Task Views of each topic identified in the topic model.

Topic CRAN Task Views

1. Supporting Packages Teaching Statistics
2. Causal Inference Causal Inference
3. Numerical Mathematics Numerical Mathematics
4. Classification Machine Learning & Statistical Learning
5. Regression Analysis and Regularization Machine Learning & Statistical Learning
6. Genetics Statistical Genetics
7. Datasets Databases with R
8. Cluster Analysis and Network Analysis Cluster Analysis & Finite Mixture Models,

gRaphical Models in R
9. Machine Learning Machine Learning & Statistical Learning
10. NHST and Multiple Comparison -
11. Probability Distributions and Bayesian Analysis Probability Distributions,

Bayesian Inference
12. Color Patterns and R Objects -
13. Phylogenetics Phylogenetics
14. Time Series Analysis Time Series Analysis
15. Data Import, Export, and Wrangling -
16. Computational Efficiency Optimization and Mathematical Programming,

High-Performance and Parallel Computing with R
17. Experimental Design and Clinical Trails Clinical Trial Design, Monitoring, and Analysis,

Design of Experiments & Analysis of Experimental Data
18. Data Visualization, Result Presentation, Graphic Displays & Dynamic Graphics & Graphic Devices & Visualization,

and Interactive Web Applications Reproducible Research
Web Technologies and Services

19. Generalized Linear Modeling and Mixed Models Mixed, Multilevel, and Hierarchical Models in R
20. Psychometrics Psychometric Models and Methods

Note. NHST = Null Hypothesis Significance Testing.

8. Cluster Analysis and Network Analysis Keywords of this topic are related to two sub-topics. First,
network, gaussian, graphical, node, edge, and igraph are commonly used in network analysis. Example
packages include igraph and sna. Second, cluster, class, kernel are relevant to Cluster Analysis. Example
packages include cluster, kml for implementing k-means clustering on longitudinal data, flexclust
for providing flexible cluster algorithms. Cluster analysis and network analysis were identified in
one topic perhaps because there are some packages for clustering based on correlation matrices and
network modeling (e.g., DirectedClustering, linkcomm, clusterGeneration).

9. Machine Learning With keywords such as algorithm, machine, learning, training, and prediction, this
topic is mainly about machine learning. The CRAN Task View of Machine Learning and Statistical
Learning lists and classifies the packages of this topic, for example, packages for neural networks,
deep learning (e.g., RcppDL, deepnet). Some packages are related to both this topic and the topic of
regularization (e.g., bmrm). Courses of this topic are also very common in data science programs,
including Neural Networks and Deep Learning, and Machine Learning and Big Data (Zhang and Zhang,
2021).

10. Null Hypothesis Significance Testing (NHST) and Multiple Comparison This topic encom-
passes NHST and Multiple Comparison, and its keywords include test, hypothesis, null, multiple,
comparison, and significance. Relevant packages include onewaytests for NHST, PMCMRplus and
conover.test for multiple comparisons among multiple groups.

11. Probability Distributions and Bayesian Analysis This topic centers around the word distribution
and includes other relevant terms such as probability, binomial, poisson, density, Bayesian, MCMC (Markov
chain Monte Carlo), chain, prior, posterior, and sampler. Probability and Bayesian analysis were identified
in one topic because they share the main keyword distribution (i.e., probability distribution, prior
distribution, and posterior distribution). Example packages include extraDistr for various univariate
and multivariate distributions, gnorm for generalized normal or exponential power distributions,
bayesmix for Bayesian mixture models, and mcmc. The CRAN Task Views of Probability Distributions
and Bayesian provided a detailed summary of packages related to this topic.

12. Color Patterns and R Objects Keyword of this topic include class, object, s4, andr6 which are
related to R objects, and color, png, image, and palettes which are about visualization. For the R objects,
example packages are R6, R62S3, and fastdigest. For the visualization, most packages identified
by this topic are designed to provide color patters for plotting (e.g., colormap, ggpattern). Package

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859

https://cran.r-project.org/web/views/TeachingStatistics.html
https://cran.r-project.org/web/views/CausalInference.html
https://CRAN.R-project.org/view=NumericalMathematics
https://cran.r-project.org/web/views/MachineLearning.html
https://cran.r-project.org/web/views/MachineLearning.html
https://cran.r-project.org/web/views/Genetics.html
https://cran.r-project.org/web/views/Databases.html
https://cran.r-project.org/web/views/Cluster.html
https://cran.r-project.org/web/views/gR.html
https://cran.r-project.org/web/views/MachineLearning.html
https://cran.r-project.org/web/views/Distributions.html
https://cran.r-project.org/web/views/Bayesian.html
https://cran.r-project.org/web/views/Phylogenetics.html
https://cran.r-project.org/web/views/TimeSeries.html
https://cran.r-project.org/web/views/Optimization.html
https://cran.r-project.org/web/views/HighPerformanceComputing.html
https://cran.r-project.org/web/views/ClinicalTrials.html
https://cran.r-project.org/web/views/ExperimentalDesign.html
https://cran.r-project.org/web/views/Graphics.html
https://cran.r-project.org/web/views/ReproducibleResearch.html
https://cran.r-project.org/web/views/WebTechnologies.html
https://cran.r-project.org/web/views/MixedModels.html
https://cran.r-project.org/web/views/Psychometrics.html
https://CRAN.R-project.org/package=igraph
https://CRAN.R-project.org/package=sna
https://CRAN.R-project.org/package=cluster
https://CRAN.R-project.org/package=kml
https://CRAN.R-project.org/package=flexclust
https://CRAN.R-project.org/package=DirectedClustering
https://CRAN.R-project.org/package=linkcomm
https://CRAN.R-project.org/package=clusterGeneration
https://cran.r-project.org/web/views/MachineLearning.html
https://cran.r-project.org/web/views/MachineLearning.html
https://CRAN.R-project.org/package=RcppDL
https://CRAN.R-project.org/package=deepnet
https://CRAN.R-project.org/package=onewaytests
https://CRAN.R-project.org/package=PMCMRplus
https://CRAN.R-project.org/package=conover.test
https://CRAN.R-project.org/package=extraDistr
https://CRAN.R-project.org/package=gnorm
https://CRAN.R-project.org/package=bayesmix
https://CRAN.R-project.org/package=mcmc
https://cran.r-project.org/web/views/Distributions.html
https://cran.r-project.org/web/views/Bayesian.html
https://CRAN.R-project.org/package=R6
https://CRAN.R-project.org/package=R62S3
https://CRAN.R-project.org/package=fastdigest
https://CRAN.R-project.org/package=colormap
https://CRAN.R-project.org/package=ggpattern


CONTRIBUTED RESEARCH ARTICLE 10

ggplot2 is also identified by this topic, but its relationship with the topic 18 (Data Visualization, Result
Presentation, and Interactive Web Applications) is higher than its relationship with this topic.

13. Phylogenetics This topic is mainly about phylogenetics, with high probability words including
phylogenetic, specie, signal, taxonomic, animal, pedigree, and biodiversity. Packages related to this topic
include phytools which provides functions for phylogenetic analysis, geiger for fitting macroevolu-
tionary models to phylogenetic trees, and phylosignal for exploring the phylogenetic signal. The
CRAN Task View Phylogenetics also summarized packages related to this topic.

14. Time Series Analysis This topic is mainly about time series analysis. The high probability words
associated with this topic include time, series, change, dynamic, forecast, growth, trend, and lag. There
is a CRAN Task View of this topic that introduces many packages for handling time series data, for
example, tseries for time series analysis, and forecast that provides forecasting functions for time
series models.

15. Data Import, Export, and Wrangling This topic includes keywords such as read, load, import,
write, convert, and create, which are commonly-used verbs for naming R functions for data import,
export and wrangling. Example packages include asciiSetupReader, which can read fixed-width
ASCII data files, adfExplorer, which can import and export Amiga disk files, and dplyr, "a grammar
of data manipulation."

16. Computational Efficiency This topic is related to computational efficiency, with keywords
including run, C++, fast, efficient, Rcpp, efficient, and parallel. Many packages associated with this topic
call compiled C++ code from R to improve performance (e.g., Rcpp), and provide utilities for parallel
computation (e.g., future.callr, foreach, doParallel).

17. Experimental Design and Clinical Trails This topic focuses on the design and data analysis of
experiments and clinical trials. High probability words include design, treatment, control, trial, clinical,
sample, size, endpoint, stage, dose, and experimental. The CRAN Task Views of Clinical Trial Design and
Experimental Design summarize two lists of R packages concerning this topic. Here we listed some
example packages such as TrialSize for sample size determination in clinical research, and visit for
phase I dose-escalation study design.

18. Data Visualization, Result Presentation, and Interactive Web Applications Packages and
keywords of this topic can be classified into three sub-topics. First, keywords such as ggplot2, color,
graph, image, and plot are related to data visualization. Example packages include ggplot2 and lattice.
The second sub-topic is about presenting results, with keywords such as table, chart, and figure. Other
keywords include format, html, document, markdown, rmarkdown, and latex which are mainly about R
markdown tools for generating dynamic reports. Example packages are R markdown-related tools
including knitr and bookdown, and formatting tools such as styler and pander. The third sub-topic
relates to using R to build interactive web applications. Words relevant to this sub-topic include shiny,
widget, web, and XML, and example packages include shiny and webshot.

In addition, there are many packages related to more than one sub-topic. For example, ANOVAShiny
was built based on rmarkdown and shiny, and Factoshiny was developed with shiny and ggplot2
for conducting factorial analysis and drawing graphs with a shiny application. There are also corre-
sponding lists of this topic on CRAN Task Views, and courses in data science programs (e.g., Data
Visualization, Data Presentation and Visualization with R; Zhang and Zhang, 2021).

19. Generalized Linear Models and Mixed Models This topic is related to generalized linear
modeling, with keywords such as model, regression, linear, fit, mixed, logistic, and GLM (Generalized
Linear Modeling). Packages associated with this topic include dglm for building double generalized
linear models, brms for Bayesian Regression Models, nlme for linear mixed models (LMMs), and
mbest for large nested LMMs.

20. Psychometrics The high probability words related to this topic include factor, item, response, latent,
IRT (Item Response Theory), and choice. There is a detailed list on the CRAN Task Views about this topic.
Here we listed some example packages: mirt for multidimensional item response theory, difR for
detecting differential item functioning, and CDM for cognitive diagnosis models.

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=phytools
https://CRAN.R-project.org/package=geiger
https://CRAN.R-project.org/package=phylosignal
https://cran.r-project.org/web/views/Phylogenetics.html
https://CRAN.R-project.org/package=tseries
https://CRAN.R-project.org/package=forecast
https://CRAN.R-project.org/package=asciiSetupReader
https://CRAN.R-project.org/package=adfExplorer
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=Rcpp
https://CRAN.R-project.org/package=future.callr
https://CRAN.R-project.org/package=foreach
https://CRAN.R-project.org/package=doParallel
https://cran.r-project.org/web/views/ClinicalTrials.html
https://cran.r-project.org/web/views/ExperimentalDesign.html
https://CRAN.R-project.org/package=TrialSize
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=lattice
https://CRAN.R-project.org/package=knitr
https://CRAN.R-project.org/package=bookdown
https://CRAN.R-project.org/package=styler
https://CRAN.R-project.org/package=pander
https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=webshot
https://CRAN.R-project.org/package=ANOVAShiny
https://CRAN.R-project.org/package=rmarkdown
https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=Factoshiny
https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=dglm
https://CRAN.R-project.org/package=brms
https://CRAN.R-project.org/package=nlme
https://CRAN.R-project.org/package=mbest
https://CRAN.R-project.org/package=mirt
https://CRAN.R-project.org/package=difR
https://CRAN.R-project.org/package=CDM


CONTRIBUTED RESEARCH ARTICLE 11

3 Identifying Key Packages and Key Package Developers

To investigate the key packages contributing to the R ecosystem and the notable authors who signifi-
cantly support the R community, we conducted network analysis. We extracted package dependency
and authorship information from CRAN and used cranly (Kosmidis, 2019) and igraph (Csárdi et al.,
2006) to build three networks: 1) a package dependency network, 2) an author collaboration network,
and 3) a bipartite network of packages and authors. Influential nodes were identified in these three
networks. We first introduce the one-mode network (i.e., network with one type of node) of packages
and authors below.

The R package dependency network was built based on the CRAN R packages and their dependent
packages, including the base and recommended R packages that are included in the default installation
of R. It is a directed and weighted network, and a sub-graph is presented in Figure 4(a). Specifically,
the arrow from package A to package B indicates that A depends on, imports, suggests, link to, or
is enhanced by B. Table 2 presents the detailed definitions and frequencies of these relationships (R
Core Team, 2021). We assigned the weights of edges as 5, 4, 3, 2, and 1 for the relationships of depends,
imports, suggests, links to, and enhances, respectively.

We tested a different weight scheme (3, 2, 1, 1, 1) and found that the results were robust, with
correlations of influence scores exceeding .95. The top packages identified were also similar. Hence,
we report results based on the (5, 4, 3, 2, 1) weight scheme in this paper.

For the undirected author collaboration network (e.g., Figure 4(b)), the edge between two nodes
indicates that they have co-authored in at least one package. The weights of edges denote the number
of packages co-authored by the corresponding two authors.

Table 2: Types of Package Dependencies.

Dependency Definition Frequency

Depends B will be attached when attaching A 10523
Imports The namespace of B will be imported when attaching A 87328
Suggests B is used on in the examples, tests, or vignettes of A 54991
Links to A uses the header files in B to compile its C or C++ code 5153
Enhances B provides methods for classes in A, or helps handling objects in A 558

3.1 Measures of Influence

We focused on the following commonly used measures for evaluating node (a package or an author)
influence in the one-mode network (Jain and Sinha, 2020; Morone and Makse, 2015; Salavaty et al.,
2020; Wang et al., 2017):

• Local structure information: Degree;

• Global structure information: Betweenness (Freeman, 1978);

• Algorithm based on random walk: Eigenvector centrality (Bonacich, 1972) and PageRank (Page
et al., 1999);

Degree and In-degree Degree is the number of direct connections between nodes. For the directed
package dependency network, in-degree indicates how many packages this package enhances, or is
depended on, imported, suggested, or linked by. For the undirected author collaboration network,
degree is the number of collaborators.

Betweenness Centrality Betweenness quantifies how important a node is as a mediator between
two other nodes. Given a network, the betweenness centrality of node i can be calculated as (Freeman,
1978):

CBet(i) = ∑
s ̸=i ̸=t

ds,t(i)
ds,t

(1)

where ds,t denotes the number of shortest paths from node s to node t, and ds,t(i) is the number of
shortest paths between node s and node t going through node i.
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(a) Fifteen packages with the highest in-degrees

RStudio

Henrik Bengtsson
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(b) Fifteen authors with the highest degrees

Figure 4: Networks of a subset of nodes with the highest degrees.

Note. The sizes of nodes represent the in-degree / degree of nodes. In the author collaboration network,
the edge width reflects the weight. In the package dependency network, the color indicates the weight.
"The dark edges represent depends, medium dark edges represent imports, the lightest edges represent
suggests. Relationships of linking to and enhances are not included in this sub-graph.

Eigenvector Centrality A node with a small degree may have high eigenvector centrality (Bonacich,
1972) if it is connected with important nodes. In other words, this index considers the importance of
neighbors when evaluating the centrality of a node.

Let A = (ai,j) be the adjacency matrix of a graph, where ai,j represents the connection between
node i and j. The eigenvector centrality of node i is given by (Bonacich, 2007):

CEig(i) =
1
λ ∑

j
ai,j CEig(j) (2)

where λ is a non-zero eigenvalue. This can also be expressed in the matrix form:

λCEig = CEig A (3)

where CEig is the eigenvector for the adjacency matrix A given eigenvalue λ. Bonacich (1972) suggested
to choose the largest value of λ for measuring centralities.

PageRank PageRank is a variant of eigenvector centrality. It is an algorithm developed by Google to
rank web pages (Page et al., 1999), and is primarily used for directed networks. Given a weighted
network, it can be calculated as:

PR(i) = α ∑
j

Wj,iPR(j) + (1 − α)PR0(i) (4)

where PR(i) and PR(j) are the PageRank of node i and j, respectively. Besides, PR0(i) is typically set
as 1

N where N is the number of nodes, α is the damping factor assigned to the random walk, and Wj,i
is the normalized edge weight from node j to i:

Wj,i =
wj,i

∑t wj,t
(5)

where wj,i is the edge weight from node j to node i.

3.2 Bipartite Network

A bipartite network of authors and packages was built using the authorship information. The weight
of an edge was assigned as 3 if the author is the maintainer of the package, and 1 otherwise (Figure 5).
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Unlike the one-mode networks, which focus on either packages or authors, the bipartite network
captures both the relationships between authors and packages and the collaborations among authors.
As shown in Figure 6, the same author relationship configuration could be represented by two
different bipartite networks. Therefore, we employed the bipartite network to gain more insights into
the influential authors using the BiRank statistic.

Figure 5: A Bipartite network of selected R packages and authors.

Note. Nodes on the left are 15 packages with the highest in-degrees in the package dependency
network, nodes on the right are 15 authors with the highest degrees in the author collaboration
network. A bold line indicates that the corresponding author is the maintainer of the corresponding
package.

BiRank Aronson et al. (2020) compared different centrality measures for the bipartite network and
recommended the BiRank and CoHITS indexes. For our network, the BiRank index exhibited a high
correlation with the CoHITS index (r = .860). The top 50 authors identified by these two measures are
the same, with only minor variations in their ranking. Consequently, we only reported the results of
the BiRank index (He et al., 2016). Similar to PageRank, the BiRank index assumes that the ranking of
nodes should be related to the ranking of the neighbors. Namely, an author would be ranked high if
his or her neighbor packages are important.

Let A = (ai,j) be the adjacency matrix of a bipartite graph with two types of nodes ui(i = 1, . . . , I)
and pj(j = 1, . . . , J), the BiRank value for node ui is given by:

BR(ui) = α ∑
j

ai,j
BR(pj)√

CwDeg(ui)
√

CwDeg(pj)
+ (1 − α)BR0(ui) (6)

where CwDeg(ui) and CwDeg(pj) are the weighted degrees of node ui and pj. Similar to the PageRank
index, α is the damping factor, and BR0(ui) is the prior belief of the importance of node ui.

3.3 Results

The centrality measures of these three networks were calculated using the R package igraph (Csárdi
et al., 2006), influential (Salavaty et al., 2020), and birankr (Aronson and Yang, 2020).
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Figure 6: Relationships between the bipartite network and the author collaboration network.

Package Dependency Network Table A1 presents the top 50 packages according to various centrality
measures. Results show that the number of packages depending (i.e., depends, imports, suggests,
linking to, or reverse enhances) on knitr is the greatest. This is probably because knitr package can
help generate R package vignettes, and is therefore suggested by numerous packages. In other words,
these packages are using knitr in developing and publishing the package, instead of extending its
functionality. Additionally, knitr is a comprehensive package related to the topic of Data Visualization,
Result Presentation, and Interactive Web Applications. It can help generate dynamic reports. Many
packages of this topic were built based on knitr, such as bookdown for writing books and technical
documents. The package with the highest betweenness (ggplot2) also suggests knitr. Compared
to knitr, ggplot2 demonstrates greater influence as a mediation package. It suggests and imports
many important R packages, and is also depended by numerous packages. Unlike the degree and
betweenness centralities, the PageRank index by considering the importance of neighbor nodes
prioritizes some packages with relatively low connections. For example, the ranking of tools (a base R
package) is 55 using in-degree, while 8 using PageRank. This is because tools is imported by some
influential packages such as rmarkdown and shiny.

Among these influential packages in Table A1, 54 packages are ranked as top 50 by at least two
indexes (Table A2), including 10 out of the 29 base and recommended R packages.

Apart from the base and recommended R packages, other important CRAN packages concentrate
mainly on three topics: Data Import, Export, and Wrangling (e.g., dplyr, tibble, tidyr, data.table, readr),
Data Visualization, Result Presentation, and Interactive Web Applications (e.g., knitr, ggplot2, rmarkdown,
and Supporting Packages (e.g., testthat, purrr). Other packages are related to topics like Computational
Efficiency (e.g., Rcpp, RcppArmadillo), Probability Distributions (e.g., mvtnorm), Bayesian Estimation and
Network Analysis (e.g., igraph), and Access to Web and Services (e.g., httr). These packages are ranked as
top influential packages, likely because they provide basic and comprehensive functions for important
topics. A lot of packages have been developed for specific goals based on them. For example, ggplot2
is a well-known package for data visualization. Many packages were developed based on ggplot2 to
enhance its visualization functionality, like ggROC specifically for plotting ROC curve, and ggbreak
for setting axis breaks.

We also investigated the relationships between the influence scores and the number of downloads
of packages. The downloads of CRAN packages on the RStudio mirror from 2021-11-01 to 2022-10-31
were obtained using the cranlogs (Csárdi, 2019) package. Note that the base and recommended R
packages were not included when measuring downloads since they are part of R installation. The
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correlations of the downloads and the five indexes range from .337 − .465.
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Figure 7: Top 50 packages downloaded on the RStudio mirror from 2021-11-01 to 2022-10-31.

Author Collaboration Network Table A3 lists the top 50 authors ranked by various indexes. RStudio
is identified as the most influential author according to eigenvector and PageRank. Hadley Wickham
and R Core demonstrated greatest influence based on degree and betweenness, respectively. Table A4
shows that 46 authors are ranked among the top 50 by at least two indexes, including organizations
such as R Core, RStudio, and Google Inc., as well as individual scientists affiliated with these organiza-
tions. Figure 5 reveals that, unlike the base packages, most organizational authors of CRAN packages
are not maintainers or creators. Instead, organizations such as RStudio acts as copyright holders and
funders, and the R Core team often works as a contributor.

The results also suggest that different indexes prioritize different aspects of influence. Authors
with limited but influential collaborators may not rank among the top 50 based on the degree centrality,
but can be revealed using the eigenvector centrality and PageRank (Table A3).

Table A4 presents the top downloaded packages of influential authors. Many packages have been
identified as the influential packages listed in Table A1. Figure 8 shows the collaboration heatmap
among these authors, revealing intensive collaboration among influential organizations and authors.
The heatmap shows three main clusters of author collaboration. Most authors at the upper left
corner of the heatmap (e.g., Dirk Eddelbuettel) have the same two packages DescTools (an R package
for descriptive statistics) and fortunes (an R package of collected wisdom from the R community).
Their co-authored packages are mainly about two main topics on Data Import, Export, and Wrangling
(e.g., data.table, MASS) and Data Visualization (e.g., rgl, plotrix). Authors in the middle of the
figure are clustered together because they co-authored the broom package, a package for converting
objects into tidy tibbles. Authors in the lower-right corner of the matrix co-authored many packages
related to the Data Visualization, Result Presentation, and Interactive Web Applications topic (e.g., knitr,
bookdown, shiny), many of whom are from RStudio. These results align with to the finding in the
package dependency network that many influential packages are related to the Data Import, Export,
and Wrangling and Data Visualization, Result Presentation, and Interactive Web Applications topics.
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Figure 8: Collaboration heatmap of the influential authors identified in the collaboration network.
Note. Color denotes the number of co-authored packages between two authors.
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Bipartite Network The BiRank values demonstrate small to medium correlations with the indexes
used in the one-mode author collaboration network (r = .179 − .427). The top 50 influential authors
and their ranking are different from the results of the author collaboration network. Twenty-three
of the top 50 authors are not ranked as top 50 by any index in the collaboration network (Table A5).
Compared to the influential authors in the collaboration network, these 23 authors’ packages have
relatively few number of authors. But the number of their packages is high.

The most influential author identified by BiRank is Dirk Eddelbuettel, followed by Hadley Wick-
ham, RStudio, Stéphane Laurent, and Scott Chamberlain. By contrast, in the one-mode network,
Stéphane Laurent is not in the top 50 author lists based on degree, betweenness, and eigenvector.
Scott Chamberlain is also not in the top 50 author lists based on degree and eigenvector. This is
because many of their packages are solo-authored (e.g., crul). These results suggested that the bipartite
network can identify productive and influential authors even without a high number of collaborators.

4 Discussion

The growing usage of R in data science is tightly associated with the increasing growth of the R
ecosystem. With the rich amount of information on CRAN, this paper shows the main trends among
the R developers and their packages.

Based on the package descriptions, we investigated the popular topics in the R ecosystem. Results
identified a wide range of topics including various statistical methods (e.g., Cluster Analysis, Machine
Learning, Bayesian Estimation, and Network Analysis) across different fields (e.g., Genetics, Environ-
metrics, Multivariate Analysis, and Psychometrics). Moreover, there were also packages for providing
data sets, helping access to websites and online services, and improving computational efficiency.
Some of these 19 topics are similar to the topics identified in the data science curricula (Zhang and
Zhang, 2021) including Machine Learning and Data Visualization, Result Presentation, and Interactive Web
Applications.

Using network analysis, we explored the influential packages and authors based on package
dependencies and authorships. The results highlighted the crucial role of the base and recommended
R packages in developing R packages, with 12 out of the 29 base and recommended packages ranked
in the top 50 by at least two indexes. In addition to the packages shipped alongside base R, we also
identified some important CRAN packages that support the development of R in various topics.
Many influential packages were related to Data Visualization, Result Presentation, and Interactive Web
Applications and Data Import, Export, and Wrangling topics. These results were similar to the finding
that influential authors co-developed many important packages of these two topics.

Our findings also indicated that the contributors of R, developing from the R Core team, now
have become a worldwide community, and some of them are organizations. Many of these influential
authors are from RStudio or the R Core team and lead the development across many topics. For
example, Yihui Xie, the creator of knitr and many R markdown-related packages, facilitates the
development of reproducible research. While some of these influential contributors are from central
positions in the author collaboration network, we also identified many productive authors with
relatively few collaborators through the bipartite network of packages and authors.

4.1 Limitations and Future Directions

There are a few of limitations in the current work. First, we investigated the influential packages
from the perspective of the developer community rather than the user community. To illustrate, we
focused on identifying which packages are used by other packages (i.e., in the package dependency
network). However, packages with high influence for developers may differ from those for the user
community. Future studies are needed to explore important packages based on the usage data (e.g.,
citations, number of times mentioned on Twitter). Second, package dependency relationships cannot
distinguish between dependencies required for publishing the package, such as vignette generation,
and those needed for developing utilities. To better understand the relationships of packages based on
their functionality, future study can explore the similarity between packages based on text analysis of
reference manuals or vignettes. Third, we only included the R packages on CRAN or embedded in
the R source code. There has already been a trend of releasing packages on GitHub and R-universe (a
personal R package repository). Numerous GitHub packages and their information (e.g., contributors,
commits, stars, forks) could be a rich resource for future research to understand the development and
importance of R packages. Forth, as suggested by a referee, future studies can compare R and other
software communites (e.g., Python). Fifth, this paper was limited by the timing of data extraction and
did not include the state of the R community in the past. Future research are suggested to conduct
longitudinal analysis of the R community to understand how it developed over time.
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This paper also provides directions for the development of an R package recommendation system.
As Silge et al. (2018) suggested, with the growth of the R ecosystems, it becomes difficult for the users
to search for specific packages on CRAN. The flat organization of R packages, as well as the sorting
system based on name or the date of publication, pose a big challenge for searching. It has been
proposed to add keywords or tags for packages to help organize and search packages (Silge et al.,
2018). Based on the results of the current paper, future research is suggested to develop a package
recommendation system using the information on CRAN. Specifically, the topic modeling can help
identify packages related to different topics and could also be an effective way for automatically
tagging. Network analysis can also help understand the relationships among packages. Methods
based on network analysis such as latent space modeling may help quantify the closeness of two
packages and provide recommendations.

4.2 Concluding Remarks

This paper depicts a general picture of the R developer community based on information on CRAN.
Results identified the popular topics of the R ecosystem. Investigation of influential packages and
authors also contributes to the understanding of the development of the R community. It is the efforts
from these experts with various backgrounds that lead to the prosperity of the R ecosystem. Moreover,
results of the current study highlight the direction for developing a package recommendation system.
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Table A1: Top 50 packages identified based on different network statistics of the package dependency
network.

Rank In-degree Betweenness Eigenvector PageRank

1 knitr ggplot2 knitr testthat
2 testthat knitr rmarkdown utils
3 rmarkdown broom testthat methods
4 stats dplyr stats stats
5 Rcpp emmeans ggplot2 knitr
6 ggplot2 testthat dplyr patchSynctex
7 methods shiny methods rmarkdown
8 dplyr stats utils tools
9 utils rmarkdown Rcpp covr
10 graphics survival rlang stringr
11 MASS bayestestR magrittr graphics
12 magrittr sf tibble mapmisc
13 covr gap tidyr Rcpp
14 rlang MASS graphics tis
15 tibble targets covr grDevices
16 tidyr caret stringr rlang
17 stringr multcomp purrr MASS
18 grDevices Hmisc MASS ggplot2
19 purrr texreg grDevices magrittr
20 parallel insight data.table withr
21 Matrix parameters jsonlite jsonlite
22 data.table enrichwith Matrix parallel
23 jsonlite cops shiny htmltools
24 RcppArmadillo mlr parallel scales
25 shiny zoo httr fastcluster
26 httr earth glue enrichwith
27 mvtnorm tibble scales cops
28 survival AER sf QuasiSeq
29 foreach lme4 readr tibble
30 scales jsonlite lubridate dplyr
31 plyr robustbase igraph lattice
32 igraph plotmo reshape2 plyr
33 reshape2 quantreg withr R6
34 lubridate effects gridExtra vctrs
35 doParallel rgl foreach reshape
36 grid nnet cli glue
37 sp nlme tidyselect digest
38 gridExtra sp plyr tinytest
39 readr doParallel xml2 RUnit
40 spelling surveillance sp httr
41 lattice mice plotly Matrix
42 glue Matrix grid xml2
43 RColorBrewer data.tree survival shiny
44 sf car lme4 curl
45 xml2 spelling vctrs rstudioapi
46 raster metafor lifecycle cli
47 zoo marginaleffects broom yaml
48 markdown gtools mvtnorm survival
49 R6 partykit RcppArmadillo markdown
50 glmnet hunspell doParallel htmlwidgets
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Table A2: Packages identified by at least two indexes.

Package Title Maintainer

knitr A General-Purpose Package for Dynamic Report Generation in R Yihui Xie
ggplot2 Create Elegant Data Visualisations Using the Grammar of Graphics Thomas Lin Pedersen
testthat Unit Testing for R Hadley Wickham
rmarkdown Dynamic Documents for R Yihui Xie
utils* The R Utils Package R Core
broom Convert Statistical Objects into Tidy Tibbles Simon Couch
methods* Formal Methods and Classes R Core
stats* The R Stats Package R Core
dplyr A Grammar of Data Manipulation Hadley Wickham
Rcpp Seamless R and C++ Integration Dirk Eddelbuettel
shiny Web Application Framework for R Winston Chang
covr Test Coverage for Packages Jim Hester
grDevices* The R Graphics Devices and Support for Colours and Fonts R Core
survival Survival Analysis Terry M Therneau
rlang Functions for Base Types and Core R and ’Tidyverse’ Features Lionel Henry
stringr Simple, Consistent Wrappers for Common String Operations Hadley Wickham
MASS* Support Functions and Datasets for Venables and Ripley’s MASS Brian Ripley
magrittr A Forward-Pipe Operator for R Lionel Henry
sf Simple Features for R Edzer Pebesma
tibble Simple Data Frames Kirill Müller
tidyr Tidy Messy Data Hadley Wickham
graphics* The R Graphics Package R Core
purrr Functional Programming Tools Lionel Henry
parallel* Support for Parallel Computation R Core
data.table Extension of ‘data.frame‘ Matt Dowle
withr Run Code ’With’ Temporarily Modified Global State Lionel Henry
Matrix* Sparse and Dense Matrix Classes and Methods Martin Maechler
jsonlite A Simple and Robust JSON Parser and Generator for R Jeroen Ooms
enrichwith Methods to Enrich R Objects with Extra Components Ioannis Kosmidis
cops Cluster Optimized Proximity Scaling Thomas Rusch
RcppArmadillo Rcpp’ Integration for the ’Armadillo’ Templated Linear Algebra Library Dirk Eddelbuettel
scales Scale Functions for Visualization Hadley Wickham
zoo S3 Infrastructure for Regular and Irregular Time Series (Z’s Ordered Observations) Achim Zeileis
httr Tools for Working with URLs and HTTP Hadley Wickham
glue Interpreted String Literals Jennifer Bryan
mvtnorm Multivariate Normal and t Distributions Torsten Hothorn
foreach Provides Foreach Looping Construct Folashade Daniel
lme4 Linear Mixed-Effects Models using ’Eigen’ and S4 Ben Bolker
readr Read Rectangular Text Data Jennifer Bryan
lubridate Make Dealing with Dates a Little Easier Vitalie Spinu
plyr Tools for Splitting, Applying and Combining Data Hadley Wickham
igraph Network Analysis and Visualization Tamás Nepusz
lattice* Trellis Graphics for R Deepayan Sarkar
reshape2 Flexibly Reshape Data: A Reboot of the Reshape Package Hadley Wickham
R6 Encapsulated Classes with Reference Semantics Winston Chang
gridExtra Miscellaneous Functions for "Grid" Graphics Baptiste Auguie
vctrs Vector Helpers Lionel Henry
doParallel Foreach Parallel Adaptor for the ’parallel’ Package Folashade Daniel
grid* The Grid Graphics Package R Core
cli Helpers for Developing Command Line Interfaces Gábor Csárdi
sp Classes and Methods for Spatial Data Edzer Pebesma
xml2 Parse XML Hadley Wickham
spelling Tools for Spell Checking in R Jeroen Ooms
markdown Render Markdown with ’commonmark’ Yihui Xie

Note. *Base and recommended R packages are part of R source code.
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Table A3: Top 50 authors identified based on different network statistics of the author collaboration
network.

Rank Degree Betweenness Eigenvector PageRank

1 Hadley Wickham R Core RStudio RStudio
2 RStudio Hadley Wickham Hadley Wickham Hadley Wickham
3 Dirk Eddelbuettel Dirk Eddelbuettel Jim Hester R Core
4 Ben Bolker Martin Maechler JJ Allaire Martin Maechler
5 R Core RStudio Winston Chang Ben Bolker
6 Martin Maechler Ben Bolker Yihui Xie Dirk Eddelbuettel
7 Yihui Xie Kurt Hornik Joe Cheng Yihui Xie
8 Brian Ripley Brian Ripley Max Kuhn Achim Zeileis
9 Michael Friendly Roger Bivand Gábor Csárdi JJ Allaire
10 Jim Hester Achim Zeileis Lionel Henry Kurt Hornik
11 Roger Bivand Scott Chamberlain Kirill Müller Brian Ripley
12 JJ Allaire Jeroen Ooms Kevin Ushey Roger Bivand
13 Henrik Bengtsson Yihui Xie Christophe Dervieux Jim Hester
14 Bill Venables Zhian N Kamvar Barret Schloerke Jeroen Ooms
15 Kevin Ushey Michael Friendly Jennifer Bryan Scott Chamberlain
16 Achim Zeileis John Muschelli Jeroen Ooms Michael Friendly
17 Kurt Hornik Rob Hyndman Carson Sievert Zhian N Kamvar
18 Max Kuhn Tyler Rinker Javier Luraschi Winston Chang
19 Romain Francois Bill Denney Romain Francois Joe Cheng
20 Duncan Murdoch John Wiseman Daniel Falbel Henrik Bengtsson
21 Zhian N Kamvar Thomas Lumley PBC Bob Rudis
22 David Robinson Jim Hester R Core Kevin Ushey
23 Hao Zhu Sahir Bhatnagar Henrik Bengtsson Duncan Murdoch
24 Michal Bojanowski Henrik Bengtsson Ben Bolker Max Kuhn
25 Joe Cheng Toby Hocking David Robinson Bill Venables
26 Vilmantas Gegzna Carl Boettiger Michal Bojanowski John Muschelli
27 Christophe Dervieux Kevin Ushey Thomas Lin Pedersen Gábor Csárdi
28 Bill Denney Kirill Müller Davis Vaughan Rob Hyndman
29 Adrian Baddeley Bob Rudis JooYoung Seo Torsten Hothorn
30 Jeroen Ooms Cleve Moler Atsushi Yasumoto Kirill Müller
31 Hong Ooi JJ Allaire Yixuan Qiu Noam Ross
32 Noam Ross Noam Ross Joseph Larmarange Romain Francois
33 David Hugh-Jones Bill Venables Dirk Eddelbuettel Christophe Dervieux
34 Joseph Larmarange Max Kuhn Malcolm Barrett Carl Boettiger
35 John Muschelli Ben Goodrich Noam Ross David Robinson
36 Jonah Gabry Jonah Gabry Jeff Allen Jonah Gabry
37 Malcolm Barrett Christophe Dutang Hao Zhu Maëlle Salmon
38 Greg Snow Torsten Hothorn Michael Friendly Michael Sumner
39 Jim Lemon Winston Chang Jenny Bryan Barret Schloerke
40 Alessandro Gasparini Kosuke Imai Google Inc Stéphane Laurent
41 Eduard Szoecs Apache Foundation David Hugh-Jones Bill Denney
42 Tal Galili Arni Magnusson jQuery Foundation Edzer Pebesma
43 Jenny Bryan Romain Francois Roger Bivand Hao Zhu
44 Torsten Hothorn Joe Cheng Hiroaki Yutani Indrajeet Patil
45 Matthieu Stigler Duncan Murdoch Martin Maechler Michel Lang
46 Garrick Aden-Buie Steven G Johnson Alex Hayes Michal Bojanowski
47 Dieter Menne Yuan Tang Mango Solutions John Fox
48 Frank E Harrell Jr Jacob Bien Richard Iannone Google Inc
49 Rolf Turner Lampros Mouselimis Simon Couch Arni Magnusson
50 Michael Chirico Yi Yang Frederik Aust Uwe Ligges
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Table A4: Authors identified by at least two indexes.

Author His or Her top downloaded packages

Hadley Wickham ggplot2, rlang, dplyr, cli, vctrs
R Core rgl, fansi, testthat, pkgload, car
RStudio ggplot2, rlang, dplyr, cli, vctrs
Dirk Eddelbuettel rgl, Rcpp, data.table, digest, nloptr
Jim Hester devtools, glue, cpp11, withr, knitr
Ben Bolker rgl, broom, lme4, car, gtools
Martin Maechler lme4, car, bitops, MatrixModels, mvtnorm
JJ Allaire knitr, Rcpp, rmarkdown, rstudioapi, shiny
Winston Chang ggplot2, devtools, withr, processx, callr
Yihui Xie knitr, xfun, rmarkdown, htmltools, yaml
Kurt Hornik digest, colorspace, nloptr, e1071, tseries
Joe Cheng knitr, rmarkdown, htmltools, bslib, sass
Brian Ripley nloptr, car, bit, quantreg, MASS
Max Kuhn broom, generics, caret, recipes, hardhat
Achim Zeileis zoo, colorspace, car, lmtest, quantreg
Michael Friendly knitr, car, maptools, DescTools, vcd
Roger Bivand sf, rgeos, broom, sp, maptools
Gábor Csárdi cli, rgl, crayon, processx, callr
Scott Chamberlain plotly, crul, httpcode, jqr, bibtex
Kirill Müller dplyr, cli, sf, pillar, tibble
Jeroen Ooms sf, rgl, jsonlite, curl, openssl
Kevin Ushey withr, Rcpp, data.table, rmarkdown, rstudioapi
Henrik Bengtsson knitr, digest, broom, globals, matrixStats
Christophe Dervieux knitr, xfun, rmarkdown, sass, tinytex
Bill Venables MASS, raster, polynom, gplots, plotrix
Zhian N Kamvar knitr, yaml, ggrepel, adegenet, rticles
Barret Schloerke rmarkdown, htmltools, evaluate, sass, shiny
John Muschelli knitr, officer, rticles, riskRegression, rscopus
Rob Hyndman rmarkdown, forecast, fracdiff, tsfeatures, tsibble
Romain Francois tibble, knitr, Rcpp, readr, RcppEigen
Bill Denney digest, broom, classInt, janitor, rio
Duncan Murdoch rgl, knitr, digest, car, kableExtra
Bob Rudis viridisLite, viridis, ggthemes, hrbrthemes, flexdashboard
David Robinson knitr, broom, reprex, tidytext, broom.mixed
Hao Zhu knitr, broom, kableExtra, skimr, REDCapR
Michal Bojanowski knitr, broom, labelled, bookdown, alluvial
Carl Boettiger rticles, EML, taxize, drat, RNeXML
Torsten Hothorn lmtest, mvtnorm, ipred, multcomp, TH.data
Noam Ross knitr, viridisLite, viridis, bookdown, data.tree
Joseph Larmarange knitr, lubridate, broom, GGally, labelled
David Hugh-Jones knitr, broom, covr, maxLik, huxtable
Malcolm Barrett rmarkdown, broom, ggrepel, usethis, bayesplot
Jonah Gabry broom, rstan, StanHeaders, loo, rstantools
Jenny Bryan knitr, broom, tidyxl
Google Inc rmarkdown, gargle, s2, odbc, tensorflow
Arni Magnusson xtable, gplots, coda, gdata, DescTools
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Table A5: Authors identified in the bipartite network and not in the author collaboration network.

Author His or Her top downloaded packages

Jan Wijffels imager, udpipe, cronR, taskscheduleR, opencv
Robin K S Hankin gsl, hypergeo, elliptic, contfrac, magic
Simon Urbanek rgl, digest, base64enc, uuid, rJava
Kartikeya Bolar STAT, ANOVAIREVA, ANOVAShiny, ANOVAShiny2, BLRShiny
Richard Cotton withr, knitr, assertive.properties, assertive.base, assertive
Muhammad Yaseen PakPMICS2014HL, PakPMICS2014Wm, DiallelAnalysisR, bayesammi, baystability
Guangchuang Yu yulab.utils, ggfun, aplot, ggplotify, tidytree
Florian Schwendinger Rglpk, lpSolveAPI, ROI, scs, Rsymphony
Paul Murrell colorspace, lattice, polyclip, gridGraphics, gridBase
Kisung You Rdimtools, maotai, mclustcomp, ADMM, ROptSpace
Przemyslaw Biecek survminer, DALEX, iBreakDown, ingredients, eurostat
Joe Thorley chk, yesno, nlist, term, universals
Philippe Grosjean Rcmdr, sfsmisc, pastecs, tcltk2, svDialogs
Mohamed El Fodil Ihaddaden ggeasy, ralger, BARIS, batata, bubblyr
Karline Soetaert shape, inline, DescTools, deSolve, rootSolve
Emil Hvitfeldt tidytext, yardstick, parsnip, prismatic, themis
Kevin R Coombes ClassDiscovery, oompaBase, PCDimension, oompaData, Polychrome
Matthias Kohl DescTools, distr, distrEx, MKmisc, MKinfer
Michael Hahsler dbscan, arules, arulesSequences, seriation, TSP
Michael Kleinsasser AEenrich, covid19india, SEIRfansy, eSIR, FEprovideR
Robrecht Cannoodt ggrepel, rticles, proxyC, princurve, diffusionMap
Pablo Sanchez facebookadsR, googleadsR, pinterestadsR, linkedInadsR, campaignmanageR
Paul R Rosenbaum sensitivityfull, sensitivitymw, sensitivitymv, sensitivitymult, exteriorMatch
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SSNbayes: An R Package for Bayesian
Spatio-Temporal Modelling on Stream
Networks
by Edgar Santos-Fernandez, Jay M. Ver Hoef, James McGree, Daniel J. Isaak, Kerrie Mengersen, and
Erin E. Peterson

Abstract Spatio-temporal models are widely used in many research areas from ecology to epidemiology.
However, a limited number of computational tools are available for modeling river network datasets in
space and time. In this paper, we introduce the R package SSNbayes for fitting Bayesian spatio-temporal
models and making predictions on branching stream networks. SSNbayes provides a linear regression
framework with multiple options for incorporating spatial and temporal autocorrelation. Spatial
dependence is captured using stream distance and flow connectivity while temporal autocorrelation
is modelled using vector autoregression approaches. SSNbayes provides the functionality to make
predictions across the whole network, compute exceedance probabilities, and other probabilistic
estimates, such as the proportion of suitable habitat. We illustrate the functionality of the package
using a stream temperature dataset collected in the Clearwater River Basin, USA.

1 Introduction

Rivers and streams are of vital ecological and economic importance (Vörösmarty et al., 2010) but are
under pressure from anthropogenic impacts such as climate change, pollution, water extractions, and
overfishing. In the past, data describing critical characteristics such as nutrients, sediments, pollutants
and stream flow tended to be sparse in space and/or time. However, recent developments in in-situ
sensor technology have revolutionized ecological research and natural resource monitoring. These
new data sets create exciting opportunities to measure, learn about, and manage the spatio-temporal
dynamics of abiotic (e.g. temperature, water chemistry, habitat characteristics) and biotic processes (e.g.
migration, predation, and competition). However, the unique spatial relationships found in stream
data (e.g. branching network structure, longitudinal (upstream/downstream) connectivity, water
flow volume and direction) and high-frequency of sampling create analytical challenges that make it
difficult to gain meaningful insights from these datasets. We attempt to overcome these challenges
through the SSNbayes package which provides convenient and practical tools to undertake Bayesian
inference in complex spatial and temporal stream network settings.

1.1 Motivating dataset: repeated measures from in-situ sensor locations in a river

Consider the river network in the Clearwater River Basin, USA shown in Fig 1. Water temperature data
were collected at fixed time intervals using in-situ sensors placed at 18 unique locations throughout
the network (Isaak et al., 2018). We want to use these data to address several research questions and
goals. Firstly, we would like to analyse water temperature to assess the impact of covariates such as air
temperature. Secondly, we aim to make predictions with uncertainty at other locations throughout the
network (approximately every 1 km). Also, we want to impute missing data e.g. the most downstream
point in Fig 1 (location 12), and determine regions of the network which remain suitable habitats over
time to sustain fish species such as bull trout which typically preferred water temperatures of < 13 °C.
Throughout this paper, we show how the SSNbayes package can be used to analyse these spatial and
temporal data, and address these motivating research questions.

1.2 A brief review

A number of R software packages for spatial stream-network modelling have been developed over the
last few decades (Ver Hoef et al., 2014; Skoien et al., 2014; Rushworth, 2017). These packages account
for unique spatial relationship found in stream data. For example, the R packages SSN and SSN2
(Ver Hoef et al., 2014; Dumelle et al., 2023) fits spatial regression models for stream networks, with
autocorrelation in time only possible by using random effects as repeated measures, which induces
equal correlation for all times at a location. Similarly, spatial additive models can be fitted using the
package smnet (Rushworth, 2017). However, these models are not designed to simultaneously account
for the temporal variability that often accompanies spatial variation in new data sets derived from
modern sensor arrays.
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Figure 1: Mean daily water temperature in degrees Celsius on August 1, 2012, at 18 different spatial
locations in the Clearwater stream network in the US. The temperature values are represented by a
color scale, with cooler temperatures shown in blue and warmer temperatures shown in yellow. Each
spatial location is labeled with a unique identifier (locID). The plot highlights the variation in water
temperature across the different locations in the network.

There are several R packages for spatio-temporal modelling that are described in the Space-time
CRAN Task View (Pebesma, 2021). For example, spatial/temporal dependence can be incorporated
via the nlme package package (Pinheiro and Bates, 2000; Pinheiro et al., 2020). Other packages such as
spBayes (Finley et al., 2015) allow random effects modelling for point-referenced data. CARBayes
(Lee, 2013) contains useful tools for implementing Bayesian spatial models using random effects via
conditional autoregressive (CAR) priors. Similarly, spatial process data can be represented using
kernels e.g. using the package RandomFields (Schlather et al., 2015). Interpolation of spatial data and
Kriging can be done via tools from the package geoR (Ribeiro Jr et al., 2020). One of the most popular
implementations among practitioners is the R-INLA package (Lindgren and Rue, 2015), which uses
approximate Bayesian inference via integrated nested Laplace approximations. Multiple latent Gaus-
sian spatio-temporal models can be fit in R-INLA. FRK (Zammit-Mangion and Cressie, 2021) makes
use of spatial basis functions and discrete areal units with a focus on large datasets. In the same line,
new packages harnessing the power of rstan (Carpenter et al., 2017) are also emerging. For instance,
bmstdr (Sahu et al., 2022) implements several spatio-temporal approaches for point referenced and
areal unit datasets, and geostan (Donegan, 2022) fits spatial models for areal data. However, none of
these packages are specifically designed to account for the unique spatial relationships found in data
collected on streams.

Here, we describe the SSNbayes package which has been designed to address many of the
limitations of the current software tools for spatio-temporal modelling on stream networks. More
specifically, SSNbayes can fit spatio-temporal stream-network models and produce predictions in
space and time, with associated estimates of uncertainty. It uses the Bayesian inference machinery
implemented using the probabilistic programming language Stan.

The rest of the paper is organised as follows: we introduce the relevant statistical models in
the Methods section, followed by an overview of the package structure and functions. We then
demonstrate how the SSNbayes package can be used to explore, analyse and draw conclusions from
a stream temperature data set collected in the western United States (USA). A second reproducible
example is provided in the Appendix to help users adapt the R code for their own data. Finally,
we conclude with a discussion of the benefits and challenges in using the SSNbayes package and
Bayesian spatio-temporal models on stream networks, as well as potential extensions to the methods
and improvements to the package.
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2 Methods

Data collected on stream networks often exhibit complex patterns of spatial autocorrelation resulting
from ecosystem processes occurring within branching stream networks, as well as between the aquatic
and terrestrial environments (Peterson et al., 2013). It is therefore common for streams data to exhibit
both Euclidean and in-stream patterns of spatial autocorrelation at multiple scales (Peterson et al.,
2006; Peterson and Ver Hoef, 2010). Thus, we start this section with a description of spatial models
based on Euclidean distance and then describe methodological extensions to stream networks. These
models provide the foundation to describe the Bayesian hierarchical spatio-temporal model variations
implemented in the SSNbayes package.

General space-time model

Consider the general spatio-temporal linear model:

yyy = XXXβββ + vvv + ϵϵϵ, (1)

where the response variable yyy = [yyy
′
1, yyy

′
2, · · · , yyy

′
T ]

′
is a stacked vector of length n = S × T for S spatial

locations and T time points. We order data such that vector yyyt contains the observations at the S spatial
locations at time t for t = 1, . . . , T. Let XtXtXt be an S × p design matrix of p covariates for the tth time. We
construct a stacked matrix of covariates XXX = [XXX

′
1, XXX

′
2, · · · , XXX

′
T ]

′
with dimensions n × p. We then define

βββ as a p × 1 vector of regression coefficients. We let vvv = [vvv
′
1, vvv

′
2, · · · , vvv

′
T ]

′
be a stacked vector of n spatial

random effects, where vvvt is a vector of length S for each t, and all vvvt have the same spatial dependence
model (shared locations and parameters across all times t). For example, vvvt can be modelled using
a Gaussian process (Banerjee et al., 2014), but we also use spatial stream-network models that we
describe below for each vvvt. The final step in our construction is to use vector autoregressive models to
add the temporal components which we develop below. The vector ϵϵϵ is the independent unstructured
random error term, where var(ϵϵϵ) = σ2

0 III. The parameter σ2
0 is called the nugget effect and III is an n × n

identity matrix.

Euclidean distance models

A typical modelling approach to capture spatial dependence is via the second moment of vvv from Eq 1
where the amount of autocorrelation decays with the Euclidean distance. Some of the most common
covariance functions are the exponential, Gaussian and spherical (Cressie and Wikle, 2015; Banerjee
et al., 2014):

exponential model, CED(d | θθθ) = σ2
e e−3d/αe , (2)

Gaussian model, CED(d | θθθ) = σ2
e e−3(d/αe)2

, (3)

and

spherical model, CED(d | θθθ) = σ2
e

(
1 − 3d

2αe
+

d3

2α3
e

)
1(d/αe ⩽ 1), (4)

where αe ∈ (0, ∞), σ2
e > 0, and d is the Euclidean distance between two locations si and sj. The vector

θθθ represents the spatial parameters (αe, σ2
e ), where σ2

e is the partial sill, αe is the spatial range parameter
and 1(·) is the indicator function. The partial sill is the resulting variance after accounting for the
nugget effect (sill minus nugget effect). Negligible spatial correlation is assumed between points
located at a distance greater than the spatial range parameter.

2.1 Spatial models for stream networks

The stream network data shown in Fig.2 represents repeated measures at several time points t from
four spatial locations (s1 to s4). Stream distance is defined as the separation distance between two
locations when movement is restricted to the network. The direction of the water flow is also shown
in the figure (from north to south) and the stream outlet (i.e. most downstream point on the stream
network) is below location s4. The watershed (i.e. drainage basin) includes the land that contributes
water flow to a discrete downstream location in the stream network. Thus, the watershed for the
stream outlet in Fig. 2 includes all of the upstream regions (r1-r4). Spatial locations s1 and s3 are
considered flow-connected because the water flows from the upstream location s1 to the downstream
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location s3. In contrast, s1 and s2 are considered flow-unconnected because they reside on the same
stream network, but do not share flow.
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Figure 2: Visualization of a stream network at multiple time points, with water flowing from top to
bottom. The plot displays four spatial locations (s1 − s4) and four regions (r1 − r4), with the colors
indicating the regions. This visualization allows for an understanding of the spatial and temporal
dynamics of the stream network.

Multiple covariance models have been proposed for stream networks that describe the unique
spatial dependence related to network structure and stream flow. These models are based on moving
average constructions that use stream distance, and were introduced by Ver Hoef et al. (2006) and
Cressie et al. (2006) (tail-up models) and Ver Hoef and Peterson (2010) and Garreta et al. (2010)
(tail-down models); several models of each class are given below. These spatial covariance matrices
have been extensively employed in numerous water quality modelling frameworks and applications
(Money et al., 2009a,b; Isaak et al., 2014; McManus et al., 2020; Jackson et al., 2018; Rodríguez-González
et al., 2019) and are described in more detail below.

Tail-up models

Tail-up covariance models were developed by convolving a moving average function with white noise
(Ver Hoef et al., 2006). As the name suggests, the moving average function points in the upstream
direction from a stream location in a tail-up model, which restricts correlation to flow-connected
locations only. In addition, the function must be split at upstream junctions using spatial weights,
which maintain stationary variances by controlling the proportion allocated to each upstream segment.

Given a pair of sites si and sj, the tail-up covariance matrix is defined as:

CTU(si, sj|θθθ) =
{

0 if si, sj are flow-unconnected,
Cu(h | θθθ)Wij if si, sj are flow-connected,

where Cu(h | θθθ) is an unweighted tail-up covariance between two locations based on the total stream
distance between them, h. Wij represents the spatial weights between sites i and j. Cu can take a
variety of forms including:

Tail-up exponential model, Cu(h | θθθ) = σ2
ue−3h/αu , (5)

Tail-up linear-with-sill model, Cu(h | θθθ) = σ2
u(1 − h/αu)1(h/αu ⩽ 1), (6)

Tail-up spherical model, Cu(h | θθθ) = σ2
u

(
1 − 3h

2αu
+

h3

2α3
u

)
1(h/αu ⩽ 1) (7)

where σ2
u is the partial sill and αu is the range parameter.

The spatial weights used in the tail-up model are generated for flow-connected locations

Wij =

√
Ω(sj)

Ω(si)
,
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where Ω(si) and Ω(sj) are the additive function values for the upstream and downstream site,
respectively. Additive function values can be derived from any variable available for every line
segment in a stream network, but are often based on an ecologically meaningful variable (e.g. stream
flow) or a surrogate (e.g. watershed area), which is thought to represent relative influence in a
stream network (Frieden et al., 2014). Additive function values can be generated in SSN using
the additive.function() or in the STARS ArcGIS custom toolset using the SegmentPI, Additive
Function - Edges, and Additive Function - Sites tools (Peterson and Ver Hoef, 2014). For
additional information about how the additive function values are constructed, please see Ver Hoef
et al. (2006) or Appendices A in Santos-Fernandez et al. (2022) or Peterson and Ver Hoef (2010).

Tail-down models

Tail-down models are also based on a moving average contruction (Ver Hoef and Peterson, 2010), but
in this case the function points in the downstream direction. This allows the models to describe spatial
correlation between both flow-connected and flow-unconnected locations. In addition, the moving
average functions converge downstream and do not need to be split at junctions using spatial weights.

There is a distinction between flow-connected and flow-unconnected relationships in a tail-down
model. When pairs of sites are flow-connected, distance is based on the total stream distance between
them, h. When sites are flow-unconnected (e.g. s1 and s2 in Fig.2), we define a and b as the stream
distance from s1 and s2 to their first common downstream junction, so that a ⩽ b.

Tail-down exponential model,

CTD(a, b, h|θθθ) =
{

σ2
d e−3h/αd if flow-connected,

σ2
d e−3(a+b)/αd if flow-unconnected,

Tail-down linear-with-sill model,

CTD(a, b, h|θθθ) =
{

σ2
d (1 −

h
αd
)1( h

αd
⩽ 1) if flow-connected,

σ2
d (1 −

b
αd
)1( b

αd
⩽ 1) if flow-unconnected,

Tail-down spherical model,

CTD(a, b, h|θθθ) =
{

σ2
d (1 −

3h
2αd

+ h3

2α3
d
)1( h

αd
⩽ 1) if flow-connected,

σ2
d (1 −

3a
2αd

+ b
2αd

)(1 − b
αd
)1( b

αd
⩽ 1) if flow-unconnected,

where σ2
d is the partial sill, αd is the range parameter, and 1(·) is the indicator function, equal to 1 if its

argument is true, otherwise it is zero.

2.2 Mixed models

A mixture of Euclidean, tail-up and tail-down covariance matrices is often used to capture the complex
patterns of spatial dependency found in stream data. In Eq 1, vvvt for a purely spatial case is a vector of
dimension S corresponding to the spatial locations, with covariance matrix ΣΣΣ.

ΣΣΣ = COV(vvv) = CCCED +CCCTU +CCCTD = σ2
e RRRe(αe) + σ2

uRRRu(αu) + σ2
d RRRd(αd), (8)

where σ2
e , σ2

u , and σ2
d are the partial sills for Euclidean, tail-up and tail-down functions, respectively.

The correlation matrices RRRu(αu), RRRd(αd) and RRRe(αe) are obtained as a function of the range parameters
αu, αd and αe (Ver Hoef et al., 2014).

For space-time applications, we can use the same spatial covariance matrix or we can build a
dynamic model with spatial parameters that are time-specific. We opted for the first approach in the
SSNbayes, since this reduces the number of parameters to be estimated from the model and is less
computationally demanding. We return to this point in the Discussion.

2.3 Spatio-temporal stream network models

Following the above discussion, consider the stream network in Fig.2, that evolves across discrete
time points t = 1, 2, . . . , T. Let a response variable yyyt be an S × 1 vector of random variables at unique
and fixed spatial locations of s = 1, 2, . . . , S. We start with the following conditional spatio-temporal
model:
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[yyy1, yyy2, · · · , yyyT ] =
T

∏
t=2

[yyyt | yyyt−1, θθθ, XXXt, XXXt−1, βββ, ΦΦΦ, ΣΣΣ] (9)

where yyy1 is the process at t = 1, and

[yyyt | yyyt−1, θθθ, XXXt, XXXt−1, βββ, ΦΦΦ, ΣΣΣ] ∼ N (µµµt, ΣΣΣ + σ2
0 III), (10)

Here, ΣΣΣ = COV(vvvt) is an S × S spatial covariance matrix of the form given in Eq 8. The mean µµµt can
be expressed as a vector autoregressive process of order one VAR(1) (Hamilton, 1994):

µµµt = XXXtβββ +ΦΦΦ(yyyt−1 −XXXt−1βββ), (11)

The square transition matrix, ΦΦΦ of dimension S × S, has elements ϕij, which describe the conditional
temporal cross-correlation between two spatial locations i and j.

2.4 Vector autoregressive model variations

We use a vector autoregressive (VAR) approach to simultaneously model time series from multiple
spatial locations in the network. This stochastic approach allows capturing and incorporating temporal
dependence across multiple time series. Two variations of the vector autoregressive spatial process
have been implemented in the SSNbayes package.

Case 1 (AR)

The simplest case considers the same temporal autocorrelation for all spatial locations. Therefore all
the diagonal elements of ΦΦΦ are equal to ϕ and all the off-diagonal elements are set to zero, which
assumes negligible cross-correlation between time series. That is:

ΦΦΦ =


ϕ 0 · · · 0
0 ϕ · · · 0
...

...
. . .

...
0 0 · · · ϕ

 . (12)

Under this model, the temporal autocorrelation for a fixed spatial location is an AR1 model with
autocorrelation parameter ϕ, and the joint spatio-temporal autocovariance matrix is the separable
model,

var(y) = CCCOO =
1

1 − ϕ2


1 ϕ · · · ϕT−1

ϕ 1 · · · ϕT−2

...
...

. . .
...

ϕT−1 ϕT−2 · · · 1

⊗ (ΣΣΣ + σ2
0 III), (13)

where ⊗ is the Kronecker product.

Spatial locations in large river networks often have different elevations, climatic conditions, or
local flow regimes and this can affect the amount of temporal autocorrelation in observations. Hence,
the assumption that there is a common ϕ for all locations may not always be appropriate and this
motivates Case 2.

Case 2 (VAR)

In the second method, rather than a shared ϕ across all locations, each location gets its own temporal
autocorrelation parameter ϕs for s ∈ 1, · · · , S. This is known as the autoregressive shock model (Wikle
et al., 1998), which can be defined through ΦΦΦ as follows:

ΦΦΦ =


ϕ1 0 · · · 0
0 ϕ2 · · · 0
...

...
. . .

...
0 0 · · · ϕS

 . (14)

Other VAR structures consider ϕ as a linear combination of spatial covariates and cross-correlation
between time series (Santos-Fernandez et al., 2022). These variations are not currently implemented in
SSNbayes but are under development.
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2.5 Bayesian inference and specification of prior distributions

Formulating this model in a Bayesian framework requires sampling from the following posterior
distribution:

[βββ, ΦΦΦ, σ2
0 , σ2

u , αu, σ2
d , αd, σ2

e , αe | y, X]. (15)

SSNbayes uses Stan (Carpenter et al., 2017) to efficiently produce samples from this distribution via
Hamiltonian Monte Carlo (HMC) methods.

We also need to define prior distributions for the parameters of interest. Currently, diffuse
prior distributions are the only option in ssnbayes(), but the functionality to include other prior
distributions may be included in future package versions. The implemented prior distributions are
the following:

ϕ ∼ Uniform (−1, 1) # uniform prior on the autoregressive parameter

α. ∼ Uniform (0, 4 × max(h)) # diffuse prior on the spatial range

σ. ∼ Uniform (0, 100) # diffuse prior on the square root of the partial sill

σ0 ∼ Uniform (0, 100) # diffuse prior on the square root of the nugget effect

β ∼ N (0, 1000) # prior on the regression coefficients (intercept and slope)

For the autoregressive parameter (ϕ), a uniform prior defined from -1 to 1 is used to ensure the
process is stationary. The upper limit for the spatial range parameter is set to four times the maximum
stream distance between observation locations on the network.

2.6 Prediction

There are two ways of making predictions in SSNbayes. By default, predictions are produced for
missing values (NA) in the response variable in the observation dataset used to fit the model via the
posterior predictive distribution:

p(ŷ | y, X, X̂) =
∫

p(ŷ | η, X̂)p(η | y, X)dη, (16)

where X̂ are the covariates for ŷ. This Eq 16 gives the probability distribution of a new observation, ŷ,
given the observed data y and covariates/predicted covariates.

However, this approach is not recommended when making predictions at a large number of
spatial locations (e.g. predicting over an extensive branching stream network) since it would involve
operations with large matrices which can be very inefficient.

The second approach uses the fitted model produced using ssnbayes() to generate predictions
using the Kriging predictor in a prediction dataset (Banerjee et al., 2014; Gelfand et al., 2019). This
produces estimates as a weighted average of observations.

ŷyyP = XXXPβββ +CCCOP
′CCC−1

OO(yyyO −XXXOβββ), (17)

where subscripts O and P indicate the observation and prediction locations, respectively. The stacked
vector ŷyyP contains the predictions at the P spatial locations across all the time points T. The observa-
tions are represented in the stacked vector yyyO, which contains all of the observations across the T time
points. XXXP and XXXO are space-time design matrices of covariates for the observations and predictions,
respectively, while βββ is a vector of regression coefficients.

The separable square matrix CCCOO of dimension n = S × T (defined in Eq 1), contains the covari-
ances between observations at all time points, where O and T are the number of observations and time
points respectively. Similarly, CCCOP is a O × T by P × T rectangular separable matrix of covariances
between observation and prediction locations at all time points with the same structure as CCCOO. That
is, if CCCOO was obtained from an AR exponential tail-down model with parameters ϕ, σtd and αtd, these
same parameters are used to construct CCCOP.

The covariance matrix of observations (CCCOO) must be inverted at each MCMC iteration when
making predictions (Eq. 17) and this quickly becomes computationally challenging for large datasets.
However, the separability of (13) significantly reduces the computational burden in these cases (Wikle
et al., 2019)

C−1
OO = ΣΣΣ−1

ar1 ⊗ΣΣΣ−1
OO,
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where ΣΣΣOO is the spatial covariance matrix defined in Eq 8, and ΣΣΣar1 is the temporal covariance matrix
of an AR(1) process (13) which has an analytical inverse that is tridiagonal.

3 The SSNbayes package

3.1 Data pre-processing

Detailed spatial, topological, and attribute data are needed to fit spatial stream network models,
including those implemented in SSNbayes. There are currently two software packages that can be
used to generate this information: 1) the Spatial Tools for the Analysis of River Systems (STARS)
custom toolset (Peterson and Ver Hoef, 2014) for ArcGIS version ≥ 10.1 (ESRI, 2019) or 2) the R
package openSTARS (Kattwinkel et al., 2020). When the pre-processing is complete, both tools
create a new directory with the extension .ssn (i.e. a .ssn object), which contains shapefiles of the
stream network, observed locations, and prediction locations (optional). It also contains the response,
covariates (optional), and the information needed to generate stream distances and spatial weights
between observed and prediction locations. Several unique identifiers are also assigned to observed
and prediction locations to denote unique locations (locID) and unique measurements in space and
time (pid). If real data are not being used, the createSSN() and SimulateOnSSN() functions found in
SSN can be used to generate artificial .ssn objects that meet these requirements. It is important to note,
however, that the SSN package has been archived on CRAN. In the absence of a .ssn object, SSNbayes
can still be used to fit models based solely on Euclidean covariance models.

3.2 Installation

The SSNbayes package for R statistical software (≥ 3.3.0) extends the models implemented in the
SSN2 package. SSNbayes is based on the R package rstan and the C++ toolchain is required. See
https://github.com/stan-dev/rstan/wiki/RStan-Getting-Started.

The SSNbayes package can be found at CRAN and Github (https://github.com/EdgarSantos-
Fernandez/SSNbayes) and installed using:

if(!require('SSNbayes')) install.packages("SSNbayes", dependencies = T)

Or:

remotes::install_github("EdgarSantos-Fernandez/SSNbayes", dependencies = T)

For this demonstration we will need the companion R package SSNdata (Santos-Fernandez, 2022).

remotes::install_github("EdgarSantos-Fernandez/SSNdata",
ref = "HEAD", upgrade_dependencies = F, dependencies = F)

SSNbayes describes both spatial and temporal autocorrelation using Bayesian inference. Table 1
shows a summary of the main functions included in the package and a description of the most
important arguments. The function collapse() is used to extract line features from an spatial stream
network (ssn) object in a format suitable for visualisation using packages such as ggplot2. The
function ssnbayes() is the core function in SSNbayes, providing the functionality to fit linear spatio-
temporal regression models (Santos-Fernandez et al., 2022), while the predict() function is used
to perform spatio-temporal prediction from a stanfit object generated from ssnbayes(). Generic
functions such as summary() and plot can be used to generate summary statistics and visualize
model outcomes. In addition, the helper functions dist_weight_mat() and dist_weight_mat_preds()
provide the functionality to extract a list of Euclidean and stream distance matrices, a spatial weight
matrix, and an indicator matrix for flow connectivity between sites.

3.3 Modelling stream temperatures

We use the dataset described in the Introduction to illustrate how the SSNbayes package can be used
to explore, analyse and draw conclusions from a Bayesian spatio-temporal model. The .ssn object for
these data is part of the SSNdata package.

if(!require('SSNdata')) remotes::install_github("EdgarSantos-Fernandez/SSNdata")
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Table 1: A description of functions in the SSNbayes package and the most important arguments.

function arguments description
collapse() t Path to a .ssn object
ssnbayes() formula A formula object, as used in lm()

data A long data.frame containing the locations, dates, covariates and response
path Path with the name of the .ssn object
space_method A list defining whether a spatial stream network (ssn)

object is used and the spatial corr
time_method A list specifying the temporal structure
iter Number of iterations
warmup Number of warm up samples
chains Number of chains
addfunccol (optional) Column name for site additive function

predict() formula A formula object, as used in lm()
obs_data A long data.frame containing the locations, dates, covariates and response
stanfit A stanfit object returned from ssnbayes()
pred_data A long df of predictions with the locations, dates, covariates and the response
nsamples The number of samples to draw from the posterior distributions
addfunccol (optional) Column name for site additive function
locID_pred (optional) the location id for the predictions
chunk_size (optional) the number of locID to make prediction from

dist_weight_mat() t Path to a .ssn object
dist_weight_mat_preds() t Path to a .ssn object

For reproducibility, we also created a Kaggle notebook containing the example from this section
(https://www.kaggle.com/edsans/ssnbayes). For completeness, similar analyses were performed on
simulated data and the results are presented in the Appendix.

The .ssn object was generated using the STARS custom toolset (Peterson and Ver Hoef, 2014)
and contains 18 observation and 60 prediction locations spaced at 1km intervals along the stream
network. Hourly temperature recordings were taken at the observation sites but these were averaged
to mean daily values for the two-year period of the data set. The data residing within the .ssn object
are imported into R, converted to an ssn object and pair-wise distances are calculated for all observed
sites, observed and prediction sites, and prediction sites using the following SSN2 package functions:

path <- system.file("extdata/clearwater.ssn", package = "SSNdata")
n <- SSN2::ssn_import(path, predpts = "preds", overwrite = TRUE)
SSN2::ssn_create_distmat(n,

predpts = "preds" ,
overwrite = TRUE,
among_predpts = TRUE)

We also read in a data frame containing the response and covariate data:

clear <- readRDS(system.file("extdata/clear_obs.RDS", package = "SSNdata"))

In the data.frame clear, the response variable (temp) is the mean daily stream temperature
measured at 18 observation sites. Here we focus on a subsample of longitudinal response data
consisting of 24 time points at those sites over two years (Figure 3). We randomly split the dataset,
with 2/3 used for training the model and 1/3 for testing the out-of-sample prediction accuracy. This
training/testing split was performed once for illustration purposes but for complex datasets we
recommend using leave-one-out cross-validation.

Stream temperature is strongly influenced by topography and climate variables (Isaak et al., 2017).
The following covariates were available for the observation and prediction locations across all the
time points: stream slope, elevation, watershed area (Isaak et al., 2017), and air temperature (e.g. Bal
et al., 2014). In addition, we included the first pair of harmonic covariates (Fourier terms) for the time
periods (sint and cost) (Hyndman and Khandakar, 2008).

3.4 Visualizing stream network data in space and time

We begin by extracting the streams from the ssn object so that we can visualise the data in ggplot2.

n.df <- SSNbayes::collapse(n)

The data.frame n.df contains data describing the spatial location of individual stream segments, along
with the additive function column. The spatial and space-time data can then be visualised using
ggplot2 (Fig 1).
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Figure 3: Time series of stream temperatures at multiple locations. Each line represents the time series
for a unique observation location. The x-axis represents date, while the y-axis represents the water
temperature in C◦. Observations (training dataset) are displayed as blue points and the predictions
(testing set) are displayed in red. The plot reveals the periodic changes in water temperatures over
time at different locations in the stream network.

3.5 Fitting spatio-temporal linear models

The next step is to fit a linear spatio-temporal regression model using the function ssnbayes(). We
specify the following linear regression model using the covariates in the observed dataset:

X
′

(t)β = β0 + β1 ∗SLOPE+ β2 ∗ elev+ β3 ∗h2o_area+ β4 ∗ air_temp(t)+ β5 ∗ sin(t)+ β6 ∗ cos(t), (18)

and fit the model to the observed temperature data using the ssnbayes() function.

fit_ar <- ssnbayes(formula = temp ~ SLOPE + elev + h2o_area + air_temp + sin + cos,
data = clear,
path = path,
space_method = list("use_ssn", "Exponential.taildown"),
time_method = list("ar", "date"),
iter = 3000,
warmup = 1500,
chains = 3,
net = 2,
addfunccol='afvArea',
refresh = max(iter/100,1))

Running this function takes several minutes and the progress of the sampler is shown during the
execution. We stored the fitted model within SSNdata, which can be accessed using the code below if
the reader wants to skip fitting the model.

fit_ar <- readRDS(system.file("extdata//fit_ar.rds", package = "SSNdata"))

The reader is referred to the Appendix for a second reproducible example using simulated data.

In the ssnbayes() function call shown above, the argument formula describes the regression
model and is defined in the same way as in other model-fitting functions such as lm. We also pass a
data.frame using the data argument, which must contain all of the variables specified in the formula
argument. This data.frame should be in long format, with one row for each unique observation in space
and time, which are also defined using locID and pid. In addition, the data set needs to be structured
such that each spatial location has the same number of temporal observations. Such observations can
be missing but should be denoted as such via “NA”. In such cases, Bayesian imputation is used to
obtain a complete data set. In other words, the data.frame has to contain all the combinations S and T.
This can be done e.g. using the tidyr::complete() function.

The space_method argument is a list containing information about the spatial modelling com-
ponent. The first element specifies whether the topological information is stored in a ssn object
or not (“use_ssn” or “no_ssn”), while the second list element specifies which spatial correlation
model(s) to use. Options include tail-up ("Exponential.tailup", "LinearSill.tailup", "Spherical.tailup"),
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tail-down ("Exponential.taildown", "LinearSill.taildown", "Spherical.taildown") and Euclidean ("Ex-
ponential.Euclid") models. It is possible to have more than one spatial covariance function per
family (tail-up, tail-down and Euclidean distance). For instance: space_method = list(’use_ssn’,
c("Exponential.tailup", "Spherical.taildown")). However, care should be taken in this case to
ensure identifiability of the model. If the user specifies use_ssn as the first element and the second
element in the list is missing, then an "Exponential.tailup" model will be used by default. When a
tail-up covariance function is specified, an additional column containing the additive function values
used to compute the spatial weights must also be specified (e.g. addfunccol =’afvArea’).

The argument net specifies the network identifier when multiple networks are found within the
same ssn object. Much less information is needed to fit traditional Euclidean covariance models
and so a ssn object is not needed. Instead, the columns containing the spatial coordinates (e.g.
longitude and latitude) must be included as a third element in the list: space_method = list("no_ssn",
"Exponential.Euclid", c("lon", "lat")).

The temporal part of the model is defined in a similar fashion using a list time_method =
list("method", "date"). The first element defines the temporal model and options include an
autoregressive model, “ar”, defined in Eq 12 or a vector autoregression model, “var”, defined in Eq 14).
The second element is the variable defining the time points in the observation data.frame, which must
be a discrete numeric variable. They should also be spaced at regular intervals, as expected in many
time series models.

In SSNbayes the number of chains (chains), iterations (iter), and burn-in samples (warmup) can
be specified. By default, chains = 3, iter = 3000, warmup = 1500. Thinning is also possible using the
argument thin. Optionally, the seed parameter can be set to ensure reproducibility.

The SSNbayes package depends on rstan, which does not allow missing values in the data.
Missing values in the response variable (left hand side element in the formula argument) will be
automatically imputed in the ssnbayes() function. However, missing values in the covariates (right
hand side elements in the formula argument) are not allowed. Instead, they must be imputed by
the user before fitting the model. Many options for imputation can be found in https://cran.r-
project.org/web/views/MissingData.html.

The ssnbayes() function shows the progress of the model fit and will be updated based on the
number of samples specified using the refresh argument. At every iteration, the inverse of the
spatial covariance matrix has to be computed, which takes a substantial amount of time for a large
number of spatial locations and time points. Fitting this dataset using the ssnbayes() function took
approximately 10 minutes on a laptop with an Intel Core i7-8650U CPU @ 1.90GHz and 16 Gb of
memory.

3.6 Exploring results

The output from ssnbayes() is a stanfit object, which contains information about the fitted model
and the MCMC chains for the parameters of interest. It can be summarized and visualized using
generic functions such as summary() and plot(), or functions in the ggplot2 package. We can also
visualize the posterior distributions in the parameters of interest using the mcmc_dens_overlay()
function from the R package bayesplot (Gabry and Mahr, 2018). The regression coefficients across
three chains are shown in Figure 4).

library('bayesplot')
mcmc_dens_overlay(
fit_ar,
pars = paste0("beta[",1:7,"]"),
facet_args = list(nrow = 1))

Apart from h2o_area (β3), all of the estimated regression coefficients for covariates are substantially
different from zero. The bulk of the posterior distribution of the autoregressive parameter (ϕ) was also
far away from zero, suggesting a strong temporal dependence (Figure 5).

The mcmc_dens_overlay() function can also be used to visualise the posterior distributions of the
spatial model parameters (σ2

TD and αTD) and the nugget effect (σ2
0 ) (Figure 6).

mcmc_dens_overlay(
fit_ar,
pars = c("var_td", "alpha_td", "var_nug"),
facet_args = list(nrow = 1))

Notice that the median of the spatial range αTU is approximately 200,000 m, indicating that spatial
autocorrelation exists between locations that are less than 200 km apart.
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Figure 4: Posterior distributions of the regression coefficients for the linear model with seven covariates,
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Figure 5: Boxplot of the posterior distribution for the autoregression parameter, ϕ, estimated from the
stream temperature time series data. The box represents the interquartile range (IQR). The distribution
shows moderate uncertainty in estimating the value of ϕ.

3.7 Predictions

Ecological and environmental monitoring on stream networks generally produces data at discrete
locations, which represent only a small section of the stream network. However, it is often desirable
to make predictions in areas where data have not been collected to create spatially continuous maps
(Isaak et al., 2017). In this section, we illustrate (1) how the model imputes missing values producing
predictions, and (2) how to use the fitted model to predict in unsampled locations using a Kriging
approach.

As mentioned previously, the ssnbayes() function imputes missing values in the response variable.
The time series corresponding to the 18 spatial locations are shown in Fig 7. The model captures the
periodic patterns in stream temperatures well, even in locations where most of the observations were
missing (e.g. 8 and 12, Fig 7). We also compared the predictions produced by the model with the
true latent hold-out data (Fig 8). If the model predictions were perfect we would expect points to
fall on the diagonal line. The results suggest that the Bayesian model produces predictions that are
similar to the true latent values. Most of the predictions (96%) were included within the 95% highest
density interval, showing appropriate coverage of the predictions. The root mean square prediction
error (RMSPE) between the true temperature values and the predictions was 0.510 °C, which is small
considering the magnitude of variation in temperature values.

Additionally, in our case study, we want to produce temperature predictions at 60 locations
generated using a systematic design (≈1km apart). The function predict() produces predictions
using information contained in the stanfit object obtained from ssnbayes(). The argument nsamples
specifies the number of random samples to select from the posterior distributions and it must be
smaller than or equal to the number of iterations iter specified in ssnbayes().

# reading the prediction data
clear_preds <- readRDS(system.file("extdata/clear_preds.RDS", package = "SSNdata"))
pred <- predict(path = path,

obs_data = clear,
stanfit = fit_ar,
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Figure 6: Posterior distributions of the spatial parameters, including the nugget effect (σ2
0 ) and the

spatial dependence (σ2
d ) in C◦, and the range parameter (αd) in meters.

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 38

●
●●

●
●

●

●
●●

●
●

●

●
●●

●●

●

●

●●

●

●

●

●●●
●

●

●

●
●

●

●
●

●

●

●●
●●

●

●
●●

●

●

●

●●●
●

●

●

●
●

●

●

●

●

●

●●
●●

●

●
●●

●

●

●

●●●

●
●

●

●

●●

●

●

●

●●
●

●●

●

●●
●

●

●

●

●●●
●●

●

●

●
●

●

●

●

●
●●

●●

●

●
●●

●

●

●

●●●
●●

●

●

●
●

●
●

●

●

●●
●●

●

●●●

●

●

●

●●●

●●

●

●
●

●

●
●

●

●
●●

●●

●

●
●●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●
●●

●●

●

●

●●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●
●●

●●

●

●
●●

●

●

●

●
●●

●●

●

●
●

●

●
●

●

●

●●
●●

●

●
●

●

●

●

●

●●●

●
●

●

●
●

●

●
●

●

●
●●

●●

●

●
●●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●
●●

●●

●

●
●●

●

●

●

●●●
●

●

●

●
●

●

●
●

●

●

●●
●●

●

●
●●

●

●

●

●●●
●●

●

●

●
●

●

●

●

●
●●

●●

●

●
●●

●

●

●

●●●
●

●

●

●
●

●

●

●

●

●
●●

●●

●

●
●●

●

●

●

●●●

●
●

●

●
●

●

●
●

●

●
●●

●●

●

●
●●

●

●

●

●●●

●
●

●

●

●
●

●

●

●

●

●●

●●

●

●
●●

●

●

●

●●●

●
●

●

●
●

●

●
●

●

●
●●

●●

●

●
●●

●

●

●

13 14 15 16 17 18

7 8 9 10 11 12

1 2 3 4 5 6

20
12

−0
1

20
12

−0
7

20
13

−0
1

20
13

−0
7

20
14

−0
1

20
12

−0
1

20
12

−0
7

20
13

−0
1

20
13

−0
7

20
14

−0
1

20
12

−0
1

20
12

−0
7

20
13

−0
1

20
13

−0
7

20
14

−0
1

20
12

−0
1

20
12

−0
7

20
13

−0
1

20
13

−0
7

20
14

−0
1

20
12

−0
1

20
12

−0
7

20
13

−0
1

20
13

−0
7

20
14

−0
1

20
12

−0
1

20
12

−0
7

20
13

−0
1

20
13

−0
7

20
14

−0
1

0

5

10

15

0

5

10

15

0

5

10

15

Date

Te
m

pe
ra

tu
re

 (
°C

)

●

●

obs
pred

Figure 7: Time series of stream temperatures at 18 spatial locations. The observed points are repre-
sented in red, and the imputed or predicted values are shown in blue. The gray areas represent the
95% posterior credible intervals, providing an indication of the model’s uncertainty.

pred_data = clear_preds,
net = 2,
nsamples = 100, # number of samples to use from the posterior
addfunccol = 'afvArea', # additive function values
locID_pred = locID_pred,
chunk_size = 60)

The observation and prediction data frames (data_obs, data_pred, respectively) must be specified and
must contain all of the covariates and the response variable specified in the “formula” argument in
ssnbayes().

Generally, producing subsets of predictions on the stream network is more efficient for big datasets,
and can be parallelized. The argument chunk_size is used to define the size of the subsets. For
instance, predictions in the case study in Santos-Fernandez et al. (2022) consist of more than 6000
locations. Performing matrix operations with a such large number of sites is not feasible. Instead,
predictions were run in parallel using chunk_size = 100. locID_pred also allows the user to define a
subset of prediction locations where predictions should be generated, as demonstrated in the example
below. Similarly, the argument seed allows the user to set a seed so that the results are reproducible.

Figure 9 shows the predicted time series for the observation and prediction locations. The patterns
in the prediction time series captured the seasonality in the observed data well. Figure 10 visualizes
the predictions’ posterior mean temperature on the stream network. As expected, higher temperature
values are obtained in the main stream channel, compared to predictions in small streams which
generally are found at higher elevations.

Network exceedance probability

One advantage of using Bayesian inference is the ability to easily obtain various probabilistic estimates
based on the model posterior predictive samples. In this example, we use the function melt from the
R package reshape2 (Wickham, 2007) to generate exceedance probabilities based on a critical thermal
threshold of 13 °C for bull trout, a cold-water fish species that is sensitive to increased temperatures.

ys <- reshape2::melt(pred, id.vars = c('locID0', 'locID', 'date'), value.name ='y')
ys$iter <- gsub("[^0-9.-]", "", ys$variable)
ys$variable <- NULL
# network exceedance probability
limit <- 13
ys$exc <- ifelse(ys$y > limit , 1, 0)
ys <- data.frame(ys) %>% dplyr::group_by(date, locID, locID0) %>%

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=reshape2


CONTRIBUTED RESEARCH ARTICLE 39

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●●

●●

●●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●●

13 14 15 16 17 18

7 8 9 10 11 12

1 2 3 4 5 6

0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15

0
5

10
15

0
5

10
15

0
5

10
15

True temperature (°C)

E
st

im
at

ed
 te

m
pe

ra
tu

re
 (

°C
)

Figure 8: Scatterplot of predicted temperature versus the true latent values at the 18 spatial locations
in the test dataset. The x and y axes represent the predicted and true temperature values, respectively.
The vertical bars represent the 95% posterior credible intervals.

dplyr::summarise(sd = sd(y, na.rm=T),
y_pred = mean(y, na.rm=T),
prop = mean(exc, na.rm=T)) %>%

dplyr::arrange(ys, locID)
clear_preds <- clear_preds %>% left_join(ys, by = c('locID', 'date' ))

Figure 11 shows the exceedance probabilities for all 60 prediction locations on two dates, obtained
from the posterior predictive distributions. Knowledge about when and where biologically relevant
thermal thresholds are likely to be exceeded provides critical information for the management of
threatened and endangered freshwater species (Isaak et al., 2016).

Other useful functions

Users often want to extract distance matrices and spatial weights so that they can be analysed and/or
visualised in other R packages or external software e.g. McGuire et al. (2014). The dist_weight_mat()
and dist_weight_mat_preds() produce a list of distance and weight matrices with the following
elements:

1. e: Euclidean distance matrix containing the distances between locations

2. D: Downstream distance.

3. H: Total stream distance.

4. w.matrix: spatial weights for flow connected locations. This matrix is used in the tail-up models.

5. flow.con.mat: flow connected matrix. Indicates whether two locations in the network are
connected by flow.

The dist_weight_mat() function produces matrices of the distances and weights between ob-
servation locations, with dimensions equal to the number of observation locations (no × no). The
dist_weight_mat_preds() function produces the same information for observed and prediction lo-
cations, with nonp × nonp dimensions. Details and detailed descriptions of the computation of these
matrices can be found in Peterson and Ver Hoef (2010), Ver Hoef et al. (2014), and Santos-Fernandez
et al. (2022).
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Figure 9: Time series plot comparing predicted (blue lines) and observed (red lines) temperature
values over time.
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Figure 10: Mean daily stream temperature predictions (diamonds) for each of the 60 spatial locations
and observations (circles) in the Clearwater network on August 1st, 2012.
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Figure 11: Probabilities that the mean stream temperature will exceed the 13 °C threshold on August
1, 2012, and August 1, 2013, respectively across the 60 prediction locations in the Clearwater network.

4 Discussion and conclusions

The growing popularity of stream sensor arrays, in which repeated observations are taken at multiple
sites, requires models capable of accounting for spatial and temporal autocorrelation in stream network
data. However, there are only a limited number of computational methods and software packages
designed to account for the unique spatial dependence found in stream data (e.g. the R packages SSN,
SSN2 and smnet). The package described in the present paper extends the models implemented in
SSN by accounting for temporal dependence using Bayesian inference, which offers several benefits.
Enhanced features from this package and other benefits from the use of a Bayesian framework
include the computation of probabilistic estimates and network exceedance probabilities, the ability to
incorporate prior information, and the estimation of the proportion of degraded habitat.

We tested the performance of SSNbayes in multiple scenarios with simulated and real data and
found that the parameters are well estimated and the predictions are accurate in terms of RMSPE.
We also validated the results from a wide range of spatial model combinations to those obtained
using SSN based on simulated data. Spatial and spatio-temporal models tend to be slow to fit and
computationally intensive, which becomes more challenging within a Bayesian modelling framework.
This can become computationally prohibitive when the number of spatial locations is large because the
spatial covariance matrix must be iteratively inverted. We are currently exploring alternative methods
(such as variational Bayes) to be implemented within SSNbayes.

Future implementations will incorporate other modelling variations. Two of them are: (I) ex-
pressing ϕs as a linear combination of covariates such as elevation and watershed (an extension of
Case 2), and (II) using a 2-Nearest Neighbours (2-NN) method, where the off-diagonal elements of ΦΦΦ
are different from zero in the two closest, allowing temporal dependence to be established between
neighbouring spatial locations connected by flow (Santos-Fernandez et al., 2022). However, other
space-time covariance structures could also be implemented for stream network data, which allow
more modelling flexibility. For example, this implementation is based on a vector autoregression struc-
ture, but other models such as moving averages and ARIMA could also be considered. In addition,
we currently assume that the response variable is normally distributed, but other regression models
could be implemented by modifying the likelihood function in ssnbayes(). We are also actively
working on the development and implementation of models for anomaly detection in stream data
(Santos-Fernandez et al., 2023). The SSNbayes package is under constant development and new
features and model implementations are on their way.
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Appendix

In this appendix, we illustrate the fit of a spatio-temporal stream network model within the Bayesian
framework with SSNbayes using a simulated example. These results can be reproduced using the
Kaggle notebook https://www.kaggle.com/code/edsans/ssnbayes-simulated. Several R packages
must be installed to successfully reproduce the simulation described in this section. Installing the
rstan can be tricky because you need to configure your R installation to be able to compile C++ code.
If you have not used the rstan before, please see https://github.com/stan-dev/rstan/wiki/RStan-
Getting-Started for easy-to-follow instructions about how to install the package.

Using simulated data

We generated some spatial data with the SSN package using a systematic design for the locations of
the observations and predictions. Note that the SSN package has been archived on CRAN.

## Load the packages. Note that these packages can be installed
## using the install.packages() function
library('tidyverse')
library('Rcpp')
library('StanHeaders')
library('rstan')
library('abind')
library('SSN')
library('SSN2')
library('bayesplot')
library('lubridate')
library('viridis')
library('ggrepel')
library('devtools')
library('RColorBrewer')
if(!require('SSNbayes')) install.packages("SSNbayes", dependencies = T)
library('SSNbayes')

## Set some useful options for modelling
rstan_options(auto_write = TRUE) # avoid recompilation
options(mc.cores = parallel::detectCores())
RNGkind(sample.kind = "Rounding")

## Set the seed for reproducibility
seed <- 202008
set.seed(seed)

## Set the path for the SpatialStreamNetwork object created in the next step
path <- "./sim.ssn"

## If it does not already exist, create a SpatialStreamNetworkObject
## with 150 stream segments (edges). Use a systematic design to generate
## observed and prediction locations on the network spaced
## approximately 3 and 0.3 units apart, respectively.
if(file.exists(path)){

ssn <- importSSN(path, "preds")
} else{ssn <- createSSN(n = c(150), # 150 edges
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obsDesign = systematicDesign(spacing=3),
predDesign = systematicDesign(spacing=0.3),
importToR = TRUE,
path = path, # path where the sns object is saved
treeFunction = iterativeTreeLayout)}

This produces a SpatialStreamNetwork object with 50 observation locations, which is our training
dataset. We also generated 499 prediction locations for testing.

## Plot the edges and observed locations in the SpatialStreamNetwork object
plot(ssn, lwdLineCol = "addfunccol", lwdLineEx = 8,

lineCol = 4, col = 1, pch = 16, xlab = "x-coordinate", ylab = "y-coordinate")

## Add the prediction locations
plot(ssn, PredPointsID = "preds", add = T, pch = 16, col = "#E41A1C")

Consider a response variable such as stream temperature. The aim is to predict this response
variable in the testing dataset borrowing information from other measurements across space and time
and using covariates such as air temperature. Predictions can be made at a subset of locations or across
all prediction locations on the whole network.

Distances within and between observation and prediction locations must be generated before
model fitting.

## Create stream distance matrices
createDistMat(ssn, predpts = 'preds',o.write=TRUE, amongpreds = T)

We then need to simulate some data using some covariates, regression coefficients and a covariance
structure.

## Extract the data.frames for the observed and prediction location data
rawDFobs <- getSSNdata.frame(ssn, Name = "Obs")
rawDFpred <- getSSNdata.frame(ssn, Name = "preds")

## Extract the geographic coordinates from the SpatialStreamNetwork
## object and add to data.frames
obs_data_coord <- data.frame(ssn@obspoints@SSNPoints[[1]]@point.coords)
obs_data_coord$pid<- as.numeric(rownames(obs_data_coord))
rawDFobs<- rawDFobs %>% left_join(obs_data_coord, by = c("pid"),

keep = FALSE)
rawDFobs$point <- "Obs" ## Create label for observed points

pred_data_coord <- data.frame(ssn@predpoints@SSNPoints[[1]]@point.coords)
pred_data_coord$pid<- as.numeric(rownames(pred_data_coord))
rawDFpred<- rawDFpred %>% left_join(pred_data_coord, by = "pid",

keep = FALSE)
rawDFpred$point <- "pred" ## Create label for prediction points

## Generate 3 continuous covariates at observed and prediction locations
set.seed(seed)
rawDFpred[,"X1"] <- rnorm(length(rawDFpred[,1]))
rawDFpred[,"X2"] <- rnorm(length(rawDFpred[,1]))
rawDFpred[,"X3"] <- rnorm(length(rawDFpred[,1]))

rawDFobs[,"X1"] <- rnorm(length(rawDFobs[,1]))
rawDFobs[,"X2"] <- rnorm(length(rawDFobs[,1]))
rawDFobs[,"X3"] <- rnorm(length(rawDFobs[,1]))

## Ensure the rownames still match the pid values used in the
## SpatialStreamNetwork object
rownames(rawDFobs)<- as.character(rawDFobs$pid)
rownames(rawDFpred)<- as.character(rawDFpred$pid)

## Put the new covariates back in the SpatialStreamNetwork object
ssn <- putSSNdata.frame(rawDFobs,ssn, Name = 'Obs')
ssn <- putSSNdata.frame(rawDFpred, ssn , Name = 'preds')
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## Simulate the response variable at observed and prediction locations
set.seed(seed)
sim.out <- SimulateOnSSN(ssn.object = ssn,

ObsSimDF = rawDFobs, ## observed data.frame
PredSimDF = rawDFpred, ## prediction data.frame
PredID = "preds", ## name of prediction dataset
formula = ~ X1 + X2 + X3,
coefficients = c(10, 1, 0, -1), ## regression coefficients
CorModels = c("Exponential.taildown"), ## covariance model
use.nugget = TRUE, ## include nugget effect
CorParms = c(3, 10, .1)) ## covariance parameters

## Extract the SpatialStreamNetwork object from the list returned by
## SimulateOnSSN and extract the observed and prediction site
## data.frames. Notice the new column Sim_Values in the data.frames
sim.ssn <- sim.out$ssn.object
simDFobs <- getSSNdata.frame(sim.ssn,"Obs")
simDFpreds <- getSSNdata.frame(sim.ssn, "preds")
summary(simDFobs)

The SpatialStreamNetwork object we created only contains one simulated response for each
observation and prediction location and we can fit a spatial statistical model to the simulated data
using the glmssn function in the SSN package.

## Fit a spatial stream network model using the Exponential tail-down function
glmssn.out <- glmssn(Sim_Values ~ X1 + X2 + X3, sim.ssn,

CorModels = "Exponential.taildown")
summary(glmssn.out)

In order to fit a space-time model using the SSNbayes package, we need repeated measurements
at each location. We now need to generate some time series with AR(1) error structure:

## Create a data.frame containing training and test data.
df_obs <- getSSNdata.frame(sim.ssn, "Obs") ## Extract observed dataset
df_obs$dataset <- 'train' ## Create new column 'dataset' and set to 'train'
df_pred <- getSSNdata.frame(sim.ssn, "preds") ## Extract prediction dataset
df_pred$dataset <- 'test' ## Create new column 'dataset' and set to 'test'

## Expand data.frames to include 10 days per location
t <- 10 # days
df_obs <- do.call("rbind", replicate(t, df_obs, simplify = FALSE))# replicating the df
df_obs$date <- rep(1:t, each = (nrow(df_obs)/t)) # Set date variable

df_pred <- do.call("rbind", replicate(t, df_pred, simplify = FALSE))# replicating the df
df_pred$date <- rep(1:t, each = (nrow(df_pred)/t)) # Set date variable

## Create a copy of the pid value used in the SpatialStreamNetwork
## object and create a new pid value for use in SSNbayes
## package. Values must be consequtively ordered from 1 to the number
## of rows in the data.frame
df_obs <- df_obs %>% mutate(pid.ssn = pid,

pid = rep(1:nrow(.)))
df_pred <- df_pred %>% mutate(pid.ssn = pid,

pid = rep(1:nrow(.)))

## Combine the training and testing datasets
df <- rbind(df_obs, df_pred)
df$dataset <- factor(df$dataset, levels = c('train', 'test'))

## Construct and initialize an autocorrelation structure of order 1
set.seed(seed)
phi <- 0.8 ## lag 1 autocorrelation value
ar1 <- corAR1(form = ~ unique(df$date), value = phi) # can also use corExp function
AR1 <- Initialize(ar1, data = data.frame(unique(df$date)))
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## Create a vector of AR1 errors for each date and expand to all all locations
epsilon <- t(chol(corMatrix(AR1))) %*% rnorm(length(unique(df$date)), 0, 3) #NB AR1 error
epsilon <- rep(epsilon, each = length(unique(df$locID)) ) +
rnorm(length(epsilon)*length(unique(df$locID)), 0, 0.25) # for all the locations

epsilon_df <- data.frame(date = rep(unique(df$date), each = length(unique(df$locID))),
locID = rep(unique(df$locID), times = length(unique(df$date))),
epsilon = epsilon)

df <- df %>% left_join(epsilon_df, by = c('date' = 'date', 'locID' = 'locID'))

## Create a new simulated response variable, y, with errors added
df$y <- df$Sim_Values + df$epsilon

We can visualize the time series of the new simulated response at the observed and predicted
locations over time:

## Create line plots of response over time for training and test datasets
ggplot(df) +
geom_line(aes(x = date, y = y, group = locID, col = dataset), alpha = 0.4) +
ylab("Simulated Temperature (\u00B0C)")+
facet_wrap(~dataset)+
theme_bw()

Figure 12 shows the stream temperature time series in the observations and predictions datasets.
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Figure 12: Evolution of the stream temperature time series in the observations and predictions datasets.
Each time series represent a spatial location.

## Split the training and testing datasets. Ensure that date is numeric.
df <- df %>% dplyr::select(locID, pid, date, y, everything())
obs_data <- df[df$dataset == 'train',]
pred_data <- df[df$dataset == 'test',]
# NB: the order in this data.fame MUST be: spatial locations (1 to S) at time t=1,
# then locations (1 to S) at t=2 and so on.

The first prediction option in SSNbayes is to generate predictions for locations in the observed
dataset with missing data. To demonstrate, let us set approximately 30% of the observations per date
to missing, make predictions, and assess how well we retrieve the actual temperature values.

# Randomly select observations by date
set.seed(seed)
points <- length(unique(obs_data$pid))
locs <- obs_data %>% dplyr::group_by(date) %>%

pull(pid) %>%
sample(., round(points * 0.3), replace = F) %>% sort()

## Create a backup for the response before setting randomly selected
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## measurements to NA
obs_data$y_backup <- obs_data$y
obs_data[obs_data$pid %in% locs,]$y <- NA

Let us visualize the network with the time series of observed temperature values. First we use the
collapse() function to extract the network structure from the the SpatialStreamNetwork object. The
facets (1-10) represent the date and there are a total of 150 missing observations (gray dots) which are
observations that we set to missing to assess the model predictive accuracy.

## Extract stream (edge) network structure, including the additive function value
nets <- SSNbayes::collapse(ssn, par = 'addfunccol')

## Create additive function value categories for plotting
## Create additive function value categories for plotting
nets$afv_cat <- cut(nets$addfunccol,

breaks = seq(min(nets$addfunccol),
max(nets$addfunccol),
length.out=6),

labels = 1:5,
include.lowest = T)

## Plot simulated temperature, by date, with line width proportional to afv_cat
ggplot(nets) +

geom_path(aes(X1, X2, group = slot, size = afv_cat), lineend = 'round',
linejoin = 'round', col = 'lightblue')+

geom_point(data = dplyr::filter(obs_data, date %in% 1:10),
aes(x = coords.x1, y = coords.x2, col = y, shape = point),
size = 1)+

scale_size_manual(values = seq(0.2,2,length.out = 5))+
facet_wrap(~date, nrow = 2)+
scale_color_viridis(option = 'C')+
scale_shape_manual(values = c(16,15))+
xlab("x-coordinate") +
ylab("y-coordinate")+
theme_bw()
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Figure 13: Evolution of the stream temperature time series in the observation dataset across ten time
points.
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We then fit a Bayesian space-time model, with a tail-down covariance model and an AR(1) error
structure using the ssnbayes() function. Fitting the model took about 15 minutes on a laptop (i7 @1.80
GHz and 16GB RAM).

## Fit a Bayesian space-time model
fit_td <- ssnbayes(formula = y ~ X1 + X2 + X3,

data = obs_data,
path = path,
time_method = list("ar", "date"), # temporal model to use
space_method = list('use_ssn', c("Exponential.taildown")), # spatial model
iter = 4000,
warmup = 2000,
chains = 3,
addfunccol = 'addfunccol',
loglik = T)

## Create a copy of the model fit and set class so that we can take
## advantage of plotting functions for stanfit objects
fits <- fit_td
class(fits) <- c("stanfit")

## Extract summaries of the posterior distributions for the parameter
## estimates and the predictions.
stats_td <- summary(fits)
stats_td <- stats_td$summary

One of the main benefits of this Bayesian approach is that the model produces probabilistic
estimates. Figures 14 and 15 show the posterior distributions of the four parameters in the spatio-
temporal model (σ2

TU , σ2
0 , α and ϕ ) and the regression coefficients (intercept and slopes). The trace

plots for of these parameters can be found in the Appendix .0.1.

## Create plots of the posterior distribution of the 3 regression
## coefficients
mcmc_dens_overlay(
fits, #
pars = paste0("beta[",1:3,"]"),
facet_args = list(nrow = 1))

## Plot the posterior distribution of phi
mcmc_intervals(
fits,
pars = paste0("phi"),
point_size = .1,
prob_outer = 0.95

)

## Plot the posterior distribution for the nugget effect, partial sill.
## and range parameters in the tail-down model
mcmc_dens_overlay(
fits,
pars = c(
"var_td",
"alpha_td",
"var_nug"),

facet_args = list(nrow = 1)
)

We then assess how accurate the predictions of the missing temperature values are compared to
the true held out values.

## Create a data.frame containing summaries of the posterior predictive
## distributions and the true values
ypred <- data.frame(stats_td[grep("y\\[", row.names(stats_td)),])
ypred$ytrue <- obs_data$y_backup #
ypred$date <- rep(1:t, each = nrow(obs_data)/t)
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Figure 14: Posterior densities of the partial sill (σ2
TU), nugget effect (σ2

0 ), range (α) and temporal
autocorrelation ϕ parameters. These parameters are crucial for understanding the spatial and temporal
variability in the simulated stream network dataset.
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Figure 15: Posterior densities of the regression coefficients (β) for the intercept (β1) and the three
covariates X1, X2, and X3 (β2, β3, and β4, respectively).
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ypred$dataset <- ifelse(ypred$sd == 0, 'obs', 'pred')
ypred$td_exp <- ypred$mean

## Create a plot of the predicted versus true values with 95% highest
## density interval
filter(ypred, dataset == 'pred') %>% ggplot() +

geom_errorbar(data = ypred, aes(x=ytrue, ymin=X97.5., ymax=X2.5.),
col = 2, width=0.5, size=0.5, alpha = 0.75) +

geom_point(aes(x = ytrue , y = td_exp), col = 2)+
geom_abline(intercept = 0, slope = 1)+
facet_wrap(~date, nrow = 2) + coord_fixed() +

xlab('y true') + ylab('y estimated') + theme_bw()

## Calculate the root mean square error (RMSE) between the true and
## predicted values
rmse <- sqrt(mean(((ypred$ytrue) - ypred$td_exp)^2))
rmse

# Calculate the 95% prediction coverage. Ideally, this should be close to 0.95.
ypred$cov <- ifelse(ypred$ytrue > ypred$X2.5. & ypred$ytrue<ypred$X97.5,1,0)
filter(ypred, dataset == 'pred') %>%
group_by(dataset) %>%
dplyr::summarize(mean(cov))

In Figure 17, we have plotted the means of the imputed values (with a 95% prediction interval)
against the true values of the missing data. As can be seen, the means of each imputed value largely
agree with the true value, with most prediction intervals (96%) containing the true value. The RMSE
of the predicted temperature (y) is 0.245 which is small compared to the magnitude of y (Mean = 7.621
and standard deviation = 3.489 degrees). Figure 16 shows the posterior densities of the predicted
temperature (y) for 8 measurements in the testing set.

y[13] y[16] y[23] y[29]

y[1] y[2] y[5] y[8]

5.0 5.5 6.0 6.5 7.0 7.5 1 2 3 4 3 4 5 4 5 6 7

1 2 3 4 2 3 4 −0.50.0 0.5 1.0 1.5 2.0 −1 0 1 2
Chain

1
2
3

Figure 16: Posterior densities for 8 temperature predictions (y).

0.1 Predictions on a new set of prediction locations

Environmental and ecological monitoring of stream networks often requires estimation of the response
variable of interest across the whole river network. In this section we illustrate how to use the fitted
model to predict at a new set of locations using Kriging. We will produce temperature predictions at
the 499 locations we generated previously using a systematic design.

## Making predictions at a new set of prediction locations

## Set the seed for reproducibility
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Figure 17: Scatterplot of predicted (i.e., estimated) temperature values versus the true latent values.
The error bars represent the 95% highest density interval, indicating the range of the most plausible
true values given the predictions.

set.seed(seed)

## Extract the location IDs for prediction locations
locID_pred <- sort(unique(pred_data$locID))

## Define a new column containing the response variable used in
## fit_td, including missing values
obs_data$y_traintest <- obs_data$y

## Replace y with the original response variable, containing no
## missing values
obs_data$y <- obs_data$y_backup

## Produce predictions: This takes approximately 8 minutes
pred <- predict(object = fit_td, ## fitted model

path = path, # path to .ssn object
obs_data = obs_data, # observed data.frame
pred_data = pred_data, # prediction data.frame
net = 1, # network identifier (optional)
nsamples = 100, # number of samples to use from the posterior
addfunccol = 'addfunccol', # variable used for spatial weights
locID_pred = locID_pred, # location identifier for predictions
chunk_size = 60) # split the predictions into subsets of this size

## Convert the prediction data.frame from wide to long format
ys <- reshape2::melt(pred, id.vars = c('locID0',

'locID', 'date'), value.name ='y')

## Create variable representing the iteration number and set variable
## column to NULL
ys$iter <- gsub("[^0-9.-]", "", ys$variable)
ys$variable <- NULL

As we are using a simulated dataset, we can compare the out-of-sample predictions with the true
latent values in the same way we did previously (Figure 18).

We then visualize the posterior mean of the predictions on the full network (Figure 19).
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Figure 18: Scatter plot of predicted (i.e. estimated) temperature versus the true latent values. The plot
shows a strong linear relationship between the two, indicating good agreement between the true and
estimated values.
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Figure 19: Evolution of observed and predicted stream temperatures over the 10 dates. The plot
highlights the variability in water temperatures over time.
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Exceedance probabilities throughout the network

It is straightforward to make probabilistic statements about the predictions based on samples from the
posterior predictive distribution. In this example, we calculate the exceedance probabilities at each
prediction location based on a biological threshold of 13 °C.

## Computing the exceedance probabilities

## Create an exceedance indicator based on a threshold (i.e. limit)
limit <- 13
ys$exc <- ifelse(ys$y > limit , 1, 0) ## 1== TRUE, 0== FALSE

## Calculate summary statistics for the predictions, by locID and date
## and join to prediction data.frame
ys <- data.frame(ys) %>% dplyr::group_by(date, locID) %>%
dplyr::summarise(sd = sd(y, na.rm=T), ## prediction standard deviation

y_pred = mean(y, na.rm=T), ## mean temperature prediction
prop = mean(exc, na.rm=T)) ## exceedance probability

ys <- dplyr::arrange(ys, locID)
pred_data <- pred_data %>% left_join(ys, by = c('locID', 'date'), keep = FALSE)

## Plot the exceedance probabilities for the prediction sites on 10 dates
ggplot(nets) +
geom_path(aes(X1, X2, group = slot, size = afv_cat), lineend = 'round',

linejoin = 'round', col = 'gray')+
geom_point(data = dplyr::filter(pred_data) ,

aes(x = coords.x1, y = coords.x2, col = prop), size = 1)+
scale_size_manual(values = seq(0.2,2,length.out = 5))+
facet_wrap(~date, nrow = 2)+
scale_color_viridis(option = 'C')+
scale_shape_manual(values = c(200))+
xlab("x-coordinate") +
ylab("y-coordinate")+
coord_fixed()+
theme_bw()+
theme(axis.text=element_text(size=12),

axis.title=element_text(size=13),
legend.text=element_text(size=13),
legend.title=element_text(size=13),
strip.text.x = element_text(size = 13),
axis.text.x = element_text(angle = 45, hjust=1),
strip.background =element_rect(fill='white'))+

guides(size = 'none')+
labs(size="", colour="exceedance")

Figure 20 shows the time series of the exceedance probabilities at prediction locations obtained
from the posterior predictive distributions. Knowing when and where temperature or other water
quality variables are likely to exceed critical thresholds provides valuable information for prioritizing
management and conservation activities.
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Figure 20: Network exceedance probabilities across the ten dates. The yellow regions represent the
areas where the probability of exceeding the limit is high.
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Other results

Trace plots are often used to visually assess convergence when parameters are estimated in a Bayesian
model. These can be generated easily from the stanfit object we saved earlier (fits) and the traceplot
function in rstan .

σ20 Φ

σ2td αtd

0 500 1000 1500 2000 0 500 1000 1500 2000

0 500 1000 1500 2000 0 500 1000 1500 2000
70

80

90

100

0.90

0.95

1.00

1.0

1.5

2.0

2.5

3.0

0.10

0.15

0.20

0.25

Chain

1
2
3

Figure 21: Trace plots of the spatial covariance parameters including the partial sill (σ2
TD), nugget effect

(σ2
0 ), range (α), and the temporal autocorrelation parameter, ϕ, showing good mixing of the chains.
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C443: An R package to See a Forest for the
Trees
by Aniek Sies, Iven Van Mechelen, and Kristof Meers

Abstract Classification trees, well-known for their ease of interpretation, are a widely used tool to solve
statistical learning problems. However, researchers often end up with a forest rather than an individual
classification tree, which implies a major cost due to the loss of the transparency of individual trees.
Therefore, an important challenge is to enjoy the benefits of forests without paying this cost. In this
paper, we propose the R package C443. The C443 methodology simplifies a forest into one or a few
condensed summary trees, to gain insight into its central tendency and heterogeneity. This is done
by clustering the trees in the forest based on similarities between them, and on post-processing the
clustering output. We will elaborate upon the implementation of the methodology in the package, and
will illustrate its use with three examples.

1 Introduction

Classification trees are a widely used tool in the statistical learning of the relationship between a set
of predictor variables and a categorical outcome (Breiman et al., 1984; Quinlan, 1986). A particularly
attractive feature is that they typically lead to insightful and well interpretable results.

However, researchers often end up with a forest (i.e., a set of multiple trees) rather than with a
single classification or decision tree. There are several reasons for this: First, single trees are known
to be fairly unstable (e.g., Philipp et al. (2016); Philipp et al. (2018)); we may wish to investigate
this instability through the creation of a forest by bringing about small changes in the learning
sample (e.g., drawing bootstrap subsamples) or in the tree building process (e.g., varying tuning
parameters)(Breiman, 1996a; Strobl et al., 2009; Turney, 1995). Second, we may wish to improve
prediction accuracy (Bauer and Kohavi, 1999; Dietterich, 2000; Hastie et al., 2009; Skurichina and
Duin, 2002) by generating a forest by means of ensemble methods such as random forests (Breiman,
2001), bagging (Breiman, 1996b), or boosting (Freund and Schapire, 1997). Third, if there are multiple
outcomes, we may wish to grow one or multiple trees for each outcome variable, leading once again to
the formation of a forest. Fourth, in order to deal with missing data, one preferred method is multiple
imputation (Rubin, 1987), resulting in several imputed data sets, based on each of which we can
construct a classification tree.

All four of these are excellent reasons to prefer forests over single trees. Nonetheless, forests have
a major cost that is implied by a complete loss of the transparency of single trees. This brings about
the challenge to look for ways to enjoy the benefits of a forest without having to pay this cost.

More specifically, one may wish to capture three sorts of insight from a forest:

1. Central tendency: Can a forest be summarized in one or a few central decision structures and
how do these look like?

2. Heterogeneity: How much variability is there in the forest and what are its contents? For
example, are all trees in the forest slight variations on one central decision structure, or are they
subject to sizeable qualitative differences?

3. Linking heterogeneity to tree covariates: In case of a heterogeneous forest based on known
sources of variation (e.g., different types of tuning parameters or response variables), are
qualitative within-forest differences related to this variation source? For example, do different
response variables result in different decision structures?

Partial answers to this challenge can be found in earlier work. As such, variable importance
measures have been proposed to capture the most central predictor variables in random forests
(Breiman, 2001; Breiman and Cutler, 2003). From their part, Banerjee et al. (2012); Briand et al. (2009),
and Chipman et al. (1998) suggested to select one or a few summary trees within a forest based on
ad hoc calculated similarities between the individual trees, whereas Philipp et al. (2016) developed
a methodology and associated R-package stablelearner to visualize and summarize variable and
split point within-forest heterogeneity. This is useful in evaluating stability of tree splits in terms of
split variables and/or split-points, but does not evaluate stability of entire tree structures. A lasso
regression methodology (Friedman and Popescu, 2008) along with the associated R-package pre
(Fokkema, 2020), has been proposed to derive a sparse ensemble from an initially large prediction
rule ensemble. Although this results in an easily interpretable rule, it does not give insight into
the heterogeneity within the initial rule ensemble. Quite a different approach is taken in the area
of interpretable machine learning, where local SHapley Additive exPlanations (SHAP) of ensemble
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learners are looked for in the form of additive contributions of input features to estimated risk scores
(e.g., Lundberg et al. (2020)).

A comprehensive and complementary way to recover insight from a forest could be obtained by
means of a methodology proposed by Sies and Van Mechelen (2020). Unlike the SHAP-approach, the
C443 methodology focuses on global rather than local explanations, remains within a tree context
instead of moving to an additive framework, and targets categorical outcome variables rather than
unidimensional risk scores. The methodology comprises three components:

1. Similarities calculation between all trees in the forest. A complication at this point is the vast
range of similarity measures that can be invoked within a tree context, as the choice of a similarity
measure has major consequences for the output of the methodology and its interpretation. Sies
and Van Mechelen (2020) developed a novel, comprehensive conceptual framework to cope
with this complication and assist the user in making a thoughtful choice of a suitable similarity
measure.

2. A similarity-based clustering of the trees in the forest, where, given the critical concern about
insightfulness, clusters that are well interpretable regarding the underlying decision structure
and the relation between the predictors and the categorical response variable are obtained.

3. A post-processing of the clustering result to arrive at the essential insights into central tendency
and heterogeneity looked for.

The aim of the current paper is to introduce the R-package C443, which implements the methodol-
ogy proposed by Sies and Van Mechelen (2020). The package is available from the Comprehensive
R Archive Network (CRAN) on https://CRAN.R-project.org/package=C443 and is also accessible
through Github (https://github.com/KULeuven-PPW-OKPIV/C443).The package accepts as input user-
supplied forests with a wide range of formats (in part making use of the partykit package (Hothorn
and Zeileis, 2015)), and a user-provided similarity matrix between the forests’ trees based on a simi-
larity measure of the user’s choice (if available), and covariate information on the trees (if available).
Otherwise, it also includes the option to calculate a matrix of similarities between the trees of the
user-supplied forest based on one out of eight possible similarity measures within the conceptual
framework proposed by Sies and Van Mechelen (2020). The package further partitions the trees in the
forest under study into a few well-interpretable clusters (based on the user-provided or calculated
similarities), using the PAM algorithm (Kaufman and Rousseeuw, 1990) implemented in the cluster
package (Maechler et al., 2019). Finally, it includes a number of methods and functions that can be used
for post-processing the clustering output to summarize the forest, capture within-forest heterogeneity,
or link this heterogeneity to tree covariates.

2 C443 Methodology

In this section we will briefly recapitulate the main concepts of the methodology proposed by Sies and
Van Mechelen (2020).

2.1 Similarities

Any set of categories or concepts has two sides: the side of the categories’ meaning in terms of their
defining or characteristic features, and the side of the categories’ membership (with the two sides in
question being referred to as the categories’ intension and extension, respectively: Leibniz (1764)). In
line with this, when evaluating similarities between classification trees, we could do so with respect
to the trees’ meaning (i.e., their predictor-related contents), with respect to the classifications of the
objects or experimental units implied by them, or with respect to a hybrid combination of both facets.

When considering to evaluate tree similarities with respect to common predictor-related contents,
two groups of questions are further to be addressed:

1. Does one want to calculate similarity in terms of shared predictor variables only or also in terms
of shared split points on common predictors? Furthermore, in the latter case, is one willing to
take into account a tolerance zone when evaluating equality of split points?

2. Does one want to calculate similarity in terms of individual predictors or rather in terms of sets
of predictors as implied by the definitions of each of the leaves of the trees under study? In the
latter case, is one willing to take into account: (a) the order of the predictors on the downward
path from the root to the leaf under study, and (b) the relevant part of the predictor range (i.e.,
lower vs. upper part) involved in the definition of the leaf in question?

These two groups of questions are schematically represented in Figure 1. Orthogonally combining all
3*5 possible answers to them yields 15 possible similarity types.
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Figure 1: Schematic representation of two groups of questions within comprehensive conceptual
framework with regard to tree similarities in terms of shared predictor-related contents.

When evaluating the similarity between two trees with respect to the classifications of the objects
or experimental units implied by them, in general, pairs of objects that belong to the same class in
each of the two trees will contribute to a higher similarity. Two questions should further be addressed
for similarities with regard to implied class memberships:

1. Does one want to consider the classifications (partitions) of the experimental units by the class
labels or the leaf memberships?

2. Should one factor in pairs of objects that belong to the same class in each of the two trees under
study only if these classes are associated with the same class label across the two trees?

These two questions are schematically represented in Figure 2. Orthogonally combining all 2*2 possible
answers to them yields 4 possible similarity types.

same class label
across trees?

not required required

classification
in terms of?

class labels leaves

Figure 2: Schematic representation of two questions within comprehensive conceptual framework
with regard to tree similarities in terms of agreement between implied classifications.

To illustrate the above, let us briefly consider three examples. As a first example, Shannon and
Banks (1999) proposed to define a dissimilarity d(T1, T2) between two trees T1 and T2 as:

d(T1, T2) = ∑
r

αr|Dr
T1,T2

|, (1)

where |Dr
T1,T2

| equals the number of distinctive paths of length r from a root node to a leaf, with a
path denoting an ordered set of relevant predictor parts (upper vs. lower) as implied by a leaf, with
distinctive meaning that the path shows up in one of the two trees only, and with αr denoting a set
of prespecified weights (e.g., αr = 1

r ). Obviously, this is a dissimilarity measure that captures the
trees’ meaning or predictor-related contents only, that does not take into account split points, that
does take into account predictor sets, and while doing so does take into account both the order and
the range-part (lower vs. upper) of the predictors.

As a second example, while denoting the set of objects under study by {o1, ..., oi, ..., on}, Chipman
et al. (1998) defined a dissimilarity d(T1, T2) between two trees T1 and T2 as:

d(T1, T2) =
∑i>i′ |IT1 (oi, oi′ )− IT2 (oi, oi′ )|

(n
2)

, (2)

with ITj (oi, oi′ ) = 1 if oi and oi′ belong to the same leaf in Tj, j = 1, 2, and ITj (oi, oi′ ) = 0 otherwise.
Obviously, this is a dissimilarity measure that captures the trees’ implied classifications only, while
considering classifications implied by leaf membership without requiring equality across trees of class
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labels associated with the leaves. Note that, if different observations were used to create the trees
under study (e.g., in case of a forest based on bootstrap samples), the observations oi, i = 1, ..., n are
those from the original data set (e.g., the data set from which the bootstrap samples were drawn).

As a third example, we consider a hybrid tree similarity measure simT(T1, T2) implemented in the
package C443. This measure is based on a leaf similarity measure simL(l, l′) that captures predictor-
related contents in terms of the (frequencies of occurrence of the) combinations of predictors and
range-parts (lower vs. upper) PRPp associated with leafs l ∈ T1 and l′ ∈ T2 (while leaving aside
split points and the order of the predictors), and that captures the trees’ implied classifications by
assuming a leaf similarity value of zero for leafs that are associated with different class labels (i.e.,
c(l) ̸= c(l′)). Specifically, if T1 and T2 both have height zero (i.e., consist of a root node only), by
definition simT(T1, T2) = 1. Otherwise, simT(T1, T2) is based on leaf similarity measure simL(l, l′),
with:

simL(l, l′) =


∑p min(#l PRPp ,#l′ PRPp)

∑p max(#l PRPp ,#l′ PRPp)
if c(l) = c(l′)

0 otherwise,

(3)

with #l PRPp (resp. #l′ PRPp) denoting the frequency of occurrence of the pth predictor range-part
combination PRPp in the definition of leaf l (resp. l′). The tree similarity simT(T1, T2) then relies on the
search for an optimal matching between (subsets of) the leafs of T1 and T2, SLT1

⊂ LT1 and SLT2
⊂ LT2 ,

as formalized by a bijection g : SLT1
→ SLT2

. Specifically:

simT(T1, T2) = max
g: SLT1

bijection−→ SLT2

∑l∈SLT1
simL(l,g(l))

min(#LT1 , #LT2 )
. (4)

2.2 Clustering

A second step in the proposed methodology consists of a clustering (viz., a partitioning) of the
forest based on the similarity measure chosen in the first step. A major challenge at this point is
the interpretability of the resulting clusters. For this purpose, Partitioning Around Medoids (PAM,
Kaufman and Rousseeuw (1990)) was chosen as a clustering method. In this method, each cluster is
centered around a medoid, which is an actual element of the cluster (unlike the centroids in other
clustering methods). Given a (dis)similarity matrix and a prespecified number of clusters k, PAM
looks for k medoids that are such that a loss function consisting of the sum across all objects of the
dissimilarity between the object and its closest medoid is minimized. PAM starts with an initial
selection of k medoids, and subsequently replaces iteratively each medoid by the object that minimizes
the loss function until no further improvement in the loss function is observed.

The key advantage of using PAM to cluster a forest, is that PAM leads to a set of clusters each of
which is represented by a cluster member, that is to say, a well-interpretable tree (which means that
an insightfulness baby is rescued out of the bathwater of the forest!). To be sure, when interpreting
the medoid trees resulting from PAM, one should never forget the (dis)similarity type on which the
clustering was based. For example, if a similarity was used that exclusively reflected the objects’
classifications, then an interpretation of the predictor-related contents of the medoid trees is simply not
admissible. Indeed, the trees within each cluster will then be similar in terms of implied classifications,
but may be very different with respect to predictors and split points.

2.3 Post-processing

To retrieve critical insights into the central tendency and heterogeneity of the forest under study, a
suitable post-processing of the clustering output is called for. Below, we will list a few useful questions
and steps at this point. For all of them, we must again emphasize the importance of keeping aware
of the chosen similarity at the basis of the clustering, as this may strongly constrain which kinds
of interpretation of the post-processed output will be admissible. (To overcome these constraints,
one either has to do all of the similarity and clustering calculations over with a different type of tree
similarity measure, or to revert to hybrid types of similarity measures that tap both predictor- and
classification-related aspects of the trees under study.)

The most obvious place to grasp the central tendency of the forest in focus is the medoid of the
one-cluster solution. Besides, one could also take a look at the medoids of solutions with a few more
clusters and inspect which aspects all medoids in question have in common.

Concerning within-forest heterogeneity, to start with, one can examine this quantitatively in terms
of the amount of variability at play. A straightforward question at this point is how many clusters are

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 63

needed to summarize the forest. Determining the optimal number of clusters is a common challenge
in the clustering domain, for which a very broad range of measures and heuristic procedures (or
"stopping rules") have been proposed. Within the methodology proposed by Sies and Van Mechelen
(2020), three types of plots corresponding to different values of the number of clusters, k, may be
singled out:

1. a plot of the average within-cluster similarities (or, alternatively, the average similarities between
the cluster elements and their cluster medoids) for the similarity measure at the basis of the
clustering; in general, we recommend to select the number of clusters based on one of these
plots because of their direct link with the loss function that is optimized by the PAM algorithm

2. a plot of the Average Silhouette Width (ASW, (Rousseeuw, 1987)), that is, the average of all
objects’ silhouette; the silhouette of an object is a function of its mean similarity to the objects
of its own cluster minus its mean similarity to the objects of its second closest cluster; ASW
is recommended by the authors of PAM and the corresponding R-package (Kaufman and
Rousseeuw, 1990; Maechler et al., 2019)

3. suppose that the forest under study was created to arrive at a better prediction accuracy and
that a similarity measure was chosen or constructed that (also) captures agreement between
classifications in terms of class labels; in this scenario, we recommend determining the number
of clusters also by examining: (a) a plot depicting the accuracy of the predicted class labels (for
the originally observed dataset), based on combining the predictions of the first k medoid trees
(weighted by their corresponding cluster cardinalities), and (b) a plot of the agreement between
the class label for each object of the originally observed dataset, predicted on the basis of the
random forest as a whole versus the class label predicted on the basis of the first k medoid trees
(weighted by their corresponding cluster cardinalities).

Another potential quantitative approach to assess forest heterogeneity involves examining the cluster
sizes in solutions where k>1. For example, solutions with a single very dominant cluster (in terms of
cluster size), would point at considerable within-forest homogeneity.

We can further also try to capture within-forest heterogeneity from a qualitative perspective, that
is, the contents of the within-forest differences. In view of this, one may compare the cluster medoids,
once more aligning with the selected similarity measure, in terms of their predictor-related contents,
and/or predicted class labels. With regard to predictor-related contents, possible outcomes could be
that all medoids constitute only minor variations on a common topology (e.g., in terms of a small
number of distinctive secondary splits in different medoids), versus major variations that involve very
different kinds of predictors and split points. With regard to predicted class labels, the predictions of
the medoids can be compared in terms of marginal totals of all class labels per medoid as well as in
terms of a contingency table with the numbers of experimental units assigned to each combination
of class labels by each of two or more different medoid trees. A possible outcome could be that the
classifications implied by one medoid are only a refinement of these implied by another medoid, with
the majority of observations being assigned by both to the same class label.

Finally, one may wish to investigate the link between covariate information on the trees in the
forest and within-forest heterogeneity, in case such covariate information is available. First of all,
one may wish to do so in terms of the relation between covariates and cluster membership. In case
of a discrete covariate (e.g., the nature of the outcome variable), this may lead to questions such as
"Do trees based on a same value of the covariate mainly end up in the same cluster?", or, more in
general, "Which values of the covariate lead to trees in the same cluster and which values to trees
in different clusters?". In case of a continuous covariate (e.g., the value of some tuning parameter in
the tree building algorithm): "Does cluster membership relate to this covariate (e.g., by comparing
within- and between-cluster differences with regard to it)?". Second, if a relationship between cluster
membership and a covariate would be established, then the relationship between that covariate and
the predictor-related contents or implied classifications of the cluster medoids could be examined (in
accordance with the chosen similarity measure). As an example, if the covariate would pertain to
different outcome variables, one might wish to examine differences between these outcome variables
in terms of their predictive basis (if the chosen similarity measure would allow the researcher to do
so).

3 Implementation of the methodology in C443

In this Section, we will discuss how the methodology described above has been implemented in the
R-package C443. First, we will describe user input when employing the package. In the following
subsections, we will discuss how the different constituents of the methodology (i.e., the calculation of
similarities, the clustering, and the post-processing of the clustering output) have been implemented
in the package.
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3.1 Input needed for the package

Users of the package C443 should provide at least one mandatory piece of input, namely the forest of
interest. In addition, two optional pieces of input may be supplied: a similarity matrix and covariate
information on each tree in the forest.

Forest

There are many techniques and associated R-packages to grow classification trees. For example,
Classification and Regression Trees (Breiman et al., 1984) can be grown using rpart (Therneau et al.,
2015), Conditional inference trees (Hothorn et al., 2006) using partykit (Hothorn and Zeileis, 2015),
and C4.5 trees (Quinlan, 1993) using RWeka (Hornik et al., 2009).

Likewise, many techniques and R-packages exist to create a forest. First, creating a forest to
investigate instability of trees can be done in several ways. One could grow trees using one of the
packages mentioned above on sub-samples obtained from the sample function with replace = FALSE
and size < n (where n is the size of the original data set), or on bootstrap samples obtained from the
same function with replace = TRUE and size = n. Second, to create a forest in view of improving
prediction accuracy, one may employ boosting (Freund and Schapire, 1997), as implemented in R-
packages such as adabag (Alfaro et al., 2013) and gbm (Ridgeway, 2007). or random forests (Breiman,
2001), as implemented in the packages randomForest (Liaw and Wiener, 2002) and ranger (Wright
and Ziegler, 2017). Third, a forest can result from growing trees on a number of different outcome
variables. Fourth, multiple imputation (Rubin, 1987) can be applied in case of missing data using the
mice package (van Buuren and Groothuis-Oudshoorn, 2011), and subsequently a tree can be grown
on each imputed data set, which would return a forest as well.

The C443 package does not have a specific functionality for creating forests, given the large variety
of techniques and available R-packages to do so. Rather, a multitude of types of forests are accepted as
input by the package, where three pieces of information are required:

1. the entire set of observed data at the basis of the forest, stored as a data frame –in case of a
forest produced by bringing about small changes in the learning data (e.g., by taking bootstrap
samples from the set of experimental units), this would be the entire originally observed data
set; in case of a forest based on multiple outcomes, this would be the data set with inclusion
of all outcomes; and in case of a forest as a result of multiple imputation, this would be the
originally observed data set without imputations–;

2. the n trees in the forest, stored as a list of party objects, or of objects inheriting from party objects
(included but not limited to glmtree, ctree), or of objects that are convertible into party objects
using

(a) partykit (Hothorn and Zeileis, 2015)): for rpart and J48 objects

(b) C443’s internal functions: for randomForest and ranger objects, including ranger objects
that can be delivered from packages such as DFNET (Pfeifer et al., 2022);

(the class of the first tree is checked in C443 with the class function);

3. if not included in the party object (e.g., when rpart was used to grow the trees), the n data sets
on which the individual trees in the forest were based, stored as a list of data frames.

Similarity matrix

Users can provide a home-made similarity matrix as input for the clustering. This square matrix with
number of rows/columns equal to the number of trees in the forest, must be symmetric. The similarity
values should vary between 0 and 1 (with 0 indicating no similarity at all and 1 indicating a perfect
similarity). Otherwise, quite a few tree dissimilarity measures have been proposed, which often vary
between 0 and 1 (with 0 indicating no dissimilarity at all and 1 full dissimilarity). We can transform
these into similarities by subtracting them from 1.

Covariate information

If the user is interested in relating the possible heterogeneity within the forest to values of the trees on
one or more covariates, a vector or dataframe with the values of those covariates for each tree should
be provided.
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Table 1: Overview of similarity measures implemented in C443.

No1 Similarity Respect Basis
1 Predictor content # common predictors
2 Predictor content # common predictor-split point combinations
3 Predictor content # distinctive ordered sets of predictor-range part combinations
4 Classifications agreement of partitions implied by leaf membership
5 Classifications agreement of partitions implied by class labels
6 Hybrid # predictor-range part occurrences in definitions of leaves with

same class label
7 Hybrid # predictor-split point combinations in definitions of leaves with

same class label
8 Hybrid closeness to logical equivalence (applicable in case of binary pre-

dictors only)
1 Number of section in Supplementary Materials that includes mathematical formalization and reference citation for

measure in question

3.2 Similarity calculation

There is the option to have C443 calculate a similarity matrix alongside the option of a user-provided
similarity matrix. For this purpose, eight similarity measures proposed by Sies and Van Mechelen
(2020) have been implemented in the package, each of which takes into account different aspects
of similarity. In Table 1, we describe each implemented similarity measure. (In the Supplementary
Materials, mathematical formalizations are given.)

3.3 Clustering

Starting from a dissimilarity matrix (viz., 1 - the similarity matrix provided by the user or calculated
by the package), a clustering of the trees in the forest is done based on the PAM algorithm (Kaufman
and Rousseeuw, 1990), as implemented in the pam function of the cluster package (Maechler et al.,
2019). The original PAM algorithm consists of two phases: a BUILD phase (an intelligent way of
finding an initial set of clusters), and a SWAP phase (swapping medoids and candidate medoids until
convergence).

To lower the risk of ending up in a local minimum, we implemented a multi-start approach. In
addition to the BUILD phase, we use 1000 starts where the initial cluster medoids are randomly
assigned. Next, for each of the 1001 initial sets of medoids, we use SWAP until convergence. Finally,
the solution that yields the lowest value of the objective function across all starts is retained.

For PAM with a BUILD start, we use medoids=NULL and set do.swap=TRUE. To run PAM with
random starts, we assign random initial values for the medoids using medoids= randomstarts. Here,
randomstarts is a vector with k values, randomly sampled without replacement from 1 to T, where k
is the number of medoids and T is the number of trees in the forest. For reproducibility purposes, the
seed number is included in the final solution. Finally, we always use pamonce=3 to speed up the SWAP
phase, as suggested by Schubert and Rousseeuw (2019).

The procedure described above is repeated for each number of clusters between the minimum and
maximum number of clusters specified by the user. For each number of clusters, the clustering result
is returned as a clusterforest object.

3.4 Post-processing

The two main insights looked for (central tendency and forest heterogenoneity) can be captured by
post-processing the clustering result using several functions on the clusterforest object.

Central tendency

The function medoidtrees() returns the medoid tree(s) of a given clusterforest solution as party
object(s). The function plot() may be used to plot the medoids, and the predict() function to obtain
their implied classifications.
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Heterogeneity

Regarding quantitative heterogeneity, first, in order to decide on the number of clusters needed to
summarize the forest, one can use the function plot() with the clusterforest object as the only
argument. This will return two plots that visualize for each solution: 1) the average within-cluster
similarity, and 2) the ASW (Rousseeuw, 1987); optionally, a third and fourth plot can also be returned,
which show for each solution the accuracy of the predicted class labels (for the originally observed
dataset) based on the medoid trees, and the agreement in classifications based on the medoids only
versus based on the full forest (see Section 2.3). Second, the cluster sizes can be obtained by extracting
the cluster assignment of all trees for a given solution from the clusterforest object using the
clusters() function, and subsequently counting the number of trees assigned to each cluster.

Regarding qualitative heterogeneity, the medoids’ predictive content and classifications can again
be obtained by means of the functions medoidtrees(), plot() and predict(). Finally, to explore the
relationship between one or more tree covariates and the heterogeneity within the forest, the function
treesource() can be employed. In case of a discrete covariate, it visualizes the number of trees that
belongs to each cluster for each value of the covariate. In case of a continuous covariate, it returns
the mean and standard deviation of the covariate within each cluster. One can further interpret the
relation between the covariate and the clusters by utilizing the cluster medoids’ predictive contents
and/or implied classifications. This can be done using a combination of the functions medoidtrees(),
plot() and predict().

4 Practical usage of the R-package

We will illustrate the use of the R-package with three real data examples taken from the Drug Con-
sumption data set (Fehrman et al., 2017). This data set is freely available from the UCI Machine
Learning Repository (Dua and Graff, 2017) and is included in a slightly transformed format in C443.
The data set contains anonymous survey data from 1885 respondents, who reported on their use of
different types of drugs. Although in the original data set each of the drug-use variables had seven
response categories (never used, used over a decade ago, used in the last decade, year, month, week
or day), we included them as binary response variables in the R-package, with categories non-user
(never used or used over a decade ago only) versus user (all other categories), similar to Fehrman et al.
(2017).

In the first and second example, we will focus on one drug only, namely ecstasy. In the third
example, we will broaden the scope of the application to the use of several drugs, viz., amphetamines,
benzodiazepines, ecstasy, LSD and mushrooms. Finally, in all three examples we will use as predictors
a number of demographic variables (age, gender, level of education), the Big Five personality traits (i.e.,
Extraversion, Agreeableness, Conscientiousness, Neuroticism, and Openness to experience) measured
by the NEO-FFI-R (McCrae and Costa, 2004), Impulsivity measured by the BIS-11 (Patton et al., 1995),
and Sensation seeking measured by the ImpSS (Zuckerman et al., 1993). Note that all predictors were
initially categorical (ordinal or nominal) and were quantified by Fehrman et al. (2017).

4.1 Example 1: Assessing stability

The goal of the first analysis is to find out which types of persons are at risk of using ecstasy. Although
this question can be insightfully addressed by growing a single classification tree on the full data set,
the interpretation of the result may be undermined by the issue of tree instability. We will therefore
investigate the stability of the obtained solution using C443. Specifically, we will draw 100 bootstrap
samples and grow a classification tree on each sample. Next, we will use C443 to calculate similarities
between the resulting trees, and subsequently cluster them. Finally, we will post-process the obtained
cluster result to gain insight into the central tendency and heterogeneity of the forest.

We first load the package C443, and extract the relevant information for this analysis from the
drugs data set:

R> library (C443)
R> EcstData = drugs [, c("Age", "Gender", "Edu", "Neuro", "Extr", "Open", "Agree",
+ "Consc", "Impul", "Sensat", "Ecst")]
R> EcstData$Ecst <- as.factor(EcstData$Ecst)
R> head(EcstData, 3)

Age Gender Edu Neuro Extr Open Agree

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 67

1 0.49788 0.48246 -0.05921 0.31287 -0.57545 -0.58331 -0.91699
2 -0.07854 -0.48246 1.98437 -0.67825 1.93886 1.43533 0.76096
3 0.49788 -0.48246 -0.05921 -0.46725 0.80523 -0.84732 -1.62090

Consc Impul Sensat Ecst
1 -0.00665 -0.21712 -1.18084 0
2 -0.14277 -0.71126 -0.21575 1
3 -1.01450 -1.37983 0.40148 0

To answer the question of which types of people may be at risk for ecstasy use, we first grow a
single decision tree on the full data set using rpart. We prune the resulting tree using the complexity
parameter associated with a cross-validated prediction error that is maximally one standard error
higher than the lowest one (as suggested by Hastie et al. (2009)). We plot the result using partykit:

R> library(rpart)
R> library(partykit)
R> set.seed(123)
R> EcstTree <- rpart(Ecst ~ ., data = EcstData, control = rpart.control(
+ minsplit = 100, maxdepth = 3, maxsurrogate=0, maxcompete=0))
R> cp <-EcstTree$cptable[order(EcstTree$cptable[1:which.min(EcstTree$cptable[, "xerror"]), "xerror"]), ]
R> maxcp <- cp[1, "xerror"] + 1.96 * cp[1, "xstd"]
R> cp <- cp[as.numeric(which.max(1 / (maxcp - cp[, "xerror"]))), "CP"]
R> PrunedEcstTree <- prune.rpart(EcstTree, cp = cp)
R> plot(as.party(PrunedEcstTree))
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Figure 3: Decision tree estimated from the full drug data set with ecstasy as response variable.

The obtained result (as displayed in Figure 3) shows that people with a higher score on Sensation
seeking are more at risk for using ecstasy, which makes sense from an intuitive point of view.

To investigate the stability of this result, we create a forest, by drawing 100 bootstrap samples from
the original data set and growing a tree on each bootstrap sample:

R> DrawBoots <- function(dataset, i){
+ set.seed(1234 + i)
+ Boot <- dataset[sample(1:nrow(dataset), size = nrow(dataset),
+ replace = TRUE), ]
+ return(Boot)
+ }
R> GrowTree <- function(x,y,BootsSample){
+ controlrpart <- rpart.control(minsplit = 100, minbucket = 50,
+ maxdepth = 3, maxsurrogate=0, maxcompete=0)
+ tree <- rpart(as.formula(paste(noquote(paste(y, "~")), noquote(paste(x,
+ collapse = "+")))), data = BootsSample, control = controlrpart)
+
+ cp <- tree$cptable[order(tree$cptable[1:which.min(tree$cptable[,
+ "xerror"]), "xerror"]), ]
+ maxcp <- cp[1, "xerror"] + 1.96 * cp[1, "xstd"]
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+ cp <- cp[as.numeric(which.max(1 / (maxcp - cp[, "xerror"]))), "CP"]
+
+ PrunedTree <- prune.rpart(tree, cp = cp)
+ return(PrunedTree)
+ }
R> set.seed(12345)
R> Boots <- lapply(1:100, function(k) DrawBoots(EcstData, k))
R> Trees <- lapply(1:100, function (i) GrowTree(x = c("Age", "Gender", "Edu",
+ "Neuro", "Extr", "Open", "Agree", "Consc", "Impul", "Sensat"),
+ y = "Ecst", Boots[[i]]))

To cluster the trees of this forest, we use the clusterforest() function. This requires as input the
full originally observed data set and the trees in the forest along with the data sets on which these
were based. Furthermore, we should also provide a similarity matrix or a similarity measure that is to
be used to calculate similarities. In this example, we will let the R-package calculate the similarities
using one of the hybrid measures based on predictor-range part occurrences in the definition of leaves
with the same class label (see similarity measure No 6 in Table 1). This will allow us to interpret
the clustering result in terms of the predictor-related contents of the medoids (viz., in terms of the
predictors involved in the definition of each leaf along with a specification of the relevant part of
each predictor’s range high vs. low) as well as in terms of their class assignments. Finally, we should
indicate which cluster solutions we want to explore: We will look at the cluster solutions with one
through eight clusters.

R> set.seed(1)
R> ClusterForest<- clusterforest(observeddata=EcstData,treedata=Boots,
+ trees=Trees, m=6, fromclus=1, toclus=8)

The clusterforest() function returns a clusterforest object. We can use several functions to
post-process this result and gain the desired insights. First, we will plot the object to estimate how
many clusters are needed to summarize the forest.

R> plot(ClusterForest)
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Figure 4: Average within-cluster similarity and ASW for solutions with 1 through 8 clusters for
Example 1 on ecstasy use.

Figure 4 shows for each solution the average within-cluster similarity, and the ASW. The first plot
shows that a solution with a relatively small number of clusters (one, two or three) could be sufficient
to summarize the forest. The ASW increases until seven clusters, yet the increase flattens out after
four clusters. Consequently, in the remainder of this analysis, we will focus on the solutions with one
through four clusters.

To understand the central tendency of the forest, we will inspect the cluster medoid of the one-
cluster solution. Using the function plot() on a clusterforest object with as second argument a
solution number will plot the medoid(s) of the solution in question:

R> plot(ClusterForest, solution = 1)

The most central tree in the forest is the same as the decision tree that we obtained from the original
data set (see Figure 3).

To evaluate the heterogeneity within the forest, we will first check the cluster medoids and then
the cluster sizes for the selected solutions with two, three and four clusters.
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R> plot(ClusterForest, solution = 2)
R> plot(ClusterForest, solution = 3)
R> plot(ClusterForest, solution = 4)

The cluster medoids for the 1-, 2-, 3-, and 4-cluster solutions are shown in Figures 3 and 5. (Note
that the sample sizes and proportions shown in the leafs of each medoid in Figure 5 pertain to the
bootstrap sample on which the medoid was based and not to the original full data set.) The medoid
sets of the different solutions are closely related as:

1. All medoids include a root node split on Sensation seeking.

2. All medoids with additional splits under the root node imply one or two further splits of the
group scoring high on Sensation seeking.

3. The medoid sets of the 1-, 3-, and 4-cluster solutions are fully nested.

4. Medoid (a) shows up in the 2-, 3-, and 4-cluster solutions.

5. The second medoid of the 2-cluster solution (i.e., medoid (b), with additional splits on Conscien-
tiousness and Openness) is a kind of a mixture of medoid (c) (in the 3- and 4-cluster solutions,
with an additional split on Conscientiousness) and medoid (d) (in the 4-cluster solution, with
an additional split on Openness).

(a) (b)

(c) (d)

Figure 5: Elements of medoid sets of 1-, 2-, 3-, and 4-cluster solution (in addition to Figure 3) for
Example 1 on ecstasy use. The ordered medoid sets for the different cluster solutions are as follows.
For the 1-cluster solution:

(
Fig. 3

)
; for the 2-cluster solution:

(
Fig. 5 (a), Fig. 5 (b)

)
; for the 3-cluster

solution:
(
Fig. 5 (a), Fig. 3, Fig. 5 (c)

)
; for the 4-cluster solution:

(
Fig. 5 (a), Fig. 3, Fig. 5 (c), Fig. 5 (d)

)
.

To determine the sizes of clusters in each solution, we can utilize the cluster() function on the
clusterforest object, with as second argument the solution number of interest. We combine this with
the table() function to count the number of trees assigned to each cluster.

R> table(clusters(ClusterForest, solution=2))
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1 2
48 52

R> table(clusters(ClusterForest, solution=3))

1 2 3
44 25 31

R> table(clusters(ClusterForest, solution=4))

1 2 3 4
44 20 27 9

These figures show that in the 2-, 3-, and 4-cluster solutions almost half of the trees belong to the
cluster with Age as secondary splitting variable. Moreover, in the three- and four-cluster solutions, the
cluster with Conscientiousness as secondary splitting variable is nonnegligible, too.

Taking all these findings together, the role of Sensation seeking as primary predictor of ecstasy
use is without a shadow of doubt. Sensation seeking is the first and only splitting variable in the
classification tree estimated from the full data set as well in the medoid of the one-cluster solution.
Moreover, it also acts as the primary splitting variable in the subsequent medoids of solutions with
two or more clusters. On top of that, we may notice a relatively high proportion of people at risk for
ecstasy use in all subgroups of the people scoring high on Sensation seeking. There are indications
that, within the group of high sensation seekers, especially younger people (and, to a somewhat lesser
extent, people scoring lower on Conscientiousness) are even more at risk for ecstasy use. One might
wish to corroborate the latter results on the role of these secondary predictors in follow-up research.

4.2 Example 2: Predicting Ecstasy use

Whereas the goal of the first analysis was to find out which types of persons are at risk of using ecstasy,
the goal of the second analysis is to predict (as accurately as possible) whether a person is at risk of
using ecstasy. As the accuracy of ensemble methods is normally higher than that of single decision
trees, we will revert to a random forest to address this objective. In line with the "Explainable AI"
movement (Arrieta et al., 2020), we will subsequently use C443 to get insight into this random forest.

We use the same data as in the previous section, split it into a training and test set, and then fit a
random forest on the training set using the randomForest package. Note that we could also have used
the ranger package for this application. We limit the maximum number of nodes of each tree to six (to
facilitate the interpretation of individual trees) and use default settings for the hyperparameters.

R> EcstData$Ecst <- as.factor(EcstData$Ecst)
R> train.id <- sample(nrow(EcstData), 3/4 * nrow(EcstData))
R> EcstData.train <- EcstData[train.id, ]
R> EcstData.test <- EcstData[-train.id, ]

R> DrugsRF <- randomForest(Ecst ~ ., data = EcstData.train, importance = TRUE,
+ proximity = TRUE, keep.inbag = T, maxnodes = 6,ntree = 500)

R> preds_test=predict(DrugsRF,EcstData.test)
R> preds_train=predict(DrugsRF,EcstData.train)

R> mean(preds_test==EcstData.test$Ecst)
[1] 0.6779661
R> mean(preds_train==EcstData.train$Ecst)
[1] 0.7296532

The prediction acccuracy of the random forest on the training set is 0.73, and on the test set 0.68.

Next, we cluster the trees in the forest using C443 with the same similarity measure as in the
previous section (as it takes into account both the trees’ meaning and classifications). We evaluate
solutions with up to 20 clusters.

R> set.seed(1)
R> ClusterForest<- clusterforest(observeddata = EcstData.train, trees = DrugsRF,
+ m = 6, fromclus = 1, toclus = 20)
R> plot(ClusterForest, predictive_plots=TRUE )
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The plot function with predictive_plots=TRUE allows us to compare the different solutions in terms
of their accuracy on the training set, as well as in terms of the agreement in the predictions with the
random forest as a whole. The plot with Accuracy shows us that even with the one cluster solution,
the accuracy on the training set is close to that of the random forest. The agreement in predictions is
above 90% starting from the two-cluster solution.
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Figure 6: Plots to evaluate the different clustering solutions, with (a) the accuracy on the training
dataset for each clustering solution and (b) the agreement of predictions between a given cluster
solution and the full forest.

As the accuracy on the training set is improving up and until the three cluster solution, we plot the
medoids of this solution.

R> plot(ClusterForest, solution = 3)

(a) (b)

(c)

Figure 7: Medoids of the 3-cluster solution for Example 2 on ecstasy use.

In the first two medoids, Figure 7 (a) and (b), for one of the terminal nodes only, the class assignment
is 1 (i.e., ecstasy use). In the first medoid this is the case for people with Sensation Seeking >-0.068
and Age ≤ 0.796, in the second medoid this is the case for people with Openness >-0.248 and Age ≤
0.796. There is a correlation between Sensation Seeking and Openness, and, indeed, when looking at
the class assignments of these two medoids, it turns out that they are for a large part overlapping:
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R> table(EcstData.train$Age<=0.796 & EcstData.train$Sensat>-0.068,
EcstData.train$Age<=0.796 & EcstData.train$Open>-0.248)

FALSE TRUE
FALSE 556 201
TRUE 162 494

In the third medoid, two terminal nodes are assigned to class 1, namely: 1) the node where Openness
>0.217 and Sensation Seeking >-0.371, and 2) the node where Openness ≤ 0.217 and Sensation seeking
>-0.68 and Conscientiousness ≤ 0.191.

Finally, we estimate the accuracy of the three-cluster solution (where the predicted class is the
average of the predicted class by each medoid tree weighted by the number of trees assigned to its
cluster) on the test set, and compare it to that of the random forest as a whole. We also check the
agreement between the predictions of the two on the test set. To do so, we use the randomForest2party
function (an internal function of the R-package) to transform the two medoid trees of the forest into a
party object.

R> table(clusters(ClusterForest,solution=3))
1 2 3

191 133 176
R> tree310=C443:::randomForest2party(EcstData.train, DrugsRF, ClusterForest$medoids[[3]][1])
R> tree329=C443:::randomForest2party(EcstData.train, DrugsRF, ClusterForest$medoids[[3]][2])
R> tree453=C443:::randomForest2party(EcstData.train, DrugsRF, ClusterForest$medoids[[3]][3])

preds_test310=predict(tree310,EcstData.test )
preds_test329=predict(tree329,EcstData.test )
preds_test453= predict(tree453,EcstData.test )
preds_total = round(((as.numeric(preds_test310)-1)*table(clusters(ClusterForest,solution=3))[1]+
(as.numeric(preds_test329)-1)*table(clusters(ClusterForest,solution=3))[2]+
(as.numeric(preds_test453)-1)*table(clusters(ClusterForest,solution=3))[3])/500 , 0)

R> mean(preds_total==EcstData.test$Ecst)
[1] 0.6716102
R> mean(preds_total==preds_test)
[1] 0.9088983

As a relatively similar number of trees is assigned to each cluster, the prediction of the three cluster
solution comes down to a majority vote. It turns out that also on the test data set, the accuracy is
very similar to that of the full forest (67% compared to 68% for the full forest), and the agreement of
predictions with the full forest is still around 91%. Therefore, in the current example, without losing
much predictive power, one could use a summarized forest with only three trees instead of a forest
with 500 trees.

4.3 Example 3: Multiple outcome variables

The goal of our analysis in this third example is to find out which are the common and distinctive
psychological mechanisms for being at risk for using different drugs (amphetamines, benzodiazepines,
ecstasy, LSD and mushrooms). To answer this question, we will draw 100 bootstrap samples for each
drug, and grow a classification tree on each sample. Subsequently, we will use C443 to calculate
similarities between these trees, and cluster them. Finally, we will post-process the obtained clustering
result to answer the question outlined above.

We start by creating a separate data set for each drug:

R> AmphetData <- drugs[, c("Age", "Gender", "Edu", "Neuro", "Extr", "Open",
+ "Agree", "Consc", "Impul", "Sensat", "Amphet")]
> BenzoData <- drugs[, c("Age", "Gender", "Edu", "Neuro", "Extr", "Open",
+ "Agree","Consc", "Impul", "Sensat", "Benzos")]
> EcstData <- drugs[, c("Age", "Gender", "Edu", "Neuro", "Extr", "Open",
+ "Agree", "Consc", "Impul", "Sensat", "Ecst")]
> LSDData <- drugs[, c("Age", "Gender", "Edu", "Neuro", "Extr", "Open",
+ "Agree", "Consc", "Impul", "Sensat", "LSD")]
> MushData <- drugs[, c("Age", "Gender", "Edu", "Neuro", "Extr", "Open",
+ "Agree", "Consc", "Impul", "Sensat", "Mush")]

Next, for each drug, we draw the bootstrap samples and grow a tree on every sample. We use the
DrawBoots and GrowTree functions (already used in Example 1) to do so:
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R> BootsAmphet <- lapply(1:100, function(k) DrawBoots(AmphetData, k))
R> set.seed(123456)
R> TreesAmphet <- lapply(1:100, function (i) GrowTree(x = c("Age", "Gender", "Edu",
+ "Neuro", "Extr", "Open", "Agree", "Consc", "Impul", "Sensat"), y="Amphet", BootsAmphet[[i]]))

> BootsBenzo <- lapply(1:100, function(k) DrawBoots(BenzoData, k))
> set.seed(123456)
> TreesBenzo <- lapply(1:100, function (i) GrowTree(x = c("Age", "Gender", "Edu", "Neuro", "Extr",
+ "Open", "Agree", "Consc", "Impul", "Sensat"), y = "Benzos", BootsBenzo[[i]]))
>
> BootsEcst <- lapply(1:100, function(k) DrawBoots(EcstData, k))
> set.seed(123456)
> TreesEcst <- lapply(1:100, function (i) GrowTree(x = c("Age", "Gender", "Edu", "Neuro", "Extr",
+ "Open", "Agree", "Consc", "Impul", "Sensat"), y="Ecst", BootsEcst[[i]]))
>
> BootsLSD <- lapply(1:100, function(k) DrawBoots(LSDData, k))
> set.seed(123456)
> TreesLSD <- lapply(1:100, function (i) GrowTree(x = c("Age", "Gender", "Edu", "Neuro", "Extr",
+ "Open", "Agree", "Consc", "Impul", "Sensat"), y = "LSD", BootsLSD[[i]]))
>
> BootsMush <- lapply(1:100, function(k) DrawBoots(MushData, k))
> set.seed(123456)
> TreesMush <- lapply(1:100, function (i) GrowTree(x = c("Age", "Gender", "Edu", "Neuro", "Extr",
+ "Open", "Agree", "Consc", "Impul", "Sensat"), y = "Mush", BootsMush[[i]]))

We then create one list with all data sets, and one list with all trees.

R> Boots <- c(BootsAmphet, BootsBenzo, BootsEcst, BootsLSD, BootsMush)
R> Trees <- c(TreesAmphet, TreesBenzo, TreesEcst, TreesLSD, TreesMush)

We use the resulting forest as input for the clusterforest() function. We also provide a vector
with a covariate value of each tree, that is to say, the response variable (drug) on which the tree was
based. We choose the same similarity measure as in Example 1.

R> set.seed(1)
R> ClusterForestMultiple <- clusterforest(observeddata=drugs,treedata=Boots, trees=Trees,
+ m=6, fromclus=1, toclus=8, treecov=rep(c("Amphet", "Benzo", "Ecst",
+ "LSD", "Mush"), each = 100))

Again, we use the plot() function to estimate the number of clusters needed to summarize the
forest:

R> par(mfrow = c(2, 2))
R> plot(ClusterForestMultiple)
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Figure 8: Average within-cluster similarity and ASW for solutions with 1 through 8 clusters for
Example 3 on use of amphetamines, benzodiazepines, ecstasy, LSD and mushrooms.

The two plots (Figure 8) to do not clearly point at an optimal solution. Although the ASW
plot seems to favor solutions with a higher number of clusters, the three-cluster solution may be
interesting to explore, because its ASW stands out compared to the 2- and 4-cluster solutions. All
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things considered, this seems to be an interesting parsimonious solution for further examination. We
will do so from the point of view of the relation between the clustering and the type of drug at the
basis of each tree in the forest, both in extensional terms (viz., with regard to the relation between
cluster membership and the type of response variable underlying each of the trees in the forest) and
in intensional terms (viz., with regard to the relation between medoid contents and the substantive
nature of each of the response variables).

To understand the relation between the clusters’ extension and the type of response variable
underlying each of the trees in the forest, we will count for each response variable the number of trees
that have been assigned to each cluster. This will provide insight into whether the trees of the same
versus different response variables mostly end up in the same versus in different clusters. As such,
this may clarify whether there is a relationship between the nature of the drug and the clustering’s
extension, while factoring in tree instability (as reflected by whether trees based on the same drug
consistently belong to the same cluster or not). We do this using the treesource function:

R> treesource(ClusterForestMultiple, solution= 3)
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Figure 9: For each response variable frequencies of associated trees that were assigned to each of the
clusters of the three-cluster solution for Example 3 on use of amphetamines, benzodiazepines, ecstasy,
LSD and mushrooms.

From the result, we may conclude that the trees of most response variables are relatively stable
(in the sense that for most response variables a clear majority of the trees is assigned to one specific
cluster). Furthermore, it is interesting to note that the trees of the two stimulant drugs (viz., ecstasy
and amphetamines) mainly end up in the same cluster and that the same holds for the trees of the two
hallucinant drugs (viz., mushrooms and LSD). Conversely, the trees of the single tranquilizing drug
(viz., benzodiazepines) mostly end up in a separate cluster.

To clarify the intensional relation between the clustering and the substantive nature of each of the
response variables, we first plot the medoids of the three-cluster solution.

R> plot(ClusterForestMultiple, solution = 3)

The first, second and third medoid are shown in Figure 10. The medoids, along with the cluster
membership frequencies of Figure 9, imply that Sensation seeking plays an important role in being at
risk for using the two stimulant drugs (i.e., ecstasy and amphetamines, see Figure 10 (a)). To be at
risk for using the hallucinatory drugs (LSD and mushrooms), apart from a higher score on Sensation
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seeking, also a higher score on Openness to experience is needed (Figure 10 (b)). Finally, for using
benzodiazepines (the only tranquilizing group of drugs), Neuroticism seems to play a key role, with
people scoring higher on the Neuroticism scale being more at risk for using the drugs in question
(Figure 10 (c)). All in all, from this analysis, we may derive that there is some overlap in the types
of people that are at risk for using the different drugs under study, with personality characteristics
differentiating in a meaningful way between people susceptible to the use of stimulant, hallucinatory,
and tranquilizing substances.
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Figure 10: The first, second and third medoid of the three-cluster solution for Example 3 on use of
amphetamines, benzodiazepines, ecstasy, LSD and mushrooms.

5 Concluding remark

In this paper we presented the R-package C443, which solves a major problem of trees (viz., their lack
of stability) and a major problem of forests (viz., their black box nature). C443 is well accessible by
accepting as input trees produced by a broad range of R-packages, including all possible trees that are
stored as party objects or that are convertible into such objects, including ranger and randomForest
objects. Moreover, the package is also versatile by both allowing to make an appeal to in-built tools for
calculating various tree similarity measures and by accepting as input all possible user-provided tree
similarities. In the same vein, the package includes a comprehensive set of in-built tools to postprocess
the results generated by the methodology, and allows for the integration of other user-provided
postprocessing tools. C443 operates via an optimal involvement of and synergy with neighboring
R-packages such as partykit, randomForest, ranger and cluster. As a bonus, the internal functions
C443:::randomForest2party and C443:::ranger2party can also be applied outside the context of C443
to print, plot, or post-process trees obtained from the randomForest or ranger packages. As further
illustrated by three applications, C443 is user-friendly and may yield various insights into forests of
classification trees and classification-related questions.
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TwoSampleTest.HD: An R Package for the
Two-Sample Problem with
High-Dimensional Data
by Marta Cousido-Rocha and Jacobo de Uña-Álvarez

Abstract The two-sample problem refers to the comparison of two probability distributions via two
independent samples. With high-dimensional data, such comparison is performed along a large
number p of possibly correlated variables or outcomes. In genomics, for instance, the variables may
represent gene expression levels for p locations, recorded for two (usually small) groups of individuals.
In this paper we introduce TwoSampleTest.HD, a new R package to test for the equal distribution of
the p outcomes. Specifically, TwoSampleTest.HD implements the tests recently proposed by (Cousido-
Rocha, Uña-Álvarez, and Hart 2019) for the low sample size, large dimensional setting. These tests
take the possible dependence among the p variables into account, and work for sample sizes as small
as two. The tests are based on the distance between the empirical characteristic functions of the two
samples, when averaged along the p locations. Different options to estimate the variance of the test
statistic under dependence are allowed. The package TwoSampleTest.HD provides the user with
individual permutation p-values too, so feature discovery is possible when the null hypothesis of equal
distribution is rejected. We illustrate the usage of the package through the analysis of simulated and
real data, where results provided by alternative approaches are considered for comparison purposes.
In particular, benefits of the implemented tests relative to ordinary multiple comparison procedures
are highlighted. Practical recommendations are given.

1 Introduction

One of the most important questions in modern statistics is how to efficiently deal with the low sample
size, high dimensional setting, in which a large number p of variables are measured for a relatively
small number of individuals. This type of high-dimensional data arises in many different areas of
science, such as genetics, medicine, pharmacy and social sciences. In microarray data, for example, the
variables typically represent the expression levels of a large set of genes. In such a context, a usual
goal is to compare the distributions of the gene expression levels for individuals with two different
tumour types. Hence, a formal two-sample test in the low sample size and large dimension setting is
required. More precisely, the aim is to test for the equality of the p marginal distributions for the two
groups. In other words, one can regard the null hypothesis as the intersection of the p null hypotheses
corresponding to each of the p locations (genes).

In the majority of examples with high-dimensional data the large number of variables or outcomes
are not independent. In genetics, for example, dependency among expression levels of different
genes on the same individual is often observed. Several two-sample tests have been developed for
the high-dimensional setting under dependence; see for instance Biswas and Gosh (2014), Mondal
et al. (2015), Biswas et al. (2014), Liu et al. (2015) and Wei et al. (2016). Nevertheless, all of these
proposals have at least one of the following disadvantages: (1) the null hypothesis asserts that the
p-variate distribution is the same for the two groups being compared instead of testing the equality of
the univariate marginals; (2) the dependence structure is not considered or is too restrictive; (3) the
theoretical results are only suitable for normally distributed data. Besides, to the best of our knowledge
none of these methods are available in R. While gaps (2) and (3) are limiting in applications, issue (1) is
more fundamental; note that usually the focus is more on the marginal outcome distribution than on
the within-group correlation structure. Therefore, new ideas are needed.

Recently, Cousido-Rocha et al. (2019) overcame the aforementioned flaws by introducing a non-
parametric omnibus test that, with focus on the marginal distributions, included the dependent case
through mixing conditions (Doukhan, 1995). This type of dependence, being fairly general, has been
frequently used in the goodness-of-fit testing literature; see for example Neumann and Paparoditis
(2000) and Dehling et al. (2015). Mixing conditions imply that the dependence between the variables
softens at distant locations. In genetics, for instance, this means that the correlation among expression
levels of different genes lessens as the distance between the biological function of the genes increases,
which is a flexible, realistic assumption for such applications.

In this paper we introduce the TwoSampleTest.HD R package which implements the tests proposed
in Cousido-Rocha et al. (2019) for testing the (global, or intersection) null hypothesis of equality of the
p univariate marginals in the two populations. The basic test statistic is the L2-distance between the
empirical characteristic functions pertaining to the two groups, when averaged along the p locations.
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Several approaches to estimate the variance of the test statistic under dependence lead then to slightly
different procedures. At the same time, TwoSampleTest.HD provides the user with permutation
p-values for each location. When the null hypothesis is rejected, these p-values can be used to rank
the locations according to their contribution to the global significance, or for feature selection by
performing multiple testing (Dudoit and van der Laan, 2007). Finally, a different test statistic for
the global null hypothesis based on the average of the permutation p-values is implemented within
TwoSampleTest.HD. All of these procedures are fully illustrated in this piece of work.

Alternative nonparametric approaches for the two-sample problem include Kolmogorov-Smirnov
and Cramér-von Mises tests. These methods compare the empirical distribution functions, rather than
the empirical characteristic functions, of the two groups. Empirical characteristic functions are related
to smooth tests, which have been found preferable to distribution-based tests in many settings due to
their greater power (Martínez-Camblor and de Uña-Álvarez, 2009). More importantly, whenever a test
is performed locally and repeatedly, multiple comparison procedures (MCP) are needed in order to
keep the type I error under control. Unfortunately, such approach may not be optimal when testing for
different distributions in a global way. This relays the fact that feature discovery is more difficult than
testing for the intersection null, and explains why the test based on permutation p-values implemented
in TwoSampleTest.HD can exhibit a power lower than that of the averaged L2-type tests within the
package. Efforts to efficiently summarize local p-values for testing an intersection null hypothesis
include the so-called Higher Criticism (HC) approach, see Zhang et al. (2020) and references therein;
however, the performance of HC may be dramatically affected by dependence (Hall and Jin, 2008).
Further discussion of these issues is provided within this paper on the basis of empirical results.

The rest of the paper is organized as follows. In Section 2.2 the methodological background is
introduced, and the tests proposed by Cousido-Rocha et al. (2019) are presented in detail. In Section
2.3 the TwoSampleTest.HD package is described, and its usage is illustrated through the analysis of
simulated data and microarray data derived from a hereditary breast cancer study. Finally, Section 2.4
reports the main conclusions of this work.

2 Methodology

In this section we describe the four two-sample tests proposed by Cousido-Rocha et al. (2019), which
are implemented in the TwoSampleTest.HD package. Three of the methods are based on the average
of p individual L2-distances between the empirical characteristic functions computed from the two
samples. The three versions of this test differ in the way in which the variance is estimated; in all
the cases, the variance estimate takes the possible dependence among the p outcomes into account.
The fourth method is based on the average of the permutation p-values derived for the individual
L2-distances.

We consider two random matrices X =
[
X1, . . . , Xp

]T and Y =
[
Y1, . . . , Yp

]T of respective di-
mensions p × n and p × m, where Xk = (Xk1, . . . , Xkn) and Yk = (Yk1, . . . , Ykm), k = 1, . . . , p, are
the sample values for the p target variables; the sample sizes are n and m. The variables Xk and Yk
may be discrete or continuous; normality is not assumed in the continuous case. Given sequences
of characteristic functions {CX1 , CX2 , . . . , CXp} and {CY1 , CY2 , . . . , CYp}, it is assumed that Xk1, . . . , Xkn
and Yk1, . . . , Ykm are independent random samples from CXk and CYk , respectively. Observations Xij
and Xsl for s ̸= i can be dependent in our framework, and similar comments apply to the components
of Y.

The focus is in testing for the intersection null hypothesis

H0 =
p⋂

k=1

H0k,

where, for 1 ≤ k ≤ p, H0k states that CXk and CYk coincide. As indicated by Cousido-Rocha et al.
(2019), the L2-distance between the empirical characteristic functions of Xk and Yk is given by

Jk =
1

n(n − 1)

n

∑
j=1

n

∑
l=1,l ̸=j

exp

(
−1

2

(Xkj − Xkl√
2b

)2
)
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m(m − 1)
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where b ∈ R+. The first term in Jk is an intra-sample parameter estimate for the sample Xk and
the second term is an intra-sample parameter estimate for the sample Yk, whereas the third term
is an inter-samples parameter estimate, since Xkj and Ykℓ come from different samples, Xk and Yk,
respectively.

We consider the test statistic Tp = ∑
p
k=1 Jk/

√
p in order to test for H0. Cousido-Rocha et al. (2019)

introduced two variance estimators for Tp when (Xk, Yk)k∈{1,...,p} comes from a strictly stationary
sequence (Xk, Yk)k∈N. The first variance estimator σ̂S is based on the spectral density estimate.
Indeed, the problem of estimating the variance of a sample mean based on dependent data is the
same as that of estimating the spectrum of the process at frequency zero. Hence, Var(Tp) can be
approximated through the classical estimator of the spectrum of the process at frequency zero. It holds

that Tp/σ̂S
D−→ N (0, 1) as p tends to ∞. Since the expectation of Tp is strictly positive under the

alternative hypothesis, the test is one-sided, and rejects H0 at nominal level α when Tp/σ̂S is larger
than the 1 − α quantile of the standard normal distribution. We refer to this test as spectral test.

The second variance estimator is derived from the block bootstrap procedure proposed by Carlstein
(1996) to estimate the variance of a general statistic computed from a strictly stationary α-mixing
sequence (see Bosq, 1998). More precisely, this resampling method defines no overlapping blocks
of length l on the sequence (Jk)k∈{1,...,p} and computes the statistic Tp in each of the blocks, with l
being the maximum lag of significant autocorrelation on the (Jk)k∈{1,...,p} sequence according to the
procedure in Politis and White (2004). Finally the block bootstrap variance estimator σ̂B is simply
defined as the sample variance of the values of Tp in each of the block. As before, the standardized
version of Tp based on σ̂B, is asymptotically distributed as a N (0, 1) random variate. Hence, the block
bootstrap test rejects the null hypothesis when Tp/σ̂B is larger than the 1 − α quantile of the standard
normal distribution.

Cousido-Rocha et al. (2019) also introduced an alternative variance estimator suitable for possibly
non-stationary sequences based on U-statistics theory. More precisely, the variance of Tp can be
written as the sum of two terms; the first one is the average of the variance of the statistics (Jk)k∈{1,...,p},
whereas the second one comprises the covariance terms arising from such sequence. The first term
can be estimated by replacing the unknown theoretical expectations by their corresponding sample
means; on the other hand, an unbiased estimator for the covariance term Cov(Jj, Jj+k) is given by
Jj Jj+k, j = 1, . . . , p − l, k = 1, . . . , l. The standardized version of Tp based on such variance estimator,
Tp/σ̂U , is asymptotically distributed as a N (0, 1) as p → ∞. Hence, the U-statistic test rejects the null
hypothesis when Tp/σ̂U is larger than the 1 − α quantile of the standard normal distribution.

Interestingly, the test statistics Jk can be used locally to test for the null hypotheses H0k that Xk1
and Yk1 have the same distribution, 1 ≤ k ≤ p. Since the common density under H0k is unknown, a
permutation test can be used to calibrate the null distribution of Jk. The application of the permutation
test to each of the H0k, k ∈ {1, . . . , p} yields a set of p-values {P1, . . . , Pp}. Cousido-Rocha et al. (2019)
proposed a test statistic based on the average of the permutation p-values, P̄ = ∑

p
k=1 Pk/p. The idea

of combining the individual p-values to obtain a global test statistic is old, dating to Fisher (1934);
Stouffer et al. (1949) and others. The statistic P is standardized taking into account that its expectation
is (N + 1)/2N, with N being the number of permutations that lead to a different value of the statistic
Jk, and using a variance estimator based on the spectral analysis. The standardized version of P̄, say
Tpv

p =
√

p (P̄ − (N + 1)/(2N))/σ̂P, is asymptotically distributed as a standard normal as p → ∞. It is
assumed that, under H0, (Xk, Yk)k∈{1,...,p} comes from a strictly stationary and strongly mixing process
(Xk, Yk)k∈N. The null hypothesis is rejected when Tpv

p is smaller than the α quantile of the standard
normal distribution. One advantage of the permutation p-values is that, when the intersection null
is rejected, they can be used to rank the null hypotheses H0k according to their contribution to the
significance. In genomics, for instance, this ranking may reveal the genes which express differently
between two tumors. Finally, a formal MCP can be applied to the set of permutation p-values to get
rigorous conclusions on the individual nulls H0k, k ∈ {1, . . . , p}. Note that the ranking provided by the
p-values is related, but not equal, to the ranking based on the Jk’s; this is because the target outcome
may be differently distributed along the p locations, and Jk is not distribution free. The situation for the
Hedenfalk data example in Section 2.3.1 is depicted in Figure 1; the shift of the p-values distribution
compared to uniform suggests that some genes are differently expressed in the two groups considered.

For the implementation of the aforementioned test statistics the parameter b in (1), which plays the
role of a smoothing parameter or bandwidth, is set to b̂ = 1.144spool ((n + m)/2)−1/5 , where s2

pool is

the average of
(
(n − 1)s2

Xk
+ (m − 1)s2

Yk
)
)

/(n + m − 2), k = 1, . . . , p, and s2
Xk

and s2
Yk

are the sample
variances of Xk and Yk, respectively, k = 1, . . . , p. When the permutation p-values of the statistics Jk
are to be computed, a local bandwidth can be used instead; specifically, the local bandwidth for Jk

is given by b̂k = 1.144spool ((n + m)/2)−1/5 , with s2
pool =

(
(n − 1)s2

Xk
+ (m − 1)s2

Yk
)
)

/(n + m − 2),

and s2
Xk

and s2
Yk

are the sample variances of Xk and Yk.
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Figure 1: Left: p-values vs test statistics Jk. Right: histogram of the p-values. Hedenfalk data.

Spectral Block bootstrap
p/n, m 2, 2 5, 5 10, 10 2, 2 5, 5 10, 10
100 0.01 0.02 0.01 0.01 0.02 0.03
500 0.03 0.03 0.06 0.03 0.05 0.10
1000 0.07 0.08 0.11 0.07 0.07 0.12

U-statistic Permutation
p/n, m 2, 2 5, 5 10, 10 2, 2 5, 5 10, 10
100 0.01 0.11 0.58 0.03 0.89 1182.40
500 0.11 0.57 2.51 0.015 3.55 5122.53
1000 0.24 1.04 4.87 0.27 8.13 8006.70

Table 1: Execution time (in seconds) for the several versions of the proposed two-sample test. Simu-
lated data with dimension p and sample sizes n and m.

3 Package TwoSampleTest.HD in practice

In this section the main features of TwoSampleTest.HD package are described. We also consider two
examples with high-dimensional data in order to explain how to use TwoSampleTest.HD in practice.
The first example refers a large number of gene expression levels measured on two groups of patients
with breast cancer, classified according to BRCA mutation type. The second example is a simulation
scenario in which the target outcome is differently distributed in the two groups for 10% of the p
locations. This second example serves in particular to illustrate the smaller power of ordinary MCP
when compared to the tests based on the averaged L2-distances between the empirical characteristic
functions of the two groups.

3.1 Hedenfalk data

In this subsection we consider the microarray data set of hereditary breast cancer in Hedenfalk et al.
(2001). The data set consists of p = 3226 logged gene expression levels measured on n = 7 patients
with breast tumors having BRCA1 mutations and on m = 8 patients with breast tumors having BRCA2
mutations. The goal is to test the null hypothesis that the distribution of the p genes is the same for
the two types of tumor, BRCA1 tumor and BRCA2 tumor. Since the example is merely illustrative,
we only consider the first 1000 genes in order to save computational time. With 1000 locations, the
execution time is reduced to < 1 second for the block bootstrap and spectral tests, to < 5 seconds for
the U-statistic test and to 9 minutes for the permutation p-values test, in a laptop provided with a
i5-1135G7 CPU. The waiting time of the permutation test is relatively long since n = 7 and m = 8
lead to 6435 permutations which must be carried out for each of the p = 1000 genes. For additional
inspection, in Table 1 execution times for simulated data with several dimensions p and sample sizes
n and m are reported.
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The main function of the package is TwoSampleTest.HD. This function computes, among other
things, the value of the selected test statistic and the corresponding p-value. The list of arguments of
TwoSampleTest.HD is given in Table 2. The required arguments are X and Y, matrices where each row
is one of the p-samples in the first group and second group, respectively; the other arguments have
a default value. When the user forgets to include the argument X or Y in the function, the following
message is returned:

Call:
TwoSampleTest.HD(X = X)
'us' method used by default
'global' bandwidth used by default
Error in ncol(Y) : argument "Y" is missing, with no default

Call:
TwoSampleTest.HD(Y= Y)
'us' method used by default
'global' bandwidth used by default
Error in ncol(X) : argument "X" is missing, with no default

With method="spect" the two-sample spectral test described in Section 2.2 is applied; the op-
tion "method=spect_ind" corresponds to a simplified version that pre-assumes the independence
among the outcomes. On the other hand, the options method="us" and method="us_ind" apply the
two-sample U-statistic test explained in Section 2.2 for dependent data and its simplification for
independent variables, respectively. The last option based on the average of the p individual statistics,
Jk, corresponding to each of the p variables is method="boot" which implements the two-sample
block bootstrap test (Section 2.2). Finally, the function also performs the alternative test based on the
average of the permutation p-values corresponding to the individual statistics Jk through the argument
method="perm". In our experience, the most powerful test for independent outcomes is the U-statistic
test, whereas under dependence the more powerful tests are the spectral and block bootstrap tests.
We also observed that the block bootstrap and spectral tests, which were developed assuming that
(Xk, Yk)k∈N is a strictly stationary process, performed well when stationarity is violated. The "us"
method has been defined as the default one.

When choosing method="perm", the sequence of permutation p-values is computed and reported.
On the other hand, the computation of the permutation p-values must be explicitly requested using
I.permutation.p.values=TRUE argument for the U-statistic, spectral or block bootstrap tests. As
mentioned, these individual p-values may be used to rank the outcomes according to their signifi-
cance. Argument b_I.permutation.p.values allows the user to select the bandwidth b. The option
b_I.permutation. p.values="global" computes a global bandwidth b̂ and uses it to evaluate the Jk’s,
whereas option b_I.permutation.p.values="individual" estimates the bandwidth for each variable
separately; see details in Section 2.2. The default option is b_I.permutation.p.values="global".
In Table 3 a summary of the results provided by the function TwoSampleTest.HD is given. The
I.statistics object contains the individual statistics Jk , k = 1, . . . , p described in the previous section,
while the I.permutation.p.values object reports the permutation p-values {P1, . . . , Pp}.

Hedenfalk data are available within Equalden.HD package (Cousido-Rocha and de Uña-Álvarez,
2022). In order to analyze this dataset, we load this package together with TwoSampleTest.HD
package. For the investigation of the possible dependence among the gene expression levels, we treat
the data of each patient as a time series, and we compute the sample autocorrelation function. For the
first lags the autocorrelation between genes was significantly different from zero, whereas it lessened
as the number of lags increased. The estimates of the autocorrelation were computed using the acf
function of the R package stats. On the basis of these results, the weak dependence assumption behind
the tests implemented in the TwoSampleTest.HD seems realistic. The four tests designed for weak
dependence (spectral test, U-statistic test, block bootstrap test and permutation test) can be performed
by using the following code lines:

> library(Equalden.HD)
> data("Hedenfalk")
> X=log(Hedenfalk[,1:7])
> Y=log(Hedenfalk[,8:15])
>
> X=X[1:1000,]
> Y=Y[1:1000,]
> library(TwoSampleTest.HD)
> res1 <- TwoSampleTest.HD(X, Y, method = "spect")
Call:
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Usage of the function:
TwoSampleTest.HD(X, Y, method = c("spect",
"spect_ind", "boot", "us","us_ind", "perm"),
I.permutation.p.values = FALSE ,
b_I.permutation.p.values = c("global", "individual"))

X
A matrix where each row is one of the p-samples
in the first group.

Y
A matrix where each row is one of the p-samples
in the second group.

method
The two-sample test. By default the “us” method
is computed.

I.permutation.p.values

Logical. Default is FALSE. A variable indicating
whether to compute the permutation p-values or
not when the selected method is not “perm”.

b_I.permutation.p.values

The bandwidth method used to compute the
individual statistics on which are based the
permutation p-values.

Table 2: Usage and list of the arguments of the TwoSampleTest.HD function.

standardized statistic the value of the standardized statistic.

p.value the p-value for the test.

statistic the value of the statistic.

variance the value of the variance estimator.

p number of samples or populations.

n sample size in the first group.

m sample size in the second group.

method a character string indicating which two sample test is performed.

I.statistics the p individual statistics.

I.permutation.p.values the p individual permutation p-values.

data.name a character string giving the name of the data.

Table 3: Summary of the results reported by TwoSampleTest.HD function.

TwoSampleTest.HD(X = X, Y = Y, method = "spect")
'global' bandwidth used by default

A two-sample test for the equality of distributions for high-dimensional data

data: c(X, Y)
standardized statistic = 11.536, p-value < 2.2e-16

> res2 <- TwoSampleTest.HD(X, Y, method = "boot")
Call:
TwoSampleTest.HD(X = X, Y = Y, method = "boot")
'global' bandwidth used by default

A two-sample test for the equality of distributions for high-dimensional data

data: c(X, Y)
standardized statistic = 11.515, p-value < 2.2e-16

> res3 <- TwoSampleTest.HD(X, Y, method = "us")
Call:
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TwoSampleTest.HD(X = X, Y = Y, method = "us")
'global' bandwidth used by default

A two-sample test for the equality of distributions for high-dimensional data

data: c(X, Y)
standardized statistic = 12.104, p-value < 2.2e-16

> res4 <- TwoSampleTest.HD(X, Y, method = "perm")
Call:
TwoSampleTest.HD(X = X, Y = Y, method = "perm")
'global'bandwidth used by default

A two-sample test for the equality of distributions for high-dimensional data

data: c(X, Y)
standardized statistic = -10.955, p-value < 2.2e-16

The output of the function TwoSampleTest.HD shows that Tp/σ̂S = 11.536, Tp/σ̂B = 11.515,
Tp/σ̂U = 12.104 and Tpv

p = −10.955, whereas the corresponding p-values are almost zero. The
negative value of the Tpv

p statistic means that the average of the permutation p-values is lower than
the expected mean of their (uniform) null distribution. Hence, the null hypothesis is rejected; the
conclusion is that one or more genes are differently expressed depending on the tumor type. The
object derived from TwoSampleTest.HD function is a list which saves, as usual with R functions,
relevant information. Besides the standardized statistic and the p-value printed in the console when
running the function (as shown above), the list of saved objects comprises the value of the statistic
Tp (or

√
pP̄ if one runs the permutation test), the variance (σ̂S, σ̂B, σ̂U or σ̂P), the number of variables

(p), the sample sizes (n and m), the method used for the data analysis, and the values of the statistics
J1, . . . , Jp. Below, we display such information for the spectral test as an illustrative example. The
values of the statistics J1, . . . , Jp are plotted in Figure 2 instead of reporting them through the console.

> res1\$statistic
[1] 1.827471
> res1\$variance
[1] 0.02509699
> res1\$p
[1] 1000
> res1\$n
[1] 7
> res1\$m
[1] 8
> res1\$method
[1] "spect"
> library(ggplot2)
>
> data=data.frame(Jk=res1\$I.statistics,Genes=1:res1\$p)
> ggplot(data, aes(x=Genes, y=Jk)) +
+ geom_point(shape=21, col=8) + geom_rug()+ggtitle("Individual test statistics")

Since the null hypothesis is rejected for Hedenfalk data, the next natural aim is to identify which
genes are not equally distributed in both types of tumors. For this, we first rank the null hypothe-
ses H0i according to their contribution to the significance by using the sequence of permutation
p-values. This sequence has only been computed for the permutation test, since for the remaining
tests it is only computed when the argument I.permutation.p.values is equal to TRUE and, in our
previous applications of the tests such argument has not been specified hence the default option
I.permutation.p.values=FALSE has been used. Therefore, res4 is the unique object which has the
sequence of permutation p-values. Note that, since the argument b_I.permutation.p.values has not
been used, the default option b_I.permutation.p.values="global" has been considered, and then
the global b̂ has been employed to compute each one of the Jk, k = 1, . . . , p, for which the permutation
p-values are calculated. Below, the code used to determine which are the 10 genes of lowest p-values
is reported.

> pv=res4\$I.permutation.p.values
> order(pv)[1:10]
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Figure 2: The values of the statistics J1, . . . , Jp for the two-sample spectral test. Hedenfalk data.

[1] 556 733 952 955 445 555 914 963 118 157

Although the above list can be informative, any rigorous procedure should keep the type I error
under control. The p.adjust function, available within stats package, implements the well-known
Benjamini and Hochberg (1995) false discovery rate (FDR) controlling procedure. The application of
this method to the sequence of 1000 permutation p-values at 5% FDR level reports 13 discoveries (see
code lines below). Note that, although Benjamini and Hochberg (1995) has been initially studied for
independent p-values, subsequent research has shown that it remains valid under weaker assumptions.

> alpha=0.05
> sum(p.adjust(pv,method = "BH")<=alpha)
[1] 13

One interesting question is whether nonparametric two-sample test statistics alternative to Jk could
perform better in the multiple testing setting. As a by-product of their research, Cousido-Rocha et al.
(2021) proved through simulations that the Jk test statistic performs similarly or even better than other
well-known two-sample tests. For example, simulation results in the referred paper suggest that the
Kolmogorov–Smirnov test should not be used when the sample sizes are small and the differences
are other than location. For illustrative purposes, we have tested each one of the null hypothesis H0k,
k ∈ {1, . . . , p}, through Student’s t test, Wilcoxon test, Levene test and Kolmogorov- Smirnov test (see
Gibbons and Chakraborti, 1992 and Levene, 1960). Then, Benjamini and Hochberg (1995) has been
applied to the corresponding p-values sequence (code below).

> p=res1\$p;n=res1\$n; m=res1\$m
> pv_t.test=1:p
> pv_KS=1:p
> pv_Wilcoxon=1:p
> pv_Levene=1:p
>
> library(car)
> library(exactRankTests)
> library(coin)

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 87

>
> for (i in 1:p){

+ pv_Wilcoxon[i]=wilcox.exact(X[i,],Y[i,])\$p.value
+ pv_t.test[i]=t.test(X[i,],Y[i,],var.equal = F)\$p.value
+ pv_KS[i]=ks.test(X[i,],Y[i,])\$p.value
+ pv_Levene[i]=leveneTest(c(X[i,],Y[i,]),
+ as.factor(c(rep(1,n),rep(2,m))))\$`Pr(>F)`[1]
+ }

> sum(p.adjust(pv_Wilcoxon,method = "BH")<=alpha)
[1] 13
> sum(p.adjust(pv_t.test,method = "BH")<=alpha)
[1] 1
> sum(p.adjust(pv_KS,method = "BH")<=alpha)
[1] 0
> sum(p.adjust(pv_Levene,method = "BH")<=alpha)
[1] 0

From results above it is seen that the Kolmogorov–Smirnov (KS) test is unable to provide any
discovery at 5% of FDR. However, these results should be taken with some caution since exact KS
p-values could not be computed by ks.test function due to the presence of ties in Hedenfalk data;
note that the asymptotic distribution of the KS test may be inaccurate for small sample sizes. The
lack of power of KS in the multiple testing setting has been pointed out in Cousido-Rocha et al. (2021)
too. Similarly as for KS, Levene test does not declare any gene as differently expressed in the two
tumor groups; this is not surprising, since differences between the two groups are mainly due to a
location shift (Hedenfalk et al., 2001). The number of discoveries of the t-test is very low (only one
rejection); on the contrary, Wilcoxon test provides as many discoveries as the Jk test statistic. In order
to better summarize the relative power of the several testing procedures, Figure 3 depicts the number
of rejections along a sequence of nominal levels for the FDR (α = 0.001, 0.002, . . . , 0.10). Interestingly,
Figure 3 supports previous comments on the poor performance of KS test.

0

10

20

30

40

0.000 0.025 0.050 0.075 0.100
FDR level

R
ej

ec
tio

ns

Test

Jk

KS

Levene

t.test

Wilcoxon

Figure 3: Number of rejections of Wilcoxon test, Kolmogorov-Smirnov test, t-test, Levene test and Jk
permutation test depending on the nominal FDR level. Hedenfalk data.
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3.2 Simulated data

We simulated p = 1000 independent variables with sample sizes n = m = 4 under the alternative
hypothesis. More precisely, the p samples in the first group (X) were generated in 4 blocks from the
following distributions, respectively: N(0, 1), N(0, 2), N(1, 1) and N(1, 2). In the second group (Y),
90% of the p samples were generated exactly as for X (true individual nulls), whereas for simulating
the remaining 10% of the samples the distributions were interchanged, with a location shift as result
(non-true individual nulls). To be specific, in the case X ∼ N(0, 1), the Y was generated from a N(1, 1),
and vice versa; when X ∼ N(0, 2), the Y was generated from a N(1, 2), and vice versa. The code for
the simulation is provided in Appendix .1.

Below, the two-sample tests implemented in TwoSampleTest.HD are applied to test the null
hypothesis that the distribution of each of the samples is the same in the groups. All of the tests reject
the null hypothesis. The results suggest that the simpler versions which make use of the indepen-
dence assumption, "spect_ind" and "us_ind", are slightly more powerful than their counterparts for
dependent data.

> TwoSampleTest.HD(X, Y, method = "spect")\$p.value
Call:
TwoSampleTest.HD(X = X, Y = Y, method = "spect")
'global' bandwidth used by default

A two-sample test for the equality of distributions for high-dimensional data

data: c(X, Y)
standardized statistic = 2.2275, p-value = 0.01296

[1] 0.01295652
> TwoSampleTest.HD(X, Y, method = "spect_ind")\$p.value
Call:
TwoSampleTest.HD(X = X, Y = Y, method = "spect_ind")
'global' bandwidth used by default

A two-sample test for the equality of distributions for high-dimensional data

data: c(X, Y)
standardized statistic = 2.2821, p-value = 0.01124

[1] 0.01124119
> TwoSampleTest.HD(X, Y, method = "boot")\$p.value
Call:
TwoSampleTest.HD(X = X, Y = Y, method = "boot")
'global' bandwidth used by default

A two-sample test for the equality of distributions for high-dimensional data

data: c(X, Y)
standardized statistic = 2.2643, p-value = 0.01178

[1] 0.01177765
> TwoSampleTest.HD(X, Y, method = "us")\$p.value
Call:
TwoSampleTest.HD(X = X, Y = Y, method = "us")
'global' bandwidth used by default

A two-sample test for the equality of distributions for high-dimensional data

data: c(X, Y)
standardized statistic = 2.3058, p-value = 0.01056

[1] 0.01056058
> TwoSampleTest.HD(X, Y, method = "us_ind")\$p.value
Call:
TwoSampleTest.HD(X = X, Y = Y, method = "us_ind")
'global' bandwidth used by default
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A two-sample test for the equality of distributions for high-dimensional data

data: c(X, Y)
standardized statistic = 2.423, p-value = 0.007696

[1] 0.007695904
> res=TwoSampleTest.HD(X, Y, method = "perm")
Call:
TwoSampleTest.HD(X = X, Y = Y, method = "perm")
'global' bandwidth used by default

A two-sample test for the equality of distributions for high-dimensional data

data: c(X, Y)
standardized statistic = -2.2287, p-value = 0.01292

As done for Hedenfalk data, one can individually test for H0k, k ∈ {1, . . . , p}, at 5% level of
FDR by using the Jk statistic. In this case, the number of rejections is zero. The same occurs when
using the Wilcoxon test, the Kolmogorov-Smirnov test, the t-test, or the Levene test (see code lines
below). This highlights once again the need for global two-sample tests as those implemented in
TwoSampleTest.HD.

> pvalues=res$I.permutation.p.values
>
> alpha=0.05
>
> sum(p.adjust(pvalues,method = "BH")<=alpha)
[1] 0
>
>
>
> pv_t.test=1:p
> pv_KS=1:p
> pv_Wilcoxon=1:p
> pv_Levene=1:p
>
> library(car)
> library(exactRankTests)
> library(coin)
>
> for (i in 1:p){

+ pv_Wilcoxon[i]=wilcox.exact(X[i,],Y[i,])\$p.value
+ pv_t.test[i]=t.test(X[i,],Y[i,],var.equal = F)\$p.value
+ pv_KS[i]=ks.test(X[i,],Y[i,])\$p.value
+ pv_Levene[i]=leveneTest(c(X[i,],Y[i,]),
+ as.factor(c(rep(1,n),rep(2,m))))\$`Pr(>F)`[1]
+ }

>
> sum(p.adjust(pv_Wilcoxon,method = "BH")<=alpha)
[1] 0
> sum(p.adjust(pv_t.test,method = "BH")<=alpha)
[1] 0
> sum(p.adjust(pv_KS,method = "BH")<=alpha)
[1] 0
> sum(p.adjust(pv_Levene,method = "BH")<=alpha)
[1] 0

An interesting question is the necessary computation time for TwoSampleTest.HD. For the
simulated example, "spect" and "spect_ind" methods run in 0.16 and 0.15 seconds, respectively;
"boot" method in 0.15 seconds, "us" and "us_ind" methods in 2.91 and 2.86 seconds, respectively;
and, finally, the "perm" needed 4.55 seconds for running the analysis. The results shown in the current
example match the general performance of the main function within the package; the spectral and
block bootstrap tests are the most efficient from a computational point of view, followed by the
U-statistic test and finally by the permutation test. As we increased the number of variables or (more
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critically) the sample sizes, these differences in computational efficiency became more evident. On the
other hand, the simplified versions for independent data did not result in a visible reduction of the
run time.

4 Conclusions

Package TwoSampleTest.HD implements a two-sample test for the null hypothesis that all the
marginal distributions of the p-variate outcome of interest coincide on the two groups. The two-
sample test takes advantage of the large p, in the sense that it uses a null Gaussian distribution that
holds as p goes to infinity; interestingly however, in our experience the asymptotic approximation is
also correct for p as small as 20. On the other hand, the implemented test statistic is just an average of
the L2-type deviations between the empirical characteristic functions pertaining to the two samples
along the p margins. Each of these p deviations can be used to perform a local two-sample test through
the preliminary computation of permutation p-values. These permutation p-values can be used to
introduce an alternative testing procedure (also implemented in TwoSampleTest.HD), by using the
asymptotic null Gaussian distribution of their average as p grows. An interesting question here is if
this sequence of p-values can be used in another fashion to introduce a more powerful testing method.
In principle, standard multiple comparison procedures are not competitive, since they focus (not only
on the intersection null but also) on identifying the margins in which the two groups differ. However,
some multiple comparison procedures have been specifically designed to test for the intersection null,
and these methods could be competitive in our setting. This is an interesting open question at the time
of writing.

Summarizing, TwoSampleTest.HD package implements for the first time omnibus two-sample
tests for the high-dimensional setting under dependence. The package is user-friendly, and it is hoped
that it will serve the scientific community by providing a simple and powerful tool for the analysis of
high-dimensional data. Clear advice for a correct use of the package and fully illustrative examples
have been given.

Acknowledgements

The authors acknowledge financial support from the Grant PID2020-118101GB-I00, Ministerio de
Ciencia e Innovación.

1 Appendix: Simulated data set code

The code employed for generating the described simulated data set in Section 2.3.2 can be found
below.

> n=m=4
> p=1000
>
> set.seed(123)
>
> p <- 1000
> n = m = 4
> inds <- sample(1:4, p, replace = TRUE)
> X <- matrix(rep(0, n * p), ncol = n)
> for (j in 1:p){

+ if (inds[j] == 1){
+ X[j, ] <- rnorm(n)
+ }

+ if (inds[j] == 2){
+ X[j, ] <- rnorm(n, sd = 2)
+ }

+ if (inds[j] == 3){
+ X[j, ] <- rnorm(n, mean = 1)
+ }

+ if (inds[j] == 4){
+ X[j, ] <- rnorm(n, mean = 1, sd = 2)
+ }

+ }
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> rho <- 0.1
> ind <- sample(1:p, rho * p)
> li <- length(ind)
> indsy <- inds
> for (l in 1:li){

+ if (indsy[ind[l]]==1){
+ indsy[ind[l]]=3
+ } else {
+ if (indsy[ind[l]]==2){

+ indsy[ind[l]]=4
+ } else {
+ if (indsy[ind[l]]==3){

+ indsy[ind[l]]=1
+ } else {
+ indsy[ind[l]] = 2
+ }

+ }
+ }

+ }
> Y <- matrix(rep(0, m * p), ncol = m)
> for (j in 1:p){

+ if (indsy[j] == 1){
+ Y[j,] <- rnorm(m)}

+ if (indsy[j] == 2){
+ Y[j, ] <- rnorm(m, sd = 2)
+ }

+ if (indsy[j]==3){
+ Y[j, ] <- rnorm(m, mean = 1)
+ }

+ if (indsy[j] == 4){
+ Y[j,] <- rnorm(m, mean = 1, sd = 2)
+ }

+ }
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Statistical Models for Repeated
Categorical Ratings: The R Package rater
by Jeffrey M. Pullin, Lyle C. Gurrin, and Damjan Vukcevic

Abstract A common problem in many disciplines is the need to assign a set of items into categories
or classes with known labels. This is often done by one or more expert raters, or sometimes by an
automated process. If these assignments or ‘ratings’ are difficult to make accurately, a common tactic
is to repeat them by different raters, or even by the same rater multiple times on different occasions.
We present an R package rater, available on CRAN, that implements Bayesian versions of several
statistical models for analysis of repeated categorical rating data. Inference is possible for the true
underlying (latent) class of each item, as well as the accuracy of each rater. The models are extensions
of, and include, the Dawid–Skene model, and we implemented them using the Stan probabilistic
programming language. We illustrate the use of rater through a few examples. We also discuss in
detail the techniques of marginalisation and conditioning, which are necessary for these models but
also apply more generally to other models implemented in Stan.

1 Introduction

The practice of measuring phenomena by having one or more raters assign to items one of a set of
ratings is common across many fields. For example, in medicine one or more doctors may classify a
diagnostic image as being evidence for one of several diagnoses, such as types of cancer. This process
of rating is often done by one or more expert raters, but may also be performed by a large group of
non-experts (e.g., in natural language processing (NLP), where a large number of crowd-sourced raters
are used to classify pieces of text; see Passonneau and Carpenter (2014) and Ipeirotis, Provost, and
Wang (2010)) or by a machine or other automated process (e.g., a laboratory diagnostic test, where ‘test’
may refer to either the raters and/or the ratings). Other fields where ratings occur include astronomy,
for classifying astronomical images (Smyth et al. 1994), and bioinformatics, for inferring error rates
for some bioinformatics algorithms (Jakobsdottir and Weeks 2007). Indeed, both studies apply the
Dawid–Skene model that we present below and implement in our software package.

The assignment of items to categories, which are variously referred to as gradings, annotations
or labelled data, we will call ratings. Our hope is that these are an accurate reflection of the true
characteristics of the items being rated. However, this is not guaranteed; all raters and rating systems
are fallible. We would expect some disagreement between the raters, especially from non-experts,
and even expert raters may disagree when there are some items that are more difficult to rate than
others. A typical way of dealing with this problem is to obtain multiple ratings for each item from
different raters, some of whom might rate the item more than once on separate occasions. By using
an aggregate index (e.g., by averaging the ratings) one can hope to reduce bias and variance when
estimating both population frequencies and individual item categories.

Despite the fact that ratings data of this type are common, there are few software packages that
can be used to fit useful statistical models to them. To address this, we introduce rater, a software
package for R (R Core Team 2021) designed specifically for such data and available on CRAN. Our
package provides the ability to fit the Dawid–Skene model (Dawid and Skene 1979) and several of its
extensions. The goal is to estimate accurately the underlying true class of each item (to the extent that
this is meaningful and well-defined) as well as to quantify and characterise the accuracy of each rater.
Models of these data should account for the possibility that accuracy differs between the raters and
that the errors they make might be class-specific. The package accepts data in multiple formats and
provides functions for extracting and visualizing parameter estimates.

While our package implements optimisation-based inference, the default mode of inference is
Bayesian, using Markov Chain Monte Carlo (MCMC). We chose a Bayesian approach for several
reasons. The first is because the standard classical approach, using an EM algorithm, often gives
parameter estimates on the boundary of the parameter space (i.e., probabilities of exactly 0 or 1),
which would typically be implausible. Examples of this can be seen in the original paper by Dawid
and Skene (1979), and also in our own results below that compare MCMC and optimisation-based
inference (e.g., compare Figure 2 and Figure 4). A second reason is to take advantage of the convenient
and powerful Stan software (Stan Development Team 2021), which made implementing our package
considerably easier. Stan is a probabilistic programming language that implements MCMC and
optimisation algorithms for fitting Bayesian models. The primary inference algorithm used by Stan
is the No U-Turn Sampler (NUTS) variant of the Hamiltonian Monte Carlo (HMC) sampler, which
uses gradient information to guide exploration of the posterior distribution. A third reason is that
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Table 1: Formats for balanced rating data.

(a) Long

Item Rater Rating

1 1 3
1 2 4
2 1 2
2 2 2
3 1 2
3 2 2

(b) Wide

Item Rater 1 Rater 2

1 3 4
2 2 2
3 2 2

(c) Wide (grouped)

Rater 1 Rater 2 Tally

3 4 1
2 2 2

it allows users to easily incorporate any prior information when it is available. In this context, prior
information might be information about the quality of the raters or specific ratings mistakes that are
more common.

We illustrate our methods and software using two examples where the raters are healthcare
practitioners: one with anaesthetists rating the health of patients, and another with dentists assessing
the health of teeth. In both examples, we are interested in obtaining more accurate health assessments
by combining all of the experts’ ratings rather than using the ratings of a single expert, as well as
estimating the accuracy of each expert and characterising the types of errors they make.

Our paper is organised as follows. Section 2 describes the various data formats that can be used
with the function implemented in the package. Section 4 introduces the Dawid–Skene model and
several of its extensions. Section 5 briefly describes the implementation and goes into more detail
about some of the more interesting aspects, followed by an exposition of the technique called Rao–
Blackwellization in Section 6, which is connected with many aspects of the implementation. Section 7
introduces the user interface of rater along with some examples. Section 8 concludes with a discussion
of the potential uses of the model.

2 Data formats

There are several different formats in which categorical rating data can be expressed. We make a
distinction between balanced and unbalanced data. Balanced data have each item rated at least once by
each rater. Unbalanced data contain information on some items that were not rated by every rater;
stated alternatively, there is at least one rater who does not rate every item.

Table 1 and Table 2 illustrate three different formats for categorical rating data. Format (a) has one
row per item-rater rating episode. It requires variables (data fields) to identify the item, the rater and
the rating. This presentation of data is often referred to as the ‘long’ format. It is possible for a rater
to rate a given item multiple times; each such rating would have its own row in this format. Format
(b) has one row per item, and one column per rater, with each cell being a single rating. Format (c)
aggregates rows (items) that have identical rating patterns and records a frequency tally. Formats (b)
and (c) are examples of ‘wide’ formats. They only make sense for data where each rater rates each
item at most once. Note that the long format will never require any structural missing values for any
of the variables, whereas the wide formats require the use of a missing value indicator unless they
represent data generated by a balanced design, see Table 2. One benefit of the grouped format is that it
allows a more computationally efficient implementation of the likelihood function. See Section 5 for
details about how this is implemented in rater.

3 Existing approaches

A typical approach for modelling categorical ratings is to posit an unobserved underlying true class
for each item, i.e., we represent the true class as a latent variable. One of the first such models was
developed by Dawid and Skene (1979). This model is still studied and used to this day, and has served
as a foundation for several extensions (e.g., Paun et al. 2018). Our R package, rater, is the first one
specifically designed to provide inference for the Dawid–Skene model and its variants.

The Python library pyanno (Berkes et al. 2011) also implements a Bayesian version of the Dawid–
Skene model in addition to the models described by Rzhetsky (2009). However, unlike rater, pyanno
only supports parameter estimation via optimisation rather than MCMC; i.e., it will only compute
posterior modes rather than provide samples from the full posterior distribution. In addition, pyanno
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Table 2: Formats for unbalanced rating data. Missing values are indicated by ‘NA’.

(a) Long

Item Rater Rating

1 1 3
1 2 4
2 1 2
2 2 2
3 1 2
3 2 2
4 1 3
5 1 3
6 2 4

(b) Wide

Item Rater 1 Rater 2

1 3 4
2 2 2
3 2 2
4 3 NA
5 3 NA
6 NA 4

(c) Wide (grouped)

Rater 1 Rater 2 Tally

3 4 1
2 2 2
3 NA 2

NA 4 1

does not support variants of the Dawid–Skene model nor the support for grouped data implemented
in rater.

More broadly, many different so-called ‘latent class’ models have been developed and implemented
in software, for a wide diversity of applications (e.g., Goodman 1974). A key aspect of the categorical
ratings context is that we assume our categories are known ahead of time, i.e., the possible values for
the latent classes are fixed. The Dawid–Skene model has this constraint built-in, whereas other latent
class models are better tailored to other scenarios. Nevertheless, many of these models are closely
related and are implemented as R packages.

Of most interest for categorical ratings analysis are the packages poLCA (Linzer and Lewis 2011),
BayesLCA (White and Murphy 2014) and randomLCA (Beath 2017), all of which are capable of fitting
limited versions of the Dawid–Skene model. We explore the relationship between different latent
class models in more detail in Section 4.7. Briefly: randomLCA can fit the Dawid–Skene model only
when the data uses binary categories, BayesLCA can only fit the homogeneous Dawid–Skene model,
and poLCA can fit the Dawid–Skene model with an arbitrary number of categories but only supports
wide data (where raters do not make repeated ratings on items). Neither poLCA nor randomLCA
support fully Bayesian inference with MCMC, and none of the packages support fitting variants of the
Dawid–Skene model (which are available in rater).

4 Models

One of the first statistical models proposed for categorical rating data was that of Dawid and Skene
(1979). We describe this model below, extended to include prior distributions to allow for Bayesian
inference. Recently, a number of direct extensions to the Dawid–Skene model have been proposed. We
describe several of these below, most of which are implemented in rater. For ease of exposition, unless
otherwise stated, all notation in this section will assume we are working with balanced data and where
each item is rated exactly once by each rater, one exception is that we present the Dawid–Skene model
for arbitrary data at the end of Section 4.1.

Assume we have I items (for example, images, people, etc.) and J raters, with each item presumed
to belong to one of the K categories: we refer to this as its ‘true’ category and also as its latent class
(since it is unobserved). Let yi,j ∈ {1, . . . , K} be the rating for item i given by rater j.

4.1 Dawid–Skene model

The model has two sets of parameters:

• πk: the prevalence of category k in the population from which the items are sampled. πk ∈ (0, 1)
for k ∈ {1, . . . , K}, with ∑K

k=1 πi = 1. All classes have some non-zero probability of occurring.
We collect all the πk parameters together into a vector, π = (π1, . . . , πK).

• θj,k,k′ : the probability that rater j responds with class k′ when rating an item of true class
k. Here, j ∈ {1, . . . , J} and k, k′ ∈ {1, 2, ..., K}. We will refer to the K × K matrix θj,k,k′ for a
given j as the error matrix for rater j. We represent the kth row of this matrix as the vector

θj,k =
(

θj,k,1, θj,k,2, . . . , θj,k,K

)
: this shows how rater j responds to an item with true class k, by

rating it as being in class 1, 2, . . . , K, according to the respective probabilities.
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The model also has the following set of latent variables:

• zi: the true class of item i. zi ∈ {1..., K} for i ∈ {1, ..., I}.

Under the Bayesian perspective, the model parameters and latent variables are both unobserved
random variables that define the joint probability distribution of the model. As such, inference on
them is conducted in the same way. However, we make the distinction here to help clarify aspects of
our implementation later on.

The model is defined by the following distributional assumptions:

zi ∼ Categorical(π), ∀i ∈ {1, . . . , I},

yi,j | zi ∼ Categorical(θj,zi ), ∀i ∈ {1, . . . , I}, j ∈ {1, . . . , J}.

In words, the rating for item i given by rater j will follow the distribution specified by: the error matrix
for rater j, but taking only the row of that matrix that corresponds to the value of the latent variable
for item i (the zith row).

We now have a fully specified model, which allows use of likelihood-based methods. The likeli-
hood function for the observed data (the yi,js) is

Pr(y | θ, π) =
I

∏
i=I

 K

∑
k=1

πk ·
J

∏
j=1

θj,k,yi,j

 .

Note that the unobserved latent variables, z = (z1, z2, . . . , zI), do not appear because they are
integrated out (via the sum over the categories k). Often it is useful to work with the complete data
likelihood where the z have specific values, for example if implementing an EM algorithm (such as
described by Dawid and Skene (1979)). The somewhat simpler likelihood function in that case is

Pr(y, z | θ, π) =
I

∏
i=I

πzi ·
J

∏
j=1

θj,zi ,yi,j

 .

In our implementation we use the first version of the likelihood, which marginalises over z (see Section
5.1). We do this to avoid needing to sample from the posterior distribution of z using Stan, as the
HMC sampling algorithm used by Stan requires gradients with respect to all parameters and gradients
cannot be calculated for discrete parameters such as z. Alternative Bayesian implementations, perhaps
using Gibbs sampling approaches, could work with the second version of the likelihood and sample
values of z directly.

To allow for Bayesian inference, we place weakly informative prior probability distributions on
the parameters:

π ∼ Dirichlet(α),

θj,k ∼ Dirichlet(βk).

The hyper-parameters defining these prior probability distributions are:

• α: a vector of length K with all elements greater than 0

• β: a K × K matrix with all elements greater than 0, with βk referring to the kth row of this matrix.

We use the following default values for these hyper-parameters in rater: αk = 3 for k ∈ {1, . . . , K},
and

βk,k′ =

Np if k = k′

N(1 − p)
K − 1

otherwise
∀k, k′ ∈ {1, . . . , K}.

Here, N corresponds to an approximate pseudocount of hypothetical prior observations and p an
approximate probability of a correct rating (applied uniformly across all raters and categories). This
affords us the flexibility to centre the prior on a particular assumed accuracy (via p) as well as tune
how informative the prior will be (via N). In rater we set the default values to be N = 8 and p = 0.6,
reflecting a weakly held belief that the raters are have a better than coin-flip chance of choosing the
correct class. This should be suitable for many datasets, where the number of categories is small,
for example, less than ten. This default would, however, be optimistic if the number of categories is
very large, for example, one hundred. In that case it would make sense for the user to specify a more
realistic prior (see Section 7.5). A derivation of the default prior specification is shown in Section 4.2.

We can also write the Dawid–Skene model in notation that does not assume the data are balanced.
Let I, J, K be as above. Let N be the total number of ratings in the dataset (previously we had the
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special case N = I · J). Define the following quantities relating to the nth rating: it was performed by
rater jn, who rated item in, and the rating itself is yn. We can now write the Dawid–Skene model as:

zi ∼ Categorical(π), ∀i ∈ {1, . . . , I},

yn | zin ∼ Categorical(θjn ,zin
), ∀n ∈ {1, . . . , N}.

4.2 Hyper-parameters for the Dawid–Skene model

Hyper-parameters for the error matrices

The values we proposed for the β hyper-parameters are designed to be flexible and have an approxi-
mate intuitive interpretation. The derivation is as follows.

First, consider the variant of the model where the true latent class (z) of each item is known; this
model is described under ‘Case 1. True responses are available’ by Dawid and Skene (1979). Under this
model, we can ignore π because the distribution of y depends only on θ. It is a categorical distribution
with parameters given by specific rows of the error matrices (as determined by z, which is known)
rather than being a sum over all possible rows (according to the latent class distribution).

Under this model, the Dirichlet prior is conjugate; we obtain a Dirichlet posterior for each row
of each rater’s error matrix. Consider an arbitrary rater j and an arbitrary latent class k′. Let c =
(c1, c2, . . . , cK) be the number of times this rater rates an item as being in each of the K categories when
it is of true class k′. Let njk′ = ∑K

k=1 ck be the total number of such ratings. Also, recall that θj,k′ refers
to the vector of probabilities from the k′th row of the error matrix for rater j. We have that

c ∼ Multinomial
(

njk′ , θj,k′
)

,

giving the posterior
θj,k′ | c ∼ Dirichlet(βk′ + c).

Under this model, the hyper-parameter vector βk′ has the same influence on the posterior as the
vector of counts c. We can therefore interpret the hyper-parameters as ‘pseudocounts’. This gives
a convenient way to understand and set the values of the hyper-parameters. Our choices were as
follows:

• We constrain their sum to be a given value N = ∑K
k=1 βk′ ,k, which we interpret as a pseudo-

sample size (of hypothetical ratings from rater j of items with true class k′).

• We then set βk′ ,k′ to a desired value so that it reflects a specific assumed accuracy. In particular,
the prior mean of θk′ ,k′ , the probability of a correct rating, will be βk′ ,k′/N. Let this be equal to p,
an assumed average prior accuracy.

• Finally, in the absence of any information about the different categories, it is reasonable to
treat them as exchangeable and thus assume that errors in the ratings are on average uniform
across categories. This implies that the values of all of the other hyper-parameters (βk′ ,k where
k ̸= k′) are equal and need to be set to a value to meet the constraint that the sum of the
hyper-parameters in the vector βk′ is N.

• These choices imply the hyper-parameter values described in Section 4.1.

In the Dawid–Skene model, the latent classes (z) are of course not known. Therefore, we do not
have a direct interpretation of the β hyper-parameters as pseudocounts. However, we can treat them
approximately as such.

We chose N = 8 and p = 0.6 as default values based on obtaining reasonably good performance
in simulations across a diverse range of scenarios (data not shown).

Relationship to previous work

The Stan User’s Guide (Stan Development Team 2021, sec. 7.4) suggests the following choice of values
for β:

βk′ ,k =

{
2.5 × K if k′ = k
1 otherwise

, ∀k′, k ∈ {1, . . . , K}.

It is interesting to compare this to our suggested values, above. By equating the two, we can re-write
the Stan choice in terms of p and N:

p = 2.5 × K/N
N = 3.5 × K − 1.
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We see that the Stan default is to use an increasingly informative prior (N gets larger) as the number of
categories (K) increases. The assumed average prior accuracy also varies based on K. For example:

• For K = 2 categories, p = 0.83 and N = 6.

• For K = 5 categories, p = 0.76 and N = 16.5.

• As K increases, p slowly reduces, with a limiting value of 2.5/3.5 = 0.71.

Our default values of p = 0.6 and N = 8 give a prior that is less informative and less optimistic
about the accuracy of the raters.

In practice we have experienced issues when fitting models via optimisation when the non-
diagonal entries of β are less than 1 (i.e., when βk′ ,k < 1 for some k′ ̸= k). The default hyper-parameters
selected in rater ensure that when there are only a few possible categories—specifically, when K ⩽ 4—
then this does not occur. When K is larger than this and the default hyper-parameters give rise to
non-diagonal entries smaller than 1, rater will report a useful warning message. This only arises when
using optimisation; it does not arise when using MCMC. Users who wish to use optimisation with a
large number of categories can specify different hyper-parameters to avoid the warning message.

Hyper-parameters for the prevalence

The α hyper-parameters define the prior for the prevalence parameters π. All of these are essentially
nuisance parameters and not of direct interest, and would typically have little influence on the
inference for θ or z. The inclusion in the model of a large amount of prior information on the values of
the prevalence parameters would clearly influence the posterior distributions of the corresponding
population class frequencies. We would, however, expect inferences about the accuracy of raters
(whether this is assumed to be class-specific or not) to depend largely on the number of ratings
captured by the dataset, not the prevalence parameters themselves. We have, therefore, not explored
varying α and have simply set them to the same values as suggested in the Stan User’s Guide (Stan
Development Team 2021): αk = 3 for all k.

4.3 Hierarchical Dawid–Skene model

Paun et al. (2018) introduce a ‘Hierarchical Dawid–Skene’ model that extends the original one
by replacing the Dirichlet prior on θj,k (and the associated hyper-parameter β) with a hierarchical
specification that allows for partial pooling, which allows the sharing of information about raters’
performance across rater-specific parameters. It requires two K × K matrices of parameters, µ and σ,
with

µk,k′ ∼
{

Normal(2, 1), k = k′

Normal(0, 1), k ̸= k′
∀k, k′ ∈ {1, . . . , K}

σk,k′ ∼ Half-Normal(0, 1) ∀k, k′ ∈ {1, . . . , K}.

We then have that:

γj,k,k′ ∼ Normal(µk,k′ , σk,k′ ) ∀j ∈ {1, . . . , J}, k, k′ ∈ {1, . . . K}

which are then normalised into probabilities via the multinomial logit link function (also known as the
softmax function) in order to define the elements of the error matrices, which are:

θj,k,k′ =
eγj,k,k′

∑K
k′=1 eγj,k,k′

.

Other details, such as the distribution of z and y, are defined in the same way as per the Dawid–
Skene model. The implementation in rater differs from the implementation from Paun et al. (2018)
by modifying the prior parameters to encode the assumption that the raters are generally accurate.
Specifically, the higher means of the diagonal elements of µ encode that the raters are accurate, as
after transformation by the softmax function larger values of µ will produce higher probabilities in
θ. The assumption that the raters are accurate is also encoded in the prior distribution for θ in the
Dawid–Skene model described above.

One interpretation of the hierarchical model is as a ‘partial pooling’ compromise between the full
Dawid–Skene model and the model with only one rater (see Section 4.5). This is depicted in Figure 1.
Another interpretation of the model is that it treats the accuracy of raters given a specific latent class as
a random effect, not a fixed effect as in the Dawid–Skene model. Paun et al. (2018) show, via a series of
simulations and examples, that this hierarchical model generally improves the quality of predictions
over the original Dawid–Skene model.
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4.4 Class-conditional Dawid–Skene

Another variant of the Dawid–Skene model imposes constraints on the entries in the error matrices
of the raters. Given the presumption of accurate raters, one natural way to do this is to force all
non-diagonal entries in a given row of the error matrix to take a constant value that is smaller than the
corresponding diagonal entry. Formally the model is the same as the Dawid–Skene model except that
we have:

θj,k,k′ =

pj,k if k = k′
1 − pj,k

(K − 1)
otherwise.

To make the model fully Bayesian we use the following prior probability distributions:

pj,k ∼ Beta(β1,k, β2,k), ∀j ∈ 1, . . . , J.

In rater we set β1,k = Np and β2,k = N(1 − p) for all k, where N = 8 and p = 0.6 as in Section 4.1.
While the constraints in this model may lead to imprecise or biased estimation of parameters for any
raters that are substantially inaccurate or even antagonistic, the reduced number of parameters of this
model relative to the full Dawid–Skene model make it much easier to fit. This model was referred to
as the ‘class-conditional Dawid–Skene model’ by Li and Yu (2014).

4.5 Homogeneous Dawid–Skene model

Another related model is the ‘multinomial model’ described by Paun et al. (2018), where the full
Dawid–Skene model is constrained so that the accuracy of all raters is assumed to be identical. The
constraint can be equivalently formulated as the assumption that all of the ratings were done by a
single rater, thus the raters and the sets of rating they produce are exchangeable. This model can be
fitted using rater by simply modifying the data so that only one rater rates every item present and
then fitting the usual Dawid–Skene model.

4.6 Relationships between the models

All of the models presented in this paper can be directly related to the original Dawid–Skene model.
Figure 1 shows the relationships between the models implemented in the package, which are coloured
blue. The hierarchical model can be seen as a ‘partial pooling’ model where information about the
performance of the raters is shared. The Dawid–Skene model can then be seen as the ‘no pooling’
extreme where all raters’ error matrices are estimated independently, while the homogeneous model is
the other extreme of complete pooling where one error matrix is fitted for all of the raters. In addition,
the class-conditional model is a direct restriction of the Dawid–Skene model where extra constraints
are placed on the error matrices.

4.7 Relationships to existing models

The Dawid–Skene model is also closely related to existing latent class models. Usually, in latent class
models, the number of latent classes can be chosen to maximise a suitable model selection criterion,
such as the BIC, or to make the interpretation of the latent classes easier. In the Dawid–Skene model,
however, the number of latent classes must be fixed to the number of categories to ensure that the
error matrices can be interpreted in terms of the ability of the raters to rate the categories that appear
in the data. Some specific models to which the Dawid–Skene model is related are depicted in Figure 1
and are coloured white.

The latent class model implemented in BayesLCA is equivalent to the Dawid–Skene model fitted
to binary data if the number of classes (G in the notation of White and Murphy (2014)) is set to 2. In
that case, each of the M dimensions of the binary response variable can be interpreted as a rater, so
that J = M.

The Dawid–Skene model is also a special case of the model implemented in poLCA (Linzer and
Lewis 2011). The models are equivalent if they have the same number of latent classes (R = K, where
R is the number of latent classes in the poLCA model) and if all of the J categorical variables in the
poLCA model take values in the set {1, . . . K} (that is, Kj = K for all j ∈ J), so that each of the J
variables can be interpreted as the ratings of a particular rater.

In addition, the Dawid–Skene model is a special case of the model implemented in randomLCA
(Beath 2017). When no random effects are specified and K = 2, the model is equivalent to the Dawid–
Skene model with two classes. While randomLCA allows selecting an arbitrary number of latent

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=rater
https://CRAN.R-project.org/package=rater
https://CRAN.R-project.org/package=BayesLCA
https://CRAN.R-project.org/package=poLCA
https://CRAN.R-project.org/package=poLCA
https://CRAN.R-project.org/package=poLCA
https://CRAN.R-project.org/package=randomLCA
https://CRAN.R-project.org/package=randomLCA


CONTRIBUTED RESEARCH ARTICLE 100

Dawid�Skene (DS)

Homogeneous DS

Hierarchical DS

poLCA model randomLCA model

Class-conditional DS

BayesLCA model

Traditional LCM

J = 1

K = 2

G = 2

Kj = K,R = K

σ2 → ∞

σ2 → 0

Equal o�-
diagonal θ

K = 2

Figure 1: Relationships between models. Models coloured blue are implemented in rater. DS:
Dawid–Skene. LCM: latent class model.

Table 3: Features of rater and existing R packages for fitting latent class models. DS: Dawid–Skene.

Package DS model Fitting method Response type Repeated ratings Data formats

rater Yes Bayesian Polytomous Yes Wide, grouped, long
BayesLCA When K = 2 Bayesian Binary No Wide, grouped
randomLCA When K = 2 Frequentist Binary No Wide, grouped
poLCA Yes Frequentist Polytomous No Wide

classes, it only supports binary data.

Finally, when K = 2 the Dawid–Skene model reduces to the so-called ‘traditional’ or ‘standard’
latent class model as first described by Hui and Walter (1980). See Asselineau et al. (2018) for a more
modern description.

4.8 Relationships to existing packages

These relationships to existing latent class models means the functionality implemented in rater is
similar to that of existing R packages for fitting these models. The features of rater and existing
packages are summarised in Table 3.

Some further details about these relationships:

• The two Bayesian packages implement different methods of inference. rater uses Hamiltonian
Monte Carlo and optimisation of the log-posterior. BayesLCA implements Gibbs sampling, the
expectation–maximization (EM) algorithm and a Variational Bayesian approach.

• Unlike the other packages, the implementation of the wide data format in randomLCA supports
missing data. This feature is not implemented in rater because the long data format allows both
missing data and repeated ratings.

Overall, the main features that distinguish rater from the other packages are its full support for the
Dawid–Skene model and extensions, and its support for repeated ratings.

5 Implementation details

rater uses Stan (Carpenter et al. 2017) to fit the above models to data. It therefore supports both
optimisation and Markov chain Monte Carlo (MCMC) sampling, in particular using the No U-Turn
Sampler (NUTS) algorithm (Hoffman and Gelman 2014). For most datasets we recommend using
NUTS, due to the fact that it will generate realisations of the full posterior distribution. Optimisation
may be useful, however, for particularly large datasets, especially if K is large, or if there is a need to
fit a large number of models.
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5.1 Marginalisation

The NUTS algorithm relies on computing derivatives of the (log) posterior distribution with respect to
all parameters. It cannot, therefore, be used when the posterior contains discrete parameters, such as
the latent class in the Dawid–Skene model. To overcome this difficulty the Stan models implemented
in rater use marginalised forms of the posterior to allow NUTS to be used. In other words, for the
Dawid–Skene model we implement the likelihood Pr(y | θ, π), as described earlier in Section 4.1,
together with priors for θ and π.

To avoid any confusion, we stress the fact that our choice to marginalise over the vector z is
purely because it is discrete and we want to use the NUTS algorithm. It is not due to the fact that
the components of the vector z are inherently latent variables. Alternative Bayesian implementations
could avoid marginalisation and sample the zi’s directly (although this may be less efficient, see
Section 6.3 for discussion). Similarly, if the components of z were all continuous, we would be able to
sample them using NUTS. If one or more of the other non-latent parameters were discrete, then we
would need to marginalise over them too.

5.2 Inference for the true class via conditioning

Marginalising over z allows us to use NUTS and sample efficiently from the posterior probability
distribution of θ and π. We are still able to obtain the posterior distribution of the components zi
of z as follows. For each posterior draw of θ and π, we calculate the conditional posterior for zi,
Pr(zi | θ∗, π∗, y), where the conditioning is on the drawn values, θ∗ and π∗. This can be done using
Bayes’ theorem, for example in the Dawid–Skene model,

Pr(zi = k | θ∗, π∗, y) =
Pr(y | zi = k, θ∗, π∗)Pr(zi = k | θ∗, π∗)

Pr(y | θ∗, π∗)

=
π∗

k ∏J
j=1 θ∗j,k,yi,j

∑K
m=1 π∗

m ∏J
j=1 θ∗j,m,yi,j

.

To get a Monte Carlo estimate of the marginal posterior, Pr(zi | y), we take the mean of the above
conditional probabilities across the posteriors draws of θ and π. To formally justify this step we can
use the same argument that justifies the general MCMC technique of Rao–Blackwellization, see Section
6. In practice, this calculation is straightforward with Stan because we can write the log posterior
in terms of the (log scale) unnormalised versions of the conditional probabilities and output them
alongside the posterior draws. Then it is simply a matter of renormalising them, followed by taking
the mean across draws.

5.3 Data summarisation

rater implements the ability to use different forms of the likelihood depending on the format of the
data that is available. For example, for a balanced design the full likelihood for the Dawid–Skene
model is

Pr(y | θ, π) =
I

∏
i=1

 K

∑
k=1

πk ·
J

∏
j=1

θj,k,yi,j

 .

Looking closely, we see that the contribution of any two items with the same pattern of ratings, that
is, the same raters giving the same ratings, is identical. We can therefore rewrite it as a product over
patterns rather than items,

Pr(y | θ, π) =
L

∏
l=1

 K

∑
k=1

πk ·
J

∏
j=1

θj,k,yl,j

nl

,

where L is the number of distinct rating ‘patterns’, nl is the number of times pattern l occurs and yl,j
denotes the rating given by rater j within pattern l. This corresponds directly to having the data in the
‘grouped’ format, see Section 2.

This rewriting is useful for balanced designs where there are many ratings but few distinct patterns,
as it removes the need to iterate over every rating during computation of the posterior, reducing the
time for model fitting. An example of this type of data are the caries data presented in Section 7.

This technique is not always helpful. For example, if the data has many missing entries, the
number of distinct patterns L may be similar or equal to than the total number of ratings. Conse-
quently, rewriting to use the grouped format may not save much computation. For this reason, the
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implementation of rater does not allow missing values in grouped data. Note that in the long data
format we simply drop rows that correspond to missing data, a result of which is that missing data is
never explicitly represented in rater.

Both the randomLCA and BayesLCA packages support grouped format data input. Of these,
CRANpkg{randomLCA} supports missing values in grouped format data.

6 Marginalisation and Rao–Blackwellization

The technique of marginalisation for sampling discrete random variables discussed in Section 5 is
well known in the Stan community. We feel, however, that the interpretation and use of the relevant
conditional probabilities and expectations has not been clearly described before, so we attempt to do
so here. We begin with a brief review of the theory of marginalisation, which is a special case of a more
general technique often referred to as ‘Rao–Blackwellization’. See Owen (2013) for an introduction
and Robert and Roberts (2021) for a recent survey of the use of Rao–Blackwellization in MCMC.

6.1 Connection with the Rao–Blackwell theorem

Suppose we are interested in estimating µ = E( f (X, Y)) for some function f of random variables
X and Y. An example of such an expectation is µ = E(Y) where we take f (x, y) = y. If we can
sample from the joint distribution of X and Y, pX,Y(x, y), the obvious Monte Carlo estimator of this
expectation is

µ̂ =
1
n

n

∑
i=1

f (xi, yi)

where (xi, yi) are samples from the joint distribution. Now let h(x) = E( f (X, Y) | X = x). An
alternate conditional estimator—the so-called Rao–Blackwellized estimator—of µ is

µ̂cond =
1
n

n

∑
i=1

h(xi)

where the xi are sampled from the distribution of X. This estimator is justified by the fact that,

E(h(X)) = E(E( f (X, Y) | X)) = E( f (X, Y)) = µ

For this to be effective we need to be able to efficiently compute (ideally, analytically) the conditional
expectation h(X). The original motivation for using this technique was to reduce the variance of
Monte Carlo estimators. This follows from noting that

var( f (X, Y)) = E(var( f (X, Y) | X)) + var(E( f (X, Y) | X))

= E(var( f (X, Y) | X)) + var(h(X)),

and since the first term on the right-hand side is non-negative, we have ( f (X, Y)) ⩾ (h(X)).

From this result it follows that, if the draws xi are independent samples, then

var(µ̂cond) < var(µ̂)

for all functions f (X, Y). In the applications we consider here, however, xi will be drawn using MCMC
and therefore draws will not be independent. In this case it is possible to construct models and
functions f (·) for which conditioning can increase the variance of the estimator (Geyer 1995).

The name ‘Rao–Blackwellization’ arose due to the similarity of the above argument to that used
in the proof of the Rao–Blackwell theorem (Blackwell 1947), which states that given an estimator µ̂
of a parameter µ, the conditional expectation of µ̂ given a sufficient statistic for µ is potentially more
efficient and certainly no less efficient than µ̂ as an estimator of µ. The Rao–Blackwellized estimators
presented above do not, however, make any use of sufficiency and do not have the same optimality
guarantees that the Rao–Blackwell theorem provides, making the name less than apt. Following Geyer
(1995), we prefer to think of the estimators presented above as simply being formed from averaging
conditional expectations.

6.2 Marginalisation in Stan

The motivation for marginalisation in Stan is to enable estimation of µ = E( f (X, Y)) without having
to sample from (X, Y) if either X or Y is discrete. Suppose that Y is discrete and X continuous. To
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compute a Monte Carlo estimate of E( f (X, Y)) using Stan we carry out four steps.

First, marginalise out Y from pX,Y(x, y) to give pX(x). (See Equation (2.4.1) in Section 4.1 for how
this is done in the Dawid–Skene model.) This marginal distribution, which only contains continuous
parameters, should then be implemented as a Stan model. Second, using Stan as usual, sample from
the distribution of the continuous parameters X to give Monte Carlo samples {xi}. Given only the
samples from the distribution of X, we can estimate E( f (X, Y)) using the Rao–Blackwellized estimator
described in the previous section. Doing so requires us to evaluate h(X) = E( f (X, Y) | X) for all
functions f (·) in which we may be interested; this is the third step of the process. Finally, as the fourth
step, we can evaluate h(x) for each of the Monte Carlo draws xi and estimate E( f (X, Y)) by

1
n

n

∑
i=1

h(xi).

Evaluating the conditional expectation

The third step outlined above may appear to require substantial mathematical manipulation. In
practice, however, we can use the discrete nature of the latent class to simplify the calculation.
Specifically, for any function f (x, y) we have

h(X) = E( f (X, Y) | X) = ∑
k

f (X, k)Pr(Y = k | X),

where we sum over the values in the latent discrete parameters. An essential part of this formula is the
probability of the discrete parameters conditional on the continuous parameters, Pr(Y = k | X). This
quantity can be derived easily through Bayes’ theorem or can be encoded as part of the marginalised
Stan model; see Section 5.2 or the next section for how this is done in the case of the Dawid–Skene
model.

In the Dawid–Skene model, and many other models with discrete variables, the discrete variables
only take values in a finite set. Some models however may have discrete parameters which take
countably infinite values, such as Poisson distributions. In this case, marginalisation is still possible but
will generally involve approximating infinite sums, both when marginalising out the discrete random
variables and calculating the expectations (as in the equation above), which may be computationally
expensive.

Furthermore, for the cases where f (x, y) is a function of only x or y, the general formula simplifies
further. Firstly, when f (x, y) = f (x) we have

h(X) = ∑
k

f (X)Pr(Y = k | X) = f (X)∑
k

Pr(Y = k | X) = f (X).

This means that we can estimate E( f (X)) with the standard, seemingly unconditional, estimator:

n

∑
i=1

f (xi).

Even after marginalisation, computing expectations of functions of the continuous parameters can be
performed as if no marginalisation had taken place.

Secondly, when f (x, y) = f (y) we have that

h(X) = ∑
k

f (k)Pr(Y = k | X).

An important special case of this result is when f (x, y) = 1(y = k), where 1 is the indicator
function. This is important because it allows us to recover the probability mass function of the discrete
random variable Y, since E( f (X, Y)) = E(1(Y = k)) = Pr(Y = k). In this case we have

h(X) = ∑
k

1(y = k)Pr(Y = k | X) = Pr(Y = k | X).

We therefore estimate Pr(Y = k) with:

1
n

n

∑
i=1

Pr(Y = k | X = xi).

Again, we stress that our ability to do these calculations relies upon being able to easily compute
Pr(Y = k | X = xi) for each of the Monte Carlo draws xi.
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Estimating the conditional probability of the true class

For the categorical rating problem (using the Dawid–Skene model), the discrete random variable of
interest for each item i is the true class of the item, zi. We use the technique from the previous section to
calculate the posterior probability of the true class, as described in Section 5.2. In this case, the discrete
variable is zi (taking on the role that Y played in the previous section), the continuous variables are
θ and π (which together take on the role that X played in the previous section), and all probability
calculations are always conditional on the data (the ratings, y).

6.3 Efficiency of marginalisation

It is not immediately obvious whether marginalisation is more or less efficient than techniques that
actually realise a value for the discrete random variable at each iteration, such as Gibbs sampling.
Marginalising can be viewed as a form of Rao–Blackwellization, a general MCMC technique designed
to reduce the variability of Monte Carlo estimators. This link strongly suggests that marginalisation
is more efficient than using discrete random variables. Unfortunately, limitations of the theory of
Rao–Blackwellization (see Section 6.1) and the difficulty of theoretically comparing different sampling
algorithms, such as Gibbs sampling and NUTS, means that it is unclear whether marginalisation will
always be computationally superior for a given problem.

However, in practice marginalisation does seem to improve convergence at least for non-conjugate
models. For example, Yackulic et al. (2020) show that for the Cormack–Jolly–Seber model marginal-
isation greatly speeds up inference in JAGS, BUGS and WinBUGS. They also demonstrate that the
marginalised model implemented in Stan is orders of magnitude more efficient than the marginalised
models in the other languages. These results show that marginalisation has the potential to speed up
classic algorithms and also allows the use of more efficient gradient-based algorithms, such as NUTS,
for problems involving discrete random variables.

A recent similar exploration of marginalisation for some simple mixture models and the Dawid–
Skene model, using JAGS and Stan, suggests that the software implementation has a greater impact
on efficiency than the choice of whether or not marginalisation is used (Zhang et al. 2022). In their
comparisons, Stan usually achieved the best performance (and note that Stan requires marginalisation
of discrete parameters).

For these reasons, we recommend that practitioners using models with discrete parameters
consider marginalisation if more efficiency is desired, and implement their models using Stan rather
than JAGS.

7 Example usage

To demonstrate rater we use two example datasets.

The first dataset is taken from the original paper introducing the Dawid–Skene model (Dawid
and Skene 1979). The data consist of ratings, on a 4-point scale, made by five anaesthetists of patients’
pre-operative health. The ratings were based on the anaesthetists assessments of a standard form
completed for all of the patients. There are 45 patients (items) and four anaesthetists (raters) in total.
The first anaesthetist assessed the forms a total of three times, spaced several weeks apart. The other
anaesthetists each assessed the forms once. As in the Dawid–Skene paper, we will not seek to model
the effect of time on the ratings of the first anaesthetist.

First we load the rater package:

library(rater)

#> * The rater package uses `Stan` to fit bayesian models.
#> * If you are working on a local, multicore CPU with excess RAM please call:
#> * options(mc.cores = parallel::detectCores())
#> * This will allow Stan to run inference on multiple cores in parallel.

This will display information about altering options used by Stan to make best use of computational
resources on your machine. We can then load and look at a snippet of the anaesthesia data, which is
included in the package.

data("anesthesia", package = "rater")
head(anesthesia)
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#> item rater rating
#> 1 1 1 1
#> 2 1 1 1
#> 3 1 1 1
#> 4 1 2 1
#> 5 1 3 1
#> 6 1 4 1

These data are arranged in ‘long’ format where each row corresponds to a single rating. The first
column gives the index of the item that was rated, the second the index of the rater that rated the item
and the third the actual rating that was given. This layout of the data supports raters rating the same
item multiple times, as happens in the dataset. It is also the most convenient from the perspective of
fitting models but may not always be the optimal way to store or represent categorical rating data; see
Section 7.6 for an example using the ‘grouped’ data format.

7.1 Fitting the model

We can fit the Dawid–Skene model using MCMC by running the command:

fit_1 <- rater(anesthesia, dawid_skene())

This command will print the running output from Stan, providing an indication of the progress of
the sampler (for brevity, we have not shown this output here). To fit the model via optimisation, we
set the method argument to "optim":

fit_2 <- rater(anesthesia, dawid_skene(), method = "optim")

The second argument of the rater() function specifies the model to use. We have implemented
this similarly to the family argument in glm(), which can be passed as either a function or as a
character string. The above examples pass the model as a function. We could have instead passed it as
a string, for example:

fit_2 <- rater(anesthesia, "dawid_skene", method = "optim")

Either version will fit the Dawid–Skene model using the default choice of prior. The benefit of
passing the model as a function is that it allows you to change the prior, see Section 7.5.

7.2 Inspecting the fitted model

rater includes several ways to inspect the output of fitted models. These are summarised in Table 4,
and we illustrate many of them here. Firstly, we can generate a text summary:

summary(fit_1)

#> Model:
#> Bayesian Dawid and Skene Model
#>
#> Prior parameters:
#>
#> alpha: default
#> beta: default
#>
#> Fitting method: MCMC
#>
#> pi/theta samples:
#> mean 5% 95% Rhat ess_bulk
#> pi[1] 0.37 0.27 0.48 1 9094.91
#> pi[2] 0.41 0.30 0.52 1 8050.47
#> pi[3] 0.14 0.07 0.23 1 6864.65
#> pi[4] 0.07 0.03 0.14 1 6665.16
#> theta[1, 1, 1] 0.86 0.79 0.93 1 7728.01
#> theta[1, 1, 2] 0.10 0.05 0.17 1 7857.38
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Table 4: Methods to inspect fitted models and what values they return.

Function MCMC mode Optimisation mode

summary() Basic information about the fitted model Basic information about the fitted model
point_estimate() Posterior means for π and θ, posterior modes for z Posterior modes for all quantities
posterior_interval() Credible intervals for π and θ N/A
posterior_samples() MCMC draws for π and θ N/A
mcmc_diagnostics() MCMC convergence diagnostics for π and θ N/A
class_probabilities() Posterior distribution for z Posterior distribution for z conditional on the posterior modes for π and θ

#> theta[1, 1, 3] 0.02 0.00 0.05 1 5619.81
#> theta[1, 1, 4] 0.02 0.00 0.05 1 6283.33
#> # ... with 76 more rows
#>
#> z:
#> MAP Pr(z = 1) Pr(z = 2) Pr(z = 3) Pr(z = 4)
#> z[1] 1 1.00 0.00 0.00 0.00
#> z[2] 3 0.00 0.00 0.98 0.02
#> z[3] 2 0.38 0.62 0.00 0.00
#> z[4] 2 0.01 0.99 0.00 0.00
#> z[5] 2 0.00 1.00 0.00 0.00
#> z[6] 2 0.00 1.00 0.00 0.00
#> z[7] 1 1.00 0.00 0.00 0.00
#> z[8] 3 0.00 0.00 1.00 0.00
#> # ... with 37 more items

This function will show information about which model has been fitted and the values of the
prior parameters that were used. The displayed text also contains information about the parameter
estimates and posterior distributions, and the convergence of the sampler.

We can extract point estimates for any of the parameters or the latent classes via the point_estimate()
function. For example, the following will return the latent class with the highest posterior probability
(i.e., the posterior modes) for each item:

point_estimate(fit_1, "z")

#> $z
#> 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
#> 1 3 2 2 2 2 1 3 2 2 4 2 1 2 1 1 1 1 2 2 2 2 2 2 1 1
#> 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
#> 2 1 1 1 1 3 1 2 2 3 2 2 3 1 1 1 2 1 2

The following will return the posterior means of the prevalence probabilities:

point_estimate(fit_1, "pi")

#> $pi
#> [1] 0.37432122 0.40674116 0.14406295 0.07487466

From the outputs above, we can see that the model has inferred that most patients have health
that should be classified as category 1 or 2 (roughly 40% each), and categories 3 and 4 being rarer
(about 14% and 7% respectively). Based on the point estimates, there are examples of patients from
each category in the dataset.

The function call point_estimate(fit1, "theta") will return posterior means for the parameters
in the error matrices (not shown here, for brevity). When used with optimisation fits, point_estimate()
will return posterior modes rather than posterior means for the parameters.

7.3 Inspecting posterior distributions

To represent uncertainty, we need to look beyond point estimates. The function posterior_interval()
will return credible intervals for the parameters. For example, 80% credible intervals for the elements
of the error matrices:
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head(posterior_interval(fit_1, 0.8, "theta"))

#> 10% 90%
#> theta[1, 1, 1] 0.805074415 0.91666962
#> theta[1, 1, 2] 0.055802572 0.15309851
#> theta[1, 1, 3] 0.001813371 0.03941595
#> theta[1, 1, 4] 0.001760845 0.03832660
#> theta[1, 2, 1] 0.026218408 0.10590753
#> theta[1, 2, 2] 0.791396057 0.90637035

The function posterior_samples() will return the actual MCMC draws. For example (here just
illustrating the draws of the π parameter):

head(posterior_samples(fit_1, "pi")$pi)

#>
#> iterations [,1] [,2] [,3] [,4]
#> [1,] 0.4830595 0.3579169 0.1254949 0.03352871
#> [2,] 0.2939839 0.3834238 0.2516929 0.07089945
#> [3,] 0.3636097 0.4148082 0.1309119 0.09067012
#> [4,] 0.3798456 0.3133947 0.2353036 0.07145615
#> [5,] 0.3639428 0.4291340 0.1760525 0.03087066
#> [6,] 0.3845465 0.3831443 0.1721656 0.06014354

Neither of the above will work for optimisation fits, which are limited to point estimates only. For
the latent classes, we can produce the probability distribution as follows:

head(class_probabilities(fit_1))

#>
#> [,1] [,2] [,3] [,4]
#> 1 9.999994e-01 1.340790e-07 2.916232e-08 4.521956e-07
#> 2 8.469190e-08 2.570243e-05 9.773942e-01 2.257999e-02
#> 3 3.823085e-01 6.171346e-01 1.075246e-04 4.493620e-04
#> 4 5.252130e-03 9.942742e-01 3.418545e-04 1.318565e-04
#> 5 2.473083e-07 9.999633e-01 3.338995e-05 3.062785e-06
#> 6 1.674456e-06 9.993819e-01 5.813534e-04 3.502596e-05

This works for both MCMC and optimisation fits. For the former, the output is the posterior
distribution on z, while for the latter it is the distribution conditional on the point estimates of the
parameters (π and θ).

7.4 Plots

It is often easier to interpret model outputs visually. Using rater, we can plot the parameter estimates
and distribution of latent classes.

The following command will visualise the posterior means of the error rate parameters, with the
output shown in Figure 2:

plot(fit_1, "raters")

We can see high values along the diagonals of these matrices, which indicates that each of the
5 anaesthetists is inferred as being fairly accurate at rating pre-operative health. Looking at the
non-diagonal entries, we can see that typically the most common errors are 1-point differences on the
rating scale.

The following command visualises the latent class probabilities, with the output shown in Figure
3:

plot(fit_1, "latent_class", item_index = c(2, 3, 12, 36, 38))
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Figure 2: Visual representation of the inferred parameters in the error matrices (θ) for the Dawid–Skene
model fitted via MCMC to the anaesthesia dataset. The values shown are posterior means, with each
cell shaded on a gradient from white (value close to 0) to dark blue (value close to 1).
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Figure 3: Visualisation of the inferred probability of each latent class, for a selected subset of items, for
the Dawid–Skene model fitted via MCMC to the anaesthesia dataset.
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Figure 4: Visual representation of the inferred parameters in the error matrices (θ) for the Dawid–Skene
model fitted via optimisation to the anaesthesia dataset. Compare with Figure 2, which used MCMC
instead of optimisation.

For the purpose of illustration, for this plot we have selected the 5 patients with the greatest
uncertainty in their pre-operative health (latent class). The other 40 patients all have almost no
posterior uncertainty for their pre-operative health. Thus, suppose we wished to use the model to
infer the pre-operative health by combining all of the anaesthetists’ ratings, we can do so confidently
for all but a handful of patients.

The same output for the models fitted via optimisation rather than MCMC (using fit_2 instead of
fit_1) are shown in Figure 4 and Figure 5. We can see that this estimation method leads to the same
broad conclusions, however the optimisation-based estimates have considerably less uncertainty: they
are typically closer to 0 or 1. This behaviour reflects the fact that optimisation-based inference will
usually not capture the full uncertainty and will lead to overconfident estimates. Thus, we recommend
using MCMC (which we have set as the default).

While it is typically of less interest, it is also possible to visualise the prevalence estimates, together
with credible intervals, using the following command (see output in Figure 6):

plot(fit_1, "prevalence")

7.5 Different models and priors

The second argument to the rater() function specifies what model to use, including details of the
prior if not using the default one. This gives a unified place to specify both the model and prior.

For example, this is how to set a different prior using the Dawid–Skene model:

diff_alpha_fit <- rater(anesthesia, dawid_skene(alpha = rep(10, 4)))

When specifying the β hyper-parameters for the Dawid–Skene model, the user can either specify a
single matrix or a 3-dimensional array. If only a matrix specified, it will be interpreted as the hyper-
parameter values for all raters. This is useful in the common situation where the overall quality of the
raters is known but there is no information on the quality of any specific rater. When a 3-dimensional
array is passed, it is taken to specify the hyper-parameters for each of the raters (i.e., a separate matrix
for each rater). This is useful when prior information about the quality of specific raters is available,
for example when some ‘raters’ are diagnostic tests with known performance characteristics.

This is how to use the class-conditional Dawid–Skene model (with default prior):

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 110

0

0.02

0

0

0

0

0.98

1

0

1

1

0

0

1

0

0

0

0

0

038

36

12

3

2

1 2 3 4
Latent Class

Ite
m

Figure 5: Visualisation of the inferred probability of each latent class, for a selected subset of items, for
the Dawid–Skene model fitted via optimisation to the anaesthesia dataset. Compare with Figure 3,
which used MCMC instead of optimisation.
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Figure 6: Visualisation of the inferred population prevalence parameters, with 90% credible intervals,
for the Dawid–Skene model fitted to the anaesthesia dataset.

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 111

0.87

0.05

0.07

0.1

0.04

0.85

0.07

0.1

0.04

0.05

0.78

0.1

0.04

0.05

0.07

0.7

0.84

0.09

0.1

0.12

0.05

0.73

0.1

0.12

0.05

0.09

0.7

0.12

0.05

0.09

0.1

0.65

0.76

0.14

0.12

0.12

0.08

0.59

0.12

0.12

0.08

0.14

0.63

0.12

0.08

0.14

0.12

0.65

0.87

0.11

0.13

0.12

0.04

0.66

0.13

0.12

0.04

0.11

0.62

0.12

0.04

0.11

0.13

0.63

0.88

0.1

0.17

0.12

0.04

0.71

0.17

0.12

0.04

0.1

0.49

0.12

0.04

0.1

0.17

0.63

4 5

1 2 3

1 2 3 4 1 2 3 4

1 2 3 4

4

3

2

1

4

3

2

1

Assigned label

Tr
ue

 la
be

l

Figure 7: Visual representation of the inferred parameters in the error matrices (θ) for the class-
conditional Dawid–Skene model fitted via MCMC to the anaesthesia dataset. Compare with Figure 2,
which used the standard Dawid–Skene model.

diff_model_fit <- rater(anesthesia, class_conditional_dawid_skene())

Compared with the Dawid–Skene model, the latter uses error matrices with the constraint that all
off-diagonal entries must be the same. We can visualise the θ parameter using the following command
(output in Figure 7) and see that all off-diagonal elements are indeed equal:

plot(diff_model_fit, "theta")

7.6 Using grouped data

The second example dataset is taken from Espeland and Handelman (1989). It consists of 3,689 binary
ratings, made by 5 dentists, of whether a given tooth was healthy or had caries/cavities. The ratings
were performed using X-ray only, which was thought to be more error-prone than visual/tactile
assessment of each tooth (see Handelman et al. (1986) for more information and a description of the
wider dataset from which these binary ratings were taken).

data("caries", package = "rater")
head(caries)

#> rater_1 rater_2 rater_3 rater_4 rater_5 n
#> 1 1 1 1 1 1 1880
#> 2 1 1 1 1 2 789
#> 3 1 1 1 2 1 43
#> 4 1 1 1 2 2 75
#> 5 1 1 2 1 1 23
#> 6 1 1 2 1 2 63

This is an example of ‘grouped’ data. Each row represents a particular ratings ‘pattern’, with the
final column being a tally that records how many instances of that pattern appear in the data. rater
accepts data in either ‘long’, ‘wide’ or ‘grouped’ format. The ‘long’ format is the default because it can
represent data with repeated ratings. When available the ‘grouped’ format can greatly speed up the
computation of certain models and is convenient for datasets that are already recorded in that format.
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Figure 8: Visual representation of the inferred parameters in the error matrices (θ) for the Dawid–Skene
model fitted via MCMC to the caries dataset.

The ‘wide’ format doesn’t provide any computational advantages but is a common format for data
without repeated ratings and so is provided for convenience.

Here’s how we fit the model to grouped data (note the data_format argument):

fit3 <- rater(caries, dawid_skene(), data_format = "grouped")

From there, we can inspect the model fit in the same way as before. For example (output shown in
Figure 8):

plot(fit3, "raters")

The first 4 dentists are highly accurate at diagnosing healthy teeth (rating = 1), but less so at
diagnosing caries (rating = 2). In contrast, the 5th dentist was much better at diagnosing caries than
healthy teeth.

7.7 Convergence diagnostics

A key part of applied Bayesian statistics is assessing whether the MCMC sampler has converged on
the posterior distribution. To summarise the convergence of a model fit using MCMC, rater provides
the mcmc_diagnostics() function.

head(mcmc_diagnostics(fit_1))

#> Rhat ess_bulk
#> pi[1] 0.9997012 9094.906
#> pi[2] 1.0009095 8050.465
#> pi[3] 1.0000406 6864.648
#> pi[4] 1.0021824 6665.159
#> theta[1, 1, 1] 1.0013982 7728.007
#> theta[1, 1, 2] 1.0011678 7857.378

This function calculates and displays the R̂ statistic (Rhat) and bulk effective sample size (ess_bulk)
for all of the π and θ parameters. Users can then check for the convergence of specific parameters
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Figure 9: A trace plot for the π1 parameter from the Dawid–Skene model fitted via MCMC to the
anaesthesia dataset.

by applying standard rules, such as considering that convergence has been reached for a specific
parameter if it’s R̂ < 1.01 (Vehtari et al. 2021).

Users wishing to calculate other metrics, or produce convergence visualisations such as trace plots,
can either extract the underlying Stan model from the rater fit using the get_stanmodel() function, or
convert the fit into a mcmc.list from the coda package using the as_mcmc.list() function. Functions
in the rstan and coda packages will then allow visualisation based assessment of convergence and the
calculation of other, more advanced, diagnostics.

For example, the following code uses rstan to draw the trace plot (shown in Figure 9) for one
of the parameters from the Dawid–Skene model fitted to the anaesthesia data. We can see that the
four chains show good mixing. The trace plots for the other parameters (not shown here) are similar,
indicating that the MCMC sampling procedure has converged.

stan_fit <- get_stanfit(fit_1)
rstan::traceplot(stan_fit, pars = "pi[1]")

7.8 Model assessment and comparison

Finally, rater provides facilities to assess and compare fitted models. First, it provides the posterior_predict()
function to simulate from the posterior predictive distributions of all the models implemented in rater.
The simulated data can then be used, for example, to perform posterior predictive checks. These
checks compare the data simulated from the fitted model to the observed data. A number of datasets
are simulated from the posterior predictive distribution and a summary statistic is calculated for
each dataset. The same summary statistic is calculated on the observed dataset and is compared to
the distribution of simulated statistics. A large discrepancy between the simulated statistics and the
observed statistic indicates possible model misspecification.

To illustrate this functionality, we consider assessing the fit of the Dawid–Skene model to the anaes-
thesia dataset. In this example, we simulate 1,000 datasets from the posterior predictive distribution,
and use the proportion of the ratings that are class 2 as a statistic to summarise each dataset.

class2prop <- function() {
simdata <- posterior_predict(fit_1, anesthesia[, 1:2])
sum(simdata$rating == 2) / nrow(simdata)

}
ppc_statistics <- replicate(1000, class2prop())
head(ppc_statistics)

#> [1] 0.5587302 0.4507937 0.4126984 0.4190476 0.4666667 0.2539683
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Figure 10: An example of a posterior predictive check for the Dawid–Skene model fitted via MCMC to
the anaesthesia dataset. Shown is a histogram of 1,000 simulated datasets from the posterior predictive
distribution, each summarised by the proportion of ratings that are class 2. The vertical black line
shows the proportion of ratings that are class 2 in the original dataset, for comparison against the
histogram.

We can then graphically compare the distribution of these statistics to the value of the same statistic
applied to the anaesthesia dataset. The following commands will create such a plot (shown in Figure
10):

ggplot(data.frame(prop_class_two = ppc_statistics), aes(prop_class_two)) +
geom_histogram(binwidth = 0.01, fill = "steelblue", colour = "black") +
geom_vline(xintercept = sum(anesthesia$rating == 2) / nrow(anesthesia),

colour = "black", linewidth = 2) +
theme_bw() +
coord_cartesian(xlim = c(0.1, 0.6)) +
labs(
x = "Proportion of class 2 ratings",
y = "Count"

)

The statistic calculated on the anaesthesia dataset lies towards the centre of the distribution of
statistics calculated from datasets drawn from the posterior predictive distribution. This is consistent
with the model fitting the data well. (This is an illustrative example only. A more comprehensive set
of such comparisons should be conducted before concluding that the model adequately describes the
data.)

Second, rater implements the functions loo() and waic() to provide model comparison metrics us-
ing the loo package. The function loo() calculates an approximation to leave-out-one cross-validation,
a measure of model performance using Pareto Smoothed Importance Sampling (Vehtari, Gelman, and
Gabry 2017). The function waic() calculates measures related to the Widely Applicable Information
Criterion (Watanabe 2013). Because rater fits models in a Bayesian framework, information criteria
such as the AIC and BIC are not implemented.

In the context of rater, model comparison is only possible between the different implemented
models, not between the same model with different parameter values or included covariates, as is
more commonly the case. For this reason, considerations of data size and what is known about the
characteristics of the raters should also be taken into account when making such choices, in addition
to the output of loo() and waic().
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To briefly illustrate some of this functionality, we compare the standard Dawid–Skene model to
the class-conditional one.

loo(fit_1)

#>
#> Computed from 4000 by 45 log-likelihood matrix
#>
#> Estimate SE
#> elpd_loo -233.7 16.9
#> p_loo 19.8 2.6
#> looic 467.5 33.9
#> ------
#> Monte Carlo SE of elpd_loo is 0.1.
#>
#> Pareto k diagnostic values:
#> Count Pct. Min. n_eff
#> (-Inf, 0.5] (good) 43 95.6% 734
#> (0.5, 0.7] (ok) 2 4.4% 497
#> (0.7, 1] (bad) 0 0.0% <NA>
#> (1, Inf) (very bad) 0 0.0% <NA>
#>
#> All Pareto k estimates are ok (k < 0.7).
#> See help('pareto-k-diagnostic') for details.

loo(diff_model_fit)

#>
#> Computed from 4000 by 45 log-likelihood matrix
#>
#> Estimate SE
#> elpd_loo -245.7 18.1
#> p_loo 10.3 1.2
#> looic 491.3 36.2
#> ------
#> Monte Carlo SE of elpd_loo is 0.1.
#>
#> All Pareto k estimates are good (k < 0.5).
#> See help('pareto-k-diagnostic') for details.

loo_compare(loo(fit_1), loo(diff_model_fit))

#> elpd_diff se_diff
#> model1 0.0 0.0
#> model2 -11.9 3.2

From these results, we see that both models fit the data well, with the class-conditional model
being slightly preferred.

8 Summary and discussion

Rating procedures, in which items are sorted into categories, are subject to both classification error
and uncertainty when the categories themselves are defined subjectively. Data that results from these
types of tasks require a proper statistical treatment if: (1) the population frequencies of the categories
are to be estimated with low bias, (2) items are to be assigned to these categories reliably, and (3) the
agreement of raters is to be assessed. To date there have been few options for practitioners seeking
software that implements the required range of statistical models. The R package described in this
paper, rater, provides the ability to fit Bayesian versions of a variety of statistical models to categorical
rating data, with a range of tools to extract and visualise parameter estimates.

The statistical models that we have presented are based on the Dawid–Skene model and recent
modifications of it including extensions, such as the hierarchical Dawid–Skene model where the rater-
specific parameters are assumed to be drawn from a population distribution, and simplifications that,
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for example, assume exchangeable raters with identical performance characteristics (homogeneous
Dawid–Skene), or homogeneity criteria where classification probabilities are identical regardless of
the true, underlying category of an item (class-conditional Dawid–Skene).

We provided: (1) an explanation of the type of data formats that categorical ratings are recorded
in, (2) a description of the construction and implementation of the package, (3) a comparison of our
package to other existing packages for fitting latent class models in R, (4) an introduction to the user
interface, and (5) worked examples of real-world data analysis using rater.

We devoted an entire section to motivating, deriving and explaining the use of a marginalised
version of the joint posterior probability distribution to remove dependence on the unknown value of
the true, underlying rating category of an item. This is necessary because the No-U-Turn Sampler, the
main MCMC algorithm used in Stan, relies on computing derivatives with respect to all parameters
that must, therefore, be continuously-valued. The technique involves the use of conditional expectation
and is a special case of a more general technique of conditioning or ‘Rao–Blackwellization’, the process
of transforming an estimator using the Rao–Blackwell theorem to improve its efficiency.

Our package was developed with the classification of medical images in mind, where there may
be a large number of images but typically only a small number of possible categories and a limited
number of expert raters. The techniques proposed based on extensions of the Dawid–Skene model
readily extend to scenarios where the datasets are much larger, or where the raters behave erratically
(cannot be relied on to rate correctly more frequently than they rate incorrectly) or are antagonistic
(deliberately attempt to allocate items to a category not favoured by the majority of raters).

One possible extension of the Dawid–Skene model is to add item- and rater-specific covariates.
These covariates would encode the difficulty of items and the expertise (or lack thereof) of the
raters. This extension is particularly attractive as it would partially alleviate the strong assumption of
independence conditional on the latent class, replacing it with the weaker assumption of independence
conditional on the latent class and the covariates. Unfortunately, these types of models would contain
many more parameters than the original Dawid–Skene model making them difficult to fit, especially
when used with relatively small datasets common in the context of rating data in medical research.
Therefore, future methodological research is needed before these models can be included in the rater
package. Latent class models with covariates can be fitted, although only in a frequentist framework,
using the R package poLCA.

9 Computational details

The results in this paper were obtained using R 4.2.2 (R Core Team 2021) and the following packages:
coda 0.19.4 (Plummer et al. 2006), ggplot2 3.4.3 (Wickham 2016), knitr 1.45 (Xie 2014, 2015, 2023), loo
2.6.0 (Vehtari et al. 2023), rater 1.3.1 (Pullin and Vukcevic 2023), rjtools 1.0.12 (O’Hara-Wild et al. 2023),
rmarkdown 1.0.12 (Xie, Allaire, and Grolemund 2018; Xie, Dervieux, and Riederer 2020; Allaire et al.
2023), rstan 2.26.23 (Stan Development Team 2023). R itself and all packages used are available from
the Comprehensive R Archive Network (CRAN).
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GREENeR: An R Package to Estimate and
Visualize Nutrients Pressures on Surface
Waters
by Angel Udías, Bruna Grizzetti, Olga Vigiak, Alberto Aloe, Cesar Alfaro, and Javier Gomez

Abstract Nutrient pollution affects fresh and coastal waters around the globe. Planning mitigating
actions requires tools to assess fluxes of nutrient emissions to waters and expected restoration impacts.
Conceptual river basin models take advantage of data on nutrient emissions and concentrations
at monitoring stations, providing a physical interpretation of monitored conditions, and enabling
scenario analysis. The GREENeR package streamlines water quality model in a region of interest,
considering nutrient pathways and the hydrological structure of the river network. The package
merges data sources, analyzes local conditions, calibrate the model, and assesses yearly nutrient levels
along the river network, determining contributions of load in freshwaters from diffuse and point
sources. The package is enriched with functions to perform thorough parameter sensitivity analysis
and for mapping nutrient sources and fluxes. The functionalities of the package are demonstrated
using datasets from the Vistula river basin.

1 Introduction

Nitrogen and phosphorus are key nutrients that heavily impact aquatic ecosystems. Detecting primary
sources of nutrient pollution and their downstream spread, alongside assessing achievable reductions
through restoration policies, are crucial for effective natural resource management. They aid in
identifying priority intervention areas and planning actions to restore the ecological balance of
receiving waters.

Modelling tools can be useful to assess the impacts of future scenarios, policy measures, and
climate changes at the regional and continental scale (Arheimer, Dahné, and Donnelly 2012; Bartosova
et al. 2019; Beusen et al. 2022; Bouraoui et al. 2014; Ludwig et al. 2010; Seitzinger et al. 2005), and to
check the coherence of different policy targets, for instance between water and agricultural policies.
The assessment of policy scenarios requires a flexible and spatially detailed analysis to account for
climatic, hydrological, and socio-economic gradients (Bruna Grizzetti et al. 2021).

Several types of models can be applied to predict the transport of nutrients in river basins Fu et al.
(2019). Among them, statistical or conceptual models have the advantage of being readily applied in
large watersheds. These model rely on calibration of few parameters for establishing links between
emissions at sources and fate in the stream network. They take full advantage of nutrient emissions
and concentrations data at monitoring stations, which are now accessible with increasing spatial and
temporal resolution.

A classic example of river basin conceptual model is SPARROW (Smith, Schwarz, and Alexander
1997; Schwarz et al. 2006), which is widely applied in the U.S. to assess water quality over large
regions. SPARROW has inspired the Geospatial Regression Equation for European Nutrient (GREEN)
losses model (B. Grizzetti et al. 2005; Bruna Grizzetti, Bouraoui, and Aloe 2012; Bruna Grizzetti et
al. 2021) which is adapted to European conditions. GREEN has been used for assessing the nutrient
loads to the European seas (Bruna Grizzetti, Bouraoui, and Aloe 2012; Bruna Grizzetti et al. 2021),
nitrogen retention in European freshwaters (Bruna Grizzetti, Bouraoui, and Aloe 2012; La Notte et
al. 2017), and for policy scenario analysis (La Notte et al. 2017; Bouraoui et al. 2014; Leip et al. 2015;
Malagó et al. 2019; Bruna Grizzetti et al. 2021). Despite their usefulness, this type of river basin models
are seldom compiled as dedicated R packages, for example SPARROW has some scripts available to
process information for and analysis of models results in the R environment.

The GREEN model application comprises several key steps, including data extraction and orga-
nization, data harmonization and integration, examination and validation of input data sets, model
calibration and parameter selection, model run, and result visualization. All of these features are now
integrated into an R package (GREENeR) that comprises functions to streamline the process, evaluate
and visualize all the steps, thus strengthening the robustness of model application.

1.1 About water surface nutrients estimation with GREEN

GREEN (B. Grizzetti et al. 2005; Bruna Grizzetti, Bouraoui, and Aloe 2012; B. Grizzetti, Bouraoui, and
De Marsily 2008; Bruna Grizzetti et al. 2021) is a conceptual model to assess total nitrogen TN and
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total phosphorous TP from a region of interest (usually a river basin), accounting for both diffuse and
point sources. The package allows the analysis of different scenarios of nutrient input in the region of
interest, where “scenario” indicates a combination of annual time-series of inputs, such as nitrogen or
phosphorus and the topological structure of the region. The model comprises several nutrient sources
and pathways:

1. agricultural diffuse sources include nutrients from mineral fertilisers and manure application,
nitrogen crop and soil fixation. These sources undergo retention in the land phase (basin
retention that account for e.g. crop uptake and volatilization losses) before reaching the stream;

2. other diffuse emissions, such as from scattered dwellings (i.e., isolated houses and small ag-
glomerations that are not connected to sewerage systems), and atmospheric nitrogen deposition
(for nitrogen module) or background losses (for phosphorus module), are also reduced, e.g. due
to soil processes, before reaching the stream network;

3. point sources consist of urban and industrial wastewater discharges that are discharged into
surface waters directly.

Once in the river network, all nutrient loads are reduced by in-stream retention in rivers and lakes.

Basin retention of agriculture sources is a decay function proportional to the inverse of the total
annual precipitation in the catchment. Conversely, river retention is a decay function proportional to
the river length, considered as a proxy for water residence time. Finally, lake retention is simulated as
a function of the lakes residence time and average depth.

The basin is divided into spatial subunits (called catchments), with a given area, a river reach, an
inlet node, and an outlet node. The catchments are topologically connected from the headwaters to
the outlet in a cascading sequence. The sequence of nutrient load accumulation through the stream
network is defined by Shreve’s order (Shreve 1966). Nutrient input from the different sources, basin
and river retention are simulated in each catchment and routed through the river network. For each
catchment i in the basin, the GREEN nutrient load Li is estimated by the general equation:

Li,y = (1 − Lreti) · (DSAi,y · (1 − Breti,y) + DSBi,y + PSi,y + Ui,y) · (1 − Rreti) (1)

where Li,y is the nutrient load at the catchment outlet-node (ton/yr) in y year; and the other variables
represent different sources and sinks of nutrients.

Sources of nutrients are:

• DSAi,y. Annual nutrient diffuse sources on agricultural land in the catchment (ton/yr): mineral
and manure fertilization, atmospheric nitrogen deposition, plant and soil fixation for TN;
mineral and manure fertilization, and background losses for TP.

• DSBi,y. Annual nutrient diffuse sources in the catchment related with scatter dwellings and at-
mospheric nitrogen deposition on non-agricultural land for TN (DSBi,y = 0.38 · FFi,y · AtmNi,y +
sdcoe f f · SdNi,y, where FFi,y is the fraction of non-agricultural land cover in the catchment, and
AtmNi,y is the annual atmospheric nitrogen deposition on the catchment (ton/yr)); nutrient
diffuse sources in the catchment related with scatter dwellings and background losses on
non-agricultural areas for TP (DSBi,y = sdcoe f f · SdPi,y).

• PSi,y. Nutrient point sources in the catchment (ton/yr).

• Ui,y. Nutrient load from upstream catchments (ton/yr).

Sinks of nutrients are:

• Lreti denotes the lake retention (fraction) of the i catchment. Lret is currently defined according
to Kronvang et al. (2004), but limited to a 10% maximum reduction:

Lret = max
(

0.1, 1 − 1
1 + (dre f /z) · RT

)
(2)

where z represents the average lake depth (m); RT is the hydraulic residence time (yr); and dre f
denotes a nutrient-related coefficient (dre f = 7.3 for TN and dre f = 26 for TP).

• Breti,y is the fraction of basin retention of the i catchment in y year:

Breti,y = 1 − exp(−alphaP · NrmInvRaini,y) (3)

where NrmInvRaini,y is the inverse of annual precipitation (mm) of the i catchment in y year, normal-
ized by its maximum (Frank and Todeschini 1994). To keep basin retention coefficients comparable
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across regions, the minimum precipitation minPrec is set to 50 mm/y, and thus NrmInvRaini,y is
defined as

NrmInvRaini,y =
1/ max(50, precipitationi,y)

(1/minPrec)

• Rreti is the fraction of river retention of the i catchment:

Rreti = 1 − exp(−alphaL · NrmLengthKmi) (4)

where NrmLengthKmi is the length (km) of the catchment reach, normalized by the maximum in the
dataset:

NrmLengthKmi =
catchment length i reach, in km

max(Reach length in the region, in km)

Since the maximum reach length depends on the region and its subdivision of network reaches, the
calibrated coefficient alphaL cannot be compared across regions that adopt different discretization.
Note that basin retention varies from year to year according to annual precipitation, whereas the
fraction of river and lake retention for a given catchment is constant in time.

Equation (1) is applied sequentially from the most upstream nodes to the basin outlet. The model
parameters are:

1. the basin retention coefficient (alphaP), which together with annual precipitation regulates
nutrient retention of diffuse agricultural sources (Equation (3));

2. the river retention coefficient (alphaL: Equation (4)), which regulates the river retention per river
km.

3. the fraction of domestic diffuse sources that reaches the stream network (sdcoe f f ).

2 About the GREENeR package

2.1 Package organization

This work presents a new efficient and enhanced implementation of the model GREEN developed as
an R package named GREENeR. GREENeR is developed in the R statistical software and provides
tools and methods for applying GREEN to an area of interest and assessing annual time series of
nutrient loads in a river network and at the basin outlet, plus contributions of nutrient sources to these
loads. Some of the key features of the package comprise: a) functions for the creation of scenarios
from data sources; b) computational efficiency; c) parallel-capable ; d) an extended suite of fine tuning
options to control model calibration; e) built-in parameter sensitivity analysis; and f) functions to
perform customised post-process analyses.

The functions of GREENeR package are arranged in three groups: i) functions to perform graphical
summaries of model inputs; ii) functions to perform model parameters calibration and sensitivity
analysis; iii) functions to compute, analyze and visualize through graphs and maps the model outputs,
i.e. total loads and contributions by source. The package supports parallel processing, which helps
reduce the computational load in handling large basins.

The time-series can represent either historic (current or past) conditions that can be associated
to observations for model calibration, or hypothetical conditions foreseen under theoretical changes
(e.g. to forecast results of nutrient management plans, or under climatic change).

A scenario contains:

1. The geospatial geometry of the catchments of the region, which currently is defined according
to the Catchment Characterisation and Modelling Database for European Rivers v2 (CCM2) (De
Jager and Vogt 2007).

2. The annual time series (1990-2018) of nutrient inputs per catchment.

3. Additional catchment information (annual precipitation, annual forest fraction, lake retention,
reach length).

4. Observed total load (TN or TP) from monitoring stations.

Two historical scenarios, one for TN and one for TP, of the Lay basin (France) are provided with
the GREENeR package. The Lay basin has an area of 1971 km2, and is divided into 189 CCM2
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catchments. The mean catchment area is 10.4 km2. Nutrient observations comprised 22 TN entries
from six monitoring stations and 58 TP data entries from eight monitoring stations (data from WISE
Waterbase (EEA 2021)).

Further, in this article we present examples drawn for the TN historic scenario of the transboundary
Vistula (Wisla) river basin, one of the largest river basins of Europe. The Vistula scenario comprises
15465 CCM2 catchments that compose the 193.894 km2 river basin, TN inputs for 1990-2018, as well
as 1364 observed TN loads from 412 monitoring stations. The TN input dataset is part of the larger
dataset created to assess nutrient concentration in the European freshwaters (Vigiak et al. 2023).

2.2 Key functions in the GREENeR package

A brief overview of the package and its main functions is given in Figure 1.

Figure 1: Schematic diagram of the procedure of GREENeR, including functions, data inputs and
outputs, to estimate the nutrient loads. The green boxes represent data objects and the blue boxes
represent the functions.

The key functions included in the package are:

• read_geometry(): imports the geospatial vector format (shapefile or ESRI shapefile) with the
spatial information of the catchments in R.

• read_NSdata(): imports the annual time series of nutrient inputs per catchment and type of
nutrient source (manure, mineral fertilization, point sources, scatter dwellings), plus the forest
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fraction, and the observed annual nutrient loads from monitoring station data. The original
data are stored in several comma-separated tables (CSV files).

• input_maps(): creates a map showing the mean nutrient load input by source.

• input_plot(): creates either a grouped barplot representing the average input load by source
for the whole basin, or three density plots showing the distribution of nutrient sources.

• input_Tserie(): creates a time series plot showing basin inputs by source.

• shreve(): returns the Shreve order of the catchments, a useful indicator of stream size, discharge,
and drainage area (Strahler 1957) calculated based on the sum of the orders of up of upstream
tributaries (Shreve 1966). Commercial GIS software usually provides a Shreve calculation
function, but in other software, it is harder to find. In GREEN, the Shreve’s order defines the
cascade of upstream-downstream catchments.

• calib_green(): conducts sensitivity analysis of model calibration utilizing a Latin Hypercube
Sampling (LHS) scheme (Manache and Melching 2004) for three model parameters. It evaluates
model performance by calculating several “goodness-of-fit” (GoF) metrics (Refsgaard and
Henriksen 2004) against available observations during the specified simulation period (years).

• select_params(): extracts the best parameter set according to a selected GoF metric from the
object generated by the calibration function, calib_green().

• calib_boxplot(): creates a figure of boxplots that show the relationships between the best
parameter sets determined by the specific GoF metric in each boxplot title, and six other
commonly used hydrological metrics (Althoff and Rodrigues 2021; Mauricio Zambrano-Bigiarini
2014). In the lower panel, the figure also highlights the distribution of model parameters; the
value of the best parameter set is marked as a red dot in each boxplot.

• region_nut_balance(): runs the GREEN model with the selected parameter set, and returns the
mean annual mass balance of nutrient fluxes for the whole simulation period of the region. The
results of this function can be visualized using a Sankey diagram via the N4_sankey() function.

• green(): runs the GREEN model with the selected parameter set and returns nutrient load time
series for the simulation period. It generates less information than the green_shares() function,
but its execution is faster, so it is used as a function for calibration iterations and is embedded in
the calib_green() function.

• green_shares(): runs the GREEN model with the selected parameter set and returns time series
of nutrient loads and the contributions of each nutrient source in the simulation period. The
results of the model can be examined by nutrient_tserie() and nutrient_maps() functions.

• scatter_plot(): generates dot plots correlating parameters realizations in the calibration data
with GoF metric, visualizing the impact of each parameter on model outcomes. The plot vary
based on selected GoF metric from green_calib() function.

• simobs_annual_plot(): generates scatter plots comparing model load predictions (PredictLoad)
with observations (ObsLoad) for each year of the stimulation period.

2.3 Input data requirements

GREENeR requires information on the nutrient inputs, the topology, and the geospatial geometry
of the region of interest. The spatio-temporal input data must include all nutrient source fields, and
differs in the two nutrient scenarios (TN or TP). In the case of TN (e.g. Figure 2), fields are (Equation
(5) in Appendix 1):

• Atmospheric: Annual amount of atmospheric nitrogen deposition (ton/yr).

• Mineral: Annual amount of nitrogen from mineral fertilisers (ton/yr).

• Manure: Annual amount of nitrogen in manure fertilisers (ton/yr).

• Fix: Annual amount of nitrogen fixation by leguminous crops and fodder (ton/yr).

• Soil: Annual amount of nitrogen fixation in soils (ton/yr).

• Sc.Dwellings: Nitrogen input from scattered dwellings (ton/yr).

• PointS: Nitrogen input from point sources (ton/yr).
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Figure 2: Maps showing the mean annual TN inputs in the Vistula river basin in 1990-2018. The figure
was generated with GREENeR input_maps() function. TOT.Diff = sum of diffuse inputs.

In the case of TP, fields are (Equation (6) in Appendix 1):

• Background: annual amount of phosphorus from background losses (ton/yr).

• Mineral: annual amount of phosphorus from mineral fertilisers (ton/yr).

• Manure: annual amount of phosphorus in manure fertilisers (ton/yr).

• Sc.Dwellings: phosphorus input from scattered dwellings (ton/yr).

• PointS: phosphorus input from point sources (ton/yr).

European datasets for 1990-2018 generated to assess historic and current nutrient fluxes (Vigiak et al.
2023) are available upon request. The model and the package are compatible with an external dataset
and can be customized with local information as long as the data structure is respected.

In both nutrient cases, GREENeR needs additional annual catchment information:

• ForestFraction: annual fraction (0-1) of non-agricultural land cover area in the catchment (FF in
Equations (5) and (6), in the Appendix 1).

• Rain: annual precipitation (mm, Equation (3)).

• LakeFrRet: lake retention fraction (0-1) (Lret in Equation (1), in the Appendix 1). Note, this dif-
fers for TN or TP scenarios (Equation (2)). At European scale, average lake depth and hydraulic
residence time can be obtained from HydroLAKES database (https://www.hydrosheds.org/
pages/hydrolakes, Messager et al. (2016)).

• Length: is the length (km) of the catchment reach (Equation (4)).

The catchment topology outlines the hydrological network configuration within the region. Each
catchment must have a unique numerical identifier (HydroID)), to establish the network structure via
a source HydroID and destination HydroID table. It is important to note that any outlet of the basin
will be given as destination HydroID identifier “-1”. Complementing the topology of the hydrologic
network, the length of catchment reach should also be included (Equation (4)).

Finally, in order to calibrate the model, it is necessary to have some observed nutrient loads from
monitoring stations associated to any catchment of the region. Ultimately, the quality, size, and spatial
distribution of observed loads determine the robustness of the calibration process. In Europe, a large
dataset of annual concentrations is publicly available (WISE Waterbase, EEA 2021), but annual flow
must be derived from other sources (Bruna Grizzetti et al. 2021; Vigiak et al. 2023).

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859

https://www.hydrosheds.org/pages/hydrolakes
https://www.hydrosheds.org/pages/hydrolakes


CONTRIBUTED RESEARCH ARTICLE 125

2.4 Performance and memory use

The GREENeR package performance and memory usage depends on the size of the region (number
of catchments) and the number of years of the simulation. As a reference, the Danube basin (i.e. the
largest European basin, with 138013 catchments) TN dataset for 1990-2018 requires approximately 389
Mb of memory to store the annual data. Table 1 shows the memory occupied by the scenarios for 6
European basins. In addition, it shows the computation times required in the execution of some key
functions of the package. All executions were conducted on two computer configurations:

• CPU1: Desktop running window 10 with one Intel(R) Core i5-8259U CPU (4 cores, two threads
per core) CPU at 2.30 GHz and 16 GB of RAM memory

• CPU2: Workstation running Linux with one AMD EPYC 7352 (24 cores, two threads per core)
CPU at 2.3 GHz and 128 GB of RAM memory

The time required for the execution of the different functions increases linearly with the number
of catchments (or Shreve order) of the region (Table 1). The calib_green() function is the most
computationally demanding. However, the parallel implementation of this function drastically
reduces the time required for this process. Calibration can be carried out in about 6 hours for practical
implementation in large basins.

Table 1: Computational requirements to run some GREENeR functions in six European basins
scenarios of 29 years. The columns Shreve order, Area and Number of catchments characterize
the size of each basin. Mem is the amount of memory occupied by the GREEN model scenario
generated by GREENeR package. The green(), green_shares() and calib_green() columns show
the computation time required to execute the corresponding GREENeR functions for each scenarios
under CPU1 and CPU2 computer configurations. All runs of calib_green() have been performed
with 200 iterations. The reported times are the average of 5 runs of each process.

Basin
name

Shreve
order

Area
(Km2)

Number of
catchments

Mem
(MB)

green()
(sec)

green_shares()
(sec)

calib_green()
(sec)

CPU1 CPU2 CPU1 CPU2 CPU1 CPU2

Lay 95 1971 189 0.5 6 4 15 12 316 31
Miño 2803 16985 5572 15.7 57 45 147 90 4110 394
Seine 2902 75989 5793 16.3 77 55 177 106 6320 452
Ebro 9351 85611 18568 52.3 160 123 425 224 10876 995
Vistula 7757 193894 15465 43.6 132 100 314 187 9004 814
Danube 69505 802032 138013 388.6 1120 766 2855 1108 94682 5638

3 Estimating nutrient loads using the GREENeR package

The entire procedure is summarized on Figure 1. Once the input data have been uploaded, the
region scenario (Nutrient data and Catch data) is generated. The calib_green() function explores the
parameter set ranges with LHC scheme, calculating GoF of parameter sets. Sensitivity analysis of its
results is conducted to determine the best parameter set. Finally, the green_shares() function is used
to estimate the nutrient loads and source apportionment (i.e. contribution to loads by source), per year
and per catchment.

3.1 Scenario preparation

Assembling input data for running the GREEN model is time consuming. To facilitate the process, the
read_NSdata() function assembles and organises annual information to generate a list of two objects:
Nutrient Time Series Data Object and Catch Data Object of GREEN scenario. It needs four CSV
files with specific data, namely:

• Time-series of annual nutrient inputs per catchment.

• Time-series of annual observed loads at monitoring stations.

• Basin topology and lake properties.

• Other: precipitation, forest fraction, reach length.

The spatial identifiers (HydroID) and temporal (year) units must be coherent in all the files. Besides or-
ganizing the input data, the read_NSdata() function also calculates the Shreve order of each catchment,
normalises the precipitation (calculating NrmInvRaini,y) and the reach length (NrmLengthKmi).
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csv_path <- "data/csv/"
scen <- read_NSdata(csv_path,"nutrients.csv","monitoring.csv", "forestFr.csv",

"precipitation.csv","topology.csv", "lakeProperties.csv",
"length.csv")

nutrient <- scen[[1]]
catch <- scen[[2]]

The shreve() function can calculate the Shreve order independently based on the topology of the
basin:

shreve_order <- shreve(catch)

Finally, the geospatial geometry of the catchments should be uploaded to enable the visualisation
functionalities in map form. The read_geometry() function loads the geometry information file, i.e. a
geospatial vector with the geometry of the catchment region:

geometry <- read_geometry(file = "data/shapes/Wisla.shp")

The geo-reference information, geometry and attributes of the spatial entities must be in a shapefile
format (.shp), editable with ArcGIS or similar software. The identifiers of each catchment (HydroID)
must be consistent with those in the CSV files of the scenario dataset.

Once the scenario has been generated, the library includes functions to examine the nutrient
sources in a basin, and explore their distribution over time or in space. The input_plot() function
provides annual average nutrient loads for the whole period and density plots of nutrient loads.
The input_Tserie() function allows to examine the temporal evolution of the inputs, whereas the
input_maps() function generates maps of nutrient inputs distribution in the basin (Figure 2).

input_maps(nutient, catch, geometry, "Wisla", "gr1")

3.2 Calibration procedure and sensitivity analysis

The calibration process is essential to find a suitable set of parameters for the model. In GREENeR
package, the core function calib_green() enables to run a parameter sensitivity analysis and concur-
rently assessing the model performance according to several GoF metrics.

Sensitivity Analysis (SA) investigates how the variation in the output of a numerical model can
be attributed to variations of its input factors. SA aims at identifying the most influential inputs or
parameters, and quantifying how much they contribute to the variability/uncertainty of the model
outputs. SA provides information on how much of the output variance is controlled by each parameter,
or combination of parameters. SA is increasingly being used in environmental modelling for a variety
of purposes, including uncertainty assessment, model calibration and diagnostic evaluation, dominant
control analysis, and robust decision-making (Pianosi et al. 2016; Saltelli, Annoni, et al. 2011; Butler et
al. 2014; Norton 2015; Mannina et al. 2018). This is achieved by running the model for many samples
of the parameter space to determine their impact on the model outputs. SA allows identification of the
parameters and input variables that strongly influence the model response (model output). Conversely,
it may be of interest to the modeller to verify that although some model parameters may not be very
well established they do not significantly contribute to output uncertainty. Saltelli, Tarantola, and
Campolongo (2000) single out three main classes of SA methods: screening, local, and global methods.
Local sensitivity analysis methods focus on assessing the impact of small variations in the input values
of a model on the output results. Global sensitivity methods seek to understand how variations in the
full range of input values affect the results. Puy et al. (2022) provide a comprehensive overview of
several R packages for performing global sensitivity analysis.

Screening methods are economical and qualitative methods. Only screening methods are included
in this implementation of the library as they provide a quick assessment of the relative importance
of variables. This is particularly useful in exploratory studies and in cases where an initial subset of
relevant variables needs to be identified.

Adequate sampling of parameter space is very important in model calibration. Several studies of
uncertainty analysis in water resources problems (Melching and Bauwens 2001) concluded that Monte
Carlo simulation and Latin Hypercube Sampling (LHS) (McKay, Beckman, and Conover 1979; Carnell
2012) methods are very powerful, robust, and flexible. Other approaches are possible (Mauricio
Zambrano-Bigiarini 2014), but the LHS has the advantage that it is easily parallelisable, it explores the
full range of parameter sets, it does not direct the search depending on the values of previous iterations
like other optimisation methods (gradients, genetic algorithms, etc.), and is therefore independent of
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the GoF metric. This allows performing a posteriori sensitivity analysis for several metrics without
having to repeat the process.

The calib_green() function computes 15 GoF metrics (Althoff and Rodrigues 2021; Mauricio
Zambrano-Bigiarini 2014) (listed in Appendix 2), and returns an object with all parameter sets gener-
ated by the LHS and the corresponding GoF scores. Running calib_green() requires the following
settings:

1. The expected ranges for each parameter. The ranges are defined by two vectors of three values,
one for the lower limits and one for the upper limits of the three parameters. The values
correspond to each model parameter in sequence: alphaP (Equation (3)), alphaL (Equation (4)),
and sdcoe f f (Equations (5) and (6)).

2. The number of iterations to be performed during the calibration process. The higher the number
of iterations, the more likely it is to achieve good results, but the longer the computation time.
Depending on the basin and parameter range width, it is recommended to run at least 200
iterations to have enough information to continue the calibration process.

3. The years to be included in the calibration process.

n_iter <- 2000
low <- c(10, 0.000, 0.1)
upp <- c(50, 0.1, 0.9)
years <- c(1990:2018)

calibration <- calib_green(nutrient, catch, n_iter, low, upp, years)

The calibration process is automatically parallelised by the package and uses all computer cores except
one. The computation time depends on the computer, the number of catchments in the basin, and the
number of iterations (Table 1). The calib_green() function returns a data frame with a row for each
iteration with parameter values and the resulting 15 GoF metric scores. An example of four parameter
sets is shown below (cut to the first five GoF metrics).

#> alpha_P alpha_L sd_coeff NSE mNSE rNSE KGE PBIAS %
#> s1 39.31203 0.07628558 0.6325056 0.5623 0.6452 0.9595 0.2512 -44.1
#> s2 35.06049 0.05510985 0.1577470 0.6733 0.6948 0.9563 0.3763 -36.3
#> s3 28.34947 0.04418381 0.7209566 0.8690 0.7737 0.8998 0.7926 -1.7
#> s4 40.73533 0.01351723 0.6195734 0.8370 0.7734 0.9607 0.6292 -22.6

The selection of the appropriate GoF metric(s) for calibration and evaluation of hydrological models
can be challenging even for very experienced hydrologists. Choosing the right GoF metric for model
calibration largely depends on the overall study scope, which defines the main interest (e.g. high or
low load, upper or lower catchment area), and on the available observation dataset (size and quality)
(Kumarasamy and Belmont 2018). Automated calibration typically relies, often exclusively, on a
single GoF metric, with the Nash-Suttclife efficiency (NSE) been the most frequently used metric in
hydrological models (Hoshin V. Gupta et al. 2009; Westerberg et al. 2011; Wöhling, Samaniego, and
Kumar 2013). As described in Singh and Frevert (2002), a single criterion is inherently predisposed to
bias towards certain components of the data time series. Automated procedures may be improved
by using more than one criteria as discussed by Hoshin Vijai Gupta, Sorooshian, and Yapo (1998).
Although automation can help the calibration process become more objective, efficient and practical, it
is not a substitute for expert hydrologic intuition and understanding. Whether automated or manual
calibration is used, a common approach is to adjust the parameters that display the highest sensitivity
(Madsen 2003; Doherty and Skahill 2006).

GREENeR includes several functions to assist in selecting the best parameter set. The calib_boxplot()
function shows (Figure 3) relationships between best parameter sets chosen according to one GoF
parameter (title of each boxplot) in relation to six most frequently used metrics. Additionally, in the
lower panel, the figure shows the distribution of model parameters in the most performing subset of
parameter sets. The best parameter set according to each GoF metrics is marked as a red dot in each
boxplot (Figure 3).

calib_boxplot(calibration, rate_bs = 5)
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Figure 3: Calibration results for the Vistula river basin (TN Scenario). The figure displays the output
of the calib_boxplot() function, and compare several GoF metrics (bR2, KGE, mNSE, NSE, PBIAS, R2,
rNSE, VE) with each other and with the model parameters distributions. The top two rows show
boxplots of each metric (specified in the title) with others (in the x labels). The lowest row shows the
parameter value distributions for the top 5% (or another threshold indicated in rate_bs parameter of
the function) parameter sets ranked according to the GoF metrics in the x label. The red dots represent
the best parameter values for each boxplot.

The select_params() function extracts the parameter set that scored the best GoF metric of choice
from the calibration result object.

best_params <- select_params(calibration, param = "NSE")

alpha_P <- best_params$alpha_P
alpha_L <- best_params$alpha_L
sd_coeff <- best_params$sd_coeff

It is not recommended to use the parameters extracted by the select_params() function without hav-
ing performed an analysis of all the calibration results. Instead, alternative parameter sets (according
to different GoF) should be compared before making the final selection.

Screening and SA of model parameters can be done via the scatter_plot() and calib_dot()
functions of GREENeR package. The scatter_plot() function shows all parameter realizations in the
LHS dataset against a selected GoF metric to visualize the influence of each parameter on the metric
scores. The result depends on the GoF metric of choice (any metric calculated with calib_green() can
be selected) (Figure 4).

scatter_plot(calibration, param = "R2")
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Figure 4: Scatter plots of model parameters against R2 metric generated by the scatter_plot() function
for the Vistula river basin (TN).

Figure 4 example shows that the highest R2 are achieved for values of the parameter alphaP around
33.3 and for the parameter alphaL around 0.025, whereas the model is insensitive to the sdcoe f parame-
ter. Further, scatter_plot() function helps check if the parameter ranges defined in the search were
suitable, or if the number of iterations was sufficient. In Figure 4, the best values of the parameters
alphaP and alphaL are in the central part of the plots, thus the search parameter ranges were appropri-
ate, and the distribution of dots is sufficient to visualize the effect of each parameter, indicating that
the number of iterations was adequate.

The calib_dot() function shows the distribution of parameters in relation to each other for a
chosen GoF metric, and highlights potential correlations between parameters (Figure 5).

calib_dot(calibration, param = "KGE")

Figure 5: Dot plots of parameter pairs for the Kling-Gupta efficiency (KGE) generated by the calib_dot()
function for the Vistula river basin (TN).
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In Figure 5, the Kling-Gupta Efficiency metric (KGE, Althoff and Rodrigues 2021) shows interactions
between alphaP and alphaL, i.e. a higher alphaP should be associated to a lower alphaL for achieving
similar KGE. The best alphaP values identified for both R2 and KGE metrics are similar, whereas
alphaL values vary considerably (see also Figure 3).

The GREENeR package includes two useful model calibration functions: compare_calib() and
simobs_annual_plot(). compare_calib() shows a scatter plot that compares observed data points
with corresponding values predicted by two parameter sets. Figure 6 displays a plot generated by
the compare_calib() for the Vistula (TN) basin scenario when using the best parameter sets based on
NSE and rNSE metrics. The plot reveals that when rNSE parameter set result in an underestimation of
loads in the upper range.

metrics <- c("NSE","rNSE")
compare_calib(nutrient, catch, alpha_p1 = 31, alpha_l1 = 0.02, sd_coef1 = 0.6,

alpha_p2 = 50, alpha_l2 = 0.01, sd_coef2 = 0.6, years = c(1990:2018),
name_basin = "Wisla", metrics)

Figure 6: Result of compare_calib() for the Vistula river basin (TN), comparing the best set of parame-
ters selected according to the NSE and rNSE metrics.

The simobs_annual_plot() function compares observed and predicted values over the years (Figure
7), which identifies erroneous model performance or data distribucion problems over time.

year_range <- c(1994, 1996:2001, 2006:2009, 2012)
simobs_annual_plot(nutrient, catch, alpha_P, alpha_L, sd_coeff, year_range,

name_basin = "Wisla", max_value = 10000)
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Figure 7: Result of the simobs_annual_plot() for the Vistula river basin (TN), with the parameter set
selected for highest NSE and limiting the plots to the interval between 0 and 10000

3.3 Estimation of catchment nutrient loads and contribution in the basin

Once the most appropriate parameter set has been selected, it is possible to run the model to estimate
nutrient loads in the region. The green_shares() function runs GREEN with the selected parameter
set and returns catchment nutrient loads and the contributions by source in the simulation period.

The nutrient_tserie() function shows the temporal evolution of the total load at the basin outlet
in the simulation period with contributions by sources (Figure 8). Other options of the function show
nutrient loads in different zones of the basin (upper, central and lower part).

nutrient_load <- green_shares(nutrient, catch, alpha_P, alpha_L, sd_coeff, years)
nutrient_tserie(nutrient_load, geometry, "Wisla basin", "gr3")

Figure 8: TN load at the Vistula river basin outlet from 1990 to 2018. Colors indicate the contribution
of different sources (Min = mineral, Man = manure, Atm = atmospheric deposition, Fix = crop fixation,
Soil = soil fixation, Sd = scattered dwellings and Ps = point sources).

The nutrient_maps() function uses the object returned by green_shares() to generate maps of the
distribution of nutrient loads by source for a given year or as the mean for several years (Figure 9).
The results are shown in logarithmic scale to improve the visualization as nutrient loads in a region
may vary over several orders of magnitude. Alternative options of the function show the total load at
the outlets of the catchment or the specific loads (i.e. load per catchment area; in kt/km2/y).
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map_title <- "Output Loads for the Vistula basin"
nutrient_maps(nutrient_load, geometry, map_title, "gr1", legend_position = 1)

Figure 9: Maps of TN loads in the Vistula river basin by different sources and in total (the sum of all
other maps, bottom right), in logarithm scale as generated with nutrient_maps() function.

3.4 Estimation of nutrient fluxes and sources contribution in the basin

The region_nut_balance() function runs GREEN with the selected parameter set, and returns the
nutrient mass balance and fluxes of the region (mean value for the simulation period). The results of
this function can be visualized in a Sankey diagram with the function N4_sankey() (Figure 10) .

nut_bal <- region_nut_balance(nutrient, catch, alpha_P, alpha_L, sd_coeff,
years)

sank <- N4_sankey(nut_bal)

Figure 10: Sankey plot for the Vistula river basin for TN scenario, average for period 1990-2018. The
plot represents nitrogen input sources on the left (Min=mineral, Man=manure, Atm=atmospheric
deposition, Fix=crop fixation, Soil=soil fixation, Sd=scattered dwellings and Ps=point sources), and
nitrogen sinks (land, river and lake retention) and outlet discharge (load to outlet) on the right. The
bars in the middle visualize nitrogen agricultural diffuse sources and loads to the stream network.
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4 Conclusion

The GREENeR package provides several functions to assess nutrient pressures in fresh and coastal
waters based on the GREEN model (Bruna Grizzetti, Bouraoui, and Aloe 2012; Bruna Grizzetti et al.
2021). It allows assessing annual nutrient loads and concentrations throughout the river network and
at river outlets, as well as the contributions of diffuse and point sources to the total load. GREENeR
includes functions to route nutrient sources in a region, considering different pathways and the
hydrological structure of the river network. The package is enriched by functions that aid selecting the
set of parameters that best suits the study scope. Several functions assist in the preparation of scenarios
by assembling input data from the appropriate sources, and in visualising inputs and nutrient fluxes
in space and time. The version of the GREEN model implemented in the package is computationally
efficient and includes parallel running capabilities for the calibration process, greatly reducing the
time required for large basins or regional applications, e.g. at continental scale as in (Vigiak et al. 2023).
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6 Appendix

6.1 Appendix 1

Diffuse and point sources are defined differently for each nutrient module, i.e. nitrogen or phosphorus.
Equation (5) formulates the general GREEN function stated in equation (1) in the case of nitrogen. In
GREEN nitrogen model, the total nitrogen load Li of catchment i is estimated as:

Li = (1 − Lreti) · ((MinNi + ManNi + FixNi + SoilNi + (1 − FFi) · AtmNi)·
(1 − Breti) + 0.38 · FFi · AtmNi + sdcoe f f · SdNi + PsNi + Ui) · (1 − Rreti)

(5)

where MinNi is the annual amount of nitrogen from mineral fertilisers (ton/yr); ManNi is the annual
amount of nitrogen in manure fertilisers (ton/yr); FixNi is the annual amount of nitrogen fixation by
leguminous crops and fodder (ton/yr); SoilNi is the annual amount of nitrogen fixation by bacteria
in soils (ton/yr); AtmNi is the annual nitrogen deposition from atmosphere (ton/yr); FFi is the non-
agricultural land cover in the catchment (fraction); SdNi is the nitrogen input from scattered dwellings
(ton/yr); PsNi is the nitrogen input from point sources (ton/yr); and, finally, Ui is the nitrogen load
from upstream catchments (ton/yr).

Note that nitrogen atmospheric deposition losses are split into two parts, i.e. inputs to agricultural
land, which undergo the basin retention (such as crop uptake) that depends on annual precipitation,
while in forest areas they are reduced by a fixed rate, before entering into the stream. The contribution
of atmospheric nitrogen deposition in non-agricultural land is thus estimated as 0.38 · FF · AtmN. For
an atmospheric deposition of 10 kgN/ha this corresponds to a background of 3.8 kgN/ha (in line with
the values reported by HELCOM (2003)).

Phosphorous background losses are split into two parts, with the inputs to agricultural land under-
going basin retention, while in forest areas they are considered entering into the stream. Background
losses for phosphorus are estimated at 0.15 kgP/ha (in line with the values reported by (HELCOM
2003).

In GREEN phosphorus model, the total annual phosphorus load Li of catchment i the equation
estimates:

Li = (1 − Lreti) · ((MinPi + ManPi + (1 − FFi) · BgPi) · (1 − Breti)+

FFi · BgPi + sdcoe f f · SdPi + PsPi + Uii) · (1 − Rreti)
(6)

where MinPi is the annual amount of phosphorus mineral fertilisers (ton/yr); ManPi is the annual
amount of phosphorus in manure fertilisers (ton/yr); FFi is the non-agricultural land cover in the
catchment (fraction);BgPi is the annual amount of phosphorus background losses (ton/yr); SdPi is the
phosphorus input from scattered dwellings (ton/yr); PsPi is the phosphorus input from point sources
(ton/yr); and Uii is the phosphorus load from upstream catchments (ton/yr).
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6.2 Appendix 2

The calib_green() function applies the following GoF metrics (Althoff and Rodrigues 2021; Mauricio
Zambrano-Bigiarini 2014) (NSE, rNSE, mNSE, R2, PBIAS), where:

• NSE: Nash-Sutcliffe efficiency.

• rNSE: Relative Nash-Sutcliffe efficiency.

• mNSE: Modified Nash-Sutcliffe efficiency.

• cp: Coefficient of Persistence.

• VE: Volumetric Efficiency.

• KGE : Kling-Gupta efficiency.

• d : Index of Agreement.

• md: Modified index of agreement.

• rd: Relative Index of Agreement.

• r: Linear correlation coefficient.

• R2: Coefficient of determination.

• PBIAS: Percent bias.

• MAE: mean absolute error.

• RMSE: Root mean square error.

• ME: Mean error.

• MSE: Mean square error.

• NRMSE: Normalized Root Mean Square Error.

See (Papacharalampous, Tyralis, and Koutsoyiannis 2019; Nash and Sutcliffe 1970; Kitanidis and
Bras 1980; Yapo, Gupta, and Sorooshian 1996; Krause, Boyle, and Bäse 2005; Criss and Winston 2008;
Hoshin Vijai Gupta, Sorooshian, and Yapo 1998; Mauricio Zambrano-Bigiarini 2014) for further details.
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bayesassurance: An R Package for
Calculating Sample Size and Bayesian
Assurance
by Jane Pan and Sudipto Banerjee

Abstract In this paper, we present bayesassurance, an R package designed for computing Bayesian
assurance criteria which can be used to determine sample size in Bayesian inference setting. The
functions included in the R package offer a two-stage framework using design priors to specify the
population from which the data will be collected and analysis priors to fit a Bayesian model. We
also demonstrate that frequentist sample size calculations are exactly reproduced as special cases of
evaluating Bayesian assurance functions using appropriately specified priors.

1 Introduction

Power is an important feature of statistical tests that refers to the probability of correctly identifying
the occurrence of an event given the event is actually present. Specifically, in the frequentist setting,
the power of a test describes the probability that the test will correctly reject the null hypothesis, H0,
given that the alternative hypothesis, H1, is true. Conversely, β = 1− power represents the probability
that a test will fail to identify a true effect. For any given test, power is a function of the underlying
effect size, the significance level, α, and the sample size, n . While the underlying effect size is rarely
under the experimenter’s control, the significance level and the sample size are. Hence, it is important
to conduct power analysis to determine appropriate assignments of α and n for an experiment to have
a good chance of detecting an effect if one exists. Power curves serve as a useful tool in quantifying
the degree of assurance held towards meeting a study’s analysis objective across a range of sample
sizes. Formulating sample size determination as a decision problem so that power is an increasing
function of sample size, offers the investigator a visual aid in helping deduce the minimum sample
size needed to achieve a desired power.

The analogue of power in the Bayesian setting is assurance, which is based upon the probability
of meeting a desired analysis objective. As an example, our analysis objective could be to ascertain
if the difference between two population quantities, θ1 and θ2, exceeds a certain threshold θ0, i.e.,
θ1 − θ2 > θ0. We decide that our analysis objective is met if the posterior probability of the above
event given data we have observed exceeds ω, i.e., P(θ1 − θ2 > θ0 | y) > ω with y being the realized
data. Assurance is defined as the probability of the analysis objective being met under an assumed
distribution of the data, i.e., δ = Py {y : P (θ > θ0 | y) > ω}, where y denotes the observed data.
Several publications adopt a similar approach, where they determine sample size based upon some
criteria of analysis or model performance (Rahme et al., 2000; Gelfand and Wang, 2002; O’Hagan
and Stevens, 2001). Other proposed solutions of the sample size problem introduce frameworks
that prioritize conditions specific to the problem at hand, e.g. the use of Bayesian average errors to
simultaneously control for Type I and Type II errors (Reyes and Ghosh, 2013), the use of posterior
credible interval lengths to evaluate sample size estimates (Joseph et al., 1997), and the use of survival
regression models to target Bayesian meta-experimental designs (Reyes and Ghosh, 2013).

There are several R packages for Bayesian sample size determination using specified analytic
criteria. The SampleSizeMeans package contains a series of functions used for determining appro-
priate sample sizes based on various Bayesian criteria for estimating means or differences between
means of normal variables (Joseph and Belisle, 2012). Criteria considered include the Average Length
Criterion, the Average Coverage Criterion, and the Modified Worst Outcome Criterion (Joseph et al.,
1995; Joseph and Belisle, 1997). A supplementary package, SampleSizeProportions, addresses study
designs for estimation of binomial proportions using the same set of criteria (Joseph and Belisle, 2009).
Our package, bayesassurance calculates Bayesian assurance and sample sizes for analysis objectives
using normal and binomial models. We devise a two stage framework using possibly different sets
of prior distributions in the design and analysis stages. The prior in the design stage represents a
model that generates the data. The prior in the analysis stage represents the analyst’s beliefs about the
data. These two prior distributions are possibly different because the analyst does not usually have
enough prior information on the processes generating the data. We primarily demonstrate sample
size determination using conjugate Bayesian linear regression models as a prototype for this article,
although the R package offers functions for calculating Bayesian assurance for binary or binomial
models as well. In the current article, we focus on the flexibility of Bayesian linear regression models
and demonstrate determination of unequal sample sizes for two samples and longitudinal study
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Function Type Description
pwr_freq closed-form solution Computes the frequentist power of the

specified hypothesis test (either one or
two-sided z-tests).

assurance_nd_na closed-form solution Computes the exact Bayesian assurance
of attaining a specified analysis objective.

bayes_sim simulation Approximates the Bayesian assurance of
attaining a specified condition for a bal-
anced study design through Monte Carlo
sampling.

bayes_sim_unbalanced simulation Approximates the Bayesian assurance of
attaining a specified condition for an un-
balanced study design through Monte
Carlo sampling.

bayes_sim_unknownvar simulation Similar to bayes_sim but approximates
the assurance assuming unknown vari-
ance.

bayes_adcock simulation Approximates the probability (assur-
ance) that the absolute difference be-
tween the true population parameter and
the sample estimate falls within a margin
of error no greater than a pre-specified
precision level, d (Adcock, 1997).

bayes_sim_betabin simulation Approximates the probability (assur-
ance) that there exists a difference be-
tween two independent proportions
(Pham-Gia, 1997).

bayes_goal_func simulation Approximates the rate of correct classi-
fication using a utility-based approach
within a linear hypothesis testing setting
(Inoue et al., 2005).

pwr_curve visual tool Constructs a plot with the power and as-
surance curves overlayed on top of each
other for comparison.

gen_Xn design tool Constructs design matrix using given
sample size(s). Used for power and sam-
ple size analysis in the Bayesian setting.

gen_Xn_longitudinal design tool Constructs design matrix using inputs
that correspond to a balanced longitudi-
nal study design.

Table 1: Overview of the functions available for use within the package.

designs.

The bayesassurance package is available on CRAN (Pan and Banerjee, 2022) and contains a
collection of functions that can be divided into three categories based on design and usage. These
include closed-form solutions, simulation-based solutions, and visualization and/or design purposes.
All available functions are presented in Table 1. Fully worked-out examples and tutorials can be found
on our Github page at https://github.com/jpan928/bayesassurance_rpackage. This article describes
the basic underlying framework leading to analytically tractable expressions for Bayesian assurance.
We will also illustrate the relationship between Bayesian and frequentist sample size determination. In
addition, we briefly explore simulation-based assurance methods, outlining the statistical distribution
theory associated with each method, followed by examples worked out in R that users will be able to
replicate. Finally, we offer some useful graphical features and design matrix generators offered by the
package. In the following sections, we provide a detailed overview for each of the available functions
grouped by category followed with worked out examples in R.
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2 Closed-form Solution of Assurance

Bayesian assurance evaluates the tenability of attaining a specified outcome through the implementa-
tion of prior and posterior distributions. The assurance_nd_na function computes the exact assurance
using a closed-form solution. Classical frequentist (Neyman-Pearson) inference proceeds as follows.
Prior to an experiment, the analyst determines the sample size, as well as significance level (α), which
defines the maximum frequency of false positives (type I errors) they are willing to tolerate, if the null
hypothesis is true. Then, once the data has been collected, a statistical test is conducted which yields
the p-value or the probability of seeing the observed data under the null hypothesis. If the p-value is
lower than α, the null hypothesis is rejected. In contrast, in Bayesian inference refrains from “rejecting”
or “failing to reject the null hypothesis”. Instead, we look at the tenability of a hypothesis based upon
realized data. As an example, suppose we seek to evaluate the tenability of H : θ > θ0 given data from
a Gaussian population with mean θ0 and known variance σ2. We assign two sets of priors for θ, one at
the design stage and the other at the analysis stage. These two stages are the primary components that
make up the skeleton of our generalized solution in the Bayesian setting and will be revisited in later
sections. The analysis objective specifies the condition that needs to be satisfied. It defines a positive
outcome, which serves as an overarching criteria that characterizes the study. Our analysis objective
is to ascertain if P(θ > θ0 | ȳ) > 1 − α, where ȳ is the data average and α is a specified threshold.

Assuming the prior θ ∼ N
(

µ, σ2

na

)
, the posterior distribution of θ is

N
(

θ

∣∣∣∣ µ,
σ2

na

)
× N

(
ȳ
∣∣∣∣ θ,

σ2

n

)
∝ N

(
θ

∣∣∣∣ na

n + na
µ +

n
n + na

ȳ,
σ2

n + na

)
, (1)

where n denotes the sample size of the data, ȳ denotes the mean of the data, and na is specified by the
data analyst to quantify the prior degree of belief on θ.

The design objective is to find the sample size needed to ensure that the analysis objective is met
100δ% of the time, where δ denotes the assurance. At the design stage, we specify a model for the
underlying population from which the data is generated. Our belief about this population is quantified

using a design prior (we borrow this terminology from O’Hagan and Stevens, 2001), say θ ∼ N
(

µ, σ2

nd

)
,

where nd is specified by the user to quantify the degree of belief (or amount of confidence) on the
population parameters. Bayesian assurance is given by

δ = Pȳ {ȳ : P(θ > θ0 | ȳ) > 1 − α} , (2)

where Pȳ(·) denotes the marginal distribution of ȳ obtained from the design priors

∫
N
(

θ

∣∣∣∣ µ,
σ2

nd

)
× N

(
ȳ
∣∣∣∣ θ,

σ2

n

)
dθ = N

(
ȳ
∣∣∣∣ µ,
(

1
n
+

1
nd

)
σ2
)

.

Applying this to (2) we obtain

δ(∆, n) = Φ
(√

nnd
n + nd

[
n + na

n
∆
σ
+ Zα

n + na

n

])
, (3)

where Φ(·) is the standard normal CDF with Zα being its α-th quantile and ∆ = µ − θ0.

We remark that the above expression assumes that σ2 is known. This is a customary assumption
made about the population in sample size calculations and is usually based upon pilot studies or
historic data. Nevertheless, in theory we can relax this assumption and assign a prior distribution to
σ2. Conjugate priors include the inverse-Gamma family of distributions and analogous formulas to (3)
may be derived in terms of distribution functions of the (non-central) t-distribution. Nevertheless, we
do not pursue this development here but discuss the case of unknown σ2 later in the linear regression
setting. We now describe the function to compute (3). Table 2 lists the set of parameters used in
assurance_nd_na, with alpha taking a default value of 0.05.

The following code loads the bayesassurance package and assigns arbitrary parameters to
assurance_nd_na prior to executing the function.

R> library(bayesassurance)

R> n <- seq(100, 250, 10)
R> n_a <- 10
R> n_d <- 10
R> theta_0 <- 0.15
R> theta_1 <- 0.25
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assurance_nd_na: Parameters
Variable Description
n sample size (either scalar or vector)
n_a precision parameter within the analysis stage that quan-

tifies the degree of belief carried towards parameter θ
n_d precision parameter within the design stage that quan-

tifies the degree of belief of the population from which
we are generating samples from

theta_0 initial parameter value provided by the client
theta_1 prior mean of θ assigned in the analysis and design

stage
sigsq known variance
alt specifies alternative test case, where alt = "greater"

tests if θ1 > θ0, alt = "less" tests if θ1 < θ0, and alt =
"two.sided" performs a two-sided test for θ1 ̸= θ0. By
default, alt = "greater"

alpha significance level

Table 2: Parameter specifications needed to run assurance_nd_na.

Figure 1: Resulting assurance plot with specific points passed in marked in red.

R> sigsq <- 0.30

R> out <- assurance_nd_na(n = n, n_a = n_a, n_d = n_d,
theta_0 = theta_0, theta_1 = theta_1, sigsq = sigsq,
alt = "greater", alpha = 0.05)

R> head(out$assurance_table)
R> out$assurance_plot

n Assurance
1 100 0.5228078
2 110 0.5324414
3 120 0.5408288
4 130 0.5482139
5 140 0.5547789
6 150 0.5606632

Running this block of code will return a table of assurance values and a graphical display of the
assurance curve, shown in Figure 1. The first six rows of the table are reported in the outputs.

We make a few remarks pertaining to the functions in bayesassurance. First, we are passing a
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single value of sample size or a vector of sample sizes for n. We save the results as a variable out. n
can be either a scalar or vector. If n is a scalar, this tells the function that we only want to determine the
assurance for one particular sample size. When this is the case, out will return a single assurance value
with no plot. Alternatively, if a vector of sample sizes is passed in as n, as is the case of the example
above, assurance is computed for a list of sample sizes, and the function will produce both a table
and an assurance curve showing the results. As long as n is of length two or greater, assurance_nd_na
will plot the assurance curve with red points denoting user-specified assurance values and black
points denoting all other points outside those specified points. Figure 1 presents the assurance curve
resulting from the example. The graph is created using ggplot2 Wickham (2016) which is imported
into bayesassurance. Simply typing out$assurance_table and out$assurance_plot will display the
table and plot respectively in this particular set of examples.

2.1 Special case: convergence with the frequentist setting

Depending on how we define the parameters in assurance_nd_na, we can demonstrate a relationship
between the Bayesian and classical power analysis. In particular, the classical, or frequentist, power
function is a special case of Bayesian solution when letting nd → ∞ and na = 0 in (3). Therefore,
assigning a weak analysis prior and a strong design prior yields

Φ
(√

n
∆
σ
+ Zα

)
, (4)

which is equivalent to the frequentist power expression that takes the form

1 − β = P
(

ȳ > θ0 +
σ√
n

Z1−α

)
= Φ

(√
n

∆
σ
+ Zα

)
.

The following code chunk demonstrates this special case in R using the assurance_nd_na function:

R> library(bayesassurance)

R> n <- seq(10, 250, 5)
R> n_a <- 1e-8
R> n_d <- 1e+8
R> theta_0 <- 0.15
R> theta_1 <- 0.25
R> sigsq <- 0.104

R> out <- assurance_nd_na(n = n, n_a = n_a, n_d = n_d,
theta_0 = theta_0, theta_1 = theta_1, sigsq = sigsq,
alt = "greater", alpha = 0.05)

R> head(out$assurance_table)
R> out$assurance_plot

n Assurance
1 10 0.2532578
2 15 0.3285602
3 20 0.3981637
4 25 0.4623880
5 30 0.5213579
6 35 0.5752063

The bayesassurance package includes a pwr_freq function that determines the statistical power of
testing the difference between two means given a set of fixed parameter values that yield a closed-form
solution of power and sample size. Continuing with the one-sided case, the solution is

1 − β = P
(

ȳ > θ0 +
σ√
n

Z1−α

)
= Φ

(√
n

∆
σ
+ Zα

)
, (5)

where ∆ = θ1 − θ0 is the critical difference and Φ denotes the cumulative distribution function of
the standard normal. Note this formula is equivalent to the special case of the assurance definition
expressed in Equation (4). Table 3 includes the set of parameters needed to run this function.
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pwr_freq: Parameters
Variable Description
n sample size (either scalar or vector)
theta_0 value specified in the null hypothesis; to be provided by

the user
theta_1 alternative value to test against the null value; this is the

assumed effect size in the population
alt specifies alternative test case, where alt = "greater"

tests if θ1 > θ0, alt = "less" tests if θ1 < θ0, and alt =
"two.sided" performs a two-sided test for θ1 ̸= θ0. By
default, alt = "greater"

sigsq known variance
alpha significance level

Table 3: Parameter specifications needed to run pwr_freq.

As a simple example, consider the following code segment that directly runs pwr_freq through
specifying the above parameters and loading in bayesassurance:

R> library(bayesassurance)
R> pwr_freq(n = 20, theta_0 = 0.15, theta_1 = 0.35, sigsq = 0.30,

alt = "greater", alpha = 0.05)

"Power: 0.495"

Running this returns the associated power printed as a statement rather than a table as we are only
passing in one sample size, n = 20, to undergo evaluation. Now consider the next code example.

R> library(bayesassurance)
R> n <- seq(10, 250, 5)
R> out <- pwr_freq(n = n, theta_0 = 0.15, theta_1 = 0.25, sigsq = 0.104,

alt = "greater", alpha = 0.05)

R> head(out$pwr_table)
R> out$pwr_plot

n Power
1 10 0.2532578
2 15 0.3285602
3 20 0.3981637
4 25 0.4623880
5 30 0.5213579
6 35 0.5752063

This code produces identical results as the assurance values obtained in the example using the
assurance_nd_na function, where we assigned a weak analysis prior and a strong design prior. This
demonstrates that under these conditions, Bayesian assurance converges to frequentist power. Figure 2
provides a side-by-side comparison of the resulting power and assurance curves, portraying identical
plots in this particular setting.

3 Simulation-based functions using conjugate linear models

Henceforth, we focus on computing assurance through simulation-based means and highlight the
common scenario of performing sample size analysis where closed-form solutions are unavailable. In
the following sections, we extend upon the two-stage design structure and discuss how the design
and analysis objectives are constructed based on the sample size criteria.

We seek to evaluate the tenability of a well-defined analysis objective using our simulation-based
functions. The functions take an iterative approach alternating between generating a dataset in the
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(a) Power curve (b) Assurance curve

Figure 2: Power and assurance curves are identical when the design priors are strong and the analysis
priors are weak.

design stage and evaluating whether or not the dataset satisfies the analysis objective. The assurance
equates to the proportion of datasets that meet the objective.

We start in the analysis stage. Consider a set of n observations denoted by y = (y1, y2, · · · , yn)⊤

that are to be collected together with p controlled explanatory variables, x1, x2, · · · , xp. Specifically,

y = Xnβ + ϵn,

where Xn is an n × p design matrix whose ith row x⊤i , and ϵn ∼ N(0, σ2Vn), where Vn is a known
n × n correlation matrix. We assume Xn has linearly independent columns. A conjugate Bayesian
linear regression model specifies the joint distribution of the parameters {β, σ2} and y as

IG(σ2|aσ, bσ)× N(β|µ(a)
β , σ2V(a)

β )× N(y|Xnβ, σ2Vn),

where superscripts (a) indicate parameters in the analysis stage. The objective is to find the assurance
of the realized data favoring H : u⊤β > C, where u is a p × 1 vector of fixed contrasts and C is a
known constant. Inference proceeds from the posterior distribution given by

p(β, σ2|y) = IG(σ2|a∗σ, b∗σ)× N(β|Mnmn, σ2 Mn), (6)

where

M−1
n = V−1(a)

β + X⊤
n V−1

n Xn; mn = V−1(a)
β µ

(a)
β + X⊤

n V−1
n y

a∗σ = aσ +
n
2

; b∗σ = bσ +
1
2

{
µ⊤

β V−1
β µβ + y⊤n V−1

n y − m⊤
n Mnmn

}
.

The posterior distribution helps shape our analysis objective.

If σ2 is known and fixed, then the posterior distribution of β is p(β|σ2, y) = N(β|Mnmn, σ2 Mn)
shown in the Equation (6). We use the posterior components of β to evaluate H : u⊤β > C, where
standardization leads to

u⊤β − u⊤Mnmn

σ
√

u⊤Mnu

∣∣∣∣∣ σ2, y ∼ N(0, 1) . (7)

Hence, to assess the tenability of H : u⊤β > C, we decide in favor of H if the observed data belongs in
the set

Aα(u, β, C) =
{

y : P
(

u⊤β ≤ C|y
)
< α

}
=

{
y : Φ

(
C − u⊤Mnmn

σ
√

u⊤Mnu

)
< α

}
.

This defines our analysis objective, which we will monitor within each sample iteration. Sample
generation is taken to account for in the design stage discussed in the next section.

In the design stage, the goal is to seek a sample size n such that the analysis objective is met at least
100δ% of the time, where δ is the assurance. This step requires determining the marginal distribution
of y, which is assigned a separate set of priors to quantify our belief about the population from which
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the sample will be taken. Hence, the marginal of y under the design priors will be derived from

y = Xnβ + ϵn; ϵn ∼ N(0, σ2Vn) ; β = µ
(d)
β + ω; ω ∼ N(0, σ2V(d)

β ) , (8)

where β ∼ N(µ
(d)
β , σ2V(d)

β ) is the design prior on β and (d) denotes parameters in the design stage.

Substituting the equation for β into the equation for y gives y = Xµ
(d)
β + (Xω + ϵn) and, hence,

y ∼ N
(

Xµ
(d)
β , σ2V∗

n

)
and V∗

n =
(

XV(d)
β X⊤ + Vn

)
.

To summarize our simulation strategy for estimating the Bayesian assurance, we fix sample size
n and generate a sequence of J datasets y(1), y(2), ..., y(J). A Monte Carlo estimate of the Bayesian
assurance is computed as

δ̂(n) =
1
J

J

∑
j=1

I

y(j) : Φ

C − u⊤M(j)
n m(j)

n

σ

√
u⊤M(j)

n u

 < α


 ,

where I(·) is the indicator function of the event in its argument, M(j)
n and m(j)

n are the values of Mn

and mn computed from y(j).

3.1 Assurance computation with known variance

The simulation-based function, bayes_sim, determines the assurance within the context of conjugate
Bayesian linear regression models assuming known variance, σ2. The execution of bayes_sim is
straightforward. An important feature is that users are not required to provide their own design
matrix, Xn, when executing bayes_sim. When Xn = NULL, the function automatically constructs an
appropriate design matrix based on the specified sample size(s), using the built-in gen_Xn function.

Later sections discuss design matrix generators in greater detail. Setting Xn = NULL facilitates
calculation of assurances across a vector of sample sizes, where the function sequentially updates the
design matrix for each unique sample size undergoing evaluation. Table 4 lists the required set of
parameters.

Example 1: scalar parameter

This example computes the tenability of H : u⊤β > C in the case when β is a scalar. In the following
code block, we assign a set of values for the parameters of bayes_sim and saves the outputs as
assur_vals. The first ten rows of the table is shown.

R> library(bayesassurance)
R> n <- seq(100, 300, 10)
R> assur_vals <- bayes_sim(n, p = 1, u = 1,

C = 0.15, Xn = NULL, Vbeta_d = 0, Vbeta_a_inv = 0,
Vn = NULL, sigsq = 0.265, mu_beta_d = 0.25, mu_beta_a = 0,
alt = "greater", alpha = 0.05, mc_iter = 5000)

R> head(assur_vals$assurance_table)
R> assur_vals$assurance_plot

Observations per Group (n) Assurance
1 100 0.6162
2 110 0.6612
3 120 0.6886
4 130 0.7148
5 140 0.7390
6 150 0.7746

Each unique value passed into n corresponds to a separate balanced study design containing that
particular sample size for each of the p groups undergoing assessment. In this example, setting p = 1,
u = 1 and C = 0.15 implies that we are evaluating the tenability of H : β > 0.15, where β is a scalar.
Furthermore, Vbeta_d and Vbeta_a_inv are scalars to align with the dimension of β. A weak analysis
prior (Vbeta_a_inv = 0) and a strong design prior (Vbeta_d = 0) produces the classical power analysis.
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bayes_sim: Parameters
Variable Description
n Sample size (either vector or scalar). If vector, each value

corresponds to a separate study design.
p Number of explanatory variables being considered.

Also denotes the column dimension of design matrix
Xn. If Xn = NULL, p must be specified for the function to
assign a default design matrix for Xn.

u a scalar or vector included in the expression to be evalu-
ated, e.g. u⊤β > C, where β is an unknown parameter
that is to be estimated.

C constant to be compared to
Xn design matrix characterizing the observations given by

the normal linear regression model yn = Xnβ + ϵn,
where ϵn ∼ N(0, σ2Vn). See above description for de-
tails. Default Xn is an np × p matrix comprised of n × 1
ones vectors that run across the diagonal of the matrix.

Vbeta_d correlation matrix that characterizes prior information
on β in the design stage, i.e. β ∼ N(µ

(d)
β , σ2V(d)

β ).
Vbeta_a_inv inverse-correlation matrix that characterizes prior in-

formation on β in the analysis stage, i.e. β ∼
N(µ

(a)
β , σ2V(a)

β ). The inverse is passed in for compu-

tation efficiency, i.e. V−1(a)
β .

Vn an n × n correlation matrix for the marginal distribution
of the sample data yn. Takes on an identity matrix when
set to NULL.

sigsq a known and fixed constant preceding all correlation
matrices Vn, Vbeta_d and Vbeta_a_inv.

mu_beta_d design stage mean, µ
(d)
β

mu_beta_a analysis stage mean, µ
(a)
β

alt specifies alternative test case, where alt = "greater"
tests if u⊤β > C, alt = "less" tests if u⊤β < C, and alt
= "two.sided" performs a two-sided test for u⊤β ̸= C.
By default, alt = "greater".

alpha significance level
mc_iter number of MC samples evaluated under the analysis

objective

Table 4: Parameter specifications needed to run bayes_sim.

We revisit this example in a later section when reviewing features that allow users to simultaneously
visualize the Bayesian and frequentist power analyses. Finally, Xn and Vn are set to NULL, which means
they will take on the default settings described above.

Example 2: linear contrasts

In this example, we assume β is a vector of unknown components rather than a scalar. We use the
real-world example discussed in O’Hagan and Stevens (2001). Specifically, we consider a randomized
clinical trial that compares the cost-effectiveness of two treatments. Cost-effectiveness is evaluated
using a net monetary benefit measure expressed as

ξ = K(µ2 − µ1)− (γ2 − γ1),

where µ1 and µ2 denote the efficacy of treatments 1 and 2, and γ1 and γ2 denote the costs, respectively.
Hence, µ2 − µ1 and γ2 − γ1 correspond to the true differences in treatment efficacy and costs. The
threshold unit cost, K, represents the maximum price that a health care provider is willing to pay for a
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unit increase in efficacy.

In this setting,we seek the tenability of H : ξ > 0, which, if true, indicates that treatment 2 is more
cost-effective than treatment 1. To comply with the conjugate linear model framework outlined in (6),
we set u = (−K, 1, K,−1)⊤, β = (µ1, γ1, µ2, γ2)

⊤, and C = 0, giving us an equivalent form of ξ > 0
expressed as u⊤β > 0. All other inputs of this application were directly pulled from O’Hagan and
Stevens (2001). The following code sets up the inputs to be passed into bayes_sim.

R> n <- 285
R> p <- 4
R> K <- 20000 # threshold unit cost
R> C <- 0
R> u <- as.matrix(c(-K, 1, K, -1))
R> sigsq <- 4.04^2

## Assign mean parameters to analysis and design stage priors
R> mu_beta_d <- as.matrix(c(5, 6000, 6.5, 7200))
R> mu_beta_a <- as.matrix(rep(0, p))

## Assign correlation matrices (specified in paper)
## to analysis and design stage priors
R> Vbeta_a_inv <- matrix(rep(0, p^2), nrow = p, ncol = p)
R> Vbeta_d <- (1 / sigsq) * matrix(c(4, 0, 3, 0, 0, 10^7, 0,

0, 3, 0, 4, 0, 0, 0, 0, 10^7), nrow = 4, ncol = 4)

R> tau1 <- tau2 <- 8700
R> sig <- sqrt(sigsq)
R> Vn <- matrix(0, nrow = n*p, ncol = n*p)
R> Vn[1:n, 1:n] <- diag(n)
R> Vn[(2*n - (n-1)):(2*n), (2*n - (n-1)):(2*n)] <- (tau1 / sig)^2 * diag(n)
R> Vn[(3*n - (n-1)):(3*n), (3*n - (n-1)):(3*n)] <- diag(n)
R> Vn[(4*n - (n-1)):(4*n), (4*n - (n-1)):(4*n)] <- (tau2 / sig)^2 * diag(n)

The inputs specified above should result in an assurance of approximately 0.70 according to
O’Hagan and Stevens (2001). The bayes_sim returns a similar value, demonstrating that sampling
from the posterior yields results similar to those reported in the paper.

R> library(bayesassurance)

R> assur_vals <- bayes_sim(n = 285, p = 4, u = as.matrix(c(-K, 1, K, -1)),
C = 0, Xn = NULL, Vbeta_d = Vbeta_d,Vbeta_a_inv = Vbeta_a_inv,
Vn = Vn, sigsq = 4.04^2, mu_beta_d = as.matrix(c(5, 6000, 6.5, 7200)),
mu_beta_a = as.matrix(rep(0, p)), alt = "greater", alpha = 0.05, mc_iter = 10000)

R> assur_vals

## [1] "Assurance: 0.722"

3.2 Assurance computation in the longitudinal setting

We demonstrate an additional feature embedded in the function tailored to longitudinal data. In
this setting, n no longer refers to the number of subjects but rather the number of repeated measures
reported for each subject, assuming a balanced study design. Referring back to the linear regression
model discussed in the general framework, we can construct a longitudinal model that utilizes this
same linear regression form, where yn = Xnβ + ϵn.

Consider a group of subjects in a balanced longitudinal study with the same number of repeated
measures at equally-spaced time points. In the base case, where time is treated as a linear term, subjects
can be characterized as

yij = αi + βitij + ϵi,

where yij denotes the jth observation on subject i at time tij, αi and βi denote the intercept and slope
terms for subject i, respectively, and ϵi ∼ N(0, σ2

i ) is an error term.
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In a simple case with two subjects, we can individually express the observations as

y11 = α1 + β1t11 + ϵ1

...

y1n = α1 + β1t1n + ϵ1

y21 = α2 + β2t21 + ϵ2

...

y2n = α2 + β2t2n + ϵ2,

assuming that each subject contains n observations. The model can also be expressed using matrices:

y11
...

y1n
y21

...
y2n


︸ ︷︷ ︸

yn

=



1 0 t11 0
...

...
...

...
1 0 t1n 0
0 1 0 t21
...

...
...

...
0 1 0 t2n


︸ ︷︷ ︸

Xn


α1
α2
β1
β2


︸ ︷︷ ︸

β

+



ϵ1
...

ϵ1
ϵ2
...

ϵ2


︸ ︷︷ ︸

ϵn

(9)

bringing us back to the linear model structure. If higher degrees are to be considered for the time
variable, such as the inclusion of a quadratic term, the model would be altered to include additional
covariate terms that can accommodate these changes. In the two-subject case, incorporating a quadratic
term for the time variable in (9) will result in the model being modified as follows:

y11
...

y1n
y21

...
y2n


︸ ︷︷ ︸

yn

=



1 0 t11 0 t2
11 0

...
...

...
...

...
...

1 0 t1n 0 t2
1n 0

0 1 0 t21 0 t2
21

...
...

...
...

...
...

0 1 0 t2n 0 t2
2n


︸ ︷︷ ︸

Xn


α1
α2
β1
β2
ϕ1
ϕ2


︸ ︷︷ ︸

β

+



ϵ1
...

ϵ1
ϵ2
...

ϵ2


︸ ︷︷ ︸

ϵn

In general, for m subjects who each have n repeated measures, a one-unit increase in the degree of the
time-based covariate will result in m additional columns being added to the design matrix Xn and m
additional rows added to the β vector.

When working in the longitudinal setting, additional parameters need to be specified in the
bayes_sim function, which can be found in Table 5. By default, longitudinal = FALSE and ids,from,
and to are set to NULL when working within the standard conjugate linear model. When longitudinal
= TRUE, n takes on a different meaning as its value(s) correspond to the number of repeated measures
for each subject rather than the total number of subjects in each group. When longitudinal = TRUE
and Xn = NULL, bayes_sim implicitly relies on a design matrix generator, gen_Xn_longitudinal, that
is specific to the longitudinal setting to construct appropriate design matrices.

Example 3: longitudinal setting

The following example uses similar parameter settings as the cost-effectiveness example we had
previously discussed in Example 2, now with longitudinal specifications. We assume two subjects and
want to test whether the growth rate of subject 1 is different from that of subject 2. Figure 3 displays
the estimated assurance points given the specifications.

Assigning an appropriate linear contrast lets us evaluate the tenability of an outcome. Let
us consider the tenability of u⊤β ̸= C in this next example that uses simulated data, where u =
(1,−1, 1,−1)⊤ and C = 0. There are 120 arbitrary timepoints. The number of repeated measurements
per subject to be tested includes values 10 through 100 in increments of 5. This indicates that we are
evaluating the assurance for 19 study designs in total. n = 10 divides the specified time interval into
10 evenly-spaced timepoints between 0 and 120.

For a more complicated study design comprised of more than two subjects that are divided into
two treatment groups, consider testing if the mean growth rate is higher in the first treatment group
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bayes_sim: Additional Parameters used in the Longitudinal Setting
Variable Description
longitudinal logical that indicates the simulation will be based in

a longitudinal setting. If Xn = NULL, the function will
construct a design matrix using inputs that correspond
to a balanced longitudinal study design.

ids vector of unique subject ids.
from start time of repeated measures for each subject
to end time of repeated measures for each subject
num_repeated_measures desired length of the repeated measures sequence.This

should be a non-negative number, will be rounded up
otherwise if fractional.

num_repeated_measures desired length of the repeated measures sequence.This
should be a non-negative number, will be rounded up
otherwise if fractional.

poly_degree degree of polynomial in longitudinal model, set to 1 by
default.

Table 5: Additional parameter specifications needed to run bayes_sim in the longitudinal setting.
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Figure 3: Estimated assurance points for longitudinal example.

than that of the second, e.g. if we have three subjects per treatment group, the linear contrast would
be set as u = (0, 0, 0, 0, 0, 0, 1/3, 1/3, 1/3,−1/3,−1/3,−1/3)⊤.

R> n <- seq(10, 100, 5)
R> ids <- c(1,2)
R> Vbeta_a_inv <- matrix(rep(0, 16), nrow = 4, ncol = 4)
R> sigsq <- 100
R> Vbeta_d <- (1 / sigsq) * matrix(c(4, 0, 3, 0, 0, 6, 0, 0, 3, 0, 4, 0, 0, 0, 0, 6),

nrow = 4, ncol = 4)

R> assur_out <- bayes_sim(n = n, p = NULL, u = c(1, -1, 1, -1), C = 0, Xn = NULL,
Vbeta_d = Vbeta_d, Vbeta_a_inv = Vbeta_a_inv,
Vn = NULL, sigsq = 100,
mu_beta_d = as.matrix(c(5, 6.5, 62, 84)),
mu_beta_a = as.matrix(rep(0, 4)), mc_iter = 5000,
alt = "two.sided", alpha = 0.05, longitudinal = TRUE, ids = ids,
from = 10, to = 120)

R> head(assur_out$assurance_table)
R> assur_out$assurance_plot

Observations per Group (n) Assurance
1 10 0.6922
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bayes_sim_unbalanced: Parameters for Unbalanced Study Designs
Variable Description
n1 first sample size (either vector or scalar).
n2 second sample size (either vector or scalar).
repeats an integer denoting the number of c(n1,n2) pairs we

we are considering. For example, if repeats = 2, this
means we will compute the assurance corresponding
to the sample size set of c(n1,n2,n1,n2). By default,
repeats = 1. See Example 5.

surface_plot logical parameter that indicates whether a contour plot
is to be constructed. When set to TRUE, and n1 and n2
are vectors, a contour plot (i.e. heat map) showcasing
assurances obtained for all unique combinations of n1
and n2 is produced.

Table 6: Parameter specifications needed to run bayes_sim_unbalanced.

2 15 0.8056
3 20 0.8810
4 25 0.9244
5 30 0.9478
6 35 0.9626

3.3 Assurance computation for unbalanced study designs

The bayes_sim_unbalanced function operates similarly to bayes_sim but estimates the assurance of
attaining u⊤β > C specifically in unbalanced design settings. Users provide two sets of sample
sizes of equal length, whose corresponding pairs are considered for each study design case. The
bayes_sim_unbalanced function provides a higher degree of flexibility for designing unbalanced
studies and offers a more advanced visualization feature. Users have the option of viewing assurance
as a 3-D contour plot and assess how the assurance behaves across varying combinations of the two
sets of sample sizes that run along the x and y axes.

The bayes_sim_unbalanced function is similar to bayes_sim in terms of parameter specifications
with a few exceptions. Parameters unique to bayes_sim_unbalanced are summarized in Table 6. Here,
Xn = NULL, Vn = NULL, repeats = 1 and surface_plot = TRUE by default.

As in bayes_sim, it is recommended that users set Xn = NULL to facilitate the automatic construction
of appropriate design matrices that best aligns with the conjugate linear model. Recall that every
unique sample size (or sample size pair) passed in corresponds to a separate study that requires a
separate design matrix. Should users choose to provide their own design matrix, it is advised that
they evaluate the assurance for one study design at a time, in which a single design matrix is passed
into Xn along with scalar values assigned for the sample size parameter(s).

Saved outputs from executing the function include

1. assurance_table: table of sample size and corresponding assurance values

2. contourplot: contour map of assurance values if surface.plot = TRUE

3. mc_samples: number of Monte Carlo samples that were generated for evaluation

Example 4: unbalanced assurance computation with surface plot

The following code provides a basic example of how bayes_sim_unbalanced is executed. It is important
to check that the parameters passed in are appropriate in dimensions, e.g. mu_beta_a and mu_beta_d
should each contain the same length as that of u, and the length of u should be equal to the row and
column dimensions of Vbeta_d and Vbeta_a_inv.

A table of assurance values is printed simply by calling assur_out$assurance_table, which
contains the exact assurance values corresponding to each sample size pair. The contour plot, shown
in Figure 4, is displayed using assur_out$contourplot, and offers a visual depiction of how the
assurance varies across unique combinations of n1 and n2. Areas with lighter shades denote higher
assurance levels. The next example implements the function in a real-world setting that offers more
sensible results.
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Figure 4: Contour map of assurance values with varying sample sizes n1 and n2.

R> library(bayesassurance)

R> n1 <- seq(20, 75, 5)
R> n2 <- seq(50, 160, 10)

R> assur_out <- bayes_sim_unbalanced(n1 = n1, n2 = n2, repeats = 1, u = c(1, -1),
C = 0, Xn = NULL, Vbeta_d = matrix(c(50, 0, 0, 10),nrow = 2, ncol = 2),
Vbeta_a_inv = matrix(rep(0, 4), nrow = 2, ncol = 2),
Vn = NULL, sigsq = 100, mu_beta_d = c(1.17, 1.25),
mu_beta_a = c(0, 0), alt = "two.sided", alpha = 0.05, mc_iter = 5000,
surface_plot = TRUE)

R> head(assur_out$assurance_table)
R> assur_out$contourplot

n1 n2 Assurance
1 20 50 0.9504
2 25 60 0.9584
3 30 70 0.9508
4 35 80 0.9616
5 40 90 0.9624
6 45 100 0.9634

Example 5: cost-effectiveness application

We revisit the cost-effectiveness problem discussed in Example 2. In addition to providing a 3-D
graphical display of the assurance, this example also demonstrates how the repeats parameter is
applied.

Recall from Example 2 that two distinct sets of efficacy and cost measures are used to compare the
cost-effectiveness of treatments 1 and 2. The efficacy and costs are denoted by µi and γi for i = 1, 2
treatments. Hence, the parameter we want to estimate contains four elements tied to the unknown
efficacy and costs of treatments 1 and 2, i.e. β = (µ1, γ1, µ2, γ2)

⊤. It was previously assumed that the
treatments contain an equal number of observations, suggesting that the sample sizes across each of
the four explanatory variables are also equal. Using bayes_sim_unbalanced offers the added flexibility
of constructing an unbalanced study design between treatments 1 and 2. Since the two treatments each
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contain two components to be measured, we use the repeats parameter to indicate that we want two
sets of sample sizes, c(n1,n2), passed in, i.e. c(n1,n2,n1,n2). It then becomes clear that our study
design consists of n1 observations for the efficacy and cost of treatment 1, and n2 observations for
those of treatment 2. Figure 5 displays a contour plot with a noticeable increasing trend of assurance
values across larger sets of sample sizes.

R> library(bayesassurance)
R> n1 <- c(4, 5, 15, 25, 30, 100, 200)
R> n2 <- c(8, 10, 20, 40, 50, 200, 250)

R> mu_beta_d <- as.matrix(c(5, 6000, 6.5, 7200))
R> mu_beta_a <- as.matrix(rep(0, 4))
R> K = 20000 # threshold unit cost
R> C <- 0
R> u <- as.matrix(c(-K, 1, K, -1))
R> sigsq <- 4.04^2
R> Vbeta_a_inv <- matrix(rep(0, 16), nrow = 4, ncol = 4)
R> Vbeta_d <- (1 / sigsq) * matrix(c(4, 0, 3, 0, 0, 10^7, 0, 0,
3, 0, 4, 0, 0, 0, 0, 10^7),nrow = 4, ncol = 4)

R> assur_out <- bayes_sim_unbalanced(n1 = n1, n2 = n2, repeats = 2,
u = as.matrix(c(-K, 1, K, -1)), C = 0, Xn = NULL,
Vbeta_d = Vbeta_d, Vbeta_a_inv = Vbeta_a_inv,
Vn = NULL, sigsq = 4.04^2,
mu_beta_d = as.matrix(c(5, 6000, 6.5, 7200)),
mu_beta_a = as.matrix(rep(0, 4)),
alt = "greater", alpha = 0.05, mc_iter = 5000,
surface_plot = TRUE)

R> assur_out$assurance_table
R> assur_out$contourplot

n1 n2 Assurance
1 4 8 0.1614
2 5 10 0.1724
3 15 20 0.3162
4 25 40 0.3942
5 30 50 0.4440
6 100 200 0.6184
7 200 250 0.7022

4 Bayesian assurance using other conditions

The bayesassurance R package contains several other assurance functions characterized by analysis
stage objectives that are dependent on fixed precision levels (Adcock, 1997) and posterior cred-
ible intervals (Pham-Gia, 1997). These functions are denoted respectively as bayes_adcock and
bayes_sim_betabin. The package also includes a bayes_goal_func function framed under a utility-
based setting (see, e.g., Raiffa and Schlaifer, 1961; Berger, 1985; Lindley, 1997; Müller and Parmigiani,
1995; Parmigiani, 2002; Inoue et al., 2005) that determines sample size in relation to the rate of correct
classification (Inoue et al., 2005). Since the simulation-based assurance functions all follow a similar
format, for the sake of brevity, we will not include detailed descriptions of them in this article. Vi-
gnettes outlining detailed descriptions and walkthrough tutorials can be found on our Github page
(https://github.com/jpan928/bayesassurance_rpackage), which contains examples that users can
easily follow along and reproduce on their own machines.

5 Visualization Features and Useful Tools

5.1 Overlapping power and assurance curves

To facilitate an understanding of the relationship held between Bayesian and frequentist power
analysis, the pwr_curves function produces a single plot displaying both power and assurance points.
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Figure 5: Contour map of assurance values in cost-effectiveness application.

Recall that the primary difference held between pwr_freq and assurance_nd_na is the need to specify
additional precision parameters, na and nd, in assurance_nd_na. Knowing that power and sample size
analysis in the frequentist setting is essentially a special case of the Bayesian assurance with precision
parameters tailored to weak analysis priors and strong design priors, the pwr_curves function serves
as a visualization tool in seeing how varying precision levels affect assurance values and how these
assurance values compare to those we would expect under classical/frequentist power analysis (strong
design priors, weak analysis priors).

The pwr_curves function takes the combined set of parameters presented in pwr_freq and assurance_nd_na,
which includes n,n_a,n_d,theta_0,theta_1,sigsq, and alpha. For further customization, users have
the option to include a third set of points in their plot along with the power and assurance curves. These
additional points would correspond to the simulated assurance results obtained using bayes_sim.
Optional parameters to implement this include

1. bayes_sim: logical that indicates whether the user wishes to include simulated assurance results
obtained from bayes_sim. Default setting is FALSE.

2. mc_iter: specifies the number of MC samples to evaluate given bayes_sim = TRUE.

The following code segment runs the pwr_curves function using a weak analysis stage prior (n_a is
set to be small) and a strong design stage prior (n_d is set to be large). Implementing this produces a
plot where the assurance points lay perfectly on top of the power curve as shown in Figure 6. The
simulated assurance points obtained from bayes_sim are also plotted as we set bayes_sim = TRUE.
These points are highlighted in blue, which lie very close in proximity to those of the exact assurance
points highlighted in red. We can also view individual tables of the three sets of points by directly
calling them from the saved outputs, e.g. out$power_table shows the individual frequentist power
values for each sample size. The output we provide shows the first ten rows.

R> library(bayesassurance)

R> out <- pwr_curve(n = seq(10, 200, 10), n_a = 1e-8, n_d = 1e+8,
sigsq = 0.104, theta_0 = 0.15,theta_1 = 0.25, alt = "greater", alpha = 0.05,
bayes_sim = TRUE, mc_iter = 5000)

R> head(out$power_table)
R> head(out$assurance_table)
R> out$plot

n Power
1 10 0.2532578
2 20 0.3981637
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Figure 6: Power curve with exact and simulated assurance points for weak analysis prior and strong
design prior.
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Figure 7: Power curve with exact and simulated assurance points for weak analysis and design priors.

3 30 0.5213579
4 40 0.6241155
5 50 0.7080824
6 60 0.7754956

n Assurance
1 10 0.2532578
2 20 0.3981637
3 30 0.5213579
4 40 0.6241155
5 50 0.7080824
6 60 0.7754956

The next code segment considers the scenario in which both analysis and design stage priors are
weak (n_a and n_d are set to be small). This special case shows how the assurance behaves when
vague priors are assigned. Substituting 0 in for both na and nd in Equation (3) results in a constant
assurance of Φ(0) = 0.5 regardless of the sample size and critical difference. Figure 7 illustrates these
results, where we have the regular power curve and the flat set of assurance points at 0.5 for both
exact and simulated cases.

R> library(bayesassurance)
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R> pwr_curve(n = seq(10, 200, 10), n_a = 1e-8, n_d = 1e-8,
sigsq = 0.104, theta_0 = 0.15,theta_1 = 0.25, alt = "greater", alpha = 0.05,
bayes_sim = TRUE, mc_iter = 5000)

5.2 Design matrix generators

In the last few sections, we go over design matrix generators that are used inside functions within
the bayesassurance package when the Xn parameter is set to NULL. We include these functions in case
users wish to see how design matrices are constructed under this particular setting.

Standard design matrix generator

The standard design matrix generator, gen_Xn, is relevant to a majority of the simulation-based
assurance functions discussed throughout the paper. It should be noted that all simulation-based
functions available in this package do not require users to specify their own design matrix Xn. Users
have the option of leaving Xn = NULL, which prompts the function to construct a default design matrix
using gen_Xn that complies with the general linear model yn = Xnβ + ϵ, ϵ ∼ N(0, σ2Vn). The function
runs in the background while bayes_sim is used.

When called directly, the gen_Xn function takes in a single parameter, n, which can either be a
scalar or vector. The length of n corresponds to the number of groups being assessed in the study
design as well as the column dimension of the design matrix, denoted as p. Therefore, in general, the
resulting design matrix is of dimension n × p. If a scalar value is specified for n, the resulting design
matrix carries a dimension of n × 1.

In the following example, we pass in a vector of length p = 4, which outputs a design matrix
of column dimension 4. Each column is comprised of ones vectors with lengths that align with the
sample sizes passed in for n. The row dimension is therefore the sum of all the entries in n. In this case,
since the values 1, 3, 5, and 8 are being passed in to n, the design matrix to be constructed carries a row
dimension of 1 + 3 + 5 + 8 = 17 and a column dimension of 4.

R> n <- c(1,3,5,8)
R> gen_Xn(n = n)

[,1] [,2] [,3] [,4]
[1,] 1 0 0 0
[2,] 0 1 0 0
[3,] 0 1 0 0
[4,] 0 1 0 0
[5,] 0 0 1 0
[6,] 0 0 1 0
[7,] 0 0 1 0
[8,] 0 0 1 0
[9,] 0 0 1 0

[10,] 0 0 0 1
[11,] 0 0 0 1
[12,] 0 0 0 1
[13,] 0 0 0 1
[14,] 0 0 0 1
[15,] 0 0 0 1
[16,] 0 0 0 1
[17,] 0 0 0 1

The bayes_sim function and its related family of functions generate design matrices using gen_Xn
in the following way. Each unique value contained in n that is passed into bayes_sim corresponds to a
distinct study design and thus requires a distinct design matrix. The gen_Xn function interprets each
ith component of n as a separate balanced study design comprised of ni participants within each of the
p groups, where p is a parameter specified in bayes_sim. For example, if we let Xn = NULL and pass in
n <-2, p <-4 for bayes_sim, gen_Xn will process the vector n <-c(2,2,2,2) in the background. Hence,
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we’d obtain an 8 × 4 matrix of the form

Xn =



1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1


.

Design matrix generator in longitudinal setting

Example 3 demonstrates how the linear model is extended to incorporate time-based covariates within
the context of a longitudinal setting. For this special case, a separate function is used to generate design
matrices that are appropriate for this setting. The genXn_longitudinal constructs its design matrices
differently than gen_Xn and therefore requires a different set of parameter specifications. When the
longitudinal parameter is set to TRUE in bayes_sim, the user is required to specify the following set
of parameters, which are directly passed into genXn_longitudinal:

1. ids: vector of unique subject ids, usually of length 2 for study design purposes

2. from: start time of repeated measures for each subject

3. to: end time of repeated measures for each subject

4. num_repeated_measures: desired length of the repeated measures sequence. Should be a non-
negative number, will be rounded up if fractional.

5. poly_degree: degree of polynomial in longitudinal model, set to 1 by default.

Referring back to the model that was constructed for the case involving two subjects, we observe
in Equation (9) that the design matrix contains vectors of ones within the first half of its column
dimension and lists the timepoints for each subject in the second half. Constructing this design matrix
requires several components. The user needs to specify subject IDs that are capable of uniquely
identifying each individual in the study. Next, the user needs to specify the start and end time as
well as the number of repeated measures reported for each subject. The number of repeated measures
denotes the number of evenly-spaced timepoints that take place in between the start and end time.
Since we are assuming a balanced longitudinal study design, each subject considers the same set
of timepoints. Finally, if the user wishes to consider time covariates of higher degrees, such as a
quadratic or cubic function, this can be altered using the poly_degree parameter, which takes on a
default assignment of 1.

In the following code, we pass in a vector of subject IDs and specify the start and end timepoints
along with the desired length of the sequence. The resulting design matrix contains vectors of ones
with lengths that correspond to the number of repeated measures for each unique subject.

R> ids <- c(1,2,3,4)
R> gen_Xn_longitudinal(ids, from = 1, to = 10, num_repeated_measures = 4)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] 1 0 0 0 1 0 0 0
[2,] 1 0 0 0 4 0 0 0
[3,] 1 0 0 0 7 0 0 0
[4,] 1 0 0 0 10 0 0 0
[5,] 0 1 0 0 0 1 0 0
[6,] 0 1 0 0 0 4 0 0
[7,] 0 1 0 0 0 7 0 0
[8,] 0 1 0 0 0 10 0 0
[9,] 0 0 1 0 0 0 1 0
[10,] 0 0 1 0 0 0 4 0
[11,] 0 0 1 0 0 0 7 0
[12,] 0 0 1 0 0 0 10 0
[13,] 0 0 0 1 0 0 0 1
[14,] 0 0 0 1 0 0 0 4
[15,] 0 0 0 1 0 0 0 7
[16,] 0 0 0 1 0 0 0 10
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The next code block modifies the previous example to incorporate a quadratic term. Notice there
are four additional columns being aggregated to the design matrix. These four columns are obtained
from squaring the four columns of the linear term.

R> ids <- c(1,2,3,4)
R> gen_Xn_longitudinal(ids, from = 1, to = 10, num_repeated_measures = 4,
poly_degree = 2)

1 2 3 4 1 2 3 4 1 2 3 4
[1,] 1 0 0 0 1 0 0 0 1 0 0 0
[2,] 1 0 0 0 4 0 0 0 16 0 0 0
[3,] 1 0 0 0 7 0 0 0 49 0 0 0
[4,] 1 0 0 0 10 0 0 0 100 0 0 0
[5,] 0 1 0 0 0 1 0 0 0 1 0 0
[6,] 0 1 0 0 0 4 0 0 0 16 0 0
[7,] 0 1 0 0 0 7 0 0 0 49 0 0
[8,] 0 1 0 0 0 10 0 0 0 100 0 0
[9,] 0 0 1 0 0 0 1 0 0 0 1 0
[10,] 0 0 1 0 0 0 4 0 0 0 16 0
[11,] 0 0 1 0 0 0 7 0 0 0 49 0
[12,] 0 0 1 0 0 0 10 0 0 0 100 0
[13,] 0 0 0 1 0 0 0 1 0 0 0 1
[14,] 0 0 0 1 0 0 0 4 0 0 0 16
[15,] 0 0 0 1 0 0 0 7 0 0 0 49
[16,] 0 0 0 1 0 0 0 10 0 0 0 100

6 Discussion

This article introduced bayesassurance, a new R package for computing Bayesian assurance under
various conditions using a two-stage framework. The goal of this package is to provide a convenient
and user-friendly interface to statisticians and data scientists who seek sample size calculations using
the assurance function in Bayesian data analysis. We have attempted to provide an organized, well-
documented open-source code that can be used to address a wide range of study design problems,
such as in the case of clinical trials, and demonstrate the feasibility of applying Bayesian methods to
such problems.
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fasano.franceschini.test: An
Implementation of a Multivariate KS Test
in R
by Connor Puritz, Elan Ness-Cohn, and Rosemary Braun

Abstract The Kolmogorov–Smirnov (KS) test is a nonparametric statistical test used to test for dif-
ferences between univariate probability distributions. The versatility of the KS test has made it a
cornerstone of statistical analysis across many scientific disciplines. However, the test proposed by
Kolmogorov and Smirnov does not easily extend to multivariate distributions. Here we present the
fasano.franceschini.test package, an R implementation of a multivariate two-sample KS test described
by Fasano and Franceschini (1987). The fasano.franceschini.test package provides a test that is compu-
tationally efficient, applicable to data of any dimension and type (continuous, discrete, or mixed), and
that performs competitively with similar R packages.

1 Introduction

The Kolmogorov–Smirnov (KS) test is a nonparametric, univariate statistical test designed to assess
whether a sample of data is consistent with a given probability distribution (or, in the two-sample case,
whether the two samples came from the same underlying distribution). First described by Kolmogorov
and Smirnov in a series of papers (Kolmogorov, 1933a,b; Smirnov, 1936, 1937, 1939, 1944, 1948), the KS
test is a popular goodness-of-fit test that has found use across a wide variety of scientific disciplines,
including neuroscience (Atasoy et al., 2017), climatology (Chiang et al., 2018), robotics (Hahne et al.,
2018), epidemiology (Wong and Collins, 2020), and cell biology (Kaczanowska et al., 2021).

Due to its popularity, several multivariate extensions of the KS test have been described in literature.
Justel et al. (1997) proposed a multivariate test based on Rosenblatt’s transformation, which reduces to
the KS test in the univariate case. While the test statistic is distribution-free, it is difficult to compute
in more than two dimensions, and an approximate test with reduced power must be used instead.
Furthermore, the test is only applicable in the one-sample case. Heuchenne and Mordant (2022)
proposed to use the Hilbert space-filling curve to define an ordering in R2. The preimage of both
samples is computed under the space-filling curve map, and the two-sample KS test is performed on
the preimages. While it is theoretically possible to extend this approach to higher dimensions, the
authors note that this would be computationally challenging and leave it as an open problem. Naaman
(2021) derived a multivariate extension of the DKW inequality and used it to provide estimates of the
tail properties of the asymptotic distribution of the KS test statistic in multiple dimensions. While an
important theoretical result, it is of limited practical use absent a method for computing exact p-values.

Peacock (1983) proposed a test which addresses the fact that there are multiple ways to order
points in higher dimensions, and thus multiple ways of defining a cumulative distribution function.
In one dimension, probability density can be integrated from left to right, resulting in the canonical
CDF P(X < x); or from right to left, resulting in the survival function P(X > x). However, since
P(X < x) = 1 − P(X > x) (for continuous random variables), the KS test statistic is independent
of this choice. In two dimensions, there are four ways of ordering points, and thus four possible
cumulative distribution functions: P(X < x, Y < y), P(X > x, Y < y), P(X < x, Y > y), and
P(X > x, Y > y). Since any three of these are independent of one another, the KS test statistic will not
be independent of which ordering is chosen. To address this, Peacock (1983) proposed to compute a
KS statistic using each possible cumulative distribution function, and to take the test statistic to be the
maximum of those.

Peacock (1983) suggested that for a sample (X1, Y1), . . . , (Xn, Yn), each of the four KS statistics
should be maximized over the set of all coordinate-wise combinations {(Xi, Yj) : 1 ≤ i, j ≤ n}. The
complexity of computing Peacock’s test statistic thus scales cubically with sample size, which is
expensive and can become intractable for large sample sizes. Fasano and Franceschini (1987) proposed
a simple change to Peacock’s test: instead of maximizing each KS statistic over all coordinate-wise
combinations of points in the sample, the statistics should be maximized over just the points in the
sample itself. This slight change greatly reduces the computational complexity of the test while
maintaining a similar power across a variety of alternatives (Fasano and Franceschini, 1987; Lopes
et al., 2007). Fasano and Franceschini (1987) proposed both a one-sample and two-sample version of
their test, although we focus on the two-sample test here.

In this article we present the fasano.franceschini.test package, an R implementation of the two-
sample Fasano–Franceschini test. Our implementation can be applied to continuous, discrete, or
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mixed datasets of any size and of any dimension. We first introduce the test by detailing how the test
statistic is computed, how it can be computed efficiently, and how p-values can be computed. We then
describe the package structure and provide several basic examples illustrating its usage. We conclude
by comparing the package to three other CRAN packages implementing multivariate two-sample
goodness-of-fit tests.

2 Fasano–Franceschini test

2.1 Two-sample test statistic

Let X = (X1, . . . , Xn1 ) and Y = (Y1, . . . , Yn2 ) be samples of i.i.d. d-dimensional random vectors
drawn from unknown distributions F1 and F2, respectively. The two-sample Fasano–Franceschini test
evaluates the null hypothesis

H0 : F1 = F2

against the alternative
H1 : F1 ̸= F2.

In their original paper, Fasano and Franceschini (1987) only considered two- and three-dimensional
random vectors, although their test naturally extends to arbitrary dimensions as follows.

For x ∈ Rd, we define the ith open orthant with origin x as

Oi(x) =
{

y ∈ Rd | eij(yj − xj) > 0, j = 1, . . . , d
}

where ei ∈ {−1, 1}d is a length d combination of ±1. For example, in two dimensions, the four
combinations e1 = (1, 1), e2 = (−1, 1), e3 = (−1,−1), and e4 = (1,−1) correspond to quadrants one
through four in the plane, respectively. In general there are 2d such combinations, corresponding to
the 2d orthants that divide Rd. Using the indicator function

Ij(x | y) =

{
1, x ∈ Oj(y)
0, x /∈ Oj(y)

we define

D(p |X, Y) = max
1≤j≤2d

∣∣∣∣∣ 1
n1

n1

∑
k=1

Ij (Xk | p)− 1
n2

n2

∑
k=1

Ij (Yk | p)

∣∣∣∣∣ . (1)

This is similar to the distance used in the two-sample KS test, but takes into account all possible ways
of ordering points in Rd. Note that this function does not depend on the enumeration of the orthants.
Maximizing D over each sample separately leads to the difference statistics

D1(X, Y) = max
1≤i≤n1

D(Xi |X, Y)

and
D2(X, Y) = max

1≤i≤n2

D(Yi |X, Y).

The two-sample Fasano–Franceschini test statistic, as originally defined by Fasano and Franceschini
(1987), is the average of the difference statistics scaled by the sample sizes:

D0(X, Y) =
√

n1n2
n1 + n2

(
D1(X, Y) + D2(X, Y)

2

)
. (2)

This test statistic is discrete, but in general is not integer-valued. Note that

n1n2D(p |X, Y) = max
1≤j≤2d

∣∣∣∣∣n2

n1

∑
k=1

Ij (Xk | p)− n1

n2

∑
k=1

Ij (Yk | p)

∣∣∣∣∣ ∈ Z,

and thus
n1n2Di(X, Y) ∈ Z, i ∈ {1, 2}.

Let
Cn1,n2 = 2

√
n1n2(n1 + n2).
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Then

Cn1,n2D0(X, Y) = 2
√

n1n2(n1 + n2)

√
n1n2

n1 + n2

(
D1(X, Y) + D2(X, Y)

2

)
= n1n2(D1(X, Y) + D2(X, Y)) ∈ Z.

To avoid comparing floating point numbers, it is preferable for the test statistic to be integer-valued,
and thus we use

D(X, Y) = Cn1,n2D0(X, Y) (3)

as our test statistic. As will be shown, the p-value of the test is independent of scalar rescaling of the
test statistic.

Figure 1: Illustration of the computation of the difference statistic D1 in two dimensions. Each point in
the first sample is used to divide the plane into four quadrants, and both samples are cumulated in
each of the four quadrants. The fraction of each sample in each quadrant is shown in the corresponding
plot corner, and the maximum difference over all four quadrants is shown above each plot. D1 is taken
as the maximum of these differences. To compute the test statistic, we would next compute D2 by
repeating the same procedure, but using points in the second sample to divide the plane instead.

2.2 Computational complexity

The bulk of the time required to compute the test statistic in (3) is spent evaluating sums of the form

∑
x∈S

Ij (x | y) ,

which count the number of points in a set S that lie in a given d-dimensional region. The simplest
approach to computing such sums is brute force, where every point x ∈ S is checked independently.
The orthant a point lies in can be determined using d binary checks, resulting in a time complexity of
O(N2), where N = max(n1, n2), to evaluate (3) for fixed d.

Alternatively, we can consider each sum as a single query rather than a sequence of independent
ones. Specifically, both sums in (1) are orthogonal range counting queries, which ask how many points
in a set S ⊂ Rd lie in an axis-aligned box (x1, x′1)× · · · × (xd, x′d). Range counting is an important
problem in the field of computational geometry, and as such a variety of data structures have been
described to provide efficient solutions (de Berg et al., 2008). One solution, first introduced by Bentley
(1979), is a multi-layer binary search tree termed a range tree. Other slightly more efficient data
structures have been proposed for range counting, but range trees are well suited for our purposes,
particularly because their construction scales easily to arbitrary dimensions (Bentley, 1979; de Berg
et al., 2008).

A range tree can be constructed on a set of n points in d-dimensional space using O(n logd−1 n)
space in O(n logd−1 n) time. The number of points that lie in an axis-aligned box can be reported
in O(logd n) time, and this time can be further reduced to O(logd−1 n) when d > 1 using fractional
cascading (de Berg et al., 2008). To compute (3), we construct one range tree for each of the two

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 162

samples, and then query each tree 2d times. Thus the total time complexity to compute the test statistic
using range trees for fixed d is O(N logd−1 N), where N = max(n1, n2).

Figure 2: Time to compute the Fasano–Franceschini test statistic as a function of sample size, comparing
the brute force and range tree methods for data of dimensions two through five. Points represent
the mean time of 200 evaluations. Samples are taken to be of the same size and are drawn from
multivariate standard normal distributions.

As the range tree method has a better asymptotic time complexity, we expect it to outperform the
brute force method for larger sample sizes. However, for smaller sample sizes, the cost of building the
range trees can outweigh the benefit gained by more efficient querying. As exact computation times
can vary depending on the geometry of the samples, it is not possible to determine in general when one
method will outperform the other. Despite this, we sought to establish rough benchmarks. Drawing
equal sized samples from multivariate standard normal distributions, we sought to determine the
sample size N∗ at which the range tree method becomes more efficient than the brute force method
(Figure 2). For d = 2, N∗ ≈ 25; for d = 3, N∗ ≈ 200; for d = 4, 5, and presumably all higher dimensions,
N∗ > 4000. Based on these benchmarking results, our package automatically selects which of the two
methods is likely faster based on the dimension and samples sizes of the supplied data. If users are
interested in performing more precise benchmarking for their specific dataset, the argument nPermute
can be set equal to 0, which bypasses the permutation test and only computes the test statistic.

2.3 Significance testing

To the best of our knowledge, no results have been published concerning the distribution of the
Fasano–Franceschini test statistic. Any analysis would likely be complicated by the fact that, unlike the
KS test statistic, the Fasano–Franceschini test statistic is not distribution free (Fasano and Franceschini,
1987). In their original paper, Fasano and Franceschini (1987) did not attempt any analytical analysis
and instead performed simulations to estimate critical values of their test statistic for various two-
and three-dimensional distributions. By fitting a curve to their results, Press et al. (2007) proposed an
explicit formula for p-values in the two-dimensional case. However, this formula is only approximate,
and its accuracy degrades as sample sizes decrease or the true p-value becomes large (greater than
0.2). While this would still allow a simple rejection decision at any common significance level, it
is sometimes useful to quantify large p-values more exactly (such as if one was to do a cross-study
concordance analysis comparing p-values between studies as in Ness-Cohn et al. 2020). Effort could
be made to improve this approximation, however it is still only valid in two dimensions, and thus an
alternative method would be needed in higher dimensions.

To ensure the broadest applicability of the test, we assess significance using a permutation test. Let
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Z = (Z1, . . . , ZN) be defined by

Zi =

{
Xi, 1 ≤ i ≤ n1

Yi−n1 , n1 + 1 ≤ i ≤ N

where N = n1 + n2. The test statistic in (3) can then be written as

D(Z) = D(X, Y).

Denote the symmetric group on {1, . . . , n} ⊂ N by Sn. For x = (x1, . . . , xn) and σ ∈ Sn, define

xσ = (xσ(1), . . . , xσ(n)).

Under the null hypothesis, X and Y were drawn from the same distribution, and thus the elements of
Z are exchangeable. We can therefore compute the permutation test p-value

p =
∑σ∈SN

I(D(Zσ) ≥ D(Z))
N!

(4)

where I denotes the indicator function (Hemerik and Goeman, 2018; Ramdas et al., 2022). As it is
generally infeasible to iterate over all N! permutations, we can instead consider for M ∈ N

pM =
1 + ∑M

m=1 I(D(Zσm ) ≥ D(Z))
1 + M

(5)

where σ1, . . . , σM are independent permutations drawn uniformly from SN . This p-value is valid, as
under the null hypothesis

P(pm ≤ α) ≤ α ∀α ∈ [0, 1].

Moreover, pM → p almost surely. These results hold for any sampling distributions (continuous,
discrete, or mixed) and any valid test statistic (Hemerik and Goeman, 2018; Ramdas et al., 2022).

Figure 3: Type I error rate of the test using pM and p′M as dimension increases. Samples are both of
size 10 and are drawn from standard multivariate normal distributions of the specified dimension.
The number of permutations used is 100, and the error rate is estimated using 105 replications.

Under certain conditions (see Proposition 2 of Hemerik and Goeman 2018), the permutation test
using the p-value pM is exact, which is to say that under the null hypothesis

P(pm ≤ α) = α ∀α ∈ [0, 1].

However, when there is a nonzero probability of ties in the test statistic, this test can be quite conserva-
tive (Hemerik and Goeman, 2018). In such cases, the test can be made exact by instead using

p′M =
∑M

m=1 I(D(Zσm ) > D(Z))
1 + M

+ U
1 + ∑M

m=1 I(D(Zσm ) = D(Z))
1 + M

, (6)

where U ∼ Unif(0, 1) (Hoeffding, 1952; Hemerik and Goeman, 2018). The fact that p′M is randomized is
not inherently problematic, since it is already randomized due to the selection of random permutations
(Hemerik and Goeman, 2018).

As the test statistic in (3) is discrete, ties are possible, and thus the test using pM is generally
conservative. In high dimensions, ties can become quite prevalent, leading the type I error rate to
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decrease dramatically (Figure 3). We thus use p′M as our p-value instead of pM. As a final remark, we
note that if the test statistic is scaled by a constant scalar, p′M remains unchanged since both indicator
functions are invariant under scalar rescaling of D. Therefore, the outcome of the test does not depend
on our choice to use the integer-valued test statistic D in (3) over Fasano and Franceschini’s original
test statistic D0 in (2).

3 Package overview

The fasano.franceschini.test package is written primarily in C++, and interfaces with R using Rcpp
(Eddelbuettel et al., 2022). The C++ range tree class (Weihs, 2020) was based on the description
in de Berg et al. (2008), including an implementation of fractional cascading. The permutation
test is parallelized using RcppParallel (Allaire et al., 2022). The package consists of one function,
fasano.franceschini.test, for performing the two-sample Fasano–Franceschini test. The arguments
of this function are described below.

• S1 and S2: the two samples to compare. Both should be either numeric matrix or data.frame
objects with the same number of columns.

• nPermute: the number of permutations to use for performing the permutation test. The default
is 100. If set equal to 0, the permutation test is bypassed and only the test statistic is computed.

• threads: the number of threads to use when performing the permutation test. The default
is one thread. This parameter can also be set to "auto", which uses the value returned by
RcppParallel::defaultNumThreads().

• seed: an optional seed for the pseudorandom number generator (PRNG) used during the
permutation test.

• verbose: whether to display a progress bar while performing the permutation test. The default
is TRUE. This functionality is only available when threads = 1.

• method: an optional character indicating which method to use to compute the test statistic.
The two methods are 'r' (range tree) and 'b' (brute force). Both methods return the same
results but may vary in computation speed. If this argument is not passed, the sample sizes and
dimension of the data are used to infer which method is likely faster.

The output is an object of the class htest, and consists of the following components:

• statistic: the value of the test statistic.

• p.value: the permutation test p-value.

• method: the name of the test (i.e. 'Fasano-Franceschini Test').

• data.name: the names of the original data objects.

4 Examples

Here we demonstrate the basic usage and features of the fasano.franceschini.test package. We begin
by loading the necessary libraries and setting a seed for reproducibility.

> library(fasano.franceschini.test)
> library(MASS)
> set.seed(0)

Note that to produce reproducible results, we need to set two seeds: the set.seed function sets
the seed in R, ensuring we draw reproducible samples; and the seed passed as an argument to
the fasano.franceschini.test function sets the seed for the C++ PRNG, ensuring we compute
reproducible p-values.

As a first example, we draw two samples from the bivariate standard normal distribution. The
Fasano–Franceschini test fails to reject the null hypothesis — that the samples were drawn from the
same distribution — at an α = 0.05 significance level.

> S1 <- mvrnorm(n = 50, mu = c(0, 0), Sigma = diag(2))
> S2 <- mvrnorm(n = 75, mu = c(0, 0), Sigma = diag(2))
> fasano.franceschini.test(S1, S2, seed = 1, verbose = FALSE)

Fasano-Franceschini Test
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data: S1 and S2
D = 1425, p-value = 0.4653

We next draw two samples from bivariate normal distributions with identical covariance matrices
but different locations. The test rejects the null hypothesis at an α = 0.05 significance level.

> S3 <- mvrnorm(n = 40, mu = c(0, 0), Sigma = diag(2))
> S4 <- mvrnorm(n = 42, mu = c(1, 1), Sigma = diag(2))
> fasano.franceschini.test(S3, S4, seed = 2, verbose = FALSE)

Fasano-Franceschini Test

data: S3 and S4
D = 1932, p-value = 0.001832

The test can take a while to run when the sample sizes or the dimension of the data are large, in
which case it is useful to use multiple threads to speed up computation.

> S5 <- mvrnorm(n = 1000, mu = c(1, 3, 5), Sigma = diag(3) + 1)
> S6 <- mvrnorm(n = 600, mu = c(1, 3, 5), Sigma = diag(3))
> fasano.franceschini.test(S5, S6, seed = 3, threads = 4)

Fasano-Franceschini Test

data: S5 and S6
D = 263800, p-value = 0.0007002

Note that the number of threads used does not affect the results. In particular, as long as the same
seed is used, the same p-value is returned for any number of threads.

> fasano.franceschini.test(S5, S6, seed = 3, threads = 1)

Fasano-Franceschini Test

data: S5 and S6
D = 263800, p-value = 0.0007002

5 Comparison with other R packages

In this section, we compare the fasano.franceschini.test package with three other CRAN packages
that perform multivariate two-sample goodness-of-fit tests.

5.1 Peacock.test

The Peacock.test package (Xiao, 2016) provides functions to compute Peacock’s test statistic (Peacock,
1983) in two and three dimensions. As no function is provided to compute p-values, we cannot
directly compare the performance of this package with the fasano.franceschini.test package. However,
a treatment of the power of both Peacock and Fasano–Franceschini tests can be found in both the
primary literature (Peacock, 1983; Fasano and Franceschini, 1987) and in a subsequent benchmarking
paper (Lopes et al., 2007), which found that the two tests have similar power across a variety of
alternatives.

5.2 cramer

The cramer package (Franz, 2019) implements the two-sample test described in Baringhaus and Franz
(2004), which the authors refer to as the Cramér test. The Cramér test statistic is based on the Euclidean
inter-point distances between the two samples, and is given by

Tm,n =
mn

m + n

 2
mn

m

∑
i=1

n

∑
j=1

ϕ

(∥∥∥Xi − Yj

∥∥∥2

2

)
− 1

m2

m

∑
i,j=1

ϕ

(∥∥∥Xi − Xj

∥∥∥2

2

)
− 1

n2

n

∑
i,j=1

ϕ

(∥∥∥Yi − Yj

∥∥∥2

2

)
for samples X1, . . . , Xm and Y1, . . . , Yn. The default kernel function is ϕ(x) =

√
x/2, although several

other choices are implemented (see the documentation for more details). Several randomization
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methods are provided to compute p-values, including bootstrapping (the default) and a permutation
test.

5.3 diproperm

The diproperm package (Allmon et al., 2021) implements the DiProPerm test introduced by Wei et al.
(2016). A binary linear classifier is first trained to determine a separating hyperplane between the two
samples. The data are then projected onto the normal vector to the hyperplane, and the test statistic is
taken to be a univariate statistic of the projected data (by default the absolute difference of means). As
in the fasano.franceschini.test package, significance is determined using a permutation test.

5.4 Power comparison

To compare the fasano.franceschini.test package with the cramer and diproperm packages, we
performed power analyses using three classes of alternatives: location alternatives, where the means
of the marginals are varied; dispersion alternatives, where the variances of the marginals are varied;
and copula alternatives, where the marginals remain fixed but the copula joining them is varied.

Figure 4: Visualization of the distributions used in power analyses. Each plot shows two samples
consisting of 10000 points each. The first sample S1 is shown in blue, and the second sample S2 is
shown in red. (a) S1 ∼ N2(0, I2) and S2 ∼ N2(0.4, I2). (b) S1 ∼ N2(0, I2) and S2 ∼ N2(0, I2 + 1.5). (c)
S1 ∼ G2(0) and S2 ∼ G2(0.6). (d) S1 ∼ C2(1) and S2 ∼ C2(8).

For location and dispersion alternatives, we used multivariate normal distributions. We denote the
d-dimensional normal distribution with mean µ ∈ Rd and covariance matrix Σ ∈ Rd×d by Nd(µ, Σ),
and sample from it using the MASS package (Ripley, 2021). The d × d identity matrix, which is
sometimes used as a covariance matrix, is denoted by Id. For copula alternatives, we consider the
Gaussian copula with correlation matrix

[P(ρ)]ij =

{
ρ, i ̸= j
1, i = j

and the Clayton copula with parameter θ ∈ [−1, ∞) \ {0}. We denote the d-dimensional distribution
with standard normal marginals joined by a Gaussian copula with correlation matrix P(ρ) by Gd(ρ).
We denote the d-dimensional distribution with standard normal marginals joined by a Clayton copula
with parameter θ by Cd(θ). Both distributions are sampled from using the copula package (Hofert
et al., 2022). Examples of distributions in each of these four families are shown in Figure 4.
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In the following analyses, power was approximated using 1000 replications, a significance level of
α = 0.05 was used, all samples were of size 40, and all R functions implementing tests were called
using their default arguments. Although we aimed to cover a wide range of distributions in this
analysis, absent any theoretical results concerning these three tests, we cannot guarantee that the
results here are generalizable to different sampling distributions or sample sizes.

Figure 5: Comparison of power of the Fasano–Franceschini, Cramér, and DiProPerm tests on various
bivariate alternatives. (a) Location alternatives, with S1 ∼ N2(0, I2) and S2 ∼ N2(µ, I2). (b) Dispersion
alternatives, with S1 ∼ N2(0, I2) and S2 ∼ N2(0, I2 + ε). (c) Gaussian copula alternatives, with
S1 ∼ G2(0) and S2 ∼ G2(ρ). (d) Clayton copula alternatives, with S1 ∼ C2(1) and S2 ∼ C2(θ).

We first examined the power of the tests on various bivariate alternatives (Figure 5). All three
tests had similar power across location alternatives, although the Cramér and DiProPerm tests did
outperform the Fasano–Franceschini test. Across dispersion alternatives, the Cramér and Fasano–
Franceschini tests had very similar powers. On Gaussian copula alternatives, the Fasano–Franceschini
test had a consistently higher power than the Cramér test. This was also the case with Clayton copula
alternatives, although none of the tests were able to achieve high power. The DiProPerm test was
unable to achieve a power above the significance level of α = 0.05 on any of the dispersion or copula
alternatives. This is likely due to the fact that in these instances, there is significant overlap between
the high density regions of the two sampling distributions, making it difficult to find a separating
hyperplane between samples drawn from them.

We next examined how the power of the three tests varied when the two sampling distributions
were kept fixed but the dimension of the data increased (Figure 6). On the location alternative, the
Cramér and DiProPerm tests again outperformed the Fasano–Franceschini test. In particular, for d > 5,
the Fasano–Franceschini steadily lost power as the dimension increased whereas the other tests gained
power. On the dispersion alternative, the Cramér and Fasano–Franceschini tests had nearly identical
powers through to d = 5, but for higher dimensions the Cramér test consistently outperformed the
Fasano–Franceschini test. On the other hand, for both the Gaussian and Clayton copula alternatives
the Fasano–Franceschini test had a much higher power than the Cramér test. The DiProPerm test was
still unable to attain a power above the significance level on the dispersion alternatives or either of the
copula alternatives.

Overall, the Cramér and DiProPerm tests performed better than the Fasano–Franceschini test
on location alternatives, especially as dimension increased. On dispersion alternatives, the Fasano–
Franceschini and Cramér tests had comparable performance for low dimensions, but the Cramér test
maintained a higher power for high dimensions. However, in these cases the marginal distributions
differ, and thus a multivariate test is not strictly necessary as univariate tests could be applied to
the marginals independently (with a multiple testing correction) to detect differences between the
multivariate distributions. On copula alternatives, where a multivariate test is necessary, the Fasano–
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Figure 6: Comparison of power of the Fasano–Franceschini, Cramér, and DiProPerm tests on fixed
alternatives as the dimension of the data increases. (a) Location alternative, with S1 ∼ Nd(0, Id)
and S2 ∼ Nd(0.4, Id). (b) Dispersion alternative, with S1 ∼ Nd(0, Id) and S2 ∼ Nd(0, Id + 1.5). (c)
Gaussian copula alternative, with S1 ∼ Gd(0) and S2 ∼ Gd(0.6). (d) Clayton copula alternative, with
S1 ∼ Cd(1) and S2 ∼ Cd(8).

Franceschini test consistently outperformed both the Cramér and DiProPerm tests. Thus while the
Fasano–Franceschini did not achieve the highest power in every case, we believe it to be the best
choice as a general purpose multivariate two-sample goodness-of-fit test.

6 Summary

This paper introduces the fasano.franceschini.test package, an R implementation of the multivariate
two-sample goodness-of-fit test described by Fasano and Franceschini (1987). We provide users
with a computationally efficient test that is applicable to data of any dimension and of any type
(continuous, discrete, or mixed), and that demonstrates competitive performance with similar R
packages. Complete package documentation and source code are available via the Comprehensive
R Archive Network (CRAN) at https://cran.r-project.org/web/packages/fasano.franceschini.
test and the package website at https://braunlab-nu.github.io/fasano.franceschini.test.

7 Computational details

The results in this paper were obtained using R 4.2.0 with the packages fasano.franceschini.test 2.2.1,
diproperm 0.2.0, cramer 0.9-3, MASS 7.3-60, copula 1.1-2, and microbenchmark 1.4.10 (Mersmann,
2023). Plots were generated using ggplot2 3.4.2 (Wickham et al., 2023) and patchwork 1.1.1 (Ped-
ersen, 2020). All computations were done using the Quest high performance computing facility at
Northwestern University.
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Bayesian Inference for Multivariate
Spatial Models with INLA
by Francisco Palmí-Perales, Virgilio Gómez-Rubio, Roger S. Bivand, Michela Cameletti, and Håvard
Rue

Abstract Bayesian methods and software for spatial data analysis are well-established now in the
broader scientific community generally and in the spatial data analysis community specifically. Despite
the wide application of spatial models, the analysis of multivariate spatial data using the integrated
nested Laplace approximation through its R package (R-INLA) has not been widely described in the
existing literature. Therefore, the main objective of this article is to demonstrate that R-INLA is a
convenient toolbox to analyse different types of multivariate spatial datasets. This will be illustrated
by analysing three datasets which are publicly available. Furthermore, the details and the R code
of these analyses are provided to exemplify how to fit models to multivariate spatial datasets with
R-INLA.

1 Introduction

In recent times, spatial data analysis has increased in popularity due to the widespread availability
of different types of geo-referenced data. Spatial models will exploit the geographical information
in the data so that spatial dependence is exploited, among other things, to build better predictive
models. There is also a growing interest (and application) of multivariate models as often spatial
data incorporates multiple variables. For instance, healthcare, econometrics, climate and other fields
require multivariate models. One of the main advantages of multivariate models is their ability to find
similar spatial patterns in the different response variables. This is the main motivation of this work.

Analysing spatial data poses a number of methodological and computational challenges. In this
regard, Bayesian inferece has been particularly successfull as it has provided data analysts with both a
modelling framework and estimation methods for spatial data analysis (see, for example, Banerjee
et al., 2014). Bayesian inference for spatial models has often relied upon Markov Chain Monte Carlo
(MCMC, Gilks et al., 1995) algorithms, which provide samples from the joint posterior distribution of
the model parameters. However flexible, MCMC algorithms have proved slow when dealing with
large datasets or highly parameterized models.

For this reason, the integrated nested Laplace approximation (INLA, Rue et al., 2009) has become
an alternative approach to fit Bayesian hierarchical models. The advantage of INLA is its ability to
approximate the marginal posterior distribution of the different hyperparameters and latent effects
of a model that could be parametrised as a latent Gaussian model (Rue and Held, 2005) in less time
than MCMC algorithms. This methodology has been implemented in the INLA R package. To avoid
confusion between the INLA methodology and the INLA R package, we refer to the package as
R-INLA (Rue et al., 2020).

The different spatial models which can be fit with R-INLA have been summarised by several
authors (Lindgren et al., 2015; Blangiardo and Cameletti, 2015; Bakka et al., 2018). For a recent review,
the reader is referred to Chapter 7 of Gómez-Rubio (2020). Krainski et al. (2019) provide an exhaustive
tutorial about how to fit advanced spatial models in R-INLA using the stochastic partial differential
equation approach (SPDE, Lindgren et al., 2011) to estimate continuous processes. Additionally, INLA
can be combined with other algorithms such as Markov Chain Monte Carlo (MCMC, Gilks et al.,
1995) techniques in order to fit models which can not be fit solely with INLA (Gómez-Rubio and
Palmí-Perales, 2019).

Therefore, the main objective of this article is to describe how to analyse any multivariate spatial
dataset using R-INLA in a Bayesian framework. Multivariate spatial models have been studied by
several authors. For example, Van Lieshout and Baddeley (1999) describe dependence between multi-
variate point patterns by proposing novel summary statistics. Additionally, multivariate log-Gaussian
Cox processes have been used to analyse multivariate point patterns (Diggle et al., 2013; Waagepetersen
et al., 2016; Gómez-Rubio et al., 2015). Furthermore, several studies have been published for analysing
multivariate lattice data. For example, in MacNab (2018) an insight into the generalization of uni-
variate models to multivariate models is extensively discussed and in Martínez-Beneito et al. (2017)
a framework to analyse multiple response variables is proposed in the context of disease mapping.
A review of the multivariate spatial models in disease mapping is performed in Martínez-Beneito
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and Botella-Rocamora (2019). These works rely on MCMC methods to develop their examples. In the
context of spatial modeling, these methods can lead to a high computational burden.

The R programming (R Core Team, 2022) language offers a wide range of standalone packages for
analysing spatial datasets. Several of them focus on a particular type of spatial data. For instance, point
pattern analysis can be performed with spatstat (Baddeley et al., 2015) and spatialkernel (Gómez-
Rubio et al., 2017). Geostatistical data can be modeled using gstat (Pebesma and Wesseling, 1998;
Pebesma, 2004) or spBayes (Finley et al., 2007, 2015). Other R packages such as CARBayes (Lee, 2013)
are designed to analyse lattice data.

The remainder of the manuscript is organised as follows. First, a short introduction to the INLA
methodology and how the R-INLA package fits models to multivariate data is provided. Next, a
brief description of the different multivariate models is detailed in the case of areal, continuous and
point pattern data in three different sections. Each of these sections discusses the models to be fit,
including the prior distribution choice and the structure of the data, and includes an example on how
to analyse multivariate spatial data with R-INLA. Finally, a brief summary of the conclusions of this
work appears in the last part of this manuscript.

2 Integrated nested Laplace approximation

Bayesian inference has been usually performed with MCMC. However, these methods have a high
computational cost in a spatial modelling context, mainly because of the simulation-based approach
they use to estimate the large number of latent effects present in spatial models. A good alternative is
the integrated nested Laplace approximation (INLA, Rue et al., 2009) as it is is able to accurately and
efficiently approximate posterior distributions of high-dimensional models in a short computing time.

The INLA methodology focuses on the analysis of latent Gaussian models (Rue and Held, 2005).
In essence, a latent Gaussian model is a Bayesian hierarchical model in which the mean parameter
of the likelihood is linked to a linear predictor composed of different additive latent effects; the
distribution of the vector of latent effects follows a multivariate Gaussian distribution (more details
can be found in, for example, Chapter 2 of Rue and Held, 2005). Latent Gaussian models comprise
a large group of statistical models such as many spatial and spatio-temporal models. The R-INLA
package implements the INLA method in a flexible way, so that models with a number of latent effects
can be fit. Additionally, INLA can be combined with other algorithms in order to fit other models
(Gómez-Rubio and Palmí-Perales, 2019).

Gaussian Markov random fields (GMRF) with sparse precision matrices can be used to approxi-
mate Gaussian latent fields due to their conditional independence properties. The sparse precision
matrices allow computationally efficient methods (Rue and Held, 2005). This is the reason of the low
computational costs of INLA which is one of its main benefits. More details about how to implement
Bayesian inference with INLA can be found in (Gómez-Rubio, 2020).

Model fitting with R-INLA is done via the inla() function, which works like the glm() and gam()
functions. The model to fit is defined using a formula (that may include different types of random
effects in the right-hand side). For example, to fit a Poisson regression with response variable y and
covariate x, both in data frame d, the code is:

inla(y ~ x, family = "poisson", data = d)

The output includes the posterior marginal distribution of the model parameters, as well as
summmary statistics computed from these distributions. In its example, default priors have been used,
but R-INLA can work with a good number of prior distributions.

In the previous example, y represents the vector of observations of a single variable. However,
INLA can deal with multivariate responses so that they can be analyzed jointly. Fitting models with
a multivariate responses requires the storage of variables in a particular format. Let us consider the
simplest scenario in which a dataset with D variables have been measured in a study region divided
into n areas. In order to analyse this dataset with R-INLA, a matrix with D columns and D × n rows
has to be built. Specifically, this matrix will store the n values of the first variable in the first column,
from the first to the n-th row, then the following values of this column will be NA. Then, the data of the
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second variable would be placed in the second column between the n + 1 and the 2n rows. The rest of
the values of the second column will be filled with NA’s. Data for other variables will be added to the
matrix accordingly.

As a toy example, we will take n = 2 and D = 3, so that the original dataset is structured as a 2 × 3
matrix given by [

1 4 3
2 6 5

]
.

Following the above procedure, the matrix that should be passed to R-INLA would be the
following: 

1 NA NA
2 NA NA
NA 4 NA
NA 6 NA
NA NA 3
NA NA 5

 .

This data format must be used in the case of the multivariate response but also for multivariate
covariates. In particular, multivariate covariates will be included in the model so that values in a
particular column only affect values in the same column of the response, i.e., the model will include
a specific coefficient for each variable in the response. In the R code provided together with this
paper (as a supplementary material), we have provided function create_multivariate_data() that
will take a matrix or several vectors of data and create the appropriate matrix for R-INLA. When the
covariate is expected to have the same effect for all the response variables (i.e., the coefficient will be
the same), a single vector with the values of the covariates will be used. This is better explained in the
examples that follow.

3 Multivariate Lattice Data

Areal (or lattice) data are obtained when the spatial data are observed on regions with defined
boundaries. In this case, the domain is divided into (non-overlapping) areas in which the data are
collected. It is usually considered that two areas are neighbours if they share a common boundary.
This adjacency structure is often included to account for spatial autocorrelation (Banerjee et al., 2014).

When the values of several variables are recorded in each area the resulting data become a
multivariate lattice dataset. The joint analysis of the spatial distribution of several variables allows
to detect similar (spatial) patterns among some of these variables (Banerjee et al., 2014, Chapter 10)
while estimating the spatial effects. We will illustrate the analysis of this type of data using a Poisson
regression model, which is commonly employed in spatial epidemiology to analyse count data. Other
similar models can be proposed for binary or continuous outcomes.

Given the d-th variable of interest (with d = 1, . . . , D) and area i (with i = 1, . . . , n), the response of
interest Yd,i can be modeled using a Poisson distribution with mean µd,i:

Yd,i ∼ Po(µd,i).

The mean is usually modeled as a linear predictor made up of several terms and transformed via a
convenient link function. The choice of these terms depends on the available data and the analyst’s
understanding of the data generating process. For instance, one option can be described as

ψ(µd,i) = αd + ui + vd,i.

Here, ψ(·) is a link function (e.g., natural logartihm), αd is a variable-specific intercept, ui a shared
(between all or a group of variables) spatial term, and vd,i a variable-specific random effect. Note that
restrictions may be required on vd,i to make all effects identifiable (Rue and Held, 2005).

In the context of disease mapping, the usual variables of interest are the counts of mortality or
incidence of different diseases over the study region. Now d represents the specific disease, therefore,
following the above structure, the observed number of cases of disease d in area i, Yd,i, can be modeled
as
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Yd,i ∼ Po(µd,i = Ed,i · θd,i)

log(θd,i) = αd + ui + vd,i

where Ed,i and θd,i are the expected number of cases and the relative risk of disease d in area i,
respectively. As before, αd is a disease specific intercept (to account for differences in the total number
of observed cases), ui a shared spatial term (which does not depend on the disease) and vd,i a disease-
specific spatial random effect.

In the case of multivariate lattice data, a prior distribution should be assigned to the dispersion
parameter of each spatial effect. Some authors have discussed the most appropriate vague prior
distributions in these cases. For instance, Gelman (2006) suggests to avoid inverse Gamma distributions
on the precision and propose some alternatives. In this example, flat uniform prior distributions are
assigned to the standard deviation parameters (see Section 5.3 in Gómez-Rubio, 2020).

Several authors (see, for example, Martínez-Beneito, 2013, and the references therein) have pro-
posed different approaches for modelling multiple diseases in space and time. Gómez-Rubio et al.
(2019) propose a separable spatio-temporal model with weighted shared components that can be used
to detect diseases with similar patterns. In Palmí-Perales et al. (2021), the authors have developed
an R package (INLAMSM) which builds on top of R-INLA to provide some of the most common
multivariate model for lattice data.

3.1 Example: spatial analysis of several diseases

Gómez-Rubio and Palmí-Perales (2019) study the variation of spatial risk of three types of cancer in
peninsular Spain. In particular, they consider oral cavity, esophagus and stomach cancer, all at the
province level. In order to assess similar spatial variation that may lead to the identification of shared
risk factors, models with shared and disease specific spatial patterns can be proposed.

Data are available in a RData file available from GitHub at https://github.com/becarioprecario/
INLAMCMC_spatial_examples (see Gómez-Rubio and Palmí-Perales, 2019, for details). The following
code creates the response variable (by stacking the three vectors of observed cases) as well as the
expected counts. Note that due to the different structure of the variables involved, data are stored in a
list object instead of a data.frame. Function create_multivariate_data() used below is available
in the code provided as supplementary material.

# Load data
load("dismap_sim_data.RData")

# Set shorter names
names(OyE.sim)[1:6] <- c("Obs.Cb", "Esp.Cb", "Obs.Eso", "Esp.Eso", "Obs.Est", "Esp.Est")

# Create a dataset for INLA (n x 3)
n <- nrow(OyE.sim)

d <- list(OBS =
create_multivariate_data(as.data.frame(OyE.sim)[, c("Obs.Cb", "Obs.Eso", "Obs.Est")])

)

# Expected cases
d$EXP <- c(OyE.sim$Esp.Cb, OyE.sim$Esp.Eso, OyE.sim$Esp.Est)

As an example, we will consider a model in which the log-relative risk of oral cavity cancer (θo,i) is
modeled as the sum of an intercept (αo), and a shared spatial term (ui). An intrinsic conditional auto-
regressive (ICAR, Banerjee et al., 2014) is assigned to this shared term following the model described
for areal (or lattice) data in the previous section. Furthermore, log-relative risks of esophagus (θe,i) and
stomach cancer (θs,i) are modeled using disease-specific intercepts (αe and αs, respectively) plus the
shared spatial term and cancer-specific ICAR spatial terms (ve,i and vs,i, respectively). Specifically, the
relative risks are defined as follows:
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log(θo,i) = αo + ui

log(θe,i) = αe + ui + ve,i

log(θs,i) = αs + ui + vs,i i = 1, . . . , n

The disease-specific spatial terms can be used to assess departures from the shared spatial term.
The chosen prior distributions for the standard deviation of all the effects are improper flat uniform
distributions.

The model formula is defined in the model below. The rf term represents the disease-specific
intercepts (the value of the above αs ). Latent effects of type copy (see, for example, Section 6.5.1 in
Gómez-Rubio, 2020) are used to define shared terms ui in the model. Furthermore, spatial latent effects
have the uniform prior for their standard deviation defined in object prior.prec.

# Formulas for the model
form <- OBS ~ -1 + rf +
f(copy1, model = "besag", graph = W, hyper = list(prec = prior.prec)) +
f(copy2, copy = "copy1", fixed = TRUE) +
f(copy3, copy = "copy1", fixed = TRUE) +
f(spatial2, model = "besag", graph = W, hyper = list(prec = prior.prec)) +
f(spatial3, model = "besag", graph = W, hyper = list(prec = prior.prec))

Finally the model is fit with R-INLA using the code below. Note how the family argument takes a
vector of three elements as this likelihood has three components (one for each disease).

res <- inla(formula = form, data = d, family = rep("poisson", 3), E = d$EXP)

Figure 1 shows the different spatial terms in the model. The shared term represents the spatial
variation in the risk of oral cavity cancer and also serves as a baseline for the other types of cancer. The
esophagus-specific spatial term is quite mild, which indicates that these two types of cancer have a
very similar spatial pattern. The stomach-specific spatial term shows that some provinces in the center
of the country have a higher mortality from stomach cancer as compared to oral cavity/esophagus
cancer.

Figure 1: Posterior means of the shared spatial pattern (left), the esophagus-specific spatial pattern
(middle) and stomach-specific spatial pattern (right).

4 Multivariate Continuous Data

Datasets for variables that vary continuously in space contain observations which are geographically
referenced, i.e., both the value and where it is collected (e.g., the coordinates) appear in the dataset.
Then, the spatial variation of the different variables is estimated using geostatistical models.

Similarly to lattice data, geostatistical multivariate models can be fit with R-INLA by sharing
common terms. Therefore, the first variable can be modelled so that the mean includes a shared spatial
term assumed to be a Gaussian process with a covariance defined using a Matérn function, and all the
other variables can depend on this shared spatial term plus specific spatial effects. Hence, for example,
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D variables of interest (Yd for d = 0, . . . , D − 1), with a general likelihood function P(·), measured at n
different locations can be written as:

Yi,d ∼ P(µi,d).

Then, the mean of the baseline variable (µi,0) will be modelled as a sum of an intercept (α0) and a
shared spatial effect (ui,0). Furthermore, the mean of observation i and variable d (µi,d) will be modeled
through an intercept for each variable (αd), the shared spatial effect (ui,0) and a specific spatial effect
(ui,d) as follows:

µi,0 =α0 + ui,0; i = 1, . . . , n
µi,d =αk + ui,0 + ui,d i = 1, . . . , n; d = 1, . . . , D − 1

Here, ui,0 represents the shared (between variables) spatial term, while ui,d (d ≥ 1) represents specific
terms that can be used to assess departures from the shared spatial term. These random effect terms
are assumed to be Gaussian processes with covariance defined using a Matérn covariance function,
which for a generic spatial random effect u(s) is defined as:

Cov(up, ul) = Cov(u(sp), u(sl)) =
σ2

Γ(λ)2λ−1 (κ∥sp − sl∥)λKλ(κ∥sp − sl∥),

where ∥sp − sl∥ represents the Euclidean distance between points sp and sl , σ2 is the marginal variance
of the latent Gaussian process, κ is the scaling parameter, which is related to the range, Kλ represents the
modified Bessel function of the second kind, and λ is the order term, which measures the smoothness
of the process. Furthermore, this latent Gaussian field u(s) can be approximated using the stochastic
partial differential equation (SPDE) approach described in Lindgren et al. (2011). This approach relies
on expressing the random effect u(s) as the solution of an SPDE which is approximated through (an
appropriate choice of) deterministic basis functions defined in a triangulation of the domain:

u(s) =
m

∑
k=1

ϕk(s)wk.

Here, ϕk(s) are the basis functions (pairwise linear functions), m is the total number of nodes (triangle
vertices) and wk are zero-mean Gaussian distributed weights. For more details, the reader is referred
to Lindgren et al. (2011).

In this example, all the measurements of the different variables are obtained from the same n
locations. However, the measurements of each variable can be from different locations of the study
region. Furthermore, INLA is not able to estimate any cross-covariance using the proposed model
as dependence among the variables relies on the shared spatial term. A multivariate geostatistical
analysis can be performed using the R package gstat. However, the models implemented in this R
package are based on a classic and frequentist statistical approach.

Regarding the priors, the SPDE approximation requires setting a prior distribution to the nominal
range, r, and the nominal standard deviation, σ. The nominal range is the distance at which the
correlation is 0.1. Penalized complexity prior distributions (PC-priors, Simpson et al., 2017) can be
chosen for both parameters. In a nutshell, PC-priors are based on the idea of penalising the complexity
from a simple baseline model (that is, a model in which the parameter has been fixed to a particular
reference value), i.e., the prior density is related to the distance from a baseline model. A remarkable
benefit of the PC-priors are their high intuitiveness in their definition as they are set by stating values
for the probabilities of the parameters, in particular, P(r < r0) and P(σ > σ0) for certain values of r0
and σ0.

The prior on the range is set such that r is lower than half the maximum distance (dm) between
any two points in the study region, with high probability, i.e., P(r < dm/2) ≈ 1. As for the standard
deviation, following the example of Sørbye et al. (2019) we set an upper limit Uα such that σ is less
that this limit with high probability. Therefore, the probability that the standard deviation is greater
than this upper limit (P(σ > Uα)) is set to be almost 0.

4.1 Example: spatial distribution of heavy metals

The meuse dataset in the gstat package gives the locations and measurements of topsoil heavy metals
collected in a flood plain by the Meuse river close to the village of Stein (located in Netherlands). After
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loading the gstat package, the data can be loaded using the following code:

# Load the data
data(meuse)

# Create the spatial object
coordinates(meuse) <- ~ x + y
proj4string(meuse) <- CRS("+init=epsg:28992")

These measurements are highly correlated and we will explore in this example how to fit geosta-
tistical models with the SPDE approach. Note that observations do not need to be in a regular grid.
Instead of a grid, a mesh is defined to apply the SPDE approach. The boundary of the study region
is stored in object meuse.bdy (see accompanying code). The definition of the mesh is done using the
coordinates of the boundary of the area following the code below:

# Create the mesh
mesh <- inla.mesh.2d(boundary = meuse.bdy, loc = coordinates(meuse),
max.edge = c(250, 500), offset = c(250, 500), n = c(32, 32))

The left plot in Figure 2 shows the mesh built with the above code for this example.

Figure 2: Mesh used in the estimation of the concentration of heavy metals around river Meuse, only
with the boundary of the study region (left) and jointly with the survey locations (right).

In particular, the model will consider concentrations of lead and zinc. Concentrations have been
measured at diferent locations which are displayed in the right plot in Figure 2. However, data on
the concentrations of other metals is also available within the same dataset. Then, a model with
all the metal concentrations could be handled following a similar structure. Values (in the original
dataset) are considered in the log-scale. These log-transformed concentrations (log(yl) and log(yz),
respectively) are assumed to be normally distributed. The mean of the log-concentration of lead is
modeled using an intercept αl plus a Gaussian process with a Matérn covariance, ui,s, while the mean
of the log-concentration of zinc is modeled using an intercept, αz, the shared spatial effect, ui,s, plus
another spatial Gaussian process with Matérn covariance, ui,z. This will allow us to assess differences
in the spatial distribution of the concentration of both heavy metals. Furthermore, the Euclidian
distance from the location of each measurement to the closest point of the river (dist) is included in
both linear predictors as a covariate, each with a different slope parameter (βl and βz).

Hence, the model can be written as:

log(yl) ∼ N(µi,l , σl)
log(yz) ∼ N(µi,z, σz)

where µi,l and µi,z represent the mean of the concentration of lead and zinc, respectively and which
are modelled as follows:
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µi,l =αl + βldisti + ui,s; i = 1, . . . , n
µi,z =αz + βzdisti + ui,s + ui,z i = 1, . . . , n

In this case, the prior choices for the nominal range (r) and standard deviation (r) for both the
shared and zinc-specific spatial random effects are:

P(r < 2394.16) = 0.95,

P(σ > 1000) = 0.05.

In plain words, this represents the belief that substantial correlations (> 0.1) between points more than
half the maximum distance (2394.16 meters) apart are unlikely, and so are standard deviations greater
than 1,000. These prior distributions are specified using the inla.spde2.pcmatern() function:

spde <- inla.spde2.pcmatern(mesh = mesh,
prior.range = c(2394.16, 0.95), prior.sigma = c(1000, 0.05))

The SPDE approximation estimates the spatial random effects at the vertices of the mesh, so that
estimates at any other point are based on the estimates at the vertices of the triangle that contains the
point. The position of this point inside the triangle is identified using barycentric coordinates (see
Krainski et al., 2019, for details). The projector matrix contains all these coordinates for all the points
in the dataset and it is obtained with function inla.spde.make.A():

A.m <- inla.spde.make.A(mesh = mesh, loc = coordinates(meuse))

In order to fit models using the SPDE approach, data must be stacked using the appropriate format.
Helper function inla.stack() can be used to build a stack object which contains the data (properly
structured), the effects considered in the model, and the projector matrix. Specifically, a stack object
will be built to model each variable. Then, all these objects will be put together into a single stack
object so that a joint model can be fit.

In all the stacks the name of the response variable will be the same. The values will be given
in a matrix with as many columns as the number of variables and as many rows as the number of
observations. In the first stack, the values of the first response variable will be in the first column and
the rest of columns will be filled with NA’s. The other stacks and corresponding response variables will
be defined analogously.

Regarding fixed and other latent effects included in the linear predictor, these can take the same
name across stacks when the effect is shared for different response variables. When the effect of the
same covariate or latent effect needs to be different across response variables, then different names
must be used. See the R code below for more details.

The data are structured using the inla.stack() function specifying three elements: the data, the
projector matrix, the different effects of the linear predictor and a tag to identify each part of the dataset
in the final stack. This tag is used when retrieving particular results from the output.

# Create the stack object for lead
stk.lead <- inla.stack(
data = list(log.y = cbind(log(meuse$lead), NA)),
A = list(A.m, 1),
effects = list(spatial.field.lead = 1:spde$n.spde,
data.frame(Intercept.lead = 1, dist.lead = meuse$dist)),

tag = "Lead")

# Create the stack object for zinc
stk.zinc <- inla.stack(
data = list(log.y = cbind(NA, log(meuse$zinc))),
A = list(A.m, A.m, 1),
effects = list(
spatial.field.zinc = 1:spde$n.spde, base.copy.zinc = 1:nv,
data.frame(Intercept.zinc = 1, dist.zinc = meuse$dist)),

tag = "Zinc")
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A projector matrix and a stack for the prediction grid have also been created as follows:

# Create the projector matrix for the prediction
A.pr <- inla.spde.make.A(mesh = mesh, loc = coordinates(meuse.grid))

# Prepare the data for the prediction
y.pred <- matrix(NA, nrow = nrow(meuse.grid), ncol = 2)

# Build predicting stack for lead
stk.lead.pr <- inla.stack(
data = list(log.y = y.pred),
A = list(A.pr, 1),
effects = list(spatial.field.lead = 1:spde$n.spde,
data.frame(Intercept.lead = 1, dist.lead = meuse.grid$dist)),

tag = "Lead.pred")

# Build predicting stack for zinc
stk.zinc.pr <- inla.stack(
data = list(log.y = y.pred),
A = list(A.pr, A.pr, 1),
effects = list(
spatial.field.zinc = 1:spde$n.spde, base.copy.zinc = 1:nv,
data.frame(Intercept.zinc = 1, dist.zinc = meuse.grid$dist)),

tag = "Zinc.pred")

Next, a stack object is built for the shared and zinc-specific effects in order to study the spatial
patterns of these effects:

# Stack for the shared effect
stk.shared <- inla.stack(
data = list(log.y = y.pred),
A = list(A.pr),
effects = list(spatial.field.lead = 1:spde$n.spde),
tag = "Shared")

# Stack for the specific sp effect zinc
stk.zinc.spec <- inla.stack(
data = list(log.y = y.pred),
A = list(A.pr),
effects = list(spatial.field.zinc = 1:spde$n.spde),
tag = "Zinc.spec")

All the stack objects are put together in a single joint stack object using the inla.stack() function:

# Put all the stacks together
join.stack <- inla.stack(
stk.lead, stk.zinc,
stk.zinc.pr, stk.lead.pr,
stk.shared, stk.zinc.spec)

The model formula is defined below. The latent effect of type copy is used to define the shared
term of the model.

# Formulas for the model
form <- log.y ~ -1 + Intercept.lead + Intercept.zinc + dist.lead + dist.zinc +
f(spatial.field.lead, model = spde) +
f(spatial.field.zinc, model = spde) +
f(base.copy.zinc, copy = "spatial.field.lead", fixed = TRUE)

Finally, the model is fit with R-INLA. Note how the family argument takes a vector of two
"gaussian" elements (one for each heavy metal concentration). Furthermore, note that the data are
obtained from the joint stack with the inla.stack.data() function and that the projector matrix A is
also obtained using the inla.stack.A() function.
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meuse.res <- inla(formula = form, verbose = FALSE,
data = inla.stack.data(join.stack, spde = spde),
family = rep("gaussian", 2),
control.family = list(zero.prec, zero.prec),
control.predictor = list(A = inla.stack.A(join.stack), compute = TRUE),
control.compute = list(dic = TRUE, waic = TRUE, cpo = TRUE, mlik = TRUE, po = TRUE))

Given that the structure of the data used for model fitting is a stack now, particular parameter
estimates can be accessed through function inla.stack.index(). This function can provide the
indices to access the entries of specific data or latent effects in the summaries provided by R-INLA. For
example, the following code can be used to obtain the posterior means of the fitted values obtained
with the effects in the 'Lead.pred' stack:

idx.lead <- inla.stack.index(join.stack, 'Lead.pred')$data
meuse.grid$lead.pr <- meuse.res$summary.fitted.values[idx.lead, 'mean']

Figure 3 shows point estimates (posterior means) of the log-concentration of lead and zinc; the
posterior mean of the shared and the zinc-specific effect are also shown. Note the similar spatial
pattern across both metals.

Figure 3: Estimates of the posterior means of the log-concentration of lead (top-left) and zinc (top-
right). Estimates of the posterior mean of the shared spatial effect (bottom-left) and the zinc-specific
spatial effect (bottom-right).

5 Multivariate point patterns

A point pattern is defined as a group of points (geographically located) which are a single realization
of a stochastic process called point process. A multivariate point pattern can be defined as a group of
several point patterns where each point pattern has a different origin, i.e., each point pattern is caused
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by different processes. These are also referred to a specific case of marked point pattern (Baddeley et al.,
2015) where each point pattern is labelled with a categorical mark.

In a completely random point process, points appear independently of each other and uniformly
over the study region. This is also known as a homogeneous Poisson process with (constant) intensity
λ, which measures the average number of points per unit area. It is also possible to consider a spatially
varying intensity, λ(s) (with s being a point of the study region), so that the process becomes an
inhomogeneous Poisson process. The model can be extended to more complex point patterns (see, for
example, Baddeley et al., 2015).

Several methods have been used to model the intensity function λ(s). A complete spatial ran-
domness scenario will not be considered here, that is, the intensity function of each point pattern
will not be considered as constant over the study area. Specifically, intensities will be considered as
continuous processes over the entire study region and they will be modeled using log-Gaussian Cox
processes (Møller et al., 1998; Diggle et al., 2013). Log-Gaussian Cox processes can be fit by including
spatial terms using the SPDE approach implemented in INLA (Simpson et al., 2016). The analysis
of the intensity as a continuous function over the study region is similar to the case of multivariate
geostatistics.

Given K point patterns in a region D, an example of how to structure a multivariate point patterns
model is:

log(λ0(s)) =α0 + u0(s); s ∈ D
log(λj(s)) =αj + u0(s) + uj(s) s ∈ D; j = 1, . . . , K − 1

where λ0(s) is the intensity of the baseline point pattern and λj(s) the intensity function of the jth
point pattern. Moreover, α0, αj terms represent the intercepts and u0(s), uj(s) are the spatial effects.
Specifically, u0(s) is the shared (by the different point patterns) spatial term and uj(s) are the specific
spatial terms which model the differences between each point pattern and the baseline.

In spatial epidemiology, the goal is often to discern whether a distribution of cases follows the
spatial distribution of a set of controls, or whether it depends on exposure to pollution sources or
other risk factors such as pollution (Palmí-Perales et al., 2021). This is an application of the model
described here, in which the log-intensity of the controls can be modeled using a shared spatial term
and the log-intensity of the cases can include this shared spatial term plus a disease-specific spatial
term. Furthermore, the linear predictor can include other terms to account for risk factors.

Priors are set similarly as in the example for continuous spatial data as the spatial random effects
uj(s), j = 0, . . . , K− 1 are actually modeled as SPDE latent effects. Other parameters of effects included
in the model (e.g., fixed effects) will be asssigned priors accordingly.

5.1 Example: forest fires in Castilla-La Mancha (Spain)

The spatstat package contains the clmfires dataset. This dataset records the occurrence of forest
fires in the region of Castilla-La Mancha (Spain) from 1998 to 2007. These forest fires are classified by
four different causes: lightning, accidental, intentional, and other fires (Figure 4). After loading the
packages, the data are accessed using the data() function:

#Load and display the data
data("clmfires")

Specifically, in this example, the intensities of the different types of forest fires are estimated by
considering lightning fires as the baseline pattern. Furthermore, INLA is used to assess the similarities
or differences among their spatial patterns. First of all, the mesh is built using the coordinates of the
boundary of the dataset (bdy.SP) using the code below.

mesh <- inla.mesh.2d(
boundary = list(bdy.SP, NULL), cutoff = 2, max.edge = c(20, 50),
min.angle = 27, offset = c(1, 50), n=c(16,16))

Following the model structure for multivariate point patterns detailed above, the log-intensity
of the lightning fires λl(s) will be modeled using an intercept, αl , and a spatial Gaussian effect with
Matérn covariance, ul(s) as follows
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Figure 4: The mesh used is shown alone (top-left) and with all the fire types (bottom-left). Furthermore,
the mesh is also displayed for each fire type separately: lightning fires (top-middle), accidental fires
(bottom-middle), intentional fires (top-right), and other fires (bottom-right).

log λl(s) = αl + ul(s); s ∈ D

Spatial effect ul(s) will also be shared in the linear predictor of the other types of fire. Similarly,
the log-intensity of the accidental, intentional, and other fires (which includes unknown cause) will be
modeled using specific intercepts, plus the shared spatial effect, plus a specific spatial effect as follows:

log λa(s) = αa + ul(s) + ua(s); s ∈ D

log λi(s) = αi + ul(s) + ui(s); s ∈ D

log λo(s) = αo + ul(s) + uo(s) s ∈ D

Following the prior specification section, the chosen PC-priors in this example are:

P(r < 200) = 0.95

P(σ > 100) = 0.05

where a nominal range higher than half the maximum distance (e.g., 200 kilometres) of the domain
is unlikely. Similarly for the nominal standard deviation, its prior assumes that it is really unlikely
that it is higher than 100 in this context. These prior distributions have been specified using function
inla.spde2.pcmatern():

spde <- inla.spde2.pcmatern(mesh = mesh,
prior.range = c(200, 0.95), prior.sigma = c(10, 0.05))

Here, argument prior.range sets the prior for the range and the argument prior.sigma sets the prior
for the standard deviation of the spatial effect.

As this model includes SPDE latent effects, data must be put together using stack objects. In
the case of point patterns, the data included in the stack function is different from the geostatistical
example as point pattern data has to be detailed following a specific structure (see below). Model
fitting now relies on the methods described in Simpson et al. (2016). In this case, two elements will be
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included in a list for storing the data of each point pattern.

The first element of the list will be a matrix with Nv + Ni rows and K columns where Nv is the
number of vertices of the SPDE mesh, Ni is the total number of points of the i-th point pattern and K is
the number of different point patterns. The matrix of the stack of the i-th point pattern will be filled
with NA’s except for the i-th column. This i-th column will contain firstly Nv zeros corresponding to
the points of the mesh. After these zeros, there will be Ni ones corresponding to the Ni points of the
i-th point pattern.

The second element of the list will be a vector containing an offset. Specifically, the length of this
vector is also Nv + Ni where the first Nv elements will contain the "weights" of the mesh points. The
reader is referred to Simpson et al. (2016) for more details about this approximation. The rest of the
values will be zeros.

These two elements have to be created for each stack of each point pattern. Then, as before, the
stacks are combined in a single stack object. As a toy example, consider a mesh with Nv = 3, two point
patterns (K = 2) with three and four points, respectively (N1 = 3 and N2 = 4). The weights associated
to the three mesh points will be 2.3, 4.3 and 6.2. Then, the data passed to the first and second stack are:


0 NA
0 NA
0 NA
1 NA
1 NA
1 NA

 ,


2.3
4.3
6.2
0
0
0

 ;



NA 0
NA 0
NA 0
NA 1
NA 1
NA 1
NA 1


,



2.3
4.3
6.2
0
0
0
0


.

As stated above, when analysing point patterns it is necessary to assign some weights to the points
of the mesh. This is done by creating a Voronoi tesselation using these points, so that the area of the
associated polygon becomes the associated weight. The following code illustrates how to obtain the
Voronoi tesselation and the associated weights:

library(deldir)
dd <- deldir(mesh$loc[, 1],mesh$loc[, 2])
# Create a list of tiles in a tessellation
mytiles <- tile.list(dd)

# Boundary as a polygon
pl.study <- as(bdy, "gpc.poly")
# Area of the study area
area.poly(pl.study)

# Compute weights as the area of the polygon given as an
# intersection between Voronoi tiles and domain polygon
w <- unlist(lapply(mytiles,
function(p) area.poly(
intersect(as(cbind(p$x,p$y), "gpc.poly"), pl.study)
)

)
)

These computed weights are introduced as the expected weights on the mesh points. Furthermore,
the data should be structured as follows:

# Data for the stack function: lightning fires
e.lig <- c(w, rep(0, n.lig))
y.lig <- matrix(NA, nrow = nv + n.lig, ncol = n.pp)
y.lig[, 1] <- rep(0:1, c(nv, n.lig))

# Data for the stack function: accidental fires
e.acc <- c(w, rep(0, n.acc))
y.acc <- matrix(NA, nrow = nv + n.acc, ncol = n.pp)
y.acc[, 2] <- rep(0:1, c(nv, n.acc))

# Data for the stack function: intentional fires
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e.int <- c(w, rep(0, n.int))
y.int <- matrix(NA, nrow = nv + n.int, ncol = n.pp)
y.int[, 3] <- rep(0:1, c(nv, n.int))

# Data for the stack function: other fires
e.oth <- c(w, rep(0, n.oth))
y.oth <- matrix(NA, nrow = nv + n.oth, ncol = n.pp)
y.oth[, 4] <- rep(0:1, c(nv, n.oth))

Another element of the SPDE approach is the projector matrix that represents each point using
barycentric coordinates from the mesh points (as explained above). When analysing multivariate point
patterns, this matrix has two parts: one for the mesh points (named imat), which is a diagonal matrix
as every mesh point matches itself when using barycentric coordinates, and the other for the points of
the point pattern (named lmat). Then, the projector matrix is the combination of these two matrices:

#imat: define imat
imat <- Diagonal(nv, rep(1, nv))

#lmat: define lmat
lmat.lig <- inla.spde.make.A(mesh, pts.lig)
lmat.acc <- inla.spde.make.A(mesh, pts.acc)
lmat.int <- inla.spde.make.A(mesh, pts.int)
lmat.oth <- inla.spde.make.A(mesh, pts.oth)

#Projector matrix: Put together imat and lmat
A.lig <- rbind(imat, lmat.lig)
A.acc <- rbind(imat, lmat.acc)
A.int <- rbind(imat, lmat.int)
A.oth <- rbind(imat, lmat.oth)

Once all the elements of the stack object are set, the inla.stack() function is used to build the
different stack objects. For instance, the stack objects of two (out of four) types of forest fires are
shown here below:

# Create the stack for the lighting fires
stk.lig <- inla.stack(
data = list(y = y.lig, e = e.lig),
A = list(A.lig, 1),
effects = list(spatial.field.lig = s.index.lig,
data.frame(Intercept.lig = rep(1, n.lig))
),

tag = "Lighting")

# Create the stack for the accidental fires
stk.acc <- inla.stack(
data = list(y = y.acc, e = e.acc),
A = list(A.acc, A.acc, 1),
effects = list(
base.copy.acc = 1:nv,
spatial.field.acc = s.index.acc,
data.frame(Intercept.acc = rep(1, n.acc))
),

tag = "Accidental")

As in the example for continuous spatial data, the stack objects for the predictions have to be
built following the same structure (their name will end with ".pr" in the R code). Finally, all the stack
objects are joined into a single joint stack object as follows:

# All stacks together
join.stack <- inla.stack(
stk.lig, stk.acc, stk.int, stk.oth,
stk.lig.pr, stk.acc.pr, stk.int.pr, stk.oth.pr,
stk.shared, stk.acc.spec, stk.int.spec, stk.oth.spec)
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Note that in this example separate stack objects have been created for estimating the intensity of
each of the different types of forest types, the shared spatial pattern (stack stk.shared) and the three
different specific spatial effects (stacks stk.acc.spec, stk.int.spec and stk.oth.spec).

The model formula is defined here below, where the latent effects of type copy are used to define
the shared terms of the model:

form <- y ~ -1 + Intercept.lig + Intercept.acc + Intercept.int + Intercept.oth +
f(spatial.field.lig, model = spde) +
f(spatial.field.acc, model = spde) +
f(base.copy.acc, copy = "spatial.field.lig", fixed = TRUE) +
f(spatial.field.int, model = spde) +
f(base.copy.int, copy = "spatial.field.lig", fixed = TRUE) +
f(spatial.field.oth, model = spde) +
f(base.copy.oth, copy = "spatial.field.lig", fixed = TRUE)

The model is fit with R-INLA using the code below. Note how the family argument takes a vector
of four "poisson" elements (one for each fire type).

pp.res <- inla(formula = form, verbose = FALSE,
data = inla.stack.data(join.stack, spde = spde),
family = rep("poisson", 4),
control.predictor = list(A = inla.stack.A(join.stack), compute = TRUE, link = 1),
control.compute = list(dic = TRUE, waic = TRUE, cpo = TRUE, mlik = TRUE, po = TRUE)

)

Figure 5 shows the posterior mean of the intensity of each type of the forest fires. A different
spatial pattern can be seen for each fire type. Lightning fires mostly appear in the east part of the
region, while the other three types of forest fires are more likely to appear in the west and the central
parts of the region. Additionally, the posterior means of the shared and specific spatial effects can also
be seen in Figure 6.

6 Discussion

In this paper, we have shown how to fit multivariate spatial models using the R-INLA package.
In particular, the details of how to analyse each spatial data type (lattice, continuous, and point
patterns) have been given. Furthermore, we have illustrated the application of these models using
three datasets: simulated data on mortality by three types of cancer (available from https://github.
com/becarioprecario/INLAMCMC_spatial_examples), the clmfires dataset in the spatstat package
and the meuse dataset in the gstat package. Furthermore, more complex spatial and spatio-temporal
models to multivariate data can be fitted with R-INLA (see, for example, Palmí-Perales et al., 2021).

The main goal of this work has been to illustrate how to perform multivariate spatial Bayesian
inference using R-INLA. In particular, we have paid attention to the different steps required to create
the necessary data structures for model fitting. The advantage of R-INLA compared with alternatives
is its computational efficiency; particularly, MCMC-based methods can struggle in the computationally
demanding high-dimensional setting of spatial data sets. Hence, it has been shown that R-INLA is a
useful and a worthwhile toolbox for fitting multivariate spatial models. Additionally, the necessary
R scripts to reproduce the examples are available at https://github.com/FranciscoPalmiPerales/
Mult-Sp-INLA.
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Figure 5: Posterior mean of the intensity of the lightning (top-left), accidental (top-right), intentional
(bottom-left) and other (bottom-right) fires.
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Two-Stage Sampling Design and Sample
Selection with the R Package R2BEAT
by Giulio Barcaroli, Andrea Fasulo, Alessio Guandalini, and Marco D. Terribili

Abstract R2BEAT (“R ‘to’ Bethel Extended Allocation for Two-stage sampling”) is an R package for
the optimal allocation of a sample. Its peculiarity lies in properly addressing allocation problems
for two-stage and complex sampling designs with multi-domain and multi-purpose aims. This is
common in many official and non-official statistical surveys, therefore R2BEAT could become an
essential tool for planning a sample survey. The functions implemented in R2BEAT allow the use of
different workflows, depending on the available information on one or more interest variables. The
package covers all the phases, from the optimization of the sample to the selection of the Primary and
Secondary Stage Units. Furthermore, it provides several outputs for evaluating the allocation results.

1 Introduction

Sample surveys carried out by National Statistical Institutes (NSIs) and by other institutions have
multi-domain and multi-purpose objectives, so they have to provide accurate estimates for different
parameters and different domains (i.e. geographical areas such as national, regional, and more).

Surveys have budgetary and logistical constraints, so they must be carefully planned to provide
high-quality estimates for parameters of interest. In this context, several decisions need to be made,
such as sample size, stratification, allocation of sampling units among the strata and multiple-stage.

These decisions may not be trivial and can strongly affect all the following steps of the survey
and, moreover, the quality of the results. This justifies the care and attention typically given in the
literature. A seminal work in this perspective is that of Kish (1965) and, later, different approaches
have been proposed for defining optimal sampling strategies, i.e. maximizing data quality within
budgetary constraints (see among the others Cochran, 1977).

The proposed package, R2BEAT (standing for R "to" Bethel Extended Allocation for Two-stage),
fits into this context and fills a gap within the range of statistical software concerning sample size
allocation, thereby introducing an improvement into the R community.

There are several R packages for allocating a stratified sample, such as surveyplanning (Breidaks
et al., 2020), PracTools (Valliant et al., 2020), samplesize4surveys (Rojas, 2020), optimStrat (Bueno, 2020)
and SamplingStrata (Barcaroli, 2014). But R2BEAT, extending the methodology implemented in the
Italian National Institute of Statistic’s open-source software called Mauss-R ("Multivariate Allocation
of Units in Sampling Surveys") (Barcaroli et al., 2020), enables us also to compute the optimal allocation
among strata for two-stage and complex sampling design considering both multivariate and multi-
domain cases.

In the following section the methodological aspects, underlying the package and its functions,
will be presented in detail: the optimal allocation of the sample and its selection will be illustrated.
In the third section will be shown how to prepare, organize and check the input data needed by the
package for allocating the whole sample size among strata and finally select the units. A case study on
a synthetic dataset will be used as an example to test the package functions, and also for a comparison
to the other two packages handling two-stage sample design (PracTools and samplesize4surveys).
Finally, the concluding remarks will point out that R2BEAT can allocate the sample more efficiently
than the other available multistage allocation software, while also being strongly flexible, generalizable,
and integrated with software that manages all the different phases of the statistical data production
process.

2 Methodological aspects

2.1 The optimal allocation

Let us consider a population U of size N (k = 1, . . . , N) partitioned in H subgroups, Uh (h = 1, . . . , H),
called strata. Hence, each stratum contains Nh elements, where Nh is assumed to be known such that
∑H

h=1 Nh = N.

The strata can be defined in different ways on the basis of one or more qualitative variables known
for all the units in the population.
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Then, we assume, at least for the moment, to be interested in investigating the mean of just one y
variable in the population U,

µy =
∑k∈ U yk

N
(1)

where yk is the value of the y variable observed on the k-th unit in the population U. The y variable
could be a quantitative variable or dichotomous, that is y ∈ {0, 1}. Please note that, even when y is a
dichotomous variable, expression (1) holds and µy is equal to the proportion of units in the population
for which y = 1.

Furthermore, assume we want to estimate µy through a probabilistic sample s of size n with the
estimator

ˆ̄Y =
ŶHT

N
=

∑k∈s yk dk
N

(2)

where ŶHT is the Horvitz-Thompson estimator for the total (Horvitz and Thompson, 1952) in which dk
is the design weight usually equal to the inverse of the first order inclusion probability.

The sample size of a survey, n, is usually exogenous information, dictated by budget and, some-
times, by logistic constraints associated with the unit k in the sample. Then, in practice, the problem
comes down to the allocation of the n units in the H strata, such that ∑H

h=1 nh = n.

Therefore, let us define

µhy =
∑U yk 1h

Nh
(3)

the mean of the y in each stratum where 1h is the membership indicator for the unit k in the stratum h.

In the same way, expression (2) can be easily adapted for estimating µhy, that is

ˆ̄Yh =
ŶHT,h

Nh
=

∑k∈sh
yk dk

Nh
, (4)

where sh is the sample in the stratum h. The sampling variance estimator of ˆ̄Yh is given by

v̂ar
(

ˆ̄Yh

)
=

1
nh − 1

(
1

nh
− 1

Nh

)
∑
k∈h

(yhk − ȳh)
2, (5)

where ȳh is the sample mean of the variable y in the stratum h.

The mean of y in (1) can be written also as µy = ∑H
h=1 (Nh/N) µhy and, consequently, ˆ̄Y in (2) as

ˆ̄Y = ∑H
h=1 (Nh/N) ˆ̄Yh. Therefore, the sampling variance estimator for ˆ̄Y is v̂ar

(
ˆ̄Y
)
= ∑H

h=1 (Nh/N)2 v̂ar
(

ˆ̄Yh

)
.

When there is no information on y, the sample size to be allocated to each stratum, nh, can be
assigned by performing uniform or proportional allocation.

Uniform allocation assigns an equal number of sampling units to each stratum, that is nUNIF
h =

n/H.

More often, we want the sample size assigned to strata in the sample to be proportional to the sizes
of the strata in the population, that is nPROP

h = n (Nh/N) where Nh/N is the weight of the stratum
in the population with ∑H

h=1 Nh/N = 1. If the size is the same for all strata (N1 = · · · = Nh = · · · =
NH = N/H), nPROP

h comes down to nUNIF
h .

When there is information in the population strata on y and in particular on its variance, S2
yh, a more

favorable allocation can be performed. Alternatively, it is possible to consider also a proxy variable
highly correlated with y. In this case, Tschprow (1923) demonstrated that the optimal allocation can be
obtained by

nOPT
h = n

Nh
N

√
S2

yh

∑H
h=1

Nh
N

√
S2

yh

However, this result, also published by Neyman (1934), is more often referred to as Neyman’s
allocation. The rationale behind the optimal allocation is that strata with more weight and in which y
has much more variability need many more observations to reach better estimates. If the variance is
the same in all the strata (S2

1 = · · · = S2
h = · · · = S2

H), nOPT
h comes down to nPROP

h .

The computation of the population variance is a crucial point in the optimal allocation. A dis-
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tinction between the types of variables and the sources from which they can be obtained is needed.
When y is a dichotomous variable available from a population register, its population variance can be
computed as

S2
yh = ph × (1 − ph) (6)

where ph is the proportion of units with y = 1 in the population strata. In the case of a quantitative

variable, S2
yh is equal to S2

yh =

[
∑k∈Uh

(
yk − µyh

)2
]

/Nh.

When there is no population register, information on the variability can be obtained from a sample
survey or a pilot survey which has previously been carried out. Let us assume to have collected the y
variable, or at least its proxy variable, on a sample s∗. Then, (6) can be computed just by replacing ph
with

p̂h =
∑k∈s∗h

yk wk

∑k∈s∗h
wk

, (7)

that is the related estimate for each stratum obtained from the sample s∗. In (7) wk is the sampling
weight associated with the unit k in the sample s∗.

Instead, when y is a quantitative variable, S2
yh = M̂2

h −
ˆ̄Y2
h where M̂2

h =
(

∑k∈s∗h
y2

k wk

)
/N and

ˆ̄Yi =
(

∑k∈s∗h
yk wk

)
/N are the quadratic mean and the arithmetic mean estimated on the sample s∗ in

the h-th stratum, respectively.

The optimal allocation for just one y variable is of little practical use unless the various variables
under study are highly correlated. This is because an allocation that is optimal for one characteristic is
generally far from being optimal for others.

Therefore, several works have been devoted to solving the problem when more than one variable
of interest has to be measured on each sampled unit. All the contributions can be classified into two
main approaches: the “average variance" and convex programming.

The methods under the “average variance" approach consist of defining a weight for each variable
to consider, computing a weighted average of the stratum variance and finding the optimal allocation
using the “average variance" which results. They are computationally simple, intuitive and can be
solved under fixed cost assumption. However, the choice of the weights is completely arbitrary and
the optimal properties are not clear (see, e.g., Kish, 1976, for more details).

Instead, the other approach includes methods that use convex programming to find the minimum
cost allocation, satisfying the fixed constraints regarding the variances of all the sampling variables.
The obtained allocation is actually optimal, but sometimes it can exceed the budgetary constraints.

The most important method in the convex programming approach is the Bethel algorithm (Bethel,
1989) which extends the Neyman allocation to the multivariate case, providing the optimal allocation
in the strata, in terms of surveying cost, according to a set of variables observed in a multidomain
context.

In particular, when we are interested in investigating the mean of more than one y variable
(quantitative or dichotomous), namely y1, . . . , yi, . . . , yI , the optimal allocation problem reduces, in
practice, to a minimum optimization problem of a convex function under a set of linear constraints

C = min

ĈV
(

ˆ̄Yi,h

)
≤ δ

(
ˆ̄Yi,h

) i = 1, . . . , I
h = 1, . . . , H

(8)

where C is the global cost of the survey to be minimized and ĈV
(

ˆ̄Yi,h

)
is the estimate of the relative

error. The estimate of the relative error,

ĈV
(

ˆ̄Yi,h

)
=

√
v̂ar

(
ˆ̄Yi,h

)
ˆ̄Yi,h

, (9)

is the ratio between the estimate of the sampling variance for the mean estimator of yi variable

(i = 1, . . . , I) in the stratum h given by expression (5) and the related estimate. In this case, ĈV
(

ˆ̄Yi,h

)
is called expected error and it must be less than or equal to the precision constraints defined by the

user or by regulation, δ
(

ˆ̄Yi,h

)
.

Bethel (1989) demonstrates that the solution to this optimization problem exists and can be obtained

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 194

through an algorithm that applies the Lagrange multipliers method. The solution is a real number,
so it must be rounded to provide an integer stratum sample size. The rounding clearly causes some
deviations from the solution that, however, do not affect its optimality (Cochran, 1977).

This framework also works in the case of the multi-domain problem. Usually, estimates of a survey
are disseminated for the whole population and sub-domains, for instance for geographical areas. Then,
it is useful to define the optimal allocation also taking into account these outcomes of the survey.

Sub-domain estimation is actually a long-established theory (Särndal et al., 2003). Expression (1)
can be easily adapted just by introducing the sub-domain membership indicator variable, 1k,d, which
equals 1 for each the unit k in the domain d and 0 otherwise, that is µd

y =
(
∑Ud

yk 1k,d
)

/Nd where
Nd is the population size in the domain d (d = 1, . . . , D). It is important to point out, that domains
must be an aggregation of strata and thus should not split strata. Then, it is sufficient to consider the
domain estimates in the minimum optimization problem in (8) and use Bethel’s algorithm for deriving
the multivariate allocation in the multi-domain case.

However, in official statistics, especially for household surveys, two-stage sampling designs are
usually adopted. Two-stage sampling is based on a double sampling procedure: one on the primary
stage units (PSUs) and another on the second stage units (SSUs). For instance, in the household survey,
the PSUs are the municipalities, which are selected first. Then, in each selected municipality, a sample
of households - the SSU - can be selected.

Two-stage sampling permits more complex sampling strategies and, moreover, it helps in the orga-
nization and cost reduction of data collection, because it reduces the interviewer’s travels. However,
this economic saving is counterbalanced with a loss of efficiency of the estimates. In fact, each addi-
tional stage of selection usually entails an increase of the sampling variance of the mean estimator. This
increase can be assessed by the design effect (de f f ) that measures how much the sampling variance of
ˆ̄Yi, under the adopted sampling design (des), is inflated with respect to a simple random sample (srs),

with the same sample size. An estimate of the design effect can be given by the expression:

de f f
(

ˆ̄Yi

)
= v̂ar

(
ˆ̄Yi

)
des

/v̂ar
(

ˆ̄Yi

)
srs

A rough approximation of the de f f can be obtained when the clusters have the same sample size and
the same inclusion probability (Cicchitelli et al., 1992),

de f f
(

ˆ̄Yi

)
= 1 + ρi (b − 1) (10)

where b is the average cluster (i.e. PSU) size in terms of the final sampling units and ρi is the intra-class
correlation within the cluster (PSU) for the variable yi (i = 1, . . . , I).

The intra-class correlation provides a measure of data clustering in PSUs and SSUs. In general,
if ρi is close to 1, the clustering is high and it is convenient to collect only a few units in the cluster.
Instead, if ρi is close to 0, the collection of units from the same cluster does not affect the efficiency of
the estimates.

Also for computing ρi, we can distinguish whether a population register in which the yi variables
(i = 1, . . . , I), or at least their proxies, are available or not. In the former case, a good approximation,
given in Cicchitelli et al. (1992), is

ρi = 1 −
(

Dwi /Dyi

)
(11)

where Dwi = ∑H
h=1 ∑Nh

k=1

(
yi,k − µyi,h

)2 is the deviance within clusters and Dyi = ∑k∈U
(
yi,k − µyi

)2 is

the global deviance of the yi variable. Remember that Dyi = Dwi +Dbi
, where Dbi

= ∑H
h=1 Nh

(
µyi,h − µ

)2
,

is the deviance between clusters. Therefore, 0 ≤ ρi ≤ 1.

Instead, ρi can be estimated from a sample with the expression (10)

ρ̂i = (de f fi − 1) (b − 1) . (12)

Here we consider, directly, a more general expression for the estimate of the de f f in terms of the
intra-class correlation coefficient. This expression refers to a typical situation in household surveys
where PSUs are assigned to Self-Representing (SR) strata, that is they are included for sure in the
sample, or to Not-Self-Representing (NSR) strata, where they are selected by chance. In practice, this
assignment is usually performed by comparing the measure of the size of PSUs to the threshold (see,
e.g., Hansen et al., 1953):

λ = (m̄ ∆) / f (13)

where m̄ is the minimum number of SSUs to be interviewed in each selected PSU, f = n/N is the
sampling fraction and ∆ is the average dimension of the SSU in terms of elementary survey units.
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Then, ∆ must be set to 1 if, for the survey, the selection units are the same as the elementary units
(that is, household-household or individuals-individuals), whereas it must be set equal to the average
dimension of the households if the elementary units are individuals, while the selection units are
the households. PSUs with a measure of size exceeding the threshold are identified as SR, while the
remaining PSUs are identified as NSR.

Then, the extended expression of de f f (see, among others, Rojas, 2016) is

de f f
(

ˆ̄Yi

)
=

n
N2

{
N2

SR
nSR

[
1 +

(
ρi,SR (bSR − 1

)]
+

N2
NSR

nNSR

[
1 +

(
ρi,NSR (bNSR − 1

)]}
(14)

where, for SR and NSR strata,

• NSR and NNSR are the population sizes;

• nSR and nNSR are the sample sizes;

• ρi,SR and ρi,NSR are the intra-class correlation coefficients for the variable i (i = 1, . . . , I);

• bSR and bNSR are the average PSU size in terms of the final sampling units.

Of course, if there are no SR strata, this expression simplifies to Equation (10). The design effect is equal
to 1 under the srs design and increases for each additional stage of selection, due to the intra-class
correlation coefficient which is, usually, positive.

The intra-class correlation coefficient for NSR can be computed with expression (11) or (12)
whether population register data are available or not. It is not necessary to compute the intra-class
correlation coefficient for SR strata because just one PSU is selected and the intra-class correlation is 1
by definition.

Therefore, under a two-stage sample design for determining the optimal allocation, the number of
PSUs and SSUs must be determined.

A solution which makes iterative use of the Bethel algorithm has been proposed by Falorsi et al.
(1998). In fact, at the first iteration, the Bethel algorithm is applied. The optimal allocation for a
stratified simple sampling design is obtained. Then, this allocation is used to update the threshold
in (13) and the design effect in (14). A new design effect is computed and used in turn to inflate the
S2

h (or equivalently Ŝ2
h). It is used as input in the next iteration in which the Bethel algorithm is used

again. The obtained allocation is used again to update the threshold and the design effect, and a new
allocation is found. The process is iterated until the difference between two consecutive iterations is
lower than a predefined threshold.

However, as pointed out by Waters and Chester (1987), different combinations yield the same

variance and can satisfy the precision constraints, δ
(

ˆ̄Yi,h

)
. The optimal solution strongly depends on

the budgetary constraints that limit the SSUs and the data collection organization that influences the
maximum number of PSUs that can be managed.

All this discussion holds when you want to use the HT estimator. But, currently, the most applied
estimator for the NSIs survey is the calibrated estimator (Deville and Särndal, 1992). The calibrated
estimator, through the use of auxiliary variables, usually provides better estimates than HT. The use
of a different estimator from the HT can be considered since the allocation phase, by accounting for
the estimator effect and following the procedure explained above

An estimate of the estimator effect (e f f st) is given by

e f f st( ˆ̄Yi) =
var

(
ˆ̄Yi

)
var

(
ˆ̄Yi,HT

) . (15)

It measures how much the sampling variance of the applied estimator under the adopted design is
inflated or deflated with respect to the sampling variance of the HT estimator, on the same sample
design.

2.2 Sample selection

Once the optimal allocation is defined, the selection of sampling units must be performed.

In the case of a stratified two-stage sampling design two sampling selections need to be done: one
for PSUs and one for SSUs.

In each stratum, the PSUs are split into SR and NSR according to a size threshold (13). PSUs with a
measure of size exceeding the threshold are identified as SR, included for sure in the sample and each
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Algorithm 1: R2BEAT optimal allocation of PSUs and SSUs in sampling strata

Input :

a. precision constraints in terms of CV;

b. information on sampling strata (mean and stdev of target variables, N, ...);

c. information on previous design: de f f , e f f st, ρ;

d. information on PSUs in sampling strata (measure of size);

e. minimum number of SSUs per PSU;

Output :

a. for each stratum: number of PSUs and SSUs to be selected;

b. expected CVs for target estimates;

c. sensitivity of the solution;

REM First iteration;

1. input deff is used to inflate standard deviations of target variables in sampling strata;

2. optimal allocation of SSUs in sampling strata is obtained by applying the Bethel
algorithm as if it were a one-stage sampling design;

3. the number of PSUs is determined on the basis of the minimum number of SSUs per
PSU;

4. the threshold for determination of self-representing PSUs is calculated;

5. new deff is calculated and used to update the standard deviations of target variables
in sampling strata;

REM Next iterations;
while not convergence do

1. optimal allocation of SSUs in sampling strata is obtained by applying the Bethel
algorithm;

2. the number of PSUs is determined on the basis of the minimum number of SSUs per
PSU;

3. the threshold for determination of self-representing PSUs is calculated;

4. new deff is calculated an used to update standard deviations of target variables in
sampling strata;

5. the iteration stops if

a. the difference between the sample sizes of two iterations is lower than 5 (default
value) or

b. the maximum of defts (square root of deffs) largest differences is lower than 0.06
(default value) or

c. the number of iterations is higher than 20 (default value);

end

of them constitutes an independent sub-stratum. Therefore, the probability that they are included in
the sample (inclusion probability, πI) is always equal to 1.
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It is possible that that it can happen that no PSU has a measure of size higher than the threshold: this
can happen for example when we consider as PSUs the census enumeration areas, whose distribution
of the measure of size is about uniform; on the contrary, it is unlikely to happen when we consider
municipalities.

The remaining PSUs, NSR-PSUs, are ordered by their measure of the size and divided into finer
strata (sub-strata) whose sizes are approximately equal to the threshold multiplied by the number
of PSUs to be selected in each stratum. In this way, sub-strata are composed of PSUs having size as
homogeneous as possible.

The PSUs in each stratum can be selected in different ways. However, the selection of a fixed
number of PSUs per stratum is usually carried out with Sampford’s method (unequal probabilities,
without replacement, fixed sample size).

Finally, the SSUs must be drawn in the selected PSU. Also in this case the SSU can be selected
in different ways. In most cases, they are selected through a systematic sampling design that shares
several properties with the srs.

Then, the design weight for the unit k in the h-th strata in the ℓ-th PSU is equal to the inverse of the
product of the first stage and the second stage inclusion probabilities, dk = 1

πI
1

πI I
. The design weights

sum up to the population size, ∑k∈s dk = N, and are almost constant in each stratum, which means
that the sample is self-weighting.

Algorithm 2: R2BEAT selection of PSUs

Input :

a. The output of the allocation step (function beat.2st) (universe of PSUs, measure of
PSUs, number of PSUs and SSUs to be selected in each stratum, threshold);

Output :

a. universe of PSUs with stratum, sub-stratum, PSU first order inclusion probability,
PSU weight, flag sample, and number of SSUs to be selected in each PSU;

b. sample of PSUs (flag sample=1) with stratum, sub-stratum, PSU first order inclusion
probability, PSU weight, number of SSUs to be selected in each PSU;

c. statistics related to the sample of PSUs at stratum level;

REM creation of sub-strata and selection of PSUs;

1. in each stratum, PSUs are sorted in descending order according to their measure of
size;

2. the measure of size of PSUs are compared with the threshold;

3. PSUs with a measure of size exceeding the threshold are identified as SR, included for
sure in the sample and constitute an independent sub-stratum;

4. the remaining PSUs, NSR-PSUs, are ordered in decreasing way by their measure of
size and aggregated into finer strata (sub-strata);

5. sub-strata are created adding PSUs (still in descending order of measure of size) for
which the sum of the measure of size of the sub-strata is approximately equal to the
threshold multiplied by the number of PSUs to be selected in each stratum;

6. in each sub-stratum a fixed number of PSUs per stratum are usually selected with
Sampford’s method (unequal probabilities, without replacement, fixed sample size);
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3 Structure of the package

The R2BEAT package provides functions for drawing complex sample designs using an optimal alloca-
tion also performing the selection of the PSUs and SSUs. To install the latest release version of R2BEAT
from CRAN, type install.packages("R2BEAT") within R. The current development version can be
downloaded and installed from GitHub by executing devtools::install_github("barcaroli/R2BEAT").

The workflow to draw and select a complex sample using R2BEAT is: (1) prepare the input data,
(2) check the input data, (3) define the design and obtain the allocation, and (4) select the final sample
units.

3.1 Prepare the input data

As will be illustrated in detail in the next sub-sections the R2BEAT package provides functions to
define one-stage stratified sample design (beat.1st) and two-stage stratified sample design (beat.2st).
The preparation of the input dataset changes whether the former or the latter sample design will be
adopted.

In the case of a multivariate optimal allocation for different domains in a stratified one-stage
sample design, the function beat.1st can be used. This function requires two inputs, a data frame
containing survey strata information (stratif) and a data frame of expected CV for each domain and
each variable (errors). No functions to prepare these inputs are provided by the package but is possible
to follow the example dataset stratif and error to properly create the input datasets for the function
beat.1st.

In the case of a two-stage design, two functions are provided by the package to help in the creation
of the input data for the function beat.2st. There are two functions because two different scenarios are
possible, depending on the initial information available:

1. Only the sampling frame is available, no previous rounds of the survey have been carried out.
In this scenario, a strict condition on the information content of the sampling frame must hold: values
of the sample target surveys (or of their proxy correlated variables) are available for each unit in the
frame. This can be accomplished by considering the previous census, or by using administrative
registers. In this scenario, the function prepareInputToAllocation1 can be used to create the input
dataframes stratif, rho, deft, effst, des_file and psu_file.

2. Together with a sampling frame containing the units of the population of reference, also a
previous round of the sampling survey to be planned is available. The prepareInputToAllocation2
produces the same outputs of prepareInputToAllocation1, but it requires the design and/or calibrated
objects of the previous sample survey, obtained using the ReGenesees package (Zardetto, 2015).

The function sensitivity_min_SSU allows analyzing the different results in terms of first stage
size (number of PSUs) and second stage size (number of SSUs), obtained when varying the values of
the minimum number of SSUs to be selected in each PSU.

When using a previous survey, the ’strata’ dataframe is automatically obtained by estimating
all the variables in it, including the ’N’, that is the population in strata. Being an estimate, these
values can differ from the ones obtained by the ’des’ dataframe (obtained by aggregating PSUs values).
It is up to the user to decide if PSUs derived N values are more reliable than those obtained by
the survey, and, in case, to assign those to the ’strata’ dataframe. To check the coherence between
the estimated population in the strata (stratif) and the population calculated by the PSUs dataset
(des_file), the function check_input is provided to the users. This function compares the strata sizes
giving information about the differences and replacing the estimated stratum size with the stratum
population calculated by the PSUs dataset.

3.2 Defining the design and determining the allocation

The package allows performing the optimal allocation for both one-stage and two-stage stratified
sampling.

The first one is implemented within the function beat.1st and computes a multivariate optimal
allocation for different domains in a one-stage stratified sample design. As described in the previous
section, in a one-stage stratified sample design there are only two inputs to be provided to beat.1st:
the dataframes stratif and errors. Besides these two mandatory inputs, it is also possible to indicate
the minimum number of sampling units to be selected in each stratum, by default set equal to 2.

The function beat.2st performs the same multivariate optimal allocation for different domains con-
sidering stratified two-stage design. Together with the input data stratif and errors other mandatory
input are:
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• des_file: dataframe containing a row per each stratum, with information on total population,
the values of the delta parameter (equal to the mean number of final SSUs contained in clusters
to be selected, for instance, the mean number of individuals in a household), and the minimum
number of SSUs to be selected in each PSU;

• psu_file: dataframe containing information on each PSUs (identifier, stratum, measure of size).

• rho: dataframe contains a row per each stratum with the intra-class correlation coefficient both
for self representing and non-self representing PSUs.

Is also possible to provide optional information about:

• deft_start: dataframe containing a row per each stratum with the starting values for the square
root of the design effect in the stratum of each variable of interest.

• effst: dataframe containing a row per each stratum with the estimator effect for each variable of
interest.

The functions beat.1st and beat.2st produce lists with respectively 4 and 9 items.

The beat.1st output contains:

1. n: a vector with the optimal sample size for each stratum;

2. file_strata: a dataframe corresponding to the input dataframe stratif with the n optimal sample
size column added;

3. alloc: a dataframe with optimal (ALLOC), proportional (PROP), equal (EQUAL) sample size
allocation;

4. sensitivity: a data frame with a summary of planned coefficients of variation (Planned CV),
the expected ones under the given optimal allocation (Actual CV), and the sensitivity at 10%
for each domain and each variable. Sensitivity can be a useful tool to help in finding the best
allocation, as it provides a hint of the expected sample size variation for a 10% change in planned
CVs.

Together with the previous outputs, the function beat.2st produces also:

1. iterations: a dataframe that for each iteration of the Bethel algorithm provides a summary with
the number of PSUs (PSU_Total), distinguished between SR (PSU_SR) and NSR (PSU_NSR),
plus the number of SSUs;

2. planned: a dataframe with the planned coefficients of variation for each variable in each domain.

3. expected: a dataframe with a summary of expected coefficients of variation under the given
optimal allocation for each target variable in each domain;

4. deft_c: a dataframe with the design effect for each variable in each domain in each iteration.
Note that DEFT1_0 - DEFTn_0 is always equal to 1 if deft_start is NULL; otherwise it is equal
to deft_start. While DEFT1 - DEFTn are the final design effect related to the given allocation.

5. param_alloc: a vector with a resume of all the parameters given for the allocation.

3.3 Sample units selection

Once the allocation for the primary and secondary sampling stage units has been defined, it is possible
to use two functions for the selection of the final sampling units.

The function select_PSU allows the users to select the PSUs allocated in each stratum, using the
Sampford method, as implemented by the UPsampford function of R package sampling (Tillé and
Matei, 2021).

The input of this function is the output of the beat.2st function.

The output of the function is a list containing the following items:

1. universe_PSU: a dataframe that reports the whole universe of PSUs, with the inner strata
formed for the selection;

2. sample_PSU: a dataframe containing the selected PSUs, with the indication, for each of them,
of how many SSUs must be selected;

3. PSU_stats: a table containing summary information on selected PSUs.

In the last step, the selection of a sample of SSUs has to be carried out. The function select_SSU
allows selecting a sample of SSUs from the population frame, based on the SSUs allocated to each
selected PSUs.

The input datasets are two:
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1. df: the dataframe containing the final sampling units;

2. PSU_sampled: the dataframe containing selected PSUs, corresponding to the second item of
the output of the select_PSUfunction.

The function select_SSU returns a dataframe containing the selection of the df dataframe, enriched
with information about the first stage inclusion probability, the second stage inclusion probability, the
final inclusion probability (the product of the first stage and the second stage inclusion probabilities)
and the design weights.

4 Illustrative examples

To illustrate how to implement workflows making use of R2BEAT functions, we will consider two
scenarios, depending on the initial setting:

1. only the sampling frame is available, no previous rounds of the survey have been carried out;

2. together with a sampling frame containing the units of the population of reference, a previous
round of the sampling survey to be planned is available;

In both cases, we assume that the sampling frame contains information on the final sampling units,
together with the indication of the PSUs to which each unit belongs. In the first scenario, a stricter
condition on the information content of the sampling frame must hold: values of the sample target
surveys (or of their proxy correlated variables) must be available for each unit in the frame. This can
be accomplished by considering a previous census, or by imputing values using predictive models.
In the following paragraphs, we will show only a subset of the code necessary to produce the final
results, the relevant part of it1.

4.1 Scenario 1 workflow

In this scenario, it is assumed that a sampling frame is available. We consider a frame (pop.RData),
containing 2,258,507 units:

'data.frame': 2258507 obs. of 13 variables:
$ region : Factor w/ 3 levels "north","center",..: 1 1 1 1 1 1 1 1 1 1 ...
$ province : Factor w/ 6 levels "north_1","north_2",..: 1 1 1 1 1 1 1 1 1 1 ...
$ municipality : num 1 1 1 1 1 1 1 1 1 1 ...
$ id_hh : Factor w/ 963018 levels "H1","H10","H100",..: 1 1 1 2 3 3 3 3 1114 1114 ...
$ id_ind : int 1 2 3 4 5 6 7 8 9 10 ...
$ stratum : Factor w/ 24 levels "1000","2000",..: 12 12 12 12 12 12 12 12 12 12 ...
$ stratum_label: chr "north_1_6" "north_1_6" "north_1_6" "north_1_6" ...
$ sex : int 1 2 1 2 1 1 2 2 1 1 ...
$ cl_age : Factor w/ 8 levels "(0,14]","(14,24]",..: 3 7 8 5 4 6 6 4 4 1 ...
$ active : num 1 1 0 1 1 1 1 1 1 0 ...
$ income_hh : num 30488 30488 30488 21756 29871 ...
$ unemployed : num 0 0 0 0 0 0 0 0 0 0 ...
$ inactive : num 0 0 1 0 0 0 0 0 0 1 ...

covering a (synthetic) population of reference, with basic information (geographical and demographic
variables:

• region: the NUTS2 identifier;

• province: the NUTS3 identifier;

• municipality: identifier of the municipality, that plays the role of the PSU identifier;

• id_hh: the household identifier;

• id_ind: the individual identifier;

• stratum and stratum_label: identifier of the initial strata (provinces);

• sex and cl_age: demographic information on individuals.

together with information that is related to the sampling survey we want to design:

1In order to reproduce the processing related to these examples, datasets and R scripts are downloadable from
the link https://zenodo.org/records/10183968.
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• active, inactive, unemployed: binary variables indicating the occupation status of the individ-
ual;

• income_hh: household income.

We suppose that the values of these variables have been made available by a different source (for
instance a census) or by predicting them with a model-based approach. In any case the uncertainty
related to these values should be taken into account, by correctly evaluating the anticipated variance
related to the models used for the predictions when producing the strata dataset (Baillargeon and
Rivest, 2011, p. 59).

Anyway, in the following, we will not consider this issue, as we want only to illustrate how it is
possible to automatically derive all the inputs required by the next steps.

Step 1: preparation of the inputs for the optimal sample design

The function prepareInputToAllocation1 allows preparing all the inputs required by the optimal
allocation step under this first scenario. This function requires the attribution of values to the following
parameters: samp_frame, id_PSU, id_SSU, strata_var, target_vars, deff_var, domain_var, delta
(average dimension of the SSU in terms of elementary survey units), minimum (minimum number of
SSUs to be interviewed in each selected PSU).

About the values of these parameters, the choices are almost always driven by the content and
structure of the sampling frame, except for minimum. To choose a suitable value for this parameter,
the function sensitivity_min_SSU allows performing a sensitivity analysis, showing how the first and
second stage sample sizes vary by varying their values:

> sens_min_SSU <- sensitivity_min_SSU (
+ samp_frame=pop,
+ id_PSU="municipality",
+ id_SSU="id_ind",
+ strata_var="stratum",
+ target_vars=c("income_hh","active","inactive","unemployed"),
+ deff_var="stratum",
+ domain_var="region",
+ delta=1,
+ deff_sugg=1.5,
+ min=30,
+ max=80)

This function calculates 11 different pairs of values for the number of PSUs and SSU as resulting
from the allocation step, starting with the value ’30’ assigned to the parameter minimum, ending with
the value ’80’. The results are reported in Figure 1.

On the basis of the results of the sensitivity analysis, we can set the minimum (for instance 50) in
the prepareInputToAllocation1 function:

> inp <- prepareInputToAllocation1(
+ samp_frame = pop,
+ id_PSU = "municipality",
+ id_SSU = "id_ind",
+ strata_var = "stratum",
+ target_vars = c("income_hh","active","inactive","unemployed"),
+ deff_var = "stratum",
+ domain_var = "region",
+ delta = delta,
+ minimum = 50,
+ deff_sugg = 1.5)
Computations are being done on population data
Number of strata: 24
... of which with only one unit: 0

The output of this function (inp) is a list composed by the following dataframes: strata, deff, effst,
rho, psu_file, des_file. These will be the inputs for the optimal allocation step (with the exception of
the deff), which is produced only for documentation).
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Figure 1: Sensitivity analysis for minimum parameter.

Step 2: optimization of PSUs and SSUs allocation

It is now possible to execute the optimization step of the sample design.

First of all, we define the set of precision constraints on the target variables:

DOM CV1 CV2 CV3 CV4
1 DOM1 0.02 0.03 0.03 0.05
2 DOM2 0.03 0.06 0.06 0.08

We interpret the values of the CVs in this way: the maximum expected coefficient of variation for the
first target variable (household income) is 2% at the national level and 3% at the regional level; for
active and inactive the expected maximum values of CV is 3% at the national level and 6% at the
regional level; finally, for unemployed it is 5% at the national level and 8% at the regional level.

The optimization step is performed by executing the beat.2s function:

> inp1$desfile$MINIMUM <- 50
> alloc1 <- beat.2st(stratif = inp1$strata,
+ errors = cv,
+ des_file = inp1$des_file,
+ psu_file = inp1$psu_file,
+ rho = inp1$rho,
+ deft_start = NULL,
+ effst = inp1$effst,
+ minPSUstrat = 2,
+ minnumstrat = 50
+ )
iterations PSU_SR PSU NSR PSU Total SSU
1 0 0 0 0 7887
2 1 31 104 135 8328
3 2 39 104 143 8318
4 3 38 104 142 8321

This design is characterized by 142 PSUs (of which 38 self-representative, SR, and 104 non self-
representative, NSR) and 8,321 SSUs.
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Step 3: selection of PSUs and SSUs

We can now proceed in selecting the PSUs:

> sample_1st <- select_PSU(alloc, type="ALLOC", pps=TRUE, plot=TRUE)
> sample_1st$PSU_stats

STRATUM PSU PSU_SR PSU_NSR SSU SSU_SR SSU_NSR
1 1000 2 2 0 286 286 0
2 2000 9 3 6 452 152 300
3 3000 4 0 4 200 0 200
...
23 23000 4 0 4 200 0 200
24 24000 2 0 2 100 0 100
25 Total 142 38 104 9421 4221 5200

A discrepancy can be noted between the number of SSUs determined by the allocation step and
the one produced by the selection of PSUs. This is because the selection of PSUs controls that the
minimum number of SSUs to be allocated in each selected PSU is compliant with the minimum, in our
case equal to 50: if not, this minimum is assigned. This is why the total number of SSUs increases from
8,320 to 9,421.

Selected PSUs are contained in the sample_PSU element of the output list:

> head(sample_1st$sample_PSU)
PSU_ID STRATUM stratum SR nSR PSU_final_sample_unit Pik weight_1st weight_2st weight

1 330 1000 1000-1 1 0 207 1 1 706.0966 706.0966
2 309 1000 1000-2 1 0 72 1 1 706.1806 706.1806
3 51 10000 10000-0 1 0 171 1 1 196.8480 196.8480
4 11 10000 10000-1 1 0 96 1 1 196.9688 196.9688
5 40 10000 10000-2 1 0 79 1 1 197.9494 197.9494
6 13 10000 10000-3 1 0 72 1 1 198.3750 198.3750

With this input, we can proceed to select the sample of final units. The distribution of PSUs and SSUs
in the different strata is reported in Figure 2.

> PSU_sampled <- sample_1st$sample_PSU
> samp <- select_SSU(df=pop,
+ PSU_code="municipality",
+ SSU_code="id_ind",
+ PSU_sampled)

--------------------------------
Total PSUs = 142
Total SSUs = 9421
--------------------------------

Step 4: verify compliance with precision constraints

The function eval_2stage allows verifying the compliance of the two-stage sample design to the set
of precision constraints, by selecting a given number of different samples (in our case, 500) from the
sampling frame, producing the estimates for each sample, and calculating over them the coefficients
of variation for each target estimate.

We apply twice the function, first for the national level:

> # Domain level = national
> domain_var <- "one"
> set.seed(1234)
> eval11 <- eval_2stage(df,
+ PSU_code,
+ SSU_code,
+ domain_var,
+ target_vars,
+ sample_1st$sample_PSU,
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Figure 2: Allocation of PSUs and SSUs (scenario 1).

+ nsampl=100,
+ writeFiles=FALSE,
+ progress=FALSE)
> eval11$coeff_var

CV1 CV2 CV3 CV4 dom
1 0.0093 0.0099 0.025 0.0356 DOM1

then, at the regional level:

> # Domain level = regional
> domain_var <- "region"
> set.seed(1234)
> eval12 <- eval_2stage(df,
+ PSU_code,
+ SSU_code,
+ domain_var,
+ target_vars,
+ sample_1st$sample_PSU,
+ nsampl=100,
+ writeFiles=FALSE,
+ progress=FALSE)
> eval12$coeff_var

CV1 CV2 CV3 CV4 dom
1 0.0105 0.0061 0.0224 0.0702 DOM1
2 0.0241 0.0171 0.0452 0.0652 DOM2
3 0.0281 0.0279 0.0533 0.0446 DOM3

We recall that the precision constraints had been set equal to 2% for the first variable, 3% for the
second and third, and 5% for the fourth, at national level; and respectively to 3% and 6% and 8% at
regional level. We can see that the computed CVs are all compliant.
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4.2 Scenario 2 workflow

Together with the availability of a sampling frame, containing the same information presented in the
previous scenario, we assume also the availability of at least one previous round of the survey. For
sake of simplicity, we assume that the previous round sample is the same selected in scenario 1. We
assume also that the values of the four target variables are the observed ones after the data collection.
Having set the above conditions, the main difference with scenario 1 is that, instead of choosing in
a somewhat arbitrarily way the values of the inputs required by the optimal allocation step, we can
derive them directly from the collected survey data.

Step 1: processing and analysis of survey data

In this step, we proceed to perform the usual phases of calibration and production of the estimates. In
doing that, we make use of the R package ReGenesees.

First, we describe the sample design:

> ## Sample design description
> sample$stratum_2 <- as.factor(sample$stratum_2) # stratum as factor, required by the next function
> sample.des <- e.svydesign(sample,
+ ids= ~ municipality + id_hh,
+ strata = ~ stratum_2,
+ self.rep.str = ~ SR,
+ weights = ~ weight,
+ check.data = TRUE)

obtaining the sample.des object. Then we proceed with the calibration step:

> ## Calibration with known totals
> totals <- pop.template(sample.des,
+ calmodel = ~ sex : cl_age,
+ partition = ~ region)
> totals <- fill.template(pop, totals, mem.frac = 10)
> sample.cal <- e.calibrate(sample.des,
+ totals,
+ calmodel = ~ sex : cl_age,
+ partition = ~ region,
+ calfun = "logit",
+ bounds = c(0.676, 1.279),
+ aggregate.stage = 2,
+ force = FALSE)

obtaining the sample.cal object.

These two objects are what is needed to obtain, in an automated way, all the inputs required by
the optimization step.

Step 2: preparation of the inputs for the optimal sample design

The preparation of all the inputs required by the optimization step is a straightforward operation by
using the prepareInputToAllocation2 function:

> inp <- prepareInputToAllocation2(
+ samp_frame = pop, # sampling frame
+ RGdes = sample.des, # ReGenesees design object
+ RGcal = sample.cal, # ReGenesees calibrated object
+ id_PSU = "municipality", # identification variable of PSUs
+ id_SSU = "id_hh", # identification variable of SSUs
+ strata_vars = "stratum", # strata variables
+ target_vars = c("income_hh","active","inactive","unemployed"), # target variables
+ deff_vars = "stratum", # deff variables
+ domain_vars = "region", # domain variables
+ delta = 1, # Average number of SSUs for each selection unit
+ minimum= 50) # Minimum number of SSUs to be selected in each PSU
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The configuration of the output is the same as that seen in scenario 1 for the function prepareIn-
putToAllocation1.

Step 3: optimization of PSUs and SSUs allocation

The optimal allocation of PSUs and SSUs is obtained in the same way as in the first scenario:

> set.seed(1234)
> inp2$des_file$MINIMUM <- 50
> alloc2 <- beat.2st(stratif = inp2$strata,
+ errors = cv,
+ des_file = inp2$des_file,
+ psu_file = inp2$psu_file,
+ rho = inp2$rho,
+ deft_start = NULL,
+ effst = inp2$effst,
+ minnumstrat = 2,
+ minPSUstrat = 2)

iterations PSU_SR PSU NSR PSU Total SSU
1 0 0 0 0 9546
2 1 71 92 163 8475
3 2 40 108 148 8406
4 3 38 108 146 8404

Step 4: selection of PSUs and SSUs

The selection of first and second stage units proceeds in exactly the same way as in scenario 1, first
selecting the PSUs, and then the SSUs.

> sample_1st <- select_PSU(alloc2, type="ALLOC", pps=TRUE)
> sample_1st$PSU_stats

STRATUM PSU PSU_SR PSU_NSR SSU SSU_SR SSU_NSR
1 1000 2 2 0 276 276 0
2 2000 10 6 4 517 317 200
3 3000 4 0 4 200 0 200
...
24 24000 2 0 2 100 0 100
25 Total 146 38 108 9580 4180 5400
>
> samp <- select_SSU(df=pop,
+ PSU_code="municipality",
+ SSU_code="id_ind",
+ PSU_sampled=sample_1st$sample_PSU,
+ verbose=TRUE)
--------------------------------
Total PSUs = 144
Total SSUs = 9465
--------------------------------

The distribution of PSUs and SSUs in the different strata is reported in Figure 3. It can be seen that
the relative distribution of both units in the strata is quite similar to the one obtained in scenario 1.

Step 5: verify the compliance to precision constraints

As in the previous scenario, the final check consists in verifying the compliance of the optimized
design to the precision constraints.

We, therefore, apply the function eval_2stage, first for the national level:

> # Domain level = national
> domain_var <- "one"
> eval21 <- eval_2stage(df,
+ PSU_code,
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Figure 3: Allocation of PSUs and SSUs (scenario 2).

+ SSU_code,
+ domain_var,
+ target_vars,
+ PSU_sampled=sample_1st$sample_PSU,
+ nsampl=100)
> eval21$coeff_var

CV1 CV2 CV3 CV4 dom
1 0.0102 0.0095 0.0232 0.0354 DOM1

then, at regional level:

> # Domain level = regional
> domain_var <- "region"
> eval22 <- eval_2stage(df,
+ PSU_code,
+ SSU_code,
+ domain_var,
+ target_vars,
+ PSU_sampled=sample_1st$sample_PSU,
+ nsampl=100)
> eval22$coeff_var

CV1 CV2 CV3 CV4 dom
1 0.0108 0.0067 0.0243 0.0824 DOM1
2 0.0240 0.0202 0.0514 0.0671 DOM2
3 0.0275 0.0353 0.0633 0.0417 DOM3

In this case, the expected precision is slightly higher than the precision constraints in two cases:
the fourth variable in domain 1, and the third variable in domain 3. This can be due to the fact that
in this scenario the variance of the target variables in strata (on the basis of which the total sample
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size and the allocation are determined) is not derived from the sampling frame (as in scenario 1), but
estimated from a previous round of the survey.

5 Comparison with other software

To evaluate the performance of R2BEAT, in this section we compare it to the other two R packages, i.e.:

1. the package PracTools (Valliant et al., 2020) implements many of the procedures described in
Valliant et al. (2015), including those regarding the design of multistage samples;

2. the package samplesize4surveys (Rojas, 2020) allows to calculate the sample size for complex
surveys.

First, we briefly illustrate, for both packages, the functions covering the two-stage sampling design,
then we apply them to the same case seen in scenario 1, finally comparing the obtained results 2.

5.1 R package PracTools

Valliant et al. (2015) describe (pages 231-234) a method for the optimal allocation of two-stage sampling
when numbers of sample PSUs and elements per PSU are adjustable (which is our case).

This method is implemented in the R function clusOpt2 in the PracTools package. This function
computes the number of PSUs and the number of final units for each PSU for a two-stage sample
which uses srs at each stage or probability proportional to size with replacement (ppswr) at the first
stage and srs at the second.

This function requires the indication of a number of parameters, among which:

• C1: unit cost per PSU

• C2: unit cost per SSU

• delta: homogeneity measure

• unit.rv: unit relvariance

• k: ratio of B2+W2 to unit relvariance

• CV0: target CV

• tot.cost: total budget for variable costs

• cal.sw: indicates if the optimization has to be run for a fixed total budget, or for the target CV0

The function BW2stagePPS computes the population values of B2, W2, and delta whose meaning
is explained in Valliant et al. (2015) (page 222).

The method is univariate: the optimization can be performed by indicating only one variable. The
whole code required for the case described in scenario 1 is given here:

> load("pop.RData")
> library(PracTools)
> # Probabilities of inclusion (I stage)
> pp <- as.numeric(table(pop$municipality))/nrow(pop)
> # variable income_hh
> bw <- BW2stagePPS(pop$income_hh, pp, psuID=pop$municipality)
> bw

B2 W2 unit relvar B2+W2 k delta
0.04075893 0.79538674 0.83601766 0.83614567 1.00015312 0.04874621
> des <- clusOpt2(C1=130,
+ C2=1,
+ delta=bw[6],
+ unit.rv=bw[3],
+ k=bw[5],
+ CV0=0.02,
+ tot.cost=NULL,
+ cal.sw=2)
> des
C1 = 130

2In order to reproduce the processing related to the evaluation of the different software, datasets and R scripts
are downloadable from the link https://zenodo.org/records/10184220
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C2 = 1
delta = 0.04874621
unit relvar = 0.8360177
k = 1.000153
cost = 25499.72
m.opt = 141.4
n.opt = 50.4
CV = 0.02
> sample_size <- des$m.opt*des$n.opt
> sample_size
7126.56

In running the function, we have indicated that the optimization step was to be carried out having
a target CV of 2% for the variable income_hh. As there is no way to directly indicate a desired
minimum number of SSUs per PSU, we managed to obtain the desired value of 50 by indicating a
couple of values 130 and 1 respectively for C1 and C2. As a result, the number of PSUs is 141 and the
number of SSUs is 7,127.

5.2 R package samplesize4surveys

This package offers two functions to compute a grid of possible sample sizes for estimating single
means (ss2s4m) or single proportions (ss2s4p) under two-stage sampling designs.

The required parameters are the following:

• N: the population size

• mu: the value of the estimated mean of a variable of interest

• sigma: the value of the estimated standard deviation of a variable of interest

• conf: the statistical confidence

• delta: the maximum relative margin of error that can be allowed for the estimation

• M: number of clusters in the population

• to: (integer) maximum number of final units to be selected per cluster

• rho: the intraclass correlation coefficient

Here is the code we used in the case of the target variable income_hh:

> load("pop.RData")
> PSU <- length(unique(pop$municipality))
> pop_strata <- as.numeric(table(pop$stratum))
> rho <- 0.04875369 # value taken from scenario 1 analysis
> ss2s4m(N = nrow(pop),
+ mu = mean(pop$income_hh),
+ sigma = sd(pop$income_hh),
+ delta = 0.02 * 1.96,
+ M = PSU,
+ to = 50,
+ rho = sum(rho$RHO_NAR1*pop_strata) / sum(pop_strata))
50 3.388931 142 50 7061

we obtain a design characterized by a total sample size of 7,061, with 142 PSUs.

Concerning the way we indicated the value of the parameter rho, we made use of the value of the
intra-class correlation coefficient computed in scenario 1 by R2BEAT, not considering domains and
strata.

In order to compare the 2% precision constraint expressed in terms of coefficient of variation, as
the package requires the margin of error, we multiply the value of the CV by a z-value equal to 1.96, to
obtain the ratio between the semi-width of the confidence interval and the estimate of the mean of the
parameter.

The use of the function ss2s4p, applicable for the other three variables, is practically the same.
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5.3 Comparison of results

We refer to the scenario 1 setting.

We consider the same precision levels for the four variables for the unique domain, set respectively
to 2%, 3%, 3% and 5%.

We apply another constraint for all three packages, that is, we want to select a minimum number
of final units in each PSU, set to 50.

There is no problem in doing that for package samplesize4surveys, by setting the parameter to
equal to 50: the last value of the final grid is the result we want. Moreover, there is no loss in the
optimality of the solution in doing that, because the sample sizes obtained for further values are
increasingly higher.

As for PractTools, it is more complicated because there is no direct way to set this constraint. In
any case, we manage to do that, by varying the value of C1 (leaving C2 equal to 1) until we find the
solution with the nearest value of n.opt to 50.

A final consideration regarding the application of R2BEAT: in this setting, to be comparable with
the other packages (that are univariate and mono-domain), it has been applied in a simplified way,
that is, one variable per time (univariate), and no different domains and strata in the sampling frame.
By so doing, R2BEAT yields obviously different results from those seen in scenario 1.

Table 1: Two-stage sample design obtained by different packages.

PracTools R2BEAT samplesize4surveys
Variable PSUs SSUs PSUs SSUs PSUs SSUs
active 49 2459 37 2030 49 2436
inactive 90 4395 68 4338 88 4391
income_hh 141 7127 79 5140 142 7061
unemployed 406 19956 149 10884 402 20058

Figure 4: Sample sizes by packages.

In Table 1 and in Figure 4 are reported the results obtained by the three packages. For checking the
reliability of the results, also a simulation has been performed to prove that R2BEAT provides sample
sizes that always allow to obtain CVs below the planned ones.

Going in-depth with the comparison among the packages, it can be seen that PracTools and
samplesize4surveys have similar behaviors and provide very close results, while R2BEAT always
provide samples with smaller sample sizes, both in terms of PSUs and SSUs.

The differences related to the SSUs are smaller but there are two extremes. For “inactive" all
three packages yield almost the same results in terms of SSUs, while for “unemployed” R2BEAT
outperforms the other two competitors almost halving their sample sizes.

Juxtaposing Table 1 and 2, it is possible to see that the differences can be related to the intraclass
correlation coefficient, ρ. The differences are maximum in the case of the variable “unemployed”
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which has the higher ρ, and is almost negligible in the case of the variable “inactive” for which ρ is
close to 0.

Focusing on the different uses that the three packages make of ρ, the differences in the final alloca-
tion results arise. In PracTools and samplesize4surveys, ρ is only involved in the direct calculation of
the optimal number of both PSUs and SSUs, once and for all. Furthermore, in samplesize4surveys, ρ is
used only to calculate the de f f , in turn, used to inflate the variance of the estimate but, also in this case,
once and for all. While, in R2BEAT, ρ is involved in the partition of the PSUs in self-representative
(SR) and non-self-representative (NSR).

This partition, updated every iteration, takes ρ into account each time. In fact, the iterative
procedure - and of course the use of ρ in each iteration - makes the results more stable and explores,
among all the suitable solutions, the more efficient in terms of PSUs and SSUs.

Summarising, the higher the value of the ρ, the higher the efficiency of the R2BEAT algorithm that
makes extensive use of the ρ values.

Table 2: Intraclass correlation coefficient (ρ) for active, inactive, income, and unemployed in the whole
population.

Variable ρ
active 0.0656
inactive 0.0021
income_hh 0.0488
unemployed 0.1263.

6 How to manage the total non-response

Sample size and allocation in strata provided by R2BEAT ensure compliance with the precision
constraints. Unfortunately, in practice, the planned sample size is affected by total non-response
which reduces it and, consequently, weakens the precision and efficiency of the estimates. Therefore,
it is important to consider the total non-response when planning sample surveys and to implement
strategies to preserve the precision of the estimates.

The most common methods to carry out this task at the planning stage are oversampling and
substitutions.

Oversampling is a technique used to increase the sample size of a population in a survey according
to the total non-response rate in the population strata (nrrh, with 0 ≤ nrrh ≤ 1 and h = 1, . . . , H)
for recovering, at the end of the data collection phase, the desired sample size and the expected
precision requirements. These rates are usually derived from previous survey occasions, carried out
with the same data collection technique and under similar conditions, or on reliable assumptions made
by those who design the survey. For embedding this procedure in R2BEAT, before performing the
selection of the SSUs, it is sufficient to multiply the column PSU_final_sample_unit of the data.frame
sample_PSU provided as the output of the function select_PSU by 1 + nrrh. If the response rates
are not available at the strata level but at a higher domain level (for instance, for domains that are
aggregations of strata), it is possible to assume a constant non-response rate for the strata belonging to
the same domain. Of course, the more precise the knowledge of response rates, the more accurate the
oversampling procedure adopted will be.

Instead, substitutions involve replacing non-responding units with other ones which have been
“a priori" selected. Sometimes even more than one substitute for a single SSU is singled out. The
selection of substitute units can be carried out in different ways (see, for a brief but complete review
Lynn, 2004). If a simple random substitution of the SSUs, before performing the selection of the
SSU, it is sufficient to multiply the column PSU_final_sample_unit of the data.frame sample_PSU
provided as the output of the function select_PSU by the chosen number of substitutes. Otherwise,
if a non-random substitution or a stratified substitution, unlike in the previous case, the selection of
SSUs requires additional information on the SSUs and, therefore, the use of ad hoc solutions.

However, it is important to point out that substitutions and oversampling aim to preserve the
sample size inflating it to withstand the non-response. However, it could be anyway not enough to
avoid total non-response bias side effects on the final estimates. Therefore, non-response treatment
methods must be applied after the data collection phase (see, e.g., Särndal and Lundström, 2005; Little
and Rubin, 2019).
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7 Concluding remarks

Methodology, completeness, and efficiency can be considered the main strengths of the R package
R2BEAT.

The methodology based on the application of the Bethel algorithm ensures that the resulting
sample designs are compliant with the precision constraints set on the target estimates of a given
survey.

The completeness can be considered both:

• in terms of applicability: R2BEAT applies to stratified, multipurpose and multidomain, one-
stage and two-stage sampling surveys;

• in terms of coverage of the user needs: the package covers all the steps of a complex sample
design, from the setting of precision constraints, the determination of the total sample size and
of the allocation in the strata and the selection of the sampling units, distinctly according to the
stage of selection.

Moreover, a set of functions generates the input required by the optimization step starting from the
availability of a sampling frame and/or a previous round of the survey, thus allowing the users to
fully harness all the available information with minimal effort. Other functions help them to perform
analysis and checks on the obtained allocations and the selected sample.

Finally, we demonstrated the efficiency of the package by comparing it with two other competitor
packages in terms of the results obtained in a case study: on equal errors, the sample size determined
by R2BEAT is always lower, in terms of both Primary and Secondary Stage Units (PSUs and SSUs).

In future work, considering that a limitation of the package is its applicability to only mean
parameters, the extension to more complex parameters will be investigated.
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fnets: An R Package for Network
Estimation and Forecasting via
Factor-Adjusted VAR Modelling
by Dom Owens, Haeran Cho, and Matteo Barigozzi

Abstract Vector autoregressive (VAR) models are useful for modelling high-dimensional time series
data. This paper introduces the package fnets, which implements the suite of methodologies proposed
by (Barigozzi, Cho, and Owens 2023) for the network estimation and forecasting of high-dimensional
time series under a factor-adjusted vector autoregressive model, which permits strong spatial and tem-
poral correlations in the data. Additionally, we provide tools for visualising the networks underlying
the time series data after adjusting for the presence of factors. The package also offers data-driven
methods for selecting tuning parameters including the number of factors, the order of autoregression,
and thresholds for estimating the edge sets of the networks of interest in time series analysis. We
demonstrate various features of fnets on simulated datasets as well as real data on electricity prices.

1 Introduction

Vector autoregressive (VAR) models have been popularly adopted for modelling time series data
across many disciplines including economics (Koop, 2013), finance (Barigozzi and Brownlees, 2019),
neuroscience (Kirch et al., 2015), and systems biology (Shojaie and Michailidis, 2010). By fitting VAR
models to data, we can infer dynamic interdependence between the variables and forecast future values.
In particular, by inferring the non-zero elements of the VAR parameter matrices, we can find a network
representation of the data which embeds Granger causal linkages. Besides, by estimating the precision
matrix (inverse of the covariance matrix) of the VAR innovations, we can define a network representing
their contemporaneous dependencies by means of partial correlations. Finally, the inverse of the
long-run covariance matrix of the data simultaneously captures lead-lag and contemporaneous co-
movements of the variables. For further discussions on the network interpretation of VAR modelling,
we refer to Dahlhaus (2000), Eichler (2007), Billio et al. (2012) and Barigozzi and Brownlees (2019).

Fitting VAR models to the data can quickly become a high-dimensional problems since the number
of parameters grows quadratically with the dimensionality of the data. There exists a mature literature
on ℓ1-regularisation methods for estimating VAR models in high dimensions under suitable sparsity
assumptions on the parameters (Basu and Michailidis, 2015; Han et al., 2015; Kock and Callot, 2015;
Medeiros and Mendes, 2016; Nicholson et al., 2020; Liu and Zhang, 2021). Consistency of such methods
is derived under the assumption that the spectral density matrix of the data has bounded eigenvalues.
However, in many applications, the datasets exhibit strong serial and cross-sectional correlations
which leads to the violation of this assumption. As a motivating example, we introduce a dataset
of node-specific prices in the PJM (Pennsylvania, New Jersey and Maryland) power pool area in
the United States, see Energy price data for further details. Figure 1 demonstrates that the leading
eigenvalue of the long-run covariance matrix (i.e. spectral density matrix at frequency 0) increases
linearly as the dimension of the data increases, which implies the presence of latent common factors in
the panel data (Forni et al., 2000). Additionally, the left panel of Figure 2 shows the inadequacy of
fitting a VAR model to such data under the sparsity assumption via ℓ1-regularisation methods, unless
the presence of strong correlations is accounted for by a factor-adjustment step as in the right panel.

Barigozzi et al. (2023) propose the FNETS method for factor-adjusted VAR modelling of high-
dimensional, second-order stationary time series. Under their proposed model, the data is decomposed
into two latent components such that the factor-driven component accounts for pervasive leading,
lagging or contemporaneous co-movements of the variables, while the remaining idiosyncratic dynamic
dependence between the variables is modelled by a sparse VAR process. Then, FNETS provides tools
for inferring the networks underlying the latent VAR process and forecasting.

In this paper, we present an R package named fnets which implements the FNETS method. It
provides a range of user-friendly tools for estimating and visualising the networks representing the
interconnectedness of time series variables, and for producing forecasts. In addition, fnets includes a
range of methods for selecting tuning parameters ranging from the number of factors and the VAR
order, to regularisation and thresholding parameters adopted for producing sparse and interpretable
networks. The main routine of fnets outputs an object of S3 class fnets which is supported by a plot
method for network visualisation and a predict method for time series forecasting.

There exist several packages for fitting VAR models and their extensions to high-dimensional time
series, see LSVAR (Bai, 2021), sparsevar (Vazzoler, 2021), nets (Brownlees, 2020), mgm (Haslbeck
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Figure 1: Box plots of the two largest eigenvalues (y-axis) of the long-run covariance matrix estimated
from the energy price data collected between 01/01/2021 and 19/07/2021 (n = 200), see Real data
example for further details. Cross-sections of the data are randomly sampled 100 times for each given
dimension p ∈ {2, . . . , 50} (x-axis) to produce the box plots.Granger causal network Granger causal network

Figure 2: Granger causal networks defined in (5) obtained from fitting a VAR(1) model to the energy
price data analysed in Figure 1, without (left) and with (right) the factor adjustment step outlined
in FNETS: Network estimation. Edge weights (proportional to the size of coefficient estimates) are
visualised by the width of each edge, and the nodes are coloured according to their groupings, see
Real data example for further details.

and Waldorp, 2020), graphicalVAR (Epskamp et al., 2018), BigVAR (Nicholson et al., 2017), and
bigtime (Wilms et al., 2021). There also exist R packages for time series factor modelling such as
dfms (Krantz and Bagdziunas, 2023) and sparseDFM (Mosley et al., 2023), and FAVAR (Bernanke
et al., 2005) for Bayesian inference of factor-augmented VAR models. The advantage of fnets over the
above-mentioned packages is its ability to handle strong cross-sectional and serial correlations in the
data via factor-adjustment step performed in the frequency domain. In addition, the FNETS method
operates under the most general approach to high-dimensional time series factor modelling termed
the Generalised Dynamic Factor (GDFM), first proposed in Forni et al. (2000) and further investigated
in Forni et al. (2015). Accordingly, fnets is the first R package to provide tools for high-dimensional
panel data analysis under the GDFM, such as fast computation of spectral density and autocovariance
matrices via the Fast Fourier Transform, but it is flexible enough to allow for more restrictive static
factor models. While there exist some packages for network-based time series modelling (e.g. GNAR,
Knight et al., 2020), we highlight that the goal of fnets is to learn the networks underlying a time series
and does not require a network as an input.

2 FNETS methodology

In this section, we introduce the factor-adjusted VAR model and describe the FNETS methodology
proposed in Barigozzi et al. (2023) for network estimation and forecasting of high-dimensional time
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series. We limit ourselves to describing the key steps of FNETS and refer to the above paper for its
comprehensive treatment.

2.1 Factor-adjusted VAR model

A zero-mean, p-variate process ξt follows a VAR(d) model if it satisfies

ξt =
d

∑
ℓ=1

Aℓξt−ℓ + Γ1/2εt, (1)

where Aℓ ∈ Rp×p, 1 ≤ ℓ ≤ d, determine how future values of the series depend on the past values. For
the p-variate random vector εt = (ε1t, . . . , εpt)

⊤, we assume that εit are independently and identically
distributed (i.i.d.) for all i and t with IE(εit) = 0 and Var(εit) = 1. Then, the positive definite matrix
Γ ∈ Rp×p is the covariance matrix of the innovations Γ1/2εt.

In the literature on factor modelling of high-dimensional time series, the factor-driven component
exhibits strong cross-sectional and/or serial correlations by ‘loading’ finite-dimensional vectors of
factors linearly. Among many time series factor models, the GDFM (Forni et al., 2000) provides
the most general approach where the p-variate factor-driven component χt admits the following
representation

χt = B(L)ut =
∞

∑
ℓ=0

Bℓut−ℓ with ut = (u1t, . . . , uqt)
⊤ and Bℓ ∈ Rp×q, (2)

for some fixed q, where L stands for the lag operator. The q-variate random vector ut contains the
common factors which are loaded across the variables and time by the filter B(L) = ∑∞

ℓ=0 BℓLℓ, and it
is assumed that ujt are i.i.d. with IE(ujt) = 0 and Var(ujt) = 1. The model (2) reduces to a static factor
model (Bai, 2003; Stock and Watson, 2002; Fan et al., 2013), when B(L) = ∑s

ℓ=0 BℓLℓ for some finite
integer s ≥ 0. Then, we can write

χt = ΛFt where Ft = (u⊤
t , . . . , u⊤

t−s)
⊤ and Λ = [B0, . . . , Bs] (3)

with r = q(s + 1) as the dimension of static factors Ft. Throughout, we refer to the models (2) and (3)
as unrestricted and restricted to highlight that the latter imposes more restrictions on the model.

Barigozzi et al. (2023) propose a factor-adjusted VAR model under which we observe a zero-mean,
second-order stationary process Xt = (X1t, . . . , Xpt)

⊤ for t = 1, . . . , n, that permits a decomposition
into the sum of the unobserved components ξt and χt, i.e.

Xt = ξt + χt. (4)

We assume that IE(εitujt′ ) = 0 for all i, j, t and t′ as is commonly assumed in the literature, such that
IE(ξitχi′t′ ) = 0 for all 1 ≤ i, i′ ≤ p and t, t′ ∈ Z.

2.2 Networks

Under (4), it is of interest to infer three types of networks representing the interconnectedness of
Xt after factor adjustment. Let V = {1, . . . , p} denote the set of vertices representing the p cross-
sections. Then, the VAR parameter matrices, Aℓ = [Aℓ,ii′ , 1 ≤ i, i′ ≤ p], encode the directed network
NG = (V , EG) representing Granger causal linkages, where the set of edges are given by

EG =
{
(i, i′) ∈ V × V : Aℓ,ii′ ̸= 0 for some 1 ≤ ℓ ≤ d

}
. (5)

Here, the presence of an edge (i, i′) ∈ EG indicates that ξi′ ,t−ℓ Granger causes ξit at some lag 1 ≤ ℓ ≤ d
(Dahlhaus, 2000).

The second network contains undirected edges representing contemporaneous cross-sectional
dependence in VAR innovations Γ1/2εt, denoted by NC = (V , EC). We have (i, i′) ∈ EC if and only if
the partial correlation between the i-th and i′-th elements of Γ1/2εt is non-zero, which in turn is given
by −δii′/

√
δii · δi′ i′ where Γ−1 = ∆ = [δii′ , 1 ≤ i, i′ ≤ p] (Peng et al., 2009). Hence, the set of edges for

NC is given by

EC =

{
(i, i′) ∈ V × V : i ̸= i′ and − δii′√

δii · δi′ i′
̸= 0

}
, (6)

Finally, we can summarise the aforementioned lead-lag and contemporaneous relations between

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 217

the variables in a single, undirected network N L = (V , EL) by means of the long-run partial correla-
tions of ξt. Let Ω = [ωii′ , 1 ≤ i, i′ ≤ p] denote the inverse of the zero-frequency spectral density (a.k.a.
long-run covariance) of ξt, which is given by Ω = 2πA⊤(1)∆A(1) with A(z) = I − ∑d

ℓ=1 Aℓzℓ.
Then, the long-run partial correlation between the i-th and i′-th elements of ξt, is obtained as
−ωii′/

√
ωii · ωi′ i′ (Dahlhaus, 2000), so the edge set of N L is given by

EL =

{
(i, i′) ∈ V × V : i ̸= i′ and − ωii′√

ωii · ωi′ i′
̸= 0

}
. (7)

2.3 FNETS: Network estimation

We describe the three-step methodology for estimating the networks NG, NC and N L. Throughout,
we assume that the number of factors, either q under the more general model in (2) or r under the
restricted model in (3), and the VAR order d, are known, and discuss its selection in Tuning parameter
selection.

Step 1: Factor adjustment

The autocovariance (ACV) matrices of ξt, denoted by Γξ(ℓ) = IE(ξt−ℓξ⊤t ) for ℓ ≥ 0 and Γξ(ℓ) =

(Γξ(−ℓ))⊤ for ℓ < 0, play a key role in network estimation. Since ξt is not directly observed,
we propose to adjust for the presence of the factor-driven χt and estimate Γξ(ℓ). For this, we
adopt a frequency domain-based approach and perform the dynamic principal component anal-
ysis (PCA). Spectral density matrix Σx(ω) of a time series {Xt}t∈Z aggregates information of its
ACV Γx(ℓ), ℓ ∈ Z, at a specific frequency ω ∈ [−π, π], and is obtained by the Fourier transform
Σx(ω) = (2π)−1 ∑∞

ℓ=−∞ Γx(ℓ) exp(−ιℓω) where ι =
√
−1. Denoting the sample ACV matrix of Xt at

lag ℓ by

Γ̂x(ℓ) =
1
n

n

∑
t=ℓ+1

Xt−ℓX
⊤
t when ℓ ≥ 0 and Γ̂x(ℓ) = (Γ̂x(−ℓ))⊤ when ℓ < 0,

we estimate the spectral density of Xt by

Σ̂x(ωk) =
1

2π

m

∑
ℓ=−m

K
(

ℓ

m

)
Γ̂x(ℓ) exp(−ιℓωk), (8)

where K(·) denotes a kernel, m the kernel bandwidth (for its choice, see Tuning parameter selection)
and ωk = 2πk/(2m + 1) the Fourier frequencies. We adopt the Bartlett kernel as K(·), which ensures
positive semi-definiteness of Σ̂x(ω) and also Γ̂ξ(ℓ) estimating Γξ(ℓ) obtained as described below.

Performing PCA on Σ̂x(ωk) at each ωk, we obtain the estimator of the spectral density matrix of
χt as Σ̂χ(ωk) = ∑

q
j=1 µ̂x,j(ωk)êx,j(ωk)(êx,j(ωk))

∗, where µ̂x,j(ωk) denotes the j-th largest eigenvalue

of Σ̂x(ωk), êx,j(ωk) its associated eigenvector, and for any vector a ∈ Cn, we denote its transposed
complex conjugate by a∗. Then taking the inverse Fourier transform of Σ̂χ(ωk), −m ≤ k ≤ m, leads to
an estimator of Γχ(ℓ), the ACV matrix of χt, as

Γ̂χ(ℓ) =
2π

2m + 1

m

∑
k=−m

Σ̂χ(ωk) exp(ιℓωk) for − m ≤ ℓ ≤ m.

Finally, we estimate the ACV of ξt by

Γ̂ξ(ℓ) = Γ̂x(ℓ)− Γ̂χ(ℓ). (9)

When we assume the restricted factor model in (3), the factor-adjustment step is simplified as
it suffices to perform PCA in the time domain, i.e. eigenanalysis of the sample covariance matrix
Γ̂x(0). Denoting the eigenvector of Γ̂x(0) associated with its j-th largest eigenvalue by êx,j, we obtain
Γ̂ξ(ℓ) = Γ̂x(ℓ)− ÊxÊ⊤

x Γ̂x(ℓ)ÊxÊ⊤
x where Êx = [êx,j, 1 ≤ j ≤ r].

Step 2: Estimation of NG

Recall from (5) that NG, representing Granger causal linkages, has its edge set determined by the
VAR transition matrices Aℓ, 1 ≤ ℓ ≤ d. By the Yule-Walker equation, we have β = [A1, . . . , Ad]

⊤ =
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G(d)−1g(d), where

G(d) =


Γξ(0) Γξ(−1) . . . Γξ(−d + 1)
Γξ(1) Γξ(0) . . . Γξ(−d + 2)

. . .
Γξ(d − 1) Γξ(d − 2) . . . Γξ(0)

 and g(d) =


Γξ(1)
Γξ(2)

...
Γξ(d)

 . (10)

We propose to estimate β as a regularised Yule-Walker estimator based on Ĝ(d) and ĝ(d), each of
which is obtained by replacing Γξ(ℓ) with Γ̂ξ(ℓ), see (9), in the definition of G(d) and g(d).

For any matrix M = [mij] ∈ Rn1×n2 , let |M|1 = ∑n1
i=1 ∑n2

j=1 |mij|, |M|∞ = max1≤i≤n1 max1≤j≤n2 |mij|
and tr(M) = ∑n1

i=1 mii when n1 = n2. We consider two estimators of β. Firstly, we adopt a Lasso-type
estimator which solves an ℓ1-regularised M-estimation problem

β̂las = arg min
M∈Rpd×p

tr
(

M⊤Ĝ(d)M − 2M⊤ĝ(d)
)
+ λ|M|1 (11)

with a tuning parameter λ > 0. In the implementation, we solve (11) via the fast iterative shrinkage-
thresholding algorithm (FISTA, Beck and Teboulle, 2009). Alternatively, we adopt a constrained
ℓ1-minimisation approach closely related to the Dantzig selector (DS, Candes and Tao, 2007):

β̂DS = arg min
M∈Rpd×p

|M|1 subject to
∣∣∣Ĝ(d)M − ĝ(d)

∣∣∣
∞
≤ λ (12)

for some tuning parameter λ > 0. We divide (12) into p sub-problems and obtain each column of
β̂DS via the simplex algorithm (using the function lp in lpSolve (Berkelaar et al., 2020)), which is
performed in parallel with doParallel and foreach (Microsoft and Weston, 2022a,b).

Barigozzi et al. (2023) establish the consistency of both β̂las and β̂DS but, as is typically the case for
ℓ1-regularisation methods, they do not achieve exact recovery of the support of β. Hence we propose
to estimate the edge set of NG by thresholding the elements of β̂ with some threshold t > 0, where
either β̂ = β̂las or β̂ = β̂DS, i.e.

β̃(t) =
[

β̂ij · I{|β̂ij |>t}, 1 ≤ i ≤ pd, 1 ≤ j ≤ p
]

. (13)

We discuss cross validation and information criterion methods for selecting λ, and a data-driven
choice of t, in Tuning parameter selection.

Step 3: Estimation of NC and N L

From the definitions of NC and N L given in (6) and (7), their edge sets are obtained by estimating
∆ = Γ−1 and Ω = 2πA⊤(1)∆A(1). Suppose that we are given β̂ = [Â1, . . . , Âd]

⊤, some estimator of
the VAR parameter matrices obtained as in either (11) or (12). Then, a natural estimator of Γ arises from
the Yule-Walker equation Γ = Γξ(0)− ∑d

ℓ=1 AℓΓξ(ℓ) = Γξ(0)− β⊤g, as Γ̂ = Γ̂ξ(0)− β̂⊤ĝ. In high
dimensions, it is not feasible or recommended to directly invert Γ̂ to estimate ∆. Therefore, we adopt a
constrained ℓ1-minimisation method motivated by the CLIME methodology of Cai et al. (2011).

Specifically, the CLIME estimator of ∆ is obtained by first solving

∆̌ = arg minM∈Rp×p |M|1 subject to
∣∣∣Γ̂M − I

∣∣∣
∞
≤ η, (14)

and applying a symmetrisation step to ∆̌ = [δ̌ii′ , 1 ≤ i, j ≤ p] as

∆̂ = [δ̂ii′ , 1 ≤ i, i′ ≤ p] with δ̂ii′ = δ̌ii′ · I{|δ̌ii′ |≤|δ̌i′ i |}
+ δ̌i′ i · I{|δ̌i′ i |<|δ̌ii′ |}

. (15)

for some tuning parameter η > 0. Cai et al. (2016) propose ACLIME, which improves the CLIME
estimator by selecting the parameter η in (15) adaptively. It first produces the estimators of the diagonal
entries δii, 1 ≤ i ≤ p, as in (15) with η1 = 2

√
log(p)/n as the tuning parameter. Then these estimates

are used for adaptive tuning parameter selection in the second step. We provide the full description
of the ACLIME estimator along with the details of its implementation in ACLIME estimator of the
Appendix.

Given the estimators Â(1) = I − ∑d
ℓ=1 Âℓ and ∆̂, we estimate Ω by Ω̂ = 2πÂ⊤(1)∆̂Â(1). In

Barigozzi et al. (2023), ∆̂ and Ω̂ are shown to be consistent in ℓ∞- and ℓ1-norms under suitable sparsity
assumptions. However, an additional thresholding step as in (13) is required to guarantee consistency
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in estimating the support of ∆ and Ω and consequently the edge sets of NC and N L. We discuss
data-driven selection of these thresholds and η in Tuning parameter selection.

2.4 FNETS: Forecasting

Following the estimation procedure, FNETS performs forecasting by estimating the best linear predic-
tor of Xn+a given Xt, t ≤ n, for a fixed integer a ≥ 1. This is achieved by separately producing the best
linear predictors of χn+a and ξn+a as described below, and then combining them.

Forecasting the factor-driven component

For given a ≥ 0, the best linear predictor of χn+a given Xt, t ≤ n, under (2) is

χn+a|n =
∞

∑
ℓ=0

Bℓ+aun−ℓ.

Forni et al. (2015) show that the model (2) admits a low-rank VAR representation with ut as the
innovations under mild conditions, and Forni et al. (2017) propose the estimators of Bℓ and ut based
on this representation which make use of the estimators of the ACV of χt obtained as described in
Step 1. Then, a natural estimator of χn+a|n is

χ̂unr
n+a|n =

K

∑
ℓ=0

B̂ℓ+aûn−ℓ (16)

for some truncation lag K. We refer to χ̂unr
n+a|n as the unrestricted estimator of χn+a|n as it is obtained

without imposing any restrictions on the factor model (2).

When χt admits the static representation in (3), we can show that χn+a|n = Γχ(−a)EχM−1
χ E⊤

χ χn,
where Mχ ∈ Rr×r is a diagonal matrix with the r eigenvalues of Γχ(0) on its diagonal and Eχ ∈ Rp×r

the matrix of the corresponding eigenvectors; see Section 4.1 of Barigozzi et al. (2023) and also Forni
et al. (2005). This suggests an estimator

χ̂res
n+a|n = Γ̂χ(−a)ÊχM̂

−1
χ Ê⊤

χ Xn, (17)

where M̂χ and Êχ are obtained from the eigendecomposition of Γ̂χ(0). We refer to χ̂res
n+a|n as the

restricted estimator of χn+a|n. As a by-product, we obtain the in-sample estimators of χt, t ≤ n, as
χ̂t|n = χ̂t, with either of the two estimators in (16) and (17).

Forecasting the latent VAR process

Once the VAR parameters are estimated either as in (11) or (12), we produce an estimator of ξn+a|n =

∑d
ℓ=1 Aℓξn+a−ℓ, the best linear predictor of ξn+a given Xt, t ≤ n, as

ξ̂n+a|n =
max(1,a)−1

∑
ℓ=1

Âℓ ξ̂n+a−ℓ|n +
d

∑
ℓ=max(1,a)

Âℓ ξ̂n+a−ℓ. (18)

Here, ξ̂n+1−ℓ = Xn+1−ℓ − χ̂n+1−ℓ denotes the in-sample estimator of ξn+1−ℓ, which may be obtained
with either of the two (in-sample) estimators of the factor-driven component in (16) and (17).

3 Tuning parameter selection

3.1 Factor numbers q and r

The estimation and forecasting tools of the FNETS methodology require the selection of the number
of factors, i.e. q under the unrestricted factor model in (2), and r under the restricted, static factor
model in (3). Under (2), there exists a large gap between the q leading eigenvalues of the spectral
density matrix of Xt and the remainder which diverges with p (see also Figure 1). We provide
two methods for selecting the factor number q, which make use of the postulated eigengap using
µ̂x,j(ωk), 1 ≤ j ≤ p, the eigenvalues of the spectral density estimator of Xt in (8) at a given Fourier
frequency ωk, −m ≤ k ≤ m.
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Hallin and Liška (2007) propose an information criterion for selecting the number of factors under
the model (2) and further, a methodology for tuning the multiplicative constant in the penalty. Define

IC(b, c) = log

 1
p

p

∑
j=b+1

1
2m + 1

m

∑
k=−m

µ̂x,j(ωk)

+ b · c · pen(n, p), (19)

where pen(n, p) = min(p, m2,
√

n/m)−1/2 by default (for other choices of the information criterion,
see Appendix A), and c > 0 a constant. Provided that pen(n, p) → 0 sufficiently slowly, for an
arbitrary value of c, the factor number q is consistently estimated by the minimiser of IC(b, c) over
b ∈ {0, . . . , q̄}, with some fixed q̄ as the maximum allowable number of factors. However, this is not
the case in finite sample, and Hallin and Liška (2007) propose to simultaneously select q and c. First,
we identify q̂(nl , pl , c) = arg min0≤b≤q̄ IC(nl , pl , b, c) where IC(nl , pl , b, c) is constructed analogously
to IC(b, c), except that it only involves the sub-sample {Xit, 1 ≤ i ≤ pl , 1 ≤ t ≤ nl}, for sequences
0 < n1 < . . . < nL = n and 0 < p1 < . . . < pL = p. Then, denoting the sample variance of
q̂(nl , pl , c), 1 ≤ l ≤ L, by S(c), we select q̂ = q̂(n, p, ĉ) with ĉ corresponding to the second interval
of stability with S(c) = 0 for the mapping c 7→ S(c) as c increases from 0 to some cmax (the first
stable interval is where q̄ is selected with a very small value of c). Figure 3 plots q̂(n, p, c) and S(c)
for varying values of c obtained from a dataset simulated in Data simulation. In the implementation
of this methodology, we set nl = n − (L − l)⌊n/20⌋ and pl = ⌊3p/4 + lp/40⌋ with L = 10, and
q̄ = min(50, ⌊

√
min(n − 1, p)⌋).
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Figure 3: Plots of c against q̂(n, p, c) (in circles, y-axis on the left) and S(c) (in triangles, y-axis on the
right) with the six IC (see Appendix A) implemented in the function factor.number of fnets, on a
dataset simulated as described in Data simulation (with n = 500, p = 50 and q = 2). With the default
choice of IC in (19) (IC5), we obtain q̂ = q̂(n, p, ĉ) = 2 correctly estimating q = 2.

Alternatively, we can adopt the ratio-based estimator q̂ = arg min1≤b≤q̄ ER(b) proposed in
Avarucci et al. (2022), where

ER(b) =

(
m

∑
k=−m

µ̂x,b+1(ωk)

)−1( m

∑
k=−m

µ̂x,b(ωk)

)
. (20)

These methods are readily modified to select the number of factors r under the restricted factor
model in (3), by replacing (2m + 1)−1 ∑m

k=−m µ̂x,j(ωk) with µ̂x,j, the j-th largest eigenvalues of the
sample covariance matrix Γ̂x(0). We refer to Bai and Ng (2002) and Alessi et al. (2010) for the discussion
of the information criterion-based method in this setting, and Ahn and Horenstein (2013) for that of
the eigenvalue ratio-based method.

3.2 Threshold t

Motivated by Liu et al. (2021), we propose a method for data-driven selection of the threshold t, which
is applied to the estimators of Aℓ, 1 ≤ ℓ ≤ d, ∆ or Ω for estimating the edge sets of NG, NC or N L,
respectively, see also (13).

Let B = [bij] ∈ Rm×n denote a matrix for which a threshold is to be selected, i.e. B may be either
β̂ = [Â1, . . . , Âd]

⊤, ∆̂0 (∆̂ with diagonals set to zero), or Ω̂0 (Ω̂ with diagonals set to zero), obtained
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from Steps 2 and 3 of FNETS. We work with ∆̂0 and Ω̂0 since we do not threshold the diagonal entries
of ∆̂ and Ω̂. As such estimators have been shown to achieve consistency in ℓ∞-norm, we expect there
exists a large gap between the entries of B corresponding to true positives and false positives. Further,
it is expected that the number of edges reduces at a faster rate when increasing the threshold from
0 towards this (unknown) gap, compared to when increasing the threshold from the gap to |B|∞.
Therefore, we propose to identify this gap by casting the problem as that of locating a single change
point in the trend of the ratio of edges to non-edges,

Ratiok =
|B(tk)|0

max(N − |B(tk)|0, 1)
, k = 1, . . . , M.

Here, B(t) = [bij · I{|bij |>t}], |B(t)|0 = ∑m1
i=1 ∑m2

j=1 I{|bij |>t} and {tk, 1 ≤ k ≤ M : 0 = t1 < t2 < · · · <
tM = |B|∞} denotes a sequence of candidate threshold values. We recommend using an exponentially
growing sequence for {tk}M

k=1 since the size of the false positive entries tends to be very small. The
quantity N in the denominator of Ratiok is set as N = p2d when B = β̂, and N = p(p − 1) when
B = ∆̂0 or B = Ω̂0. Then, from the difference quotient

Diffk =
Ratiok − Ratiok−1

tk − tk−1
, k = 2, . . . , M,

we compute the cumulative sum (CUSUM) statistic

CUSUMk =

√
k(M − k)

M

∣∣∣∣∣1k k

∑
l=2

Diffl −
1

M − k

M

∑
l=k+1

Diffl

∣∣∣∣∣ , k = 2, . . . , M − 1,

and select tada = tk∗ with k∗ = arg max2≤k≤M−1CUSUMk. For illustration, Figure 4 plots Ratiok and
CUSUMk against candidate thresholds for the dataset simulated in Data simulation.
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Figure 4: Ratiok (left) and CUSUMk (right) plotted against tk when B = β̂las obtained from the data
simulated in Data simulation with n = 500 and p = 50, as a Lasso estimator of the VAR parameter
matrix, with the selected tada denoted by the vertical lines.

3.3 VAR order d, λ and η

Step 2 and Step 3 of the network estimation methodology of FNETS involve the selection of the tuning
parameters λ and η (see (11), (12) and (14)) and the VAR order d. While there exist a variety of methods
available for VAR order selection in fixed dimensions (Lütkepohl, 2005, Chapter 4), the data-driven
selection of d in high dimensions remains largely unaddressed with a few exceptions (Nicholson et al.,
2020; Krampe and Margaritella, 2021; Zheng, 2022). We suggest two methods for jointly selecting λ
and d for Step 2. The first method is also applicable for selecting η in Step 3.

Cross validation

Cross validation (CV) methods have been popularly adopted for tuning parameter and model selection.
Bergmeir et al. (2018) study the usage of a conventional CV procedure that randomly partitions the
data, in the time series settings when the model is correctly specified. However, such arguments do
not apply to our problem since the VAR process is latent. Instead, we propose to adopt a modified
CV procedure that bears resemblance to out-of-sample evaluation or rolling forecasting validation
(Wang and Tsay, 2021), for simultaneously selecting d and λ in Step 2. For this, the data is partitioned
into L folds, Il = {n◦

l + 1, . . . , n◦
l+1} with n◦

l = min(l⌈n/L⌉, n), 1 ≤ l ≤ L, and each fold is split into a
training set I train

l = {n◦
l + 1, . . . , ⌈(n◦

l + n◦
l+1)/2⌉} and a test set I test

l = Il \ I train
l . On each fold, β is
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estimated from {Xt, t ∈ I train
l } as either the Lasso (11) or the Dantzig selector (12) estimators with λ

as the tuning parameter and some b as the VAR order, say β̂train
l (λ, b), using which we compute the

CV measure

CV(λ, b) =
L

∑
l=1

tr
(

Γ̂test
ξ,l (0)− (β̂train

l (λ, b))⊤ĝtest
l (b)−

(ĝtest
l (b))⊤ β̂train

l (λ, b) + (β̂train
l (λ, b))⊤Ĝtest

l (b)β̂train
l (λ, b)

)
,

where Γ̂test
ξ,l (ℓ), Ĝtest

l (b) and ĝtest
l (b) are generated analogously as Γ̂ξ(ℓ), Ĝ(b) and ĝ(b), respectively,

from the test set {Xt, t ∈ I test
l }. Although we do not directly observe ξt, the measure CV(λ, b) gives

an approximation of the prediction error. Then, we select (λ̂, d̂) = arg minλ∈Λ,1≤b≤d̄ CV(λ, b), where
Λ is a grid of values for λ, and d̄ ≥ 1 is a pre-determined upper bound on the VAR order. A similar
approach is taken for the selection of η with a Burg matrix divergence-based CV measure:

CV(η) =
L

∑
l=1

tr
(

∆̂train
l (η)Γ̂test

l

)
− log

∣∣∣∆̂train
l (η)Γ̂test

l

∣∣∣− p.

Here, ∆̂train
l (η) denotes the estimator of ∆ with η as the tuning parameter from {Xt, t ∈ I train

l }, and
Γ̂test

l the estimator of Γ from {Xt, t ∈ I test
l }, see Step 3 for the descriptions of the estimators. In the

numerical results reported in Simulations, the sample size is relatively small (ranging between n = 200
and n = 500 while p ∈ {50, 100, 200} and the number of parameters increasing with p2), and we set
L = 1 which returns reasonably good performance. When more observations are available, relative to
the dimensionality, we may use the number of folds greater than one.

Extended Bayesian information criterion

Alternatively, to select the pair (λ, d) in Step 2, we propose to use the extended Bayesian information cri-
terion (eBIC) of Chen and Chen (2008), originally proposed for variable selection in high-dimensional
linear regression. Let β̃(λ, b, tada) denote the thresholded version of β̂(λ, b) as in (13) with the threshold
tada chosen as described in Threshold t. Then, letting s(λ, b) = |β̃(λ, b, tada)|0, we define

eBICα(λ, b) =
n
2

log (L(λ, b)) + s(λ, b) log(n) + 2α log
(

bp2

s(λ, b)

)
, where (21)

L(λ, b) = tr
(

Ĝ(b)− (β̃(λ, b))⊤ĝ(b)− (ĝ(b))⊤ β̃(λ, b) + (β̃(λ, b))⊤Ĝ(b)β̃(λ, b)
)

.

Then, we select (λ̂, d̂) = arg minλ∈Λ,1≤b≤d̄ eBICα(λ, b). The constant α ∈ (0, 1) determines the degree
of penalisation which may be chosen from the relationship between n and p. Preliminary simulations
suggest that α = 0 is a suitable choice for the dimensions (n, p) considered in our numerical studies.

3.4 Other tuning parameters

Motivated by theoretical results reported in Barigozzi et al. (2023), we select the kernel bandwidth for
Step 1 of FNETS as m = ⌊4(n/ log(n))1/3⌋. In forecasting the factor-driven component as in (16), we
set the truncation lag at K = 20, as it is expected that the elements of Bℓ decay rapidly as ℓ increases
for short-memory processes.

4 Package overview

fnets is available from the Comprehensive R Archive Network (CRAN). The main function, fnets,
implements the FNETS method for the input data and returns an object of S3 class fnets. fnets.var
implements Step 2 of the FNETS methodology estimating the VAR parameters only, and is appli-
cable directly for VAR modelling of high-dimensional time series; its outputs are of class fnets.
fnets.factor.model performs factor modelling under either of the two models (2) and (3), and re-
turns an object of class fm. We provide predict methods for the objects of classes and fm, and a plot
method for the fnets class objects. Prior to using these functions to fit VAR models, we recommend to
perform a unit root test and, if necessary, transform the time series such that it is stationary. In this
section, we demonstrate how to use the functions included with the package.
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4.1 Data simulation

For illustration, we generate an example dataset of n = 500 and p = 50, following the model described
in (4). fnets provides functions for this purpose. For given n and p, the function sim.var generates
the VAR(1) process following (1) with d = 1, Γ as supplied to the function (Γ = I by default), and A1
generated as described in Simulations. The function sim.unrestricted generates the factor-driven
component under the unrestricted factor model in (2) with q dynamic factors (q = 2 by default) and
the filter B(L) generated as in model (C1) of Simulations.

set.seed(111)
n <- 500
p <- 50
x <- sim.var(n, p)$data + sim.unrestricted(n, p)$data

Throughout this section, we use the generated dataset for demonstrating the use of fnets, unless
specified otherwise. There also exists sim.restricted which generates the factor-driven component
under the restricted factor model in (3). For all data simulation functions, the default is to use the
standard normal distribution when generating ut and εt. However, by specifying the argument
heavy = TRUE, the innovations are generated from

√
3/5 · t5, the t-distribution with 5 degrees of

freedom scaled to have unit variance. The package also comes attached with pre-generated datasets
data.restricted and data.unrestricted.

4.2 Calling fnets with default parameters

The function fnets can be called with the n × p data matrix x as the only input, which sets all other
arguments to their default choices. It then performs the factor-adjustment under the unrestricted
model in (2) with q estimated by minimising the IC in (19). The VAR parameter matrix is estimated via
the Lasso estimator in (11), with d = 1 as the VAR order, and the tuning parameters λ and η chosen via
CV, without any thresholding step. This returns an object of class fnets whose entries are described in
Table 1.

fnets(x)

Factor-adjusted vector autoregressive model with
n: 500, p: 50
Factor-driven common component ---------
Factor model: unrestricted
Factor number: 2
Factor number selection method: ic
Information criterion: IC5
Idiosyncratic VAR component ---------
VAR order: 1
VAR estimation method: lasso
Tuning method: cv
Threshold: FALSE
Non-zero entries: 95/2500
Long-run partial correlations ---------
LRPC: TRUE

4.3 Calling fnets with optional parameters

We can also specify the arguments of fnets to control how Steps 1–3 of FNETS are to be performed.
The full model call is as follows:

out <- fnets(x, center = TRUE, fm.restricted = FALSE,
q = c("ic", "er"), ic.op = NULL, kern.bw = NULL,
common.args = list(factor.var.order = NULL, max.var.order = NULL, trunc.lags = 20,
n.perm = 10), var.order = 1, var.method = c("lasso", "ds"),
var.args = list(n.iter = NULL, n.cores = min(parallel::detectCores() - 1, 3)),
do.threshold = FALSE, do.lrpc = TRUE, lrpc.adaptive = FALSE,
tuning.args = list(tuning = c("cv", "bic"), n.folds = 1, penalty = NULL,
path.length = 10)

)
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Table 1: Entries of S3 objects of class fnets

Name Description Type

q Factor number integer
spec Spectral density matrices for Xt, χt and ξt (when fm.restricted = FALSE) list
acv Autocovariance matrices for Xt, χt and ξt list

loadings Estimates of Bℓ, 0 ≤ ℓ ≤ K (when fm.restricted = FALSE) array
or Λ (when fm.restricted = TRUE)

factors Estimates of {ut} (when fm.restricted = FALSE) array
or {Ft} (when fm.restricted = TRUE)

idio.var Estimates of Aℓ, 1 ≤ ℓ ≤ d, and Γ, and d and λ used list
lrpc Estimates of ∆, Ω, (long-run) partial correlations and η used list

mean.x Sample mean vector vector
var.method Estimation method for Aℓ (input parameter) string

do.lrpc Whether to estimate the long-run partial correlations (input parameter) Boolean
kern.bw Kernel bandwidth (when fm.restricted = FALSE, input parameter) double

Here, we discuss a selection of input arguments. The center argument will de-mean the input.
fm.restricted determines whether to perform the factor-adjustment under the restricted factor
model in (3) or not. If the number of factors is known, we can specify q with a non-negative integer.
Otherwise, it can be set as "ic" or "er", which specifies either (19) or (20) as the factor number
estimator, respectively. When q = "ic", setting the argument ic.op as an integer between 1 and 6
specifies the choice of the IC (see Appendix A) where the default is ic.op = 5. kern.bw takes a positive
integer which specifies the bandwidth to be used in Step 1 of FNETS. The list common.args specifies
arguments for estimating Bℓ and ut under (2), and relates to the low-rank VAR representation of χt
under the unrestricted factor model. var.order specifies a vector of positive integers to be considered
in VAR order selection. var.method determines the method for VAR parameter estimation, which
can be either "lasso" (for the estimator in (11)) or "ds" (for that in (12)). The list var.args takes
additional parameters for Step 2 of FNETS, such as the number of gradient descent steps (n.iter,
when var.method = "lasso") or the number of cores to use for parallel computing (n.cores, when
var.method = "ds"). do.threshold specifies whether to threshold the estimators of Aℓ, 1 ≤ ℓ ≤ d,
∆ and Ω. It is possible to perform Steps 1–2 of FNETS only without estimating ∆ and Ω by setting
do.lrpc = FALSE. If do.lrpc = TRUE, lrpc.adaptive specifies whether to use the non-adaptive
estimator in (14) or the ACLIME estimator. The list tuning.args supplies arguments to the CV or eBIC
procedures, including the number of folds L (n.folds), the eBIC parameter α (penalty, see (21)) and
the length of the grid of values for λ and/or η (path.length). Finally, it is possible to set only a subset
of the arguments of common.args, var.args and tuning.args whereby the unspecified arguments are
set to their default values.

The factor adjustment (Step 1) and VAR parameter estimation (Step 2) functionalities can be
accessed individually by calling fnets.factor.model and fnets.var, respectively. The latter is equiv-
alent to calling fnets with q = 0 and do.lrpc = FALSE. The former returns an object of class fm which
contains the entries of the fnets object in Table 1 that relate to the factor-driven component only.

4.4 Network visualisation

Using the plot method available for the objects of class fnets, we can visualise the Granger network
NG induced by the estimated VAR parameter matrices (see the left panel of Figure 5):

plot(out, type = "granger", display = "network")

With display = "network", the function plots an igraph object from the igraph package (Csardi
et al., 2006). Setting the argument type to "pc" or "lrpc", we can visualise NC given by the partial
correlations of VAR innovations or N L given by the long-run partial correlations of ξt. By setting
display = "heatmap", we can visualise the networks as a heat map instead, with colour indicating
edge weights. This plot relies on the fields package (Douglas Nychka et al., 2021) and RColorBrewer
(Neuwirth, 2022). We plot N L as a heat map in the right panel of Figure 5 using the following
command:

plot(out, type = "lrpc", display = "heatmap")

It is also possible to directly produce an igraph object from the objects of class fnets via the network
method as:
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Figure 5: Estimated networks for simulated data described in Data simulation. Left: Granger causal
network NG. A directed arrow from node i to node i′ indicates that variable i Granger causes node i′,
and the width of the arrow indicates the edge weight or estimated coefficient. Right: Long-run partial
correlation network N L with edge weights (i.e. partial correlations) visualised by the colour.

g <- network(out, type = "granger")$network
plot(g, layout = igraph::layout_in_circle(g),

vertex.color = grDevices::rainbow(1, alpha = 0.2), vertex.label = NA,
main = "Granger causal network")

This produces a plot identical to the left panel of Figure 5 using the igraph object g.

4.5 Forecasting

The fnets objects also implement the predict method with which we can forecast the input data
n.ahead steps. For example, we can produce a one-step ahead forecast of Xn+1 as

pr <- predict(out, n.ahead = 1, fc.restricted = TRUE)
pr$forecast

The argument fc.restricted specifies whether to use the estimator χ̂res
n+h|n in (17) generated under

a restricted factor model (3), or χ̂unr
n+h|n in (16) generated without such a restriction. Table 2 lists the

entries from the output from predict.fnets. We can similarly produce forecasts from fnets objects
output from fnets.var, or fm objects from fnets.factor.model.

Table 2: Entries of the output from predict.fnets

Name Description Type

forecast h × p matrix containing the h-step ahead forecasts of Xt matrix
common.predict A list containing list

$is n × p matrix containing the in-sample estimator of χt
$fc h × p matrix containing the h-step ahead forecasts of χt
$h Input parameter
$r Factor number (only produced when fc.restricted = TRUE)

idio.predict A list containing is, fc and h, see common.predict list
mean.x Sample mean vector vector

4.6 Factor number estimation

It may be of interest to estimate the number of factors (if any) in the input dataset, independent of any
estimation procedure. The function factor.number provides access to the two methods for selecting q
described in Factor numbers q and r. The following code calls the information criterion-based factor
number estimation method in (19), and prints the output:
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fn <- factor.number(x, fm.restricted = FALSE)
print(fn)

Factor number selection
Factor model: unrestricted
Method: Information criterion
Number of factors:
IC1: 2
IC2: 2
IC3: 3
IC4: 2
IC5: 2
IC6: 2

Calling plot(fn) returns Figure 3 which visualises the factor number estimators from six information
criteria implemented. Alternatively, we call the eigenvalue ratio-based method in (20) as

fn <- factor.number(x, method = "er", fm.restricted = FALSE)

In this case, plot(fn) produces a plot of ER(b) against the candidate factor number b ∈ {1, . . . , q̄}.

4.7 Visualisation of tuning parameter selection procedures

The method for threshold selection discussed in Threshold t is implemented by the threshold function,
which returns objects of threshold class supported by print and plot methods.

th <- threshold(out$idio.var$beta)
th

Thresholded matrix
Threshold: 0.0297308643
Non-zero entries: 62/2500

The call plot(th) generates Figure 4. Additionally, we provide tools for visualising the tuning
parameter selection results adopted in Steps 2 and 3 of FNETS (see VAR order d, λ and η). These tools
are accessible from both fnets and fnets.var by calling the plot method with the argument display
= "tuning", e.g.

set.seed(111)
n <- 500
p <- 10
x <- sim.var(n, p)$data
out1 <- fnets(x, q = 0, var.order = 1:3, tuning.args = list(tuning = "cv"))
plot(out1, display = "tuning")

This generates the two plots reported in Figure 6 which visualise the CV errors computed as described
in Cross validation and, in particular, the left plot shows that the VAR order is correctly selected by this
approach. When tuning.args contains tuning = "bic", the results from the eBIC method described
in Extended Bayesian information criterion adopted in Step 2, is similarly visualised in place of the
left panel of Figure 6.

5 Simulations

Barigozzi et al. (2023) provide comprehensive simulation results on the estimation and forecasting
performance of FNETS in comparison with competing methodologies. Therefore in this paper, we focus
on assessing the performance of the methods for selecting tuning parameters such as the threshold
and VAR order discussed in Tuning parameter selection. Additionally in Appendix B, we compare the
adaptive and the non-adaptive estimators in estimating ∆ and also investigate how their performance
is carried over to estimating Ω.

5.1 Settings

We consider the following data generating processes for the factor-driven component χt:
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Figure 6: Plots of CV(λ, b) against λ with b ∈ {1, 2, 3} (left) and CV(η) against η (right). Vertical lines
denote where the minimum CV measure is attained with respect to λ and η, respectively.

(C1) Taken from Forni et al. (2017), χit is generated as a sum of AR processes χit = ∑
q
j=1 aij(1 −

αijL)−1ujt with q = 2, where ujt ∼iid N (0, 1), aij ∼iid U [−1, 1] and αij ∼iid U [−0.8, 0.8] with
U [a, b] denoting a uniform distribution. Then, χt does not admit a static representation in (3).

(C2) χt = 0, i.e. the VAR process is directly observed as Xt = ξt.

For generating a VAR(d) process ξt, we first generate a directed Erdős-Rényi random graph N =
(V , E) on V = {1, . . . , p} with the link probability 1/p, and set entries of Ad such that Ad,ii′ = 0.275
when (i, i′) ∈ E and Ad,ii′ = 0 otherwise. Also, we set Aℓ = O for ℓ < d. The VAR innovations are
generated as below.

(E1) Gaussian with the covariance matrix Γ = ∆−1 = I.

(E2) Gaussian with the covariance matrix Γ = ∆−1 such that δii = 1, δi,i+1 = δi+1,i = 0.6, δi,i+2 =
δi+2,i = 0.3, and δii′ = 0 for |i − i′| ≥ 3.

For each setting, we generate 100 realisations.

5.2 Results: Threshold selection

We assess the performance of the adaptive threshold. We generate χt as in (C1) and fix d = 1 for gener-
ating ξt and further, treat d as known. We consider (n, p) ∈ {(200, 50), (200, 100), (500, 100), (500, 200)}.
Then we estimate Ω using the thresholded Lasso estimator of A1 (see (11) and (13)) with two choices
of thresholds, t = tada generated as described in Threshold t and t = 0. To assess the performance
of Ω̂ = [ω̂ii′ ] in recovering the support of Ω = [ωii′ ], i.e. {(i, i′) : ωii′ ̸= 0}, we plot the receiver
operating characteristic (ROC) curves of the true positive rate (TPR) against false positive rate (FPR),
where

TPR =
|{(i, i′) : ω̂ii′ ̸= 0 and ωii′ ̸= 0}|

|{(i, i′) : ωii′ ̸= 0}| and FPR =
|{(i, i′) : ω̂ii′ ̸= 0 and ωii′ = 0}|

|{(i, i′) : ωii′ = 0}| .

Figure 7 plots the ROC curves averaged over 100 realisations when t = tada and t = 0. When ∆ = I
under (E1), we see little improvement from adopting tada as the support recovery performance is
already good even without thresholding. However, when ∆ ̸= I under (E2), the adaptive threshold
leads to improved support recovery especially when the sample size is large. Tables 3 and 4 in
Appendix C additionally report the errors in estimating A1 and Ω with and without thresholding,
where we see little change is brought by thresholding. In summary, we conclude that the estimators
already perform reasonably well without thresholding, and the adaptive threshold tada brings marginal
improvement in support recovery which is of interest in network estimation.
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Figure 7: ROC curves of TPR against FPR for β̃(t) (13) (with β̂ = β̂las) when t = tada and t = 0 in
recovering the support of Ω, averaged over 100 realisations. Vertical lines indicate FPR = 0.05

5.3 Results: VAR order selection

We compare the performance of the CV and eBIC methods proposed in VAR order d, λ and η for
selecting the order of the VAR process. Here, we consider the case when χt = 0 (setting (C2)) and when
ξt is generated under (E1) with d ∈ {1, 3}. We set (n, p) ∈ {(200, 10), (200, 20), (500, 10), (500, 20)}
where the range of p is in line with the simulation studies conducted in the relevant literature (see e.g.
Zheng (2022)). We consider {1, 2, 3, 4} as the candidate VAR orders. Figure 8 and Table 5 in Appendix
C show that CV works reasonably well regardless of d ∈ {1, 3}, with slightly better performance
observed together with the DS estimator. On the other hand, eBIC tends to over-estimate the VAR
order when d = 1 while under-estimating it when d = 3, and hence is less reliable compared to the CV
method.

0
25
50
75

100

0 1 2 3

n = 200, p = 10, d = 1

0
25
50
75

100

-2 -1 0 1

method
BIC, DS
BIC, Lasso
CV, DS
CV, Lasso

n = 200, p = 10, d = 3

0
25
50
75

100

0 1 2 3

n = 200, p = 20, d = 1

0
25
50
75

100

-2 -1 0 1

n = 200, p = 20, d = 3

0
25
50
75

100

0 1 2 3

n = 500, p = 10, d = 1

0
25
50
75

100

-2 -1 0 1

n = 500, p = 10, d = 3

0
25
50
75

100

0 1 2 3

n = 500, p = 20, d = 1

0
25
50
75

100

-2 -1 0 1

n = 500, p = 20, d = 3

Figure 8: Box plots of d̂ − d over 100 realisations when the VAR order is selected by the CV and eBIC
methods in combination with the Lasso (11) and the DS (12) estimators.
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6 Real-world data example

6.1 Energy price data

Compared with physical commodities, electricity is more difficult to store, and this results in high
volatility and seasonality in spot prices (Han et al., 2022). Global market deregulation has increased
the volume of electricity trading, which promotes the development of better forecasting and risk
management methods. We analyse a dataset of node-specific prices in the PJM (Pennsylvania, New
Jersey and Maryland) power pool area in the United States, accessed using dataminer2.pjm.com.
There are four node types in the panel, which are Zone, Aggregate, Hub, and Extra High Voltage
(EHV) (for definitions, names, and types of the p = 50 nodes, see Tables 9 and 8 in Appendix D). The
series we model is the sum of the real time congestion price and marginal loss price or, equivalently,
the difference between the spot price at a given location and the overall system price, where the latter
can be thought of as an observed factor in the local spot price. These are obtained as hourly prices
and then averaged over each day as per Maciejowska and Weron (2013). We remove any short-term
seasonality by subtracting a separate mean for each day of the week. Since the energy prices may take
negative values, we adopt the inverse hyperbolic sine transformation as in Uniejewski et al. (2017) for
variance stabilisation.

6.2 Network estimation

We analyse the data collected between 01/01/2021 and 19/07/2021 (n = 200). The information
criterion in (19) selects a single factor (q̂ = 1), and d̂ = 1 is selected by CV. See Figure 9 for the heat
maps visualising the three networks NG, NC and N L described in Networks, which are produced by
fnets.

Granger causal heatmap
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Figure 9: Heat maps of the three networks underlying the energy price data collected over the period
01/01/2021–19/07/2021. Left: NG obtained with the Lasso estimator (11) combined with the adaptive
threshold tada. Middle: NC obtained with the ACLIME estimator of ∆. Right: N L obtained by
combining the estimators of VAR parameters and ∆. In the axis labels, Zone-type nodes are coloured
in red, Aggregate-types in green, Hub-types in blue and EHV-types in purple.

The non-zero entries of the VAR parameter matrix estimates tend to take positive values, indicating
that high energy prices are persistent and spill over to other nodes. Considering the node types, Hub-
type nodes (blue) tend to have out-going edges to nodes of different types, which reflects the behaviour
of the electrical transmission system. Some Zone-type nodes (red) have several in-coming edges from
Aggregate-types (green) and Hub-types, while EHV-types (purple) have few edges in NG, which
carries forward to N L where we observe that those Zone-type nodes have strong long-run correlations
with other nodes while EHV-types do not.

7 Summary

We introduce the R package fnets which implements the FNETS methodology proposed by Barigozzi
et al. (2023) for network estimation and forecasting of high-dimensional time series exhibiting strong
correlations. The package further implements several data-driven methods for selecting tuning
parameters, and provides tools for high-dimensional time series factor modelling under the GDFM.
The efficacy of our package is demonstrated on both real and simulated datasets.
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1 Appendix A: Information criteria for factor number selection

Here we list information criteria for factor number estimation which are implemented in fnets and
accessible by the functions fnets, fnets.factor.model and factor.number by setting the argument
ic.op at an integer belonging to {1, . . . , 6}. When fm.restricted = FALSE, we have

IC1:
(

1
p ∑

p
j=b+1

1
2m+1 ∑m

k=−m µ̂x,j(ωk)
)
+ b · c · (m−2 +

√
m/n + p−1) · log(min(p, m2,

√
n/m)),

IC2:
(

1
p ∑

p
j=b+1

1
2m+1 ∑m

k=−m µ̂x,j(ωk)
)
+ b · c · (min(p, m2,

√
n/m))−1/2,

IC3:
(

1
p ∑

p
j=b+1

1
2m+1 ∑m

k=−m µ̂x,j(ωk)
)
+ b · c · (min(p, m2,

√
n/m))−1 · log(min(p, m2,

√
n/m)),

IC4: log
(

1
p ∑

p
j=b+1

1
2m+1 ∑m

k=−m µ̂x,j(ωk)
)
+ b · c · (m−2 +

√
m/n + p−1) · log(min(p, m2,

√
n/m)),

IC5: log
(

1
p ∑

p
j=b+1

1
2m+1 ∑m

k=−m µ̂x,j(ωk)
)
+ b · c · (min(p, m2,

√
n/m))−1/2,

IC6: log
(

1
p ∑

p
j=b+1

1
2m+1 ∑m

k=−m µ̂x,j(ωk)
)
+ b · c · (min(p, m2,

√
n/m))−1 · log(min(p, m2,

√
n/m)) .

When fm.restricted = TRUE, we use one of

IC1:
(

1
p ∑

p
j=b+1 µ̂x,j

)
+ b · c · (n + p)/(np) · log(np/(n + p)),

IC2:
(

1
p ∑

p
j=b+1 µ̂x,j

)
+ b · c · (n + p)/(np) · log(np/(n + p)),

IC3:
(

1
p ∑

p
j=b+1 µ̂x,j

)
+ b · c · log(min(n, p))/(min(n, p)),

IC4: log
(

1
p ∑

p
j=b+1 µ̂x,j

)
+ b · c · (n + p)/(np) · log(np/(n + p)),

IC5: log
(

1
p ∑

p
j=b+1 µ̂x,j

)
+ b · c · (n + p)/(np) · log(np/(n + p)),

IC6: log
(

1
p ∑

p
j=b+1 µ̂x,j

)
+ b · c · log(min(n, p))/(min(n, p)).

Whether fm.restricted = FALSE or not, the default choice is ic.op = 5.

2 Appendix B: ACLIME estimator

We provide a detailed description of the adaptive extension of the CLIME estimator of ∆ in (14),
extending the methodology proposed in Cai et al. (2016) for precision matrix estimation in the
independent setting. Let Γ̂∗ = Γ̂ + n−1I and η1 = 2

√
log(p)/n .

Step 1: Let ∆̌(1) = [δ̌
(1)
ii′ ] be the solution to

∆̌
(1)
·i′ = arg minm∈Rp |m|1 subject to (22)∣∣∣(Γ̂∗m − ei′ )i

∣∣∣ ≤ η1(γ̂ii ∨ γ̂i′ i′ )mi′ ∀ 1 ≤ i ≤ p and mi′ > 0,

for i′ = 1, . . . , p. Then we obtain truncated estimates

δ̂
(1)
ii = δ̌

(1)
ii · I{|γ̂ii |≤

√
n/ log(p)} +

√
log(p)

n
· I{|γ̂ii |>

√
n/ log(p)}.

Step 2: We obtain

∆̌
(2)
·i′ = arg minm∈Rp |m|1 subject to

∣∣∣(Γ̂∗m − ei′ )i

∣∣∣ ≤ η2

√
γ̂ii δ̂

(1)
i′ i′ ∀ 1 ≤ i ≤ p,

where η2 > 0 is a tuning parameter. Since ∆̌(2) is not guaranteed to be symmetric, the final
estimator is obtained after a symmetrisation step:

∆̂ada = [δ̂ii′ , 1 ≤ i, i′ ≤ p] with δ̂
(2)
ii′ = δ̌

(2)
ii′ · I{|δ̌(2)ii′ |≤|δ̌(2)i′ i |}

+ δ̌
(2)
i′ i · I{|δ̌(2)i′ i |<|δ̌(2)ii′ |}

. (23)
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The constraints in (22) incorporate the parameter in the right-hand side. To use linear programming
software to solve this, we formulate the constraints for each 1 ≤ i′ ≤ p as

∀1 ≤ i ≤ p, ((Γ̂∗ − Qi′ )m − ei′ )i ≤ 0,

∀1 ≤ i ≤ p, −((Γ̂∗ + Qi′ )m − ei′ )i ≤ 0,

mi′ > 0.

where Qi′ has entries qii′ = η1(γ̂ii ∨ γ̂i′ i′ ) in column i′ and 0 elsewhere.

3 Appendix C: Additional simulation results

3.1 Threshold selection

Tables 3 and 4 report the errors in estimating A1 and Ω when the threshold t = tada or t = 0 is applied
to the estimator of A1 obtained by either the Lasso (11) or the DS (12) estimators. With a matrix γ as
an estimand we measure the estimation error of its estimator γ̂ using the following (scaled) matrix
norms:

LF =
∥γ̂ − γ∥F
∥γ∥F

and L2 =
∥γ̂ − γ∥
∥γ∥ .

Table 3: Errors in estimating A1 with t ∈ {0, tada} in combination with the Lasso (11) and the DS (12)
estimators, measured by LF and L2, averaged over 100 realisations (with standard errors reported in
brackets). We also report the average TPR when FPR = 0.05 and the corresponding standard error.
See Results: Threshold selection in the main text for further information.

t = 0 t = tada

β̂las β̂DS β̂las β̂DS

Model n p TPR LF L2 TPR LF L2 TPR LF L2 TPR LF L2

(E1) 200 50 0.9681 0.6234 0.7204 0.8991 0.4299 0.3747 0.9413 0.6226 0.7204 0.6932 0.4487 0.3960
(0.050) (0.081) (0.118) (0.096) (0.280) (0.225) (0.112) (0.088) (0.121) (0.216) (0.256) (0.206)

200 100 0.9398 0.6696 0.8113 0.8810 0.5772 0.4362 0.8832 0.6710 0.8132 0.6491 0.6025 0.4642
(0.091) (0.096) (0.096) (0.094) (0.449) (0.271) (0.182) (0.108) (0.100) (0.246) (0.418) (0.250)

500 100 0.9990 0.4648 0.6682 0.9304 0.2740 0.2604 0.9971 0.4608 0.6645 0.7237 0.2806 0.2699
(0.003) (0.054) (0.094) (0.065) (0.158) (0.138) (0.010) (0.056) (0.095) (0.199) (0.133) (0.111)

500 200 0.9986 0.5068 0.7729 0.9167 0.3680 0.3882 0.9964 0.5023 0.7637 0.7095 0.3889 0.4014
(0.003) (0.058) (0.081) (0.076) (0.196) (0.134) (0.006) (0.061) (0.082) (0.256) (0.187) (0.126)

(E2) 200 50 0.9595 0.6375 0.7075 0.8828 0.4673 0.4280 0.9442 0.6356 0.7079 0.6720 0.4835 0.4433
(0.053) (0.077) (0.094) (0.107) (0.324) (0.255) (0.064) (0.079) (0.096) (0.212) (0.303) (0.241)

200 100 0.9624 0.6200 0.6909 0.8093 0.4519 0.4090 0.9435 0.6175 0.6913 0.5903 0.4765 0.4324
(0.072) (0.079) (0.089) (0.100) (0.385) (0.251) (0.093) (0.082) (0.090) (0.182) (0.371) (0.243)

500 100 0.9970 0.4657 0.5533 0.9304 0.3434 0.3621 0.9958 0.4638 0.5525 0.8384 0.3370 0.3634
(0.006) (0.056) (0.076) (0.089) (0.158) (0.153) (0.008) (0.058) (0.077) (0.182) (0.140) (0.144)

500 200 0.9981 0.4702 0.5658 0.9205 0.3684 0.3740 0.9945 0.4686 0.5665 0.8154 0.3663 0.3803
(0.003) (0.065) (0.091) (0.088) (0.182) (0.162) (0.014) (0.068) (0.093) (0.205) (0.159) (0.145)

Table 4: Errors in estimating Ω with t ∈ {0, tada} applied to the estimator of A1 in combination with
the Lasso (11) and the DS (12) estimators, measured by LF and L2, averaged over 100 realisations
(with standard errors reported in brackets). We also report the average TPR when FPR = 0.05 and the
corresponding standard error. See Results: Threshold selection in the main text for further information.

t = 0 t = tada

β̂las β̂DS β̂las β̂DS

Model n p TPR LF L2 TPR LF L2 TPR LF L2 TPR LF L2

(E1) 200 50 0.8714 0.4143 0.5553 0.8622 0.4217 0.5691 0.8685 0.4145 0.5559 0.8640 0.4217 0.5695
(0.108) (0.048) (0.066) (0.119) (0.054) (0.070) (0.118) (0.049) (0.067) (0.121) (0.055) (0.070)

200 100 0.8827 0.4320 0.5890 0.8961 0.4379 0.5949 0.8684 0.4326 0.5892 0.8867 0.4386 0.5960
(0.084) (0.050) (0.072) (0.080) (0.046) (0.065) (0.139) (0.052) (0.074) (0.120) (0.048) (0.066)

500 100 0.9909 0.3311 0.4916 0.9886 0.3391 0.4989 0.9928 0.3303 0.4901 0.9901 0.3380 0.4975
(0.016) (0.031) (0.069) (0.021) (0.036) (0.065) (0.015) (0.032) (0.069) (0.018) (0.037) (0.066)

500 200 0.9942 0.3520 0.5287 0.9916 0.3511 0.5400 0.9954 0.3512 0.5273 0.9672 0.3528 0.5399
(0.009) (0.038) (0.054) (0.018) (0.045) (0.065) (0.008) (0.039) (0.055) (0.129) (0.055) (0.072)

(E2) 200 50 0.4074 0.7831 0.8353 0.4027 0.7942 0.8335 0.4063 0.7832 0.8353 0.4045 0.7943 0.8336
(0.073) (0.089) (0.072) (0.087) (0.079) (0.034) (0.072) (0.089) (0.072) (0.089) (0.079) (0.034)

200 100 0.4178 0.8406 0.8690 0.3541 0.9119 0.8879 0.4486 0.8407 0.8690 0.4038 0.9120 0.8880
(0.091) (0.108) (0.036) (0.107) (0.126) (0.045) (0.091) (0.108) (0.036) (0.123) (0.126) (0.045)

500 100 0.5405 0.8267 0.8118 0.5632 0.7910 0.7953 0.5406 0.8267 0.8117 0.5628 0.7910 0.7951
(0.111) (0.125) (0.047) (0.122) (0.166) (0.062) (0.111) (0.125) (0.047) (0.123) (0.166) (0.062)

500 200 0.5951 0.8713 0.8519 0.6487 0.8184 0.8259 0.6918 0.8713 0.8519 0.7101 0.8184 0.8258
(0.175) (0.165) (0.088) (0.159) (0.182) (0.090) (0.148) (0.165) (0.088) (0.122) (0.182) (0.090)
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3.2 VAR order selection

Table 5 reports the results of VAR order estimation over 100 realisations.

Table 5: Distribution of d̂ − d over 100 realisations when the VAR order is selected by the CV and
eBIC methods in combination with the Lasso (11) and the DS (12) estimators, see Results: VAR order
selection in the main text for further information.

CV eBIC

β̂las β̂DS β̂las β̂DS

d n p 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

1 200 10 81 10 4 5 91 6 2 1 64 17 11 8 64 12 16 8
200 20 94 6 0 0 94 5 1 0 68 10 9 13 75 10 7 8
500 10 94 5 1 0 86 7 4 3 65 17 11 7 65 18 9 8
500 20 97 2 0 1 98 1 1 0 70 15 8 7 64 14 10 12

-2 -1 0 1 -2 -1 0 1 -2 -1 0 1 -2 -1 0 1

3 200 10 0 0 77 23 0 0 78 22 27 3 49 21 30 6 49 15
200 20 0 0 97 3 0 0 85 15 32 1 48 19 31 2 58 9
500 10 0 0 76 24 0 0 83 17 30 4 43 23 29 2 40 29
500 20 0 0 74 26 0 0 97 3 29 3 45 23 25 4 53 18

3.3 CLIME vs. ACLIME estimators

We compare the performance of the adaptive and non-adaptive estimators for the VAR innovation
precision matrix ∆ and its impact on the estimation of Ω, the inverse of the long-run covariance matrix
of the data (see Step 3). We generate χt as in (C1), fix d = 1 and treat it as known and consider
(n, p) ∈ {(200, 50), (200, 100), (500, 100), (500, 200)}.

In Tables 6 and 7, we report the errors of ∆ and Ω. We consider both the Lasso (11) and DS (12)
estimators of VAR parameters, and CLIME and ACLIME estimators for ∆, which lead to four different
estimators for ∆ and Ω, respectively. Overall, we observe that with increasing n, the performance of
all estimators improve according to all metrics regardless of the scenarios (E1) or (E2), while increasing
p has an adverse effect. The two methods perform similarly in setting (E1) when ∆ = I. There is
marginal improvement for adopting the ACLIME estimator noticeable under (E2), particularly in
TPR. Figures 10 and 11 shows the ROC curves for the support recovery of ∆ and Ω when the Lasso
estimator is used.

Table 6: Errors in estimating ∆ using CLIME and ACLIME estimators, measured by LF and L2,
averaged over 100 realisations (with standard errors reported in brackets). We also report the average
TPR when FPR = 0.05 and the corresponding standard errors.

CLIME ACLIME

β̂las β̂DS β̂las β̂DS

Model n p TPR LF L2 TPR LF L2 TPR LF L2 TPR LF L2

(E1) 200 50 1.000 0.215 0.489 1.000 0.220 0.497 1.000 0.207 0.472 1.000 0.209 0.469
(0.000) (0.047) (0.223) (0.000) (0.047) (0.182) (0.002) (0.043) (0.173) (0.000) (0.041) (0.116)

200 100 1.000 0.235 0.513 1.000 0.241 0.521 1.000 0.223 0.507 1.000 0.228 0.518
(0.000) (0.036) (0.089) (0.000) (0.036) (0.107) (0.000) (0.033) (0.084) (0.000) (0.034) (0.099)

500 100 1.000 0.181 0.458 1.000 0.183 0.466 1.000 0.176 0.452 1.000 0.178 0.458
(0.000) (0.022) (0.062) (0.000) (0.029) (0.087) (0.000) (0.022) (0.052) (0.000) (0.028) (0.069)

500 200 1.000 0.198 0.510 1.000 0.193 0.492 1.000 0.187 0.505 1.000 0.182 0.489
(0.000) (0.027) (0.066) (0.000) (0.035) (0.065) (0.000) (0.026) (0.056) (0.000) (0.033) (0.057)

(E2) 200 50 0.659 0.422 0.816 0.662 0.391 0.608 0.682 0.397 0.706 0.687 0.380 0.600
(0.058) (0.101) (0.654) (0.057) (0.031) (0.144) (0.055) (0.056) (0.351) (0.054) (0.030) (0.176)

200 100 0.639 0.417 0.695 0.637 0.420 0.720 0.669 0.404 0.663 0.668 0.405 0.684
(0.044) (0.039) (0.205) (0.042) (0.043) (0.249) (0.041) (0.037) (0.162) (0.039) (0.037) (0.193)

500 100 0.730 0.372 0.764 0.726 0.499 1.708 0.735 0.358 0.650 0.734 0.361 0.718
(0.035) (0.097) (0.828) (0.039) (1.101) (7.586) (0.032) (0.038) (0.322) (0.031) (0.056) (0.517)

500 200 0.729 0.370 0.711 0.728 0.362 0.736 0.737 0.363 0.647 0.737 0.354 0.673
(0.028) (0.035) (0.355) (0.028) (0.035) (0.384) (0.023) (0.026) (0.239) (0.024) (0.028) (0.279)
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Table 7: Errors in estimating Ω using CLIME and ACLIME estimators of ∆, measured by LF and L2,
averaged over 100 realisations (with standard errors reported in brackets). We also report the average
TPR when FPR = 0.05 and the corresponding standard errors.

CLIME ACLIME

β̂las β̂DS β̂las β̂DS

Model n p TPR LF L2 TPR LF L2 TPR LF L2 TPR LF L2

(E1) 200 50 0.871 0.415 0.557 0.862 0.422 0.571 0.867 0.411 0.558 0.856 0.417 0.570
(0.108) (0.050) (0.070) (0.119) (0.055) (0.080) (0.106) (0.051) (0.088) (0.114) (0.053) (0.083)

200 100 0.883 0.432 0.589 0.896 0.438 0.595 0.868 0.423 0.583 0.883 0.429 0.587
(0.084) (0.050) (0.072) (0.080) (0.046) (0.065) (0.088) (0.048) (0.077) (0.085) (0.045) (0.061)

500 100 0.991 0.331 0.492 0.989 0.339 0.499 0.991 0.328 0.490 0.989 0.337 0.498
(0.016) (0.031) (0.069) (0.021) (0.036) (0.065) (0.015) (0.033) (0.070) (0.019) (0.036) (0.067)

500 200 0.994 0.352 0.529 0.992 0.351 0.540 0.994 0.344 0.525 0.990 0.342 0.537
(0.009) (0.038) (0.054) (0.018) (0.045) (0.065) (0.009) (0.038) (0.056) (0.014) (0.044) (0.068)

(E2) 200 50 0.509 0.532 0.724 0.510 0.514 0.664 0.504 0.518 0.679 0.507 0.506 0.658
(0.078) (0.071) (0.243) (0.068) (0.043) (0.137) (0.071) (0.055) (0.162) (0.063) (0.043) (0.141)

200 100 0.511 0.541 0.683 0.513 0.542 0.695 0.509 0.531 0.674 0.504 0.531 0.679
(0.059) (0.047) (0.082) (0.065) (0.051) (0.093) (0.062) (0.045) (0.084) (0.061) (0.046) (0.084)

500 100 0.640 0.450 0.655 0.624 0.544 1.099 0.642 0.441 0.597 0.637 0.440 0.617
(0.066) (0.072) (0.402) (0.079) (0.866) (3.714) (0.059) (0.036) (0.118) (0.060) (0.047) (0.204)

500 200 0.670 0.461 0.630 0.658 0.450 0.630 0.677 0.456 0.612 0.661 0.445 0.605
(0.045) (0.041) (0.116) (0.043) (0.040) (0.117) (0.041) (0.036) (0.075) (0.037) (0.037) (0.082)
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Figure 10: ROC curves of TPR against FPR for ∆̂ with CLIME and ACLIME estimators in recovering
the support of ∆, averaged over 100 realisations. Vertical lines indicate FPR = 0.05.
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Figure 11: ROC curves of TPR against FPR for Ω̂ with CLIME and ACLIME estimators in recovering
the support of Ω, averaged over 100 realisations. Vertical lines indicate FPR = 0.05.
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4 Appendix D: Dataset information

Table 8 defines the four node types in the panel. Table 9 describes the dataset analysed in Real data
example.

Table 8: Node type definitions for energy price data.

Name Definition

Zone A transmission owner’s area within the PJM Region.
Aggregate A group of more than one individual bus into a pricing node (pnode)

that is considered as a whole in the Energy Market and other various systems
and Markets within PJM.

Hub A group of more than one individual bus into a regional pricing node (pnode)
developed to produce a stable price signal in the Energy Market
and other various systems and Markets within PJM.

Extra High Voltage (EHV) Nodes at 345kV and above on the PJM system.
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Table 9: Names, IDs and Types for the 50 power nodes in the energy price dataset.

Name Node ID Node Type

PJM 1 ZONE
AECO 51291 ZONE
BGE 51292 ZONE
DPL 51293 ZONE
JCPL 51295 ZONE

METED 51296 ZONE
PECO 51297 ZONE

PEPCO 51298 ZONE
PPL 51299 ZONE

PENELEC 51300 ZONE
PSEG 51301 ZONE

BRANDONSH 51205 AGGREGATE
BRUNSWICK 51206 AGGREGATE

COOKSTOWN 51211 AGGREGATE
DOVER 51214 AGGREGATE

DPL NORTH 51215 AGGREGATE
DPL SOUTH 51216 AGGREGATE

EASTON 51218 AGGREGATE
ECRRF 51219 AGGREGATE

EPHRATA 51220 AGGREGATE
FAIRLAWN 51221 AGGREGATE
HOMERCIT 51229 AGGREGATE

HOMERCIT UNIT1 51230 AGGREGATE
HOMERCIT UNIT2 51231 AGGREGATE
HOMERCIT UNIT3 51232 AGGREGATE

KITTATNY 230 51238 AGGREGATE
MANITOU 51239 AGGREGATE

MONTVILLE 51241 AGGREGATE
PENNTECH 51246 AGGREGATE

PPL_ALLUGI 51252 AGGREGATE
SENECA 51255 AGGREGATE

SOUTHRIV 230 51261 AGGREGATE
SUNBURY LBRG 51270 AGGREGATE

TRAYNOR 51277 AGGREGATE
UGI 51279 AGGREGATE

VINELAND 51280 AGGREGATE
WELLSBORO 51285 AGGREGATE

EASTERN HUB 51217 HUB
WEST INT HUB 51287 HUB
WESTERN HUB 51288 HUB

ALBURTIS 52443 EHV
BRANCHBURG 52444 EHV

BRIGHTON 52445 EHV
BURCHESHILL 52446 EHV

CALVERTC 52447 EHV
CHALKPT 52448 EHV

CONASTONE 52449 EHV
CONEMAUGH 52450 EHV

DEANS 52451 EHV
ELROY 52452 EHV
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Coloring in R’s Blind Spot
by Achim Zeileis and Paul Murrell

Abstract Prior to version 4.0.0 R had a poor default color palette (using highly saturated red, green,
blue, etc.) and provided very few alternative palettes, most of which also had poor perceptual
properties (like the infamous rainbow palette). Starting with version 4.0.0 R gained a new and much
improved default palette and, in addition, a selection of more than 100 well-established palettes
are now available via the functions palette.colors() and hcl.colors(). The former provides a
range of popular qualitative palettes for categorical data while the latter closely approximates many
popular sequential and diverging palettes by systematically varying the perceptual hue, chroma, and
luminance (HCL) properties in the palette. This paper provides a mix of contributions including an
overview of the new color functions and the palettes they provide along with advice about which
palettes are appropriate for specific tasks, especially with regard to making them accessible to viewers
with color vision deficiencies.

1 Introduction

Color can be a very effective way to distinguish between different groups within a data visualization.
Color is a “preattentive” visual feature, meaning that groups are identified rapidly and without
conscious effort (Ware 2012). For example, it is trivial to identify the two groups of points in the
scatterplot in Figure 1.

Employing color to represent values on a continuous numeric scale will be less successful (Cleve-
land and McGill 1984), but color can still be useful to convey additional variables when more effective
visual features, such as location, have already been used. For example, color might be used to fill in
different regions on a map, as demonstrated in the right hand plot of Figure 1.

2

4

6

0.0 2.5 5.0 7.5 10.0
Outside temperature (Celsius)

G
as

 c
on

su
m

pt
io

n 
(1

00
0s

 c
ub

ic
 fe

et
)

Insulation

Before

After

Whiteside's data

Median income

(NZD)

20,000

25,000

30,000

35,000

Figure 1: Typical usage of color for coding qualitative/categorical information (left) and quanti-
tative/continuous information (right). Left: Scatter plot of weekly gas consumption by outside
temperature before and after installing house insulation. Right: Choropleth map of median income in
the 16 regions of New Zealand in 2018.

R provides several ways to specify a color: by name (e.g., "red"); by hexadecimal RGB code (e.g.,
"#FF0000"); or by integer (e.g., 2). When we specify an integer, that provides an index into a default
set of colors; the color 2 means the second color in the default set of colors.

However, a more important task than specifying one particular color is the task of specifying a set
of colors to use in combination with each other. For example, in the left panel of Figure 1, we need two
colors that are very easily perceived as different from each other. In the right panel of Figure 1, we
require a set of colors that appear to change monotonically, e.g., from darker to lighter.

We call this the problem of selecting a good palette of colors. What we need to generate is a vector
of R colors, e.g., c("red", "blue"), c("#FF0000", "#0000FF"), or c(2, 4).
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2 A brief history of R palettes

Early versions of R provided very few functions for choosing colors from readily available palettes. The
palettes that were provided, although standard at the time they were implemented, have meanwhile
been widely recognized as being rather poor.

palette() heat.colors(8) terrain.colors(8)

rainbow(8) gray.colors(8) topo.colors(8)

cm.colors(8)

Figure 2: Old base R palettes. At top left is the old default palette (prior to version 4.0.0), consisting
largely of highly saturated primary colors or combinations thereof. Below that is the rainbow palette
of different highly saturated hues. The middle column shows the old sequential palettes, with heat
colors again being highly saturated. The last column shows an old diverging palette plus two palettes
motivated by shadings of geographic maps.

The palette() function generates a vector of eight colors. These provide the default set of colors
that an integer color specification selects from and can be used for coding categorical information. The
output below shows what R produced prior to version 4.0.0, along with a swatch of color circles.

palette()

#> [1] "black" "red" "green3" "blue" "cyan" "magenta" "yellow"
#> [8] "gray"

 

Figure 2 depicts this old default palette() (top-left) along with other old base R palettes using
swatches of circles or rectangles that are filled with the corresponding colors. The other palette
functions all take an argument n to generate that number of colors (possibly along with further
arguments that allow for certain customizations):

• heat.colors(), terrain.colors(), topo.colors(), and gray.colors() can be used as sequen-
tial palettes for ordered or numeric information.

• cm.colors() can be used as a diverging palette for values that are distributed around a “neutral”
value, such as zero.

• rainbow() implements the infamous rainbow (or “jet”) palette that was widely used (possibly
with restrictions of the hue range) for all types of variables: categorical, sequential, and diverging.

All of these palettes – except gray.colors() – have poor perceptual properties. The colors are
highly saturated, which can be distracting and overly stimulating, and the colors are unbalanced with
respect to chroma and luminance, which means that they have unequal visual impact (Lonsdale and
Lonsdale 2019; Bartram, Patra, and Stone 2017; Etchebehere and Fedorovskaya 2017). In addition,
the palettes do not perform well for viewers with some form of colorblindness (about 10% of the
male population, Ware 2012). Most of the palettes also use sequences of hues obtained in the RGB
(red-green-blue) space or simple derivations thereof like HSV (hue-saturation-value) or HLS (hue-
lightness-saturation), which leads to clustering of colors at the red, green, and blue primaries.

Although these limitations have been well known for some time, no changes were made to these
palettes provided by the core R graphics system for a number of years. There were various reasons for
this including the following:

• In R version 2.1.0, Thomas Lumley added the colorRampPalette() function. This made it easier
to generate a palette, though the user is still required to select, for example, start and end colors
from which a palette of colors can then be interpolated.

• Better palettes became available via packages on CRAN (Comprehensive R Archive Network)
starting with RColorBrewer (Neuwirth 2022, first published on CRAN in 2002), later colorspace
(Ihaka 2003; Zeileis, Hornik, and Murrell 2009), and more recently viridis (Garnier 2023),
rcartocolor (Nowosad 2023b), scico (Pedersen and Crameri 2023), and cols4all (Tennekes 2023),
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among many others. In most cases, these make palettes available in R that were developed
elsewhere, e.g., ColorBrewer.org (Harrower and Brewer 2003), CARTOColors (CARTO 2023),
the scientific color maps of Crameri, Shephard, and Heron (2020), and the Viridis palettes for
matplotlib in Python (Smith and Van der Walt 2015).

• Higher-level graphics systems like ggplot2 (Wickham 2016) and lattice (Sarkar 2008) developed
their own color themes.

3 A new set of R palettes

On the road to R version 4.0.0 an attempt was made to address the limited and deficient set of palettes
in base R and to add a range of modern color palettes. In particular, palette() has a new improved
default color palette, palette.colors() provides further well-established qualitative palettes (Zeileis
et al. 2019), and hcl.colors() provides a wide range of qualitative, sequential, and diverging palettes
obtained by a standardized approach in the so-called HCL (hue-chroma-luminance) space (Wikipedia
2023); see Zeileis and Murrell (2019) and Zeileis et al. (2020).

3.1 A new default color palette()

The default color palette in R – the default set of colors that can be specified by integer index – has
been replaced. The new palette follows the same basic hues as the old default palette, but the palette is
less saturated overall and reduces the size of changes in chroma and luminance across the palette. This
produces a calmer and less distracting palette with a more even visual impact. An attempt has also
been made to improve the discriminability of the colors in the default palette for colorblind viewers.
The output (and swatches) below show what R produces from version 4.0.0 onwards.

palette()

#> [1] "black" "#DF536B" "#61D04F" "#2297E6" "#28E2E5" "#CD0BBC" "#F5C710"
#> [8] "gray62"

 

3.2 The palette.colors() function

The palette.colors() function, new in R 4.0.0, provides a way to access several other predefined
palettes (see also Figure 7). All of these are qualitative palettes so they are appropriate for encoding
qualitative (categorical) variables. In other words, these palettes are appropriate for differentiating
between groups. By default palette.colors() returns the "Okabe-Ito" (Okabe and Ito 2008) palette.
This palette was designed to be very robust under color vision deficiencies, so the different colors in
this palette should be easily distinguishable for all viewers.

palette.colors()

#> [1] "#000000" "#E69F00" "#56B4E9" "#009E73" "#F0E442" "#0072B2" "#D55E00"
#> [8] "#CC79A7" "#999999"

 

The first argument to palette.colors() is a number of colors. Each palette has a fixed number of
colors, but we can ask for fewer or, with recycle = TRUE, we can get more colors by recycling. For
example, the following code just requests the first four colors from the "Okabe-Ito" palette.

palette.colors(4)

#> [1] "#000000" "#E69F00" "#56B4E9" "#009E73"
 

Note that up to R version 4.2.x some palette.colors(), including "Okabe-Ito", provide named
output but starting from 4.3.0 all output is unnamed by default.
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The following code requests ten colors from the "Okabe-Ito" palette. That palette only contains
nine colors, but because recycle = TRUE, a tenth color is provided by recycling the first color (black)
from the palette.

palette.colors(10, recycle = TRUE)

#> [1] "#000000" "#E69F00" "#56B4E9" "#009E73" "#F0E442" "#0072B2" "#D55E00"
#> [8] "#CC79A7" "#999999" "#000000"

 

The second argument to palette.colors() is the palette to select colors from. For example, the
following code requests the first four colors from the "R4" palette (the new default in palette()).

palette.colors(4, palette = "R4")

#> [1] "#000000" "#DF536B" "#61D04F" "#2297E6"
 

3.3 The hcl.colors() function

The hcl.colors() function was added in R 3.6.0, with the range of supported palettes slowly ex-
panded over time. This function provides access to another range of palettes, including sequential
and diverging palettes for representing continuous variables. As with palette.colors(), the first
argument is a number of colors to generate and the second specifies a palette to generate colors from.
The hcl.pals() function provides a full list of the available palette names that we can choose from.

hcl.colors(8, palette = "Blues 3")

#> [1] "#00366C" "#005893" "#007BC0" "#5E9BD8" "#91BAEB" "#BAD5FA" "#DDECFF"
#> [8] "#F9F9F9"

 

One difference with hcl.colors() is that the palette we are selecting colors from is not a fixed set
of colors. Instead, the palettes in hcl.colors() are a path within HCL colorspace. For each dimension
– hue, chroma, and luminance – a palette can have a constant value, a monotonic trajectory, or a
triangular trajectory. For example, the trajectories for the "Blues 3" palette are shown in Figure 3. The
palette is (almost) constant in the hue dimension yielding different shades of (almost) the same blue.
The palette is monotonically increasing in the luminance dimension, so the blues vary from very dark
to very light. Finally, the palette has a triangular trajectory in the chroma dimension, so the blues are
more colorful towards the middle of the palette. The trajectories do not involve exactly straight lines
because in some cases a power curve is employed and in other cases the palette has to be adjusted to
remain within the range of representable colours – see Zeileis, Hornik, and Murrell (2009) and Ihaka et
al. (2023) for more details.

Because the palettes from hcl.colors() are based on a continuous path in HCL space, we can
select as many colors as we like. For example, the following code generates five colors from the
multi-hue sequential palette "YlGnBu" (see also Figure 6) and nine colors from the diverging palette
"Purple-Green" (see also Figure 12).

hcl.colors(5, palette = "YlGnBu")

#> [1] "#26185F" "#007EB3" "#18BDB0" "#BCE9C5" "#FCFFDD"
 

hcl.colors(9, palette = "Purple-Green")

#> [1] "#492050" "#90529C" "#C490CF" "#E4CAE9" "#F1F1F1" "#BCDABC" "#72B173"
#> [8] "#2C792D" "#023903"
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Figure 3: Hue, chroma, and luminance paths for the "Blues 3" palette. This plot is created by
the colorspace::specplot() function. We can see that hue is held constant in this palette, while
luminance increases monotonically and chroma peaks towards the middle of the palette.

3.4 Illustrations

To illustrate the benefits of the new color palettes, Figure 4 shows several versions of a time series
plot, depicting four different European stock indexes during most of the 1990s (EuStockMarkets data).
The plots compare the old "R3" default palette with the new "R4" default and the new qualitative
palette "Okabe-Ito". These can all be selected using palette.colors(). The first row shows the "R3"
default using a typical color legend in the top left corner; the second column shows an emulation of
a kind of red-green color blindness known as deuteranopia using the colorspace package (based on
Machado, Oliveira, and Fernandes 2009). The second row uses the "R4" palette and the third row uses
"Okabe-Ito"; both with direct labels for the different time series instead of a color legend.
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Figure 4: Time series line plot of EuStockMarkets. Rows: Old "R3" default palette (top), new "R4"
default palette (middle), "OkabeIto" palette (bottom), designed to be robust under color vision
deficiencies. Columns: Normal vision (left) and emulated deuteranope vision (right). A color legend
is used in the first row and direct labels in the other rows.
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Figure 5: Probability of wind speeds > 39 mph (63 km h−1) during hurricane Dorian in 2019. On the
left is the the original image (top row) and two reproductions using the "Reds" (middle) and "YlGnBu"
(bottom) multi-hue sequential palettes. On the right are emulations of how the images on the left
might appear to a colorblind viewer.

We can see that the "R3" colors are highly saturated and they vary in luminance. For example, the
yellow line is noticeably lighter than the others. Futhermore, for deuteranope viewers, the DAX and
the SMI lines are difficult to distinguish from each other (exacerbated by the use of a color legend that
makes matching the lines to labels almost impossible). Moreover, the FTSE line is more difficult to
distinguish from the white background, compared to the other lines.

The "R4" palette is an improvement: the luminance is more even and the colors are less saturated,
plus the colors are more distinguishable for deuteranope viewers (aided by the use of direct color
labels instead of a legend). The "Okabe-Ito" palette works even better, particularly for deuteranope
viewers.

To illustrate an application of the new sequential color palettes for use with continuous data,
Figure 5 shows several versions of a weather map that was produced by the National Oceanic and
Atmospheric Administration (and infamously misinterpreted by a former President of The United
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Figure 6: Hue, chroma, and luminance paths for the "YlGnBu" (left) and "Viridis" (right) palettes.
These plots are created by the colorspace::specplot() function. For "YlGnBu" we can see that hue
changes from blue to yellow, luminance increases monotonically, and chroma has a small peak in the
blue range and then decreases with luminance. "Viridis", on the other hand, has almost the same
trajectory for both hue and luminance, but chroma increases for the light colors.

States, see Zeileis and Stauffer 2019). The top row shows the original image along with an emulation
of deuteranopia in the second column. The middle row uses the sequential palette "Reds" that can be
selected using hcl.colors() and the bottom row uses the sequential palette "YlGnBu", which is also
available via hcl.colors().

The weather map is intended to convey the probability of wind speeds > 39 mph during hurricane
Dorian, 2019-08-30–2019-09-04. The probabilities are highest in the central magenta region and lowest
in the outer green regions. The original image does not convey the information very well because there
is a non-monotonic change in luminance (from dark to light and back to dark); the high saturation
across all of the colors is also distracting. These issues persist for deuteranope viewers, plus any
benefit of a red (danger!) to green (safe) change in hue is lost.

The "Reds" version of the image conveys the information more clearly by relating the monotonic
changes in probability to monotonic changes in luminance. Hue is fairly constant in this palette and
the saturation peaks towards the middle, which is similar to the "Blues 3" palette shown in Figure 3,
just with a different narrow range of hues. The deuteranope version retains this advantage.

The "YlGnBu" version of the image is also more effective than the original. This palette employs a
much broader range of hues and varies chroma along with luminances so that the dark colors have
higher chroma and the light colors lower chroma (see Figure 6). This still clearly conveys the order
from light to dark but additionally yields more distinguishable colors, making it easier to associate
contour bands with the legend. Note that the "YlGnBu" palette is similar to the very popular "Viridis"
palette (also shown in Figure 6 on the right), with almost the same hue and luminance trajectories.
However, an important advantage of the "YlGnBu" palette in this visualization is that the light colors
have low chroma and thus signal low risk better than the light colors in the "Viridis" palette which
have very high chroma. Finally, we remark that the "YlGnBu" version does lose the benefit of red
(danger!) at high probabilities; an alternative would be to use the "Purple-Yellow" multi-hue palette
instead, a variation of which was used by Zeileis and Stauffer (2019).

The following sections describe the full range of new color palettes in more detail. A much more
condensed overview of the new functions and palettes that are available and some suggestions for
robust default palettes are given in Section 6.

4 A gallery of palettes

This section goes through all of the color palettes that are now available in base R (without using
any additional packages). There is some discussion of the background for the palettes, strengths and
weaknesses of different palettes, and appropriate uses of the palettes.

4.1 The palette.colors() function

The palette.colors() function provides a range of qualitative palettes (see Figure 7 for an overview).
The first argument to the palette.colors() function specifies the number of colors to return and the
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palette argument allows us to select the palette of colors to choose from. As previously mentioned, the
default palette is "Okabe-Ito", which has very good perceptual properties. The "R4" palette specifies
the new R default palette which is also returned by palette() by default. As previously mentioned,
this was constructed to have reasonable perceptual properties, including accommodation for color
vision deficiencies (see Zeileis et al. 2019 for more details). The accompanying palette.pals()
function returns a character vector of the available palette names.

"R4" "Okabe−Ito"

"ggplot2" "Tableau 10" "Classic Tableau"

"Set 1" "Dark 2" "Accent"

"Set 2" "Pastel 1" "Paired"

"Set 3" "Pastel 2"

"Alphabet" "Polychrome 36"

Figure 7: New qualitative palettes in base R available from the palette.colors() function. The label
above each swatch shows the argument to provide to palette.colors() to produce the set of colors.
The palette at top-left is the new default that is also produced by palette(). The "Okabe-Ito" palette
is the default that is produced by palette.colors() (with no arguments).

palette.pals()

#> [1] "R3" "R4" "ggplot2" "Okabe-Ito"
#> [5] "Accent" "Dark 2" "Paired" "Pastel 1"
#> [9] "Pastel 2" "Set 1" "Set 2" "Set 3"
#> [13] "Tableau 10" "Classic Tableau" "Polychrome 36" "Alphabet"

Each of the predefined palettes can be set as the default palette by passing the palette name to the
palette() function. For example, the following code sets the Okabe-Ito palette as the default palette.

palette("Okabe-Ito")

There are several palettes that have been taken from the color schemes of the ggplot2 package and
Tableau (Tableau Software, LLC 2021), both well-established graphics systems.
The "Tableau 10" palette represents the redesign of the default palette in Tableau (Stone 2016). These
palettes may be useful to emulate the look and feel of plots from those other systems.

Several palettes come from ColorBrewer.org (Harrower and Brewer 2003) and were originally
designed for filling regions on maps. However, they are also useful for filling regions within data
visualizations like bar plots, density plots, and heatmaps, among others. Two of these palettes are a
bit different because they deliberately contain darker and lighter colors: the "Accent" palette may be
useful to emphasize one or more categories over the others; the "Paired" palette may be useful to
represent more than one categorical variable via color, e.g., different types of treatment as well as high
vs. low levels of each treatment.
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Finally, there are two palettes from the Polychrome package (Coombes et al. 2019). These are
much larger palettes, with colors chosen to be evenly spread throughout HCL colorspace. The
"Polychrome 36" palette represents the largest set of colors that could be generated while still being
visually distinguishable. The "Alphabet" palette is a smaller, but still large, set (one for each letter of
the alphabet). These palettes may be useful if we are attempting to represent a very large number of
categories at once. The result is unlikely to be easy to interpret, but these palettes will provide the best
chance.

4.2 The hcl.colors() function

The hcl.colors() function provides qualitative, sequential, and diverging palettes that are derived
from certain trajectories of the perceptual properties – hue, chroma, and luminance (HCL). Most of the
resulting palettes have one or more desirable perceptual properties:

• Colorblind-safe: This means that the palette retains its perceptual properties for colorblind
users.

• Perceptual order: This means that there is a perceived ordering of the colors, typically arising
from a monotonic change from light to dark or vice versa.

• Perceptual uniformity: This means that if we take a small step along the path of the palette in
HCL space, the perceived difference between the two colors will be the same anywhere along
the path.

• Perceptual balance: This means that, for example, while there are changes in hue and chroma,
luminance remains pretty much the same, so no color stands out from the others.

These properties are very difficult to achieve in a single palette, which is one reason why there are
multiple palettes available. Furthermore, different properties will be more or less important depending
on the data being displayed and the point that a data visualization is attempting to make. For example,
perceptual balance is not desirable when we want to highlight a particular point or category of interest;
in that scenario we explicitly want some colors to have a greater visual impact than others. The choice
of palette may also depend on how many colors are needed. For example, a palette with a light gray, a
medium color, and a full color may still work effectively on a white background if the light gray group
is less important and is just provided in the background for reference.

Perceptual order and colorblind-safety are closely linked because the easiest approach to obtaining
a colorblind-safe palette is by using a monotonic change in luminance. All of the sequential palettes
in hcl.colors() in fact have this property and are colorblind-safe to a certain degree, though the
effectiveness depends on the range of luminance within the palette. A quick way to check a palette for
colorblind-safety is via colorspace::swatchplot(pal, cvd = TRUE), where pal is a palette of colors.
More elaborate tools are provided by the package colorblindcheck (Nowosad 2023a).

The colorspace package also provides functions like sequential_hcl() and diverging_hcl() to
generate palettes by defining a custom set of hue, chroma, and luminance trajectories, e.g., based on
specific hues that have inherent meanings for a particular data set.

Qualitative palettes

The qualitative palettes available from hcl.colors() are shown in Figure 8. The common feature of
these palettes is that they only vary hue while using the same chroma and luminance for all of their
colors. One drawback to this approach is that fewer easily distinguishable colors can be generated
from these palettes.

The first five palettes are inspired by the ColorBrewer.org palettes of the same name. They employ
different fixed levels of chroma and luminance and span the full hue range. Most of these palettes
are also available as a fixed set of colors via palette.colors(). There are two key differences: First,
chroma and luminance are fixed in hcl.colors() but typically vary somewhat in palette.colors().
The former has the advantage that the colors are more balanced. The latter has the advantage that more
sufficiently different colors can be obtained. Second, hcl.colors() will return n colors interpolated
from the full range of hues, whereas palette.colors() will return the first n colors from a fixed set.

The ColorBrewer.org palettes were designed with good perceptual properties in mind, but also
relied on expert opinion and trial and error. This means that a little more care should be taken when
selecting one of the ColorBrewer-inspired HCL-based palettes because, for example, they are often not
colorblind-safe. The ColorBrewer.org palettes are also available in R via the RColorBrewer package,
which includes a facility for generating ColorBrewer palettes that are colorblind-safe.

The remaining four palettes are taken from Ihaka (2003). These palettes keep chroma and luminance
fixed and restrict the range of hues (blues and greens for "Cold" and reds and oranges for "Warm").
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"Pastel 1" "Dark 2" "Set 2"

"Dark 3" "Set 3"

"Warm" "Cold" "Harmonic"

"Dynamic"

Figure 8: The qualitative palettes that are available with the hcl.colors() function.

Holding chroma and luminance fixed means that the visual impact is even across the palette. This
makes these palettes appropriate if all categories in a variable have equal importance, but, as with
the ColorBrewer.org emulations, they are not colorblind-safe and they will not be appropriate for
grayscale printing.

When palettes are employed for shading areas in statistical displays (e.g., in bar plots, pie charts,
or regions in maps), lighter colors (with moderate chroma and high luminance) such as "Pastel 1" or
"Set 3" are typically less distracting. By contrast, when coloring points or lines, colors with a higher
chroma are often required: On a white background a moderate luminance as in "Dark 2" or "Dark 3"
usually works better while on a black/dark background the luminance should be higher as in "Set 3"
for example.

Single-hue sequential palettes

We divide sequential palettes into single-hue (this section) and multi-hue palettes (the next section).

Single-hue sequential palettes vary only from dark/colorful to light/gray, with a constant under-
lying hue. Figure 3 provides a good example of the hue, chroma, and luminance trajectories for these
palettes. Certain hues will be more appropriate for representing data on specific concepts, such as
green for “vegetation” and red for “temperature”.

Figure 9 shows the sequential palettes that hold hue largely constant. All of these palettes have a
large monotonic variation in luminance, typically from dark to light. This is also typically accompanied
by a change in chroma from more colorful to less. The result is a palette that makes it very easy to
distinguish extreme values. Some palettes also have a pronounced peak of chroma somewhere in the
middle, which makes it easier to distinguish moderate values from extreme values (e.g., "Reds 3",
"Blues 3", etc.).

"Grays" "Blues 3" "Purples 3"

"Light Grays" "Blues 2" "Purples 2"

"Reds 3" "Greens 3"

"Reds 2" "Greens 2" "Oslo"

Figure 9: The single-hue sequential palettes that are available with the hcl.colors() function.

All palettes in this group, except the last one, are inspired by the ColorBrewer.org palettes with
the same base name, but are restricted to a single hue only. They are intended for a white/light
background. The last palette, "Oslo", is taken from Crameri’s scientific color maps and is intended
for a black/dark background and hence the order is reversed starting from a very light blue (almost
white).

When only a few colors are needed (e.g., for coding an ordinal categorical variable with few levels)
then a lower luminance contrast may suffice (e.g., "Light Grays", "Reds 2", "Blues 2", etc.).
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Multi-hue sequential palettes

Multi-hue sequential palettes not only vary luminance, from light to dark (typically along with
chroma), but also vary hue. In order to not only bring out extreme colors in a sequential palette but
also better distinguish middle colors, it is a common strategy to employ a sequence of hues. This leads
to a large range of possible palettes. Figure 6 shows examples of the hue, chroma, and luminance
trajectories from multi-hue palettes.

Note that the palettes in this section differ substantially in the amount of chroma and luminance
contrasts. For example, many palettes go from a dark high-chroma color to a neutral low-chroma
color (e.g., "Reds", "Purples", "Greens", "Blues") or even light gray (e.g., "Purple-Blue"). But some
palettes also employ relatively high chroma throughout the palette (e.g., emulations of Viridis and
CARTOColor palettes). The former strategy is suitable to emphasize extreme values, while the latter
works better if all values along the sequence should receive the same perceptual weight.

Palettes that involve a significant variation in hue, e.g., "YlGnBu", can be more effective when
we need to match specific colors to a legend (e.g., the bottom row of Figure 5) or across several
small-multiples, as in facetted plots.

"Red−Blue" "Purple−Orange" "Green−Yellow"

"Red−Purple" "Purple−Blue" "Terrain"

"Red−Yellow" "Purple−Yellow" "Terrain 2"

"Heat" "Blue−Yellow"

"Heat 2"

"Viridis" "Inferno" "Mako"

"Plasma" "Rocket"

"Mint" "Peach" "Purp"

"Dark Mint" "OrYel" "PurpOr"

"Teal" "PinkYl" "Magenta"

"TealGrn" "RedOr" "Sunset"

"BluGrn" "Burg" "SunsetDark"

"Emrld" "BurgYl" "ag_Sunset"

"BluYl" "BrwnYl"

"ag_GrnYl"

Figure 10: Some of the multi-hue sequential palettes that are available with the hcl.colors() function.

Of the palettes shown in Figure 10, "Red-Blue" to "Terrain 2" are palettes created during the
development of the colorspace package.

The next collection of palettes, "Viridis" to "Mako", emulate popular palettes within the Python
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community. The "Viridis", "Plasma", and "Inferno" palettes come from the matplotlib Python
library and work well for identifying features of interest in false-color images. This means that they
should also work well for heatmaps. The large range of hues means that these palettes can also serve
as qualitative palettes, which makes them robust default palettes. However, this versatility means that
a palette that is purely sequential or purely qualitative may serve better for a specific purpose.

The "Mako" and "Rocket" palettes are from the seaborn Python library with an emphasis on high
chroma and a wide range of luminance. This makes these palettes a good choice for heatmaps.

The remaining palettes in Figure 10, from "Mint" to "Sunset" closely match the corresponding
CARTOColors palettes. These palettes tend to span a much narrower range of hues, chroma, and
luminance, so can be useful if we just need to represent a small number of ordered values. The
resulting colors from these palettes will have, for example, more similar hues than a palette generated
from "Viridis", with its wide range of hues.

"Reds" "Greens" "Blues"

"OrRd" "BuGn" "PuBu"

"Oranges" "YlGn" "BuPu"

"YlOrRd" "YlGnBu" "Purples"

"YlOrBr" "GnBu" "RdPu"

"PuBuGn" "PuRd"

"Lajolla" "Hawaii"

"Turku" "Batlow"

Figure 11: Some of the multi-hue sequential palettes that are available with the hcl.colors() function.

Figure 11 shows the remaining multi-hue sequential palettes that are available in hcl.colors().
Most of the top group of palettes, starting with "Reds", "Greens", and "Blues", closely match Color-
Brewer.org palettes of the same name. The "YlGnBu" palette is of particular note as it uses essentially
the same hues as the "Viridis" palette (Figure 10), but it is more useful as a sequential palette because
chroma decreases for the high-luminance colors (see also Figure 6).

The next group of palettes, "Lajolla" to "Batlow" closely match the palettes of the same name
from Crameri’s scientific color maps. These palettes are constructed with a luminance scale so that
there is a clear visual ordering of the palette. They are also designed to be readable by colorblind
users, to work for grayscale printing, and to provide perceptual balance, so that no color has a greater
visual emphasis than any other. While "Lajolla" and "Turku" are intended for use with a black/dark
background, "Hawaii" and "Batlow" are for use with a white/light background. Moreover, the latter
two span a particularly large range of hues, thus yielding a kind of “scientific rainbow”.

Diverging palettes

The diverging palettes offer a range of underlying hues for either extreme, with either light gray or
yellow as the central “neutral” value. The palettes with yellow at the centre provide less of a change in
colorfulness, so the “neutral” value is more of a turning point rather than a local minimum.
Figure 13 shows the selection of diverging palettes for use with hcl.colors().

All of these palettes are “balanced” in the sense that chroma and luminance vary in the same way
as we move from the central neutral color towards either end of the palette. Figure 12 (left) shows this
idea of balance for the "Purple-Green" palette.

When choosing a particular palette for a display similar considerations apply as for the sequential
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Figure 12: Hue, chroma, and luminance paths for the "Purple-Green" (left) and "Fall" (right) palettes.
The plots are created by the colorspace::specplot() function. We can see that the "Purple-Green"
palette is "balanced" with luminance and chroma varying symmetrically about the central neutral
color for both hues. In contrast, the "Fall" palette is "unbalanced" with the left arm of the palette
having somewhat darker colors with far less chroma than the right arm. Hue changes gradually from
green through yellow to red, yielding a warmer palette compared to "Purple-Green".

palettes. For example, large luminance differences are important when many colors are used while
smaller luminance contrasts may suffice for palettes with fewer colors.

"Green−Orange" "Blue−Yellow 3" "Cyan−Magenta"

"Green−Brown" "Blue−Yellow 2" "Tropic"

"Blue−Red" "Blue−Red 3" "Red−Green"

"Blue−Red 2" "Purple−Brown" "Purple−Green"

"Broc" "Cork" "Vik"

"Berlin" "Lisbon" "Tofino"

Figure 13: The balanced diverging palettes that are available with the hcl.colors() function.

Almost all of the palettes in the first two groups, those involving simple color pairs like "Blue-Red"
or "Cyan-Magenta", were developed as part of the colorspace package, taking inspiration from various
other palettes, including more balanced and simplified versions of several ColorBrewer.org palettes.
The exception is the "Tropic" palette, which closely matches the palette of the same name from
CARTOColors.

The palettes "Broc" to "Vik" and "Berlin" to "Tofino" closely match Crameri’s scientific color
maps of the same name, where the first three are intended for a white/light background and the other
three for a black/dark background.

Flexible diverging palettes

Figure 14 shows a set of more flexible diverging palettes. These do not impose any restrictions that
the two “arms” of the palette need to be balanced and also may go through a non-gray neutral
color (typically light yellow). Consequently, these palettes may be used to provide a larger set of
distinguishable colors compared to the diverging palettes from the previous section. The price of this
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flexibility is that the chroma/luminance within these palettes can be rather unbalanced. For example,
Figure 12 (right) demonstrates this feature of the "Fall" palette.

"Temps" "ArmyRose" "Fall"

"TealRose" "Earth"

"Geyser"

"RdGy" "Spectral" "PiYG"

"RdBu" "RdYlBu" "PRGn"

"PuOr" "RdYlGn"

"BrBG"

"Zissou 1" "Cividis" "Roma"

Figure 14: The flexible diverging palettes that are available with the hcl.colors() function.

The first group of palettes, including "ArmyRose" and "Temps" closely match the palettes of the
same name from CARTOColors.

The next group, based on two or three hues, like "PuOr" and "RdYlGn" closely match the palettes
of the same name from ColorBrewer.org.

The final group contains "Zissou 1", which closely matches the palette of the same name from the
wesanderson package (Ram and Wickham 2023), "Cividis", which is an even more colorblind-safe
version of "Viridis" (Nuñez, Anderton, and Renslow 2018) and "Roma", which closely matches the
palette of the same name from Crameri’s scientific color maps.

5 New defaults in graphical functions

The new default color palette will be most visible in the output from functions in the grDevices and
graphics packages. Several functions from these packages now have slightly different default output,
namely when they are using integer color specifications such as 2 or 3. The resulting colors will still be
similar to the old output, e.g., still a red or a green, but just a different shade.

Moreover, a couple of functions explicitly have new defaults: image() and filled.contour(),
now use the sequential "YlOrRd" palette (from ColorBrewer) which uses similar hues as the old
heat.colors(). See the left panel in Figure 15.

Finally, the hist() and boxplot() functions (and therefore formula-based calls of the form
plot(num ~ factor, ...), also have a new default color: light gray which makes it easier to compare
the shaded areas (see the middle and right panels in Figure 15).

image(volcano)
boxplot(weight ~ feed, data = chickwts)
hist(chickwts$weight)

Package authors may also benefit from the new palettes available in R; the new functions
palette.colors() and hcl.colors() allow good default palettes to be set without requiring ad-
ditional package dependencies. For example, the lattice package has already changed its default colors
to use the "Okabe-Ito" and "YlGnBu" palettes (for categorical and numerical data, respectively).
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Figure 15: Examples of the new default color palettes that are used in the base graphics functions
image(), boxplot(), and hist().

6 Summary

The default color palette in R has been improved since R version 4.0.0. The functions palette.colors()
and hcl.colors(), from the grDevices package, also provide a wide range of predefined palettes
based on a number of widely used graphics systems. There are qualitative palettes for use with
categorical data and sequential and diverging palettes for use with ordinal or continuous data. The
table below summarizes the main types of palettes and provides suggestions for good default palettes
for each type. We encourage package authors to make use of these palettes when providing default
colors for functions that produce plots.

Table 1: An overview of the new palette functionality: For each main type of palette, the Purpose row
describes what sort of data the type of palette is appropriate for, the Generate row gives the functions
that can be used to generate palettes of that type, the List row names the functions that can be used to
list available palettes, and the Robust row identifies two or three good default palettes of that type.

Qualitative Sequential Diverging

Purpose Categorical data Ordered or numeric data
(high→ low)

Ordered or numeric data with a
central value
(high← neutral→ low)

Generate palette.colors(),
hcl.colors()

hcl.colors() hcl.colors()

List palette.pals(),
hcl.pals("qualitative")

hcl.pals("sequential") hcl.pals("diverging"),
hcl.pals("divergingx")

Robust "Okabe-Ito", "R4" "Blues 3", "YlGnBu",
"Viridis"

"Purple-Green", "Blue-Red 3"
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Updates to the R Graphics Engine: One
Person’s Chart Junk is Another’s Chart
Treasure
by Paul Murrell

Abstract Starting from R version 4.1.0, the R graphics engine has gained support for gradient fills,
pattern fills, clipping paths, masks, compositing operators, and stroked and filled paths. This document
provides a basic introduction to each of these new features and demonstrates how to use the new
features in R.

1 Introduction

Figure 1 shows a data visualization with a subtle feature on each circle.1 The border of each circle in
the visualization is semi-transparent and the border of each circle becomes more transparent from
left to right. We could argue about whether circles are the best representation of these values and
whether the semi-transparent gradient is particularly helpful, but for the purposes of this paper, this
image represents a specific example of a general problem: does R graphics allow us to produce the
exact final image that we desire, or do the limitations of the R graphics engine force us to use external,
manual software like Adobe Illustrator to perform additional modifications? Over the past few years,
a number of capabilities have been added to the R graphics engine with the aim of being able to
produce the exact final image that we desire entirely within R code.

Figure 1: A diagram with a semi-transparent linear gradient on each circle border.

For example, it is now possible to define a linear gradient in R. The following code defines a
horizontal linear gradient from a light gray on the left to a very light gray on the right.

library(grid)
linearbg <- linearGradient(grey(c(.8, .99)),

x1=0, x2=1, y1=.5, y2=.5)

The following code uses the linearbg gradient defined above to add a subtle linear gradient back-
ground to a ggplot2 plot (Wickham 2016) by setting the fill in the plot.background (see Figure 2).

library(ggplot2)
ggplot(mtcars) +

geom_point(aes(disp, mpg)) +
theme(plot.background=element_rect(fill=linearbg, colour=NA),

plot.margin=unit(c(1, 1, .25, .25), "cm"),
panel.background=element_rect(fill=NA, colour="black"),
panel.grid=element_blank())

Only some of the new graphics features are available at this stage via high-level interfaces like
ggplot2, as in the example above, so Section 2 will introduce the new features via a number of
lower-level examples using the grid package. Section 2 will serve two purposes: to explain what the
new features are and to show how they can be used (at least with grid). Section 3 will provide some
examples of how to integrate the lower-level grid usage with higher-level packages like ggplot2, lattice,

1This image was inspired by a post on stack overflow.
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Figure 2: A ggplot2 plot with a subtle linear gradient background.

and base graphics plots. Section 4 provides a discussion of important limitations of the new features,
how the new features relate to the capabilities of existing R packages, and pointers to further readings.
For readers unfamiliar with the organization of R graphics systems, for example, the relationship
between grid and ggplot2, the Appendix provides a brief overview.

2 The new graphics features

In this section, we introduce the new graphics features one by one. The aim is to explain each feature,
show what it can do, and show how to use the feature with the grid package. Since grid will not
be familiar for many R users, the examples will be kept as simple as possible and will involve only
drawing basic shapes; Section 3 will provide some more complicated examples involving complete
plots.

2.1 Gradient fills

There are new functions in the grid package for defining gradient fills. For example, we can use the
linearGradient() function to define a linear gradient based on a start point, an end point, and a set
of colors to transition between (along the straight line between the start and end point).

In the following code, we use the rgb() function to define two R colors, both blue, but one almost
opaque and one almost completely transparent.

blues <- rgb(0, 0, 1, alpha=c(.8, .1))
blues

#> [1] "#0000FFCC" "#0000FF1A"

Next we define a linear gradient that transitions horizontally, left-to-right, between these two
colors. In grid, we can specify positions relative to a variety of coordinate systems, but the default is a
“normalized” system where 0 means left/bottom and 1 means right/top (and .5 means the center).

gradient <- linearGradient(blues, x1=0, x2=1, y1=.5, y2=.5)

The code above does not draw anything; it just defines a linear gradient. In order to draw the
gradient, we provide this object as the “fill color” to a function that does draw something. For example,
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as we saw in the introduction, we can pass that linear gradient object as the fill argument to the
element_rect() function so that ggplot2 will fill a rectangle with the gradient.

In grid, we can draw a shape with a fill color by calling a function like grid.circle() and
specifying the fill argument to the gpar() function. For example, the following code draws a circle
with a "blue" fill. By default, the circle is drawn in the center of the image and r=.3 means that the
radius of the circle is 30% of the width of the image. All of the images in this section will have a light
gray checkerboard pattern in the background so that we can properly see any semi-transparency in
what we draw.

grid.circle(r=.3, gp=gpar(col=NA, fill="blue"))

The following code draws a circle and uses the linear gradient that we defined at the start of this
section as the fill. Notice that the location x1=0 in the linear gradient definition refers to the “left”
of the circle and x2=1 refers to the “right” of the circle. In other words, the gradient is relative to the
bounding box of the shape that is being filled. There are many other possibilities, including using
the unit() function to specify the locations of the start and end points of the gradient in absolute
units like inches (though still relative to the shape’s bounding box) and we can also set the fill on a
grid viewport rather than on individual shapes. The Further reading Section provides links to several
technical reports that demonstrate a wider range of examples.

grid.circle(r=.3, gp=gpar(col=NA, fill=gradient))

There is also a radialGradient() function for defining a gradient that is based on a start circle
and an end circle and a set of colors to transition between. For example, the following code defines a
radial gradient that starts with radius r1=.5 and ends with radius r2=0, transitioning from an almost
opaque blue to almost fully transparent blue.

radial <- radialGradient(blues, r1=.5, r2=0)

In the following code, the radial gradient is used to fill a circle. The radii of the start and end circles
of the gradient are relative to the bounding box of the circle that is being filled, so r1=.5 corresponds
to the circumference of the circle being filled and r2=0 corresponds to the center of the circle being
filled.

grid.circle(r=.3, gp=gpar(col=NA, fill=radial))

Any shape can be filled with either a linear or radial gradient. For example, the following code
fills a rectangle with the radial gradient defined above.

grid.rect(width=.6, height=.6, gp=gpar(col=NA, fill=radial))
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2.2 Pattern fills

It is now also possible to fill a shape with a pattern fill with the help of the pattern() function from
the grid package. The first argument to this function describes what to draw for the pattern and
subsequent arguments describe the size of the pattern - the extent of the pattern tile - along with what
happens outside of the pattern tile. As an example, we will look at the construction of the checkerboard
pattern that is being used as the background for the images in this section.

The first step is to describe the shape for the pattern. In this case, we use a call to rectGrob() to
describe two rectangles, both .1 inches square and filled with light gray, with one rectangle just above
and to the right of center and one just below and to the left of center. The grid function unit() is used
to associate a value with a coordinate system. In the "npc" coordinate system, 0 means left/bottom, 1
means right/top, and .5 means the center, and in the "in" coordinate system, values are in inches.
The image below the code shows what this shape looks like drawn on its own.

bgRect <- rectGrob(x=unit(.5, "npc") + unit(c(0, -.1), "in"),
y=unit(.5, "npc") + unit(c(0, -.1), "in"),
just=c("left", "bottom"),
width=.1, height=.1, default.units="in",
gp=gpar(col="gray80", fill="gray80"))

The following code creates a pattern based on this shape. The size of the tile is .2” square and the
tile will be repeated to fill a region (extend="repeat"). The image below the code shows the pattern
tile (without repetition); the extent of the tile is indicated by a red rectangle.

bg <- pattern(bgRect,
width=unit(.2, "in"),
height=unit(.2, "in"),
extend="repeat")

As with the linearGradient() and radialGradient() functions, the result of a call to pattern()
is just an object that describes a pattern; nothing is drawn. We supply this pattern object as the fill
for a shape that is to be drawn.

For example, the object that we created with a call to pattern() can be used as the fill graphical
parameter in grid functions. The following code draws a rectangle that is the size of the entire image
and fills it with the bg pattern. The pattern tile is drawn in the center of the rectangle and then repeated
to fill the entire rectangle.

grid.rect(gp=gpar(fill=bg))

As with gradient fills, we can use the pattern to fill any shape. For example, the following code
fills a circle with the checkerboard pattern.

grid.circle(gp=gpar(fill=bg))
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2.3 Clipping paths

A clipping region describes an area within which drawing will be visible. By default, everything
that we draw within the limits of an image is visible, but we can set a clipping region to limit what
gets drawn. Rectangular clipping regions have been available in R graphics for a very long time. For
example, in scatter plots, the data symbols are usually clipped to the (rectangular) plot region. The
code below produces a ggplot2 plot with the x-axis scale set to exactly the range of the disp variable
so that the left-most and right-most data symbols are centered on the left and right edge of the plot
region. The ggplot2 package clips the drawing of the data symbols to the plot region so only half of
the left-most and right-most data symbols are drawn (see Figure 3).

ggplot(mtcars) +
geom_point(aes(disp, mpg), size=3) +
scale_x_continuous(expand=c(0, 0)) +
theme(plot.margin=unit(c(1, 1, .25, .25), "cm"),

panel.background=element_rect(fill=NA, colour="black"),
panel.grid=element_blank())

Figure 3: A ggplot2 plot with the left-most and right-most data symbols clipped to the edges of the
plot region.

In grid, a clipping region can be defined when we push a viewport. A viewport is a rectangular
region that defines a temporary coordinate system for drawing, plus some other parameters like
the clipping region. For example, the plot region on a ggplot2 plot is a grid viewport that provides
coordinates for drawing data symbols, with clipping turned on so that nothing is drawn outside the
plot region.

The following code provides a simple demonstration of a viewport. First, we describe two circles,
one centered on the left edge of the image and one centered on the right edge of the image. The
circleGrob() function is similar to the grid.circle() function, except that it just creates a description
of a circle and does not draw anything. The grid.draw() function draws the circles. Because the
circles are centered on the edges of the image, we can only see half of each circle.
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gradient2 <- linearGradient(blues, x1=0, x2=1, y1=.5, y2=.5,
group=FALSE)

circles <- circleGrob(x=0:1, r=.5, gp=gpar(col=NA, fill="blue"))
grid.draw(circles)

In the following code, the viewport() function describes a viewport that is only 50% of the width
and 50% of the height of the image. The pushViewport() function creates that viewport on the image.
We then call the grid.draw() function to draw the circles again, but now we are within the viewport,
so the circles are drawn centered on the left and right edges of the viewport. Furthermore, the radius
of the circles (.5) now means 50% of the width of the viewport, so the circles are also drawn smaller
than before. Notice that the circles extend beyond the edges of the viewport because, by default, there
is no clipping region. The popViewport() function removes the viewport from the image (so further
drawing would be at full size). In the image below, a red rectangle has been drawn just to show the
extent of the viewport, but normally nothing is drawn when a viewport is created.

pushViewport(viewport(width=.5, height=.5))
grid.draw(circles)
popViewport()

The following code demonstrates the idea of clipping to a viewport. We push a viewport again,
but this time the viewport has clipping turned on (clip=TRUE). A purple rectangle shows the extent of
this viewport. When we draw the circles within this viewport, drawing is limited to the extent of the
viewport, so half of the left circle and half of the right circle are clipped.

pushViewport(viewport(width=.5, height=.5, clip=TRUE))
grid.draw(circles)
popViewport()

This idea of a clipping region has now been extended to a clipping path so that we can limit
drawing to a region that is any shape at all, not just a rectangle. For example, the following code
describes a diamond shape that we will use as a clipping path. This code does not draw anything, but
the shape is shown below the code anyway just so that we know what it looks like.

diamondPath <- polygonGrob(c(0, .5, 1, .5), c(.5, 1, .5, 0))
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The following code pushes a viewport again, but this time sets the clipping region for the viewport
to be the diamond shape that we defined above. Now, when we draw the two circles within this
viewport, only the parts of the circles that lie within the diamond-shaped clipping path are visible. Just
as a guide, a red rectangle has been drawn to show the extent of the viewport that we have pushed,
and a purple diamond has been drawn to show the extent of the clipping path. Notice that the location
and size of the diamond path is relative to the viewport, so 0 is the left/bottom of the viewport and 1 is
the right/top of the viewport.

pushViewport(viewport(width=.5, height=.5, clip=diamondPath))
grid.draw(circles)
popViewport()

2.4 Masks

Masks are similar to clipping paths in that they constrain what parts of a shape are visible. However, a
mask provides greater flexibility because it allows intermediate levels of semi-transparency; a clipping
path effectively only allows either fully opaque or fully semi-transparent masking.

A mask, like a clipping path, can be based on any shape. For example, the following code describes
a diamond shape (that is filled black). This code does not draw anything, but the diamond is shown
below the code anyway so that we know what it looks like.

diamondMask <- polygonGrob(c(0, .5, 1, .5), c(.5, 1, .5, 0),
gp=gpar(fill="black"))

Also like clipping paths, we can enforce a mask when we push a viewport. The following code
pushes a viewport that is half the width and half the height of the total image and enforces the mask
defined above and then draws the two blue circles. The mask works by transferring its opacity to the
circles. Where the mask is opaque, the circles are drawn normally and where the mask is transparent,
the circles are not drawn at all. The effect of this mask is exactly the same as the clipping path example
from the previous section.

pushViewport(viewport(width=.5, height=.5, mask=diamondMask))
grid.draw(circles)
popViewport()

The additional flexibility that is available with masks comes from the fact that the mask may
have fully opaque areas and fully transparent areas and areas of semi-transparency. For example, the
following code defines a more complex shape. This shape is a square with opaque corners and a
semitransparent diamond in the middle (again, the shape is shown below the code just for reference;
the code does no actual drawing). In this code, the grobTree() function is used to describe a mask
that is made up from two shapes: a polygonGrob() that describes the semitransparent diamond and a
pathGrob() that describes the opaque corners.
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alphaMask <- grobTree(polygonGrob(c(0, .5, 1, .5), c(.5, 1, .5, 0),
gp=gpar(fill=rgb(0,0,0,.5))),

pathGrob(c(0, 0, 1, 1, 0, .5, 1, .5),
c(0, 1, 1, 0, .5, 1, .5, 0),
id=rep(1:2, each=4),
rule="evenodd",
gp=gpar(fill="black")))

When we push a viewport with this mask, and draw the two circles, the result is the original
circles where the mask is opaque and a semitransparent version of the circles where the mask is
semitransparent.

pushViewport(viewport(width=.5, height=.5, mask=alphaMask))
grid.draw(circles)
popViewport()

The masks used above are examples of alpha masks. They work by transferring the “alpha channel”,
or opacity, of the mask to the shape that is being drawn. It is also possible to define luminance masks.
With a luminance mask, areas of the mask that are white mean that drawing will occur normally, areas
that are black mean that no drawing will occur, and areas that are gray produce semi-transparent
drawing.

2.5 Stroked and filled paths

Another new feature in R graphics is the ability to stroke and/or fill a path, where the path is defined
by one or more other shapes. As an example, we will look at producing the “square with opaque
corners” from the previous section on masks.

The code below is similar to the code used in the previous section (and the shape that it draws is
shown below the code). This code uses the grid.path() function and it is relatively complex because
it has explicit x and y locations to describe the corners of a square followed by the corners of a diamond
and an id argument to divide the x and y locations into separate shapes (square and diamond). The
rule="evenodd" argument means that the interior of the path (that is filled with black) is inside the
square, but not inside the diamond.

grid.path(c(0, 0, 1, 1, 0, .5, 1, .5),
c(0, 1, 1, 0, .5, 1, .5, 0),
id=rep(1:2, each=4),
rule="evenodd",
gp=gpar(fill="black"))

The idea with stroked and filled paths is that we can describe more complex shapes like this by
combining simpler shapes instead of having to specify explicit x and y locations. For example, the
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following code draws the same shape using grid.fillStroke(), which allows us to describe the
shape as a combination of a simple rectangle, with rectGrob(), and the diamondPath that we defined
earlier.

grid.fillStroke(grobTree(rectGrob(), diamondPath),
rule="evenodd",
gp=gpar(fill="black"))

The following code shows a similar example, this time creating a square with rounded corners by
combining a rectangle with a circle. This shape would be much harder to describe using pathGrob()
and explicit x and y locations.

grid.fillStroke(grobTree(rectGrob(), circleGrob()),
rule="evenodd",
gp=gpar(fill="black"))

We can also use stroked and filled paths to stroke the outline of text. Normally, we can only draw
filled text in R, but the new grid.stroke() function treats its first argument as just a path to draw the
outline of. For example, the following code strokes the outline of the text “path”.

grid.stroke(textGrob("path", gp=gpar(cex=2.5)))

2.6 Compositing operators

Normally when we draw two shapes in R, the second shape is drawn on top of the first shape; if the
two shapes overlap, the second shape will obscure the first shape. For example, the following code
defines two concentric circles, a larger one with a blue fill and a smaller one with a black fill.

circle1 <- circleGrob(r=.35, gp=gpar(col=NA, fill="blue"))

circle2 <- circleGrob(r=.25, gp=gpar(col=NA, fill="black"))
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If we draw these circles, one after the other, the black circle partially obscures the blue circle. In
technical terms, the black circle is composited with the blue circle using an “over” operator.

grid.draw(circle1)
grid.draw(circle2)

The grid.group() function in R allows us to select a different compositing operator. For example,
the following code draws the two circles again, but this time using a “dest.out” operator, which means
that, instead of drawing the black circle on top of the blue circle, the blue circle is removed where it is
overlapped by the black circle (and the black circle is not drawn at all).

grid.group(circle2, "dest.out", circle1)

The ability to control the compositing operator provides us with one way to draw a circle with a
semi-transparent gradient border that we saw in the very first example in the Introduction. First, we
define two circles, one with a semi-transparent gradient fill and one with a black fill.

dst <- circleGrob(r=.35, gp=gpar(col=NA, fill=gradient))

src <- circleGrob(r=.25, gp=gpar(col=NA, fill="black"))

Then we composite the black circle with the semi-transparent circle, using "dest.out", which
creates a hole in the semi-transparent circle. The result is a circle with a semi-transparent gradient
border.

grid.group(src, "dest.out", dst)
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The full set of Porter-Duff compositing operators (Porter and Duff 1984) are available along with a
set of “blend modes” from the PDF language specification (Adobe Systems Incorporated 2001).

3 Integrating with higher-level interfaces

In this section we look at several more complex examples to show how the new graphics features
might be used as part of a high-level plot.

Some features are already accessible via high-level interfaces like ggplot2 and its extension pack-
ages. We saw one example of adding a background linear gradient to a ggplot2 plot in Figure 2.
Furthermore, the following code demonstrates that some ggplot2 extension packages also already
make use of the new graphics features. In this case, we are using the stat_gradientinterval()
function from the ggdist package (Kay 2023) to draw linear gradients that represent within-group
variability (see Figure 4). 2 In theory, any package that extends ggplot2 can potentially make use of
the new features because extending ggplot2 involves writing grid code.

library(ggdist)
library(distributional)
ggplot(TGsummary) +

stat_gradientinterval(aes(x=dose, ydist=dist_normal(len.mean, len.sd))) +
facet_wrap("supp")

Figure 4: A ggdist plot that uses linear gradients to represent variability within groups.

3.1 Integrating with ggplot2

Where there is no interface yet for new graphics features in ggplot2 or its extension packages, it is
possible to access the new graphics features using the gggrid package (Murrell 2022a). For example,

2Code that generates the data, in this case TGsummary, will not be shown in this section, but it is available as part
of the supplementary materials for this article.
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the following example uses gggrid to access the new feature for drawing stroked paths in order to
draw outlined text within a ggplot2 plot.

The first step is to write a function that generates a description of something to draw. The following
code first creates a textGrob() and then creates a strokeGrob() that will draw the outline of the text
with a thick white line. The function returns a grobTree() that will draw the original text on top of
the thick white outline.

library(gggrid)
outlineLabel <- function(data, coords) {

text <- textGrob(paste0(data$percent[2], "%"), gp=gpar(cex=3))
grobTree(strokeGrob(text, gp=gpar(col="white", lwd=10)),

text)
}

The following code draws a faceted ggplot2 plot, where each panel consists of an array of yellow
and gray tiles.3 The call to grid_panel() means that the outlineLabel() function that we defined
above is called for each panel of the plot, which adds the outlined text to each panel (see Figure 5).

ggplot(judges) +
geom_tile(aes(x, y, fill=race), color="white", lwd=.7) +
grid_panel(outlineLabel, aes(percent=Freq), data=judgeCounts) +
facet_wrap("president") +
scale_fill_manual(values=c(white="#F8C216", other="grey80")) +
theme_void() +
theme(aspect.ratio=1,

legend.position="none")

Figure 5: Outlined text on a ggplot2 plot produced with the gggrid package and stroked paths.

This particular result (outlined text) can also be produced using the shadowtext package (Yu 2022).
However, that package currently produces outlined text by drawing 17 different copies of the text
(slightly offset from each other) to get the final result. This is an example where an existing package
may be able to gain some efficiencies by adopting some of the new graphics features.

3.2 Integrating with lattice

The lattice package (Sarkar 2008) provides an alternative high-level plotting system. For example, the
following code uses lattice to draw a line plot representing two mathematical functions. The plot has
a transparent background and heavy grid lines, which creates a problem where the legend overlaps
with the grid lines (see Figure 6).

library(lattice)
key <- list(text=list(expression(y1 == x^2, y2 == x^3)),

lines=list(col=2:3, lwd=3),
padding.text=3,
border=TRUE,
x=.5, y=.75, corner=c(.5, .5))

3This example is based on a stackoverflow post, which itself is based on a post on fivethirtyeight.com
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xyplot(y1 + y2 ~ x, type="l", lwd=3, col=2:3,
panel=function(...) {

panel.grid(h=-1, v=-1, col="black")
panel.xyplot(...)

},
key=key)

Figure 6: A plot of two mathematical functions drawn with the lattice package. The checkerboard
pattern is there to show that the plot itself has a transparent background.

The lattice package, like ggplot2, is based on grid, and we can easily access the grid interface
to new graphics features by calling grid functions from within the panel function in the xyplot()
call. We will use this to access the new masking feature so that the drawing of the grid lines does not
overlap with the legend.

The first step is to use the draw.key() function from lattice, which gives us a grid object that
describes the legend that lattice will draw.

keygrob <- draw.key(key=key, vp=viewport(x=.5, y=.75))

The following code defines a mask, based on that keygrob, that is a black rectangle with a hole
where the legend will be drawn. This uses a filled path that is based on a much larger rectangle with
the keygrob inside it to create the hole.

keyMask <- fillGrob(as.path(grobTree(rectGrob(width=2, height=2),
keygrob),

rule="evenodd",
gp=gpar(fill="black")))

Now we can draw the lattice plot again, but this time we push a grid viewport that enforces the
keyMask and draw the grid lines within that viewport. This means that the grid lines are not drawn
where they overlap with the legend (see Figure 7).

xyplot(y1 + y2 ~ x, type="l", lwd=3, col=2:3,
panel=function(...) {

limits <- current.panel.limits()
pushViewport(viewport(mask=keyMask,

xscale=limits$xlim,
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yscale=limits$ylim))
panel.grid(h=-1, v=-1, col="black")
popViewport()
panel.xyplot(...)

},
key=key)

Figure 7: A lattice plot with a mask used to only draw the grid lines where they do not overlap with
the legend. The checkerboard pattern is there to show that the plot itself has a transparent background.

3.3 Integrating with base graphics

There is no interface to the new graphics features for the base graphics system (the graphics package)
or packages that build on it. However, the gridGraphics package (Murrell and Wen 2020) can be used
to convert base graphics to grid and then the grid interface can be used to access the new graphics
features.

For example, the following code uses base graphics to draw a map with a set of contour regions
overlaid (see the map on the left in Figure 8).

library(maps)
par(mar=rep(2, 4))
map("nz")
invisible(mapply(function(c, col, fill) {

polygon(c$x, c$y, default.units="native",
border=col, col=fill)

},
contours, colours, fills))

The following code redraws the map, but uses the new clipping paths feature to clip the contour
regions with the map boundary as the clipping path. The first step is to draw the map as before, but
this time we also record the coordinates of the map outline and use them to create a clipping path.
Next, we use the grid.echo() function from the gridGraphics package to convert the map into a grid
drawing, which includes a set of grid viewports. We navigate to the viewport where the map was
drawn ("graphics-window-1-0A") so that we have the correct coordinate system and then we push
a viewport with the clipping path. Finally, we draw the contour regions, which are clipped to the
outline of the map (see the map on the right of Figure 8).
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Figure 8: Left: A set of contours drawn on top of a map using base graphics; Right: The same map,
converted to grid graphics using the gridGraphics package, with the contours clipped by using the
boundary of the map as the clipping path.

par(mar=rep(2, 4))
outline <- map("nz")
clipPath <- polylineGrob(outline$x, outline$y, default.units="native")
library(gridGraphics)
grid.echo()
downViewport("graphics-window-1-0A")
cvp <- current.viewport()
pushViewport(viewport(xscale=cvp$xscale, yscale=cvp$yscale,

clip=clipPath))
invisible(mapply(function(c, col, fill) {

grid.polygon(c$x, c$y, default.units="native",
gp=gpar(col=col, fill=fill))

},
contours, colours, fills))

grid.draw(clipPath)
popViewport()

3.4 Drawing with grid

In some cases, it can be easier to produce a complete plot just using grid, rather than using a high-level
system like lattice or ggplot2. With this approach, all of the new graphics features are available. For
example, the following code draws the original example from Figure 1 (reproduced again in Figure 9).

First, we define a linear gradient (gray that becomes more transparent from left to right) and then
we define a function that draws a circle with that linear gradient as its border (as described in the
section on compositing operators).

library(grid)
grad <- linearGradient(rgb(0, 0, 0, c(.5, .1)),

y1=.5, y2=.5)
gradientCircle <- function(y, r) {

circle1 <- circleGrob(y=unit(y, "native"),
r=unit(r, "native") + unit(1.5, "mm"),
gp=gpar(col=NA, fill=grad))

circle2 <- circleGrob(y=unit(y, "native"),
r=unit(r, "native") - unit(1.5, "mm"),
gp=gpar(fill="white"))

grid.group(circle2, "dest.out", circle1)
}
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The main plot is drawn by dividing up the image into columns, using a grid.layout(), with each
column the correct width for one of the circles. We then run a loop and, for each circle, we push a
viewport into one of the layout columns, call the gradientCircle() function to draw a circle, add a
text label at the center of the circle, add another label above the circle, and draw a line segment that
starts just above the first label and ends just below the second label (see Figure 9).

grid.rect(gp=gpar(col=NA, fill="grey95"))
pushViewport(viewport(width=unit(1, "npc") - unit(3, "mm"),

y=unit(1.5, "mm"), just="bottom",
layout=grid.layout(1, numCircles,

widths=circleWidths, heights=h,
respect=TRUE)))

for (i in 1:numCircles) {
pushViewport(viewport(layout.pos.col=i, yscale=c(0, h)))
gradientCircle(circleRadii[i], circleRadii[i])
amountGrob <- textGrob(paste0(amount[i], "%"),

unit(.5, "npc"),
unit(circleRadii[i], "native"),
gp=gpar(col=purple,

fontface="bold",
cex=1 + amount[i]/max(amount)))

labelGrob <- textGrob(toupper(label[i]),
.5, .7,
just="bottom",
gp=gpar(fontface="bold", cex=.7, lineheight=1))

grid.draw(amountGrob)
grid.draw(labelGrob)
grid.segments(.5,

grobY(amountGrob, 90) + unit(2, "mm"),
.5,
grobY(labelGrob, 270) - unit(2, "mm"),
gp=gpar(col=purple, lwd=2))

popViewport()
}

Figure 9: A diagram with a semi-transparent linear gradient on each circle border. This is a reproduc-
tion of the original image from the Introduction.

4 Discussion

Since R 4.1.0, support for a number of new graphics features has been added to the R graphics engine.
These features are available via functions in the grid package, with some higher-level interfaces also
appearing, for example in the ggplot2 package and its extensions.

A small number of examples have been provided to show how the new graphics features might be
useful within the context of a statistical plot, but it is hopefully clear that a very large range of other
graphical images could be generated with gradients, patterns, clipping paths, masks, compositing
operators, and stroked/filled paths.

The trick to solving a particular graphical problem is being able to express the problem in terms of
the graphical tools at our disposal. If we just want to draw a blue circle, we only have to know how to
draw a circle and how to specify the color blue.

grid.circle(r=.3, gp=gpar(col="blue", fill="blue"))
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However, if we want to draw a circle with a thick semi-transparent gradient border, we cannot
express a solution in terms of circles and the color blue. We need additional tools, like knowing how
to describe a linear gradient and knowing what the "dest.out" compositing operator does, and how
to define a group with a specific compositing operator.

grid.group(src, "dest.out", dst)

By adding more graphical tools, we increase our ability to express problems in terms of our
graphical tools and we give ourselves a better chance of finding solutions to graphical problems. As
argued at the very beginning of this document, the ability to produce more complex and fine-detailed
images, entirely in code, means that we can avoid costly and inefficient manual fine-tuning of our final
images.

4.1 Limitations

It is important to note that not all of the new features in the R graphics engine are supported
on all graphics devices. Most features are fully supported on Cairo-based graphics devices, e.g.,
png(type="cairo") and svg(), though these devices do not support luminance masks. Most features
are also supported on the pdf() device, including luminance masks, but the Porter-Duff compositing
operators are not supported. Most features are supported by the quartz() device (on macOS) from R
version 4.3.0, though not alpha masks and not paths based on text. The grDevices::dev.capabilities()
function can be used to report on the level of support in the current graphics device.

Several R packages that provide graphics devices have also added at least some support for these
features. For example, the ragg package (Pedersen and Shemanarev 2022) and the svglite package
(Wickham et al. 2022) have support for gradients, patterns, clipping paths, and masks at least.

It is also important to note that some PDF viewers do not render features like masks correctly,
so it may appear that the pdf() device is not working when in fact it is a problem with the viewing
software.

4.2 Related and prior work

Although support for gradients, patterns, clipping paths, and masks has only been added to the
R graphics engine (and supported in some graphics devices, with a user interface in grid) since R
version 4.1.0, at least some of these capabilities have been available in some form via CRAN packages,
in some cases for many years. This section, acknowledges some of these packages and discusses the
advantages and disadvantages of having the capabilities available in the R graphics engine.

The gridSVG package (Murrell and Potter 2022) has provided an interface to many graphical
features of the SVG language (including gradients, patterns, clipping paths, and masks) since 2011.
Some advantages of this package are that it provides access to features that are still not available in
the R graphics engine, including filter effects (such as “blur”) and animation. The downsides to this
package include the fact that it can only generate SVG output and it can only work with graphics
drawn by grid, although the gridGraphics package can help with that.

The gridpattern and the ggpattern packages both provide ways to fill regions with a pattern.
These packages make use of the new features in the R graphics engine, e.g., to limit a pattern fill to a
region by setting a clipping path or mask. In other words, they build upon the new features that are
available in R itself. Some of the advantages of these packages include: a set of predefined patterns
and, in the case of ggpattern, a higher-level interface to pattern fills that is compatible with ggplot2.
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The ggfx package (Pedersen 2022) provides filter effects at both the grid and ggplot2 level. On
one hand, this package complements the new features in the R graphics engine by adding filter
effects. However, there is also a considerable overlap because several filters provide results similar
or identical to the graphics engine features. For example, ggfx::with_mask() provides masking and
ggfx::with_blend() provides compositing operators. The advantages of this package include filter
effects that are not available in R itself (such as “blur”) and a high-level interface that is integrated
with ggplot2. On the other hand, this package works only with raster images, whereas the graphics
engine is vector-based so it can produce better quality scalable images, at least on some devices.

The magick package (Ooms 2021) is not entirely unlike ggfx in that it provides access to raster-
based image operations that include, for example, magick::image_flatten() for compositing oper-
ators, magick::image_composite(), which can perform masking, and magick::image_blur() for a
blur filter effect. A major difference is that magick works on entire images whereas ggfx can isolate
its effects to only specific elements of an image. A combination of magick and the rasterize package
(Murrell 2019) could be used to limit the effects to just elements of an image, but ggfx provides a more
convenient and higher-level interface.

The gridGeometry package (Murrell and Wong 2022) overlaps with some of the new masking,
compositing, and path-drawing features of the new graphics engine because it can combine several
paths to produce a single new path. For example, gridGeometry::grid.polyclip() can be used to
punch a hole in one shape using another shape. The advantage of this package is that, for the features
that it supports, it works entirely with vector images, including returning vector results.

4.3 Further reading

The graphical features introduced in this document are explained in much greater detail in the series
of technical reports listed below. Maintainers of R packages that provide third-party graphics devices
will find information about the graphics device interface to the new graphics features in these reports.

• “Catching Up with R Graphics: Gradients, Patterns, Clipping Paths, and Masks” (Murrell 2020)

• “Becoming an R Graphics Groupie: Groups, Compositing Operators, and Affine Transforma-
tions in R Graphics” (Murrell 2021a)

• “The Path to Path Enlightenment: Stroking and Filling Paths in R Graphics” (Murrell 2021c)

• “Luminance Masks in R Graphics” (Murrell 2021b)

• “Vectorised Pattern Fills in R Graphics” (Murrell 2022b)

• “Porter-Duff Compositing Operators in R Graphics” (Murrell, Pedersen, and Skintzos 2023)

5 Appendix: The structure of R graphics

This appendix gives a brief introduction to how the (static, 2D) graphics systems in R are organized
(see Figure 10).

R has two low-level graphics systems, which are provided by the graphics (“base graphics”)
and grid packages. These provide functions for drawing basic shapes and text. They both rely on
a “graphics engine”, roughly corresponding to the grDevices package, which provides facilities for
specifying things like colors and fonts.

The graphics package can also draw some high-level plots, such as scatter plots and bar plots, and
many other packages build on it to offer a much wider range of high-level plots. Similarly, several
packages build on top of grid to provide high-level plots, notably, ggplot2 and lattice.

Graphical output is generated by a set of “graphics devices”, some of which are provided with R,
with others provided by packages like ragg.

Typically, an R user will call functions from a package like ggplot2 or graphics to draw a high-level
plot.
Those packages will call lower-level functions, in graphics or grid, which in turn call functions in the
graphics engine. Finally, the graphics engine send instructions to a graphics device to do the actual
drawing.

The new graphics features described in this document have mostly involved changes to the
graphics engine and grid and some graphics devices, which means that users may have to call grid
functions to access the new features and the new features will only work on some graphics devices
(as indicated by the gray nodes in Figure 10). However, some of the new features are accessible from
ggplot2 and its extensions and some packages that provide graphics devices have added support (as
indicated by the nodes with gray gradients in Figure 10).
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Figure 10: The structure of R graphics. The features described in this paper involved changes to the
grid and grDevices packages, plus some of the graphics devices that are provided with R. Some of the
features are becoming available via higher-level packages like ggplot2 and some of the features are
supported in external graphics devices like those provided by the ragg package.
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mathml: Translate R Expressions to
MathML and LaTeX
by Matthias Gondan and Irene Alfarone

Abstract This R package translates R objects to suitable elements in MathML or LaTeX, thereby
allowing for a pretty mathematical representation of R objects and functions in data analyses, scientific
reports and interactive web content. In the R Markdown document rendering language, R code
and mathematical content already exist side-by-side. The present package enables use of the same
R objects for both data analysis and typesetting in documents or web content. This tightens the link
between the statistical analysis and its verbal description or symbolic representation, which is another
step towards reproducible science. User-defined hooks enable extension of the package by mapping
specific variables or functions to new MathML and LaTeX entities. Throughout the paper, examples
are given for the functions of the package, and a case study illustrates its use in a scientific report.

1 Introduction

The R extension of the markdown language (Xie, Allaire, and Grolemund 2018; Allaire et al. 2023)
enables reproducible statistical reports with nice typesetting in HTML, Microsoft Word, and LaTeX.
Moreover, since recently (R Core Team 2022, version 4.2), Rs manual pages include support for mathe-
matical expressions (Sarkar and Hornik 2022; Viechtbauer 2022), which is already a big improvement.
However, except for special cases such as regression models (Anderson, Heiss, and Sumners 2023)
and R’s own plotmath annotation, rules for the mapping of built-in language elements to their mathe-
matical representation are still lacking. So far, R expressions such as pbinom(k, N, p) are printed as
they are and pretty mathematical formulae such as PBi(X ≤ k; N, p) require explicit LaTeX commands
like P_{\mathrm{Bi}}\left(X \le k; N, p\right). Except for very basic use cases, these commands
are tedious to type and their source code is hard to read.

The present R package defines a set of rules for the automatic translation of R expressions to
mathematical output in R Markdown documents (Xie, Dervieux, and Riederer 2020) and Shiny Apps
(Chang et al. 2022). The translation is done by an embedded Prolog interpreter that maps nested
expressions recursively to MathML and LaTeX/MathJax, respectively. User-defined hooks enable
extension of the set of rules, for example, to represent specific R elements by custom mathematical
signs.

The main feature of the package is that the same R expressions and equations can be used for both
mathematical typesetting and calculations. This saves time and potentially reduces mistakes, as will
be illustrated below. Readers should have basic knowledge of knitr and R Markdown to be able to
follow this article (Xie 2023; Allaire et al. 2023), while to extend and customize the package, some basic
knowledge of Prolog is needed.

The paper is organized as follows. We start with a description of the technical background of the
package, including the two main classes of rules for translating R objects to mathematical expressions.
The next section illustrates the main features of the mathml package, potential issues and their
workarounds using examples from the day-to-day perspective of a user. A case study follows with a
scientific report written with the help of the package. The last section concludes with a discussion and
ideas for further development.

2 Background

Similar to other high-level programming languages, R is homoiconic, that is, R commands (i.e.,
R “calls”) are, themselves, symbolic data structures that can be created, parsed and modified. Because
the default response of the R interpreter is to evaluate a call and return its result, this property is not
transparent to the general user. There exists, however, a number of built-in R functions (e.g., quote(),
call() etc.) that allow the user to create R calls which can be stored in regular variables and then, for
example, evaluated at a later stage or in a specific environment (Wickham 2019). The present package
includes a set of rules that translate such calls to a mathematical representation in MathML and LaTeX.
For a first illustration of the mathml package, we consider the binomial probability.

term <- quote(pbinom(k, N, p))

The term is quoted to avoid its immediate evaluation (which would raise an error anyway since
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the variables k, N, p have not yet been defined). Experienced R users will recognize that the expression
is a short form for

term <- call("pbinom", as.name("k"), as.name("N"), as.name("p"))
term

#> pbinom(k, N, p)

As can be seen from the output, to the variable term is not assigned the result of the calculation,
but instead an R call (see, e.g., Wickham 2019, for details on “non-standard evaluation”), which can
eventually be evaluated with eval(),

k <- 10
N <- 22
p <- 0.4
eval(term)

#> [1] 0.77195

The R package mathml can now be used to render the call in MathML or in MathJax/LaTeX.
MathML is the dialect for mathematical elements on HTML webpages, whereas LaTeX is typically
used for typesetting printed documents, as shown below.

library(mathml)
substr(mathml(term), 1, 70)

#> [1] "<math><mrow><msub><mi>P</mi><mtext>Bi</mtext></msub><mo>&af;</mo><mrow"

mathjax(term)

#> [1] "${P}_{\\mathrm{Bi}}{\\left({{X}{\\le}{k}}{{;}{{N}{{,}{p}}}}\\right)}$"

Some of the curly braces are not really needed in the LaTeX output, but are necessary in edge cases.
The package also includes a function mathout() that wraps a call to mathml() for HTML output and
mathjax() for LaTeX output. Moreover, the function math(x) adds the class "math" to its argument,
such that a special knitr printing function is invoked (see the vignette on custom print methods in Xie
2023). An R Markdown code chunk with mathout(term) thus produces:

PBi(X≤k;N,p)
Similarly, inline() produces inline output, r inline(term) yields PBi(X≤k;N,p).

3 Package mathml in practice

The currently supported R objects are listed below, roughly following the order proposed by Murrell
and Ihaka (2000).

3.1 Basic elements

mathml handles the basic elements of everyday mathematical expressions, such as integers, floating-
point numbers, Latin and Greek letters, multi-letter identifiers, accents, subscripts, and superscripts.

term <- quote(1 + -2L + a + abc + "a" + phi + Phi + varphi + roof(b)[i, j]^2L)
math(term)

1.00+−2+a+abc+a+ϕ+Φ+φ+b̂2
ij

term <- quote(round(3.1415, 3L) + NaN + NA + TRUE + FALSE + Inf + (-Inf))
math(term)

3.142+nan+na+T+F+∞+(−∞)
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An expression such as 1 + -2 may be considered aesthetically unsatisfactory. It is correct R syntax,
though, and is reproduced accordingly, without the parentheses. Parentheses around negative numbers
or symbols can be added as shown above for + (-Inf).

To avoid name clashes with package stats, roof() is used to put a hat on a symbol (see next
section for further decorations). Note that an R function roof() does not exist in base R, it is provided
by the package for convenience and points to the identity function.

3.2 Decorations

The package offers some support for different fonts as well as accents and boxes etc. Internally, these
decorations are implemented as identity functions, so that they can be introduced into R expressions
without side-effects.

term <- quote(bold(b[x, 5L]) + bold(b[italic(x)]) + italic(ab) + italic(42L))
math(term)

bx5+bx+ab+42

term <- quote(tilde(a) + mean(X) + box(c) + cancel(d) + phantom(e) + prime(f))
math(term)

ã+X+ c +�d+ + f ′

Note that the font styles only affect the display of identifiers, whereas numbers, character strings
etc. are left untouched.

3.3 Operators and parentheses

Arithmetic operators and parentheses are translated as they are, as illustrated below.

term <- quote(a - ((b + c)) - d*e + f*(g + h) + i/j + k^(l + m) + (n*o)^{p + q})
math(term)

a−[(b+c)]−de+ f ·(g+h)+i/j+k(l+m)+(no)p+q

term <- quote(dot(a, b) + frac(1L, nodot(c, d + e)) + dfrac(1L, times(g, h)))
math(term)

a·b+ 1
c(d+e)+

1
g×h

For multiplications involving only numbers and symbols, the multiplication sign is omitted.
This heuristic does not always produce the desired result; therefore, mathml defines alternative
R functions dot(), nodot(), and times(). These functions calculate a product and produce the
respective multiplication signs. Similarly, frac() and dfrac() can be used for small and large fractions.

For standard operators with known precedence, mathml is generally able to detect if parentheses
are needed; for example, parentheses are automatically placed around d + e in the nodot-example.
However, we note unnecessary parentheses around l + m above. These parentheses are a consequence
of quote(aˆ(b + c)) actually producing a nested R call of the form ˆ(a, (b + c)) instead of
ˆ(a, b + c):

term <- quote(a^(b + c))
paste(term)

#> [1] "^" "a" "(b + c)"

For the present purpose, this R feature is unfortunate because the extra parentheses around b + c
are not needed. The preferred result is obtained by the functional form quote(ˆ(k, l + m)) of the
power, or curly braces as a workaround (see p + q above).
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3.4 Custom operators

Whereas in standard infix operators, the parentheses typically follow the rules for precedence, unde-
sirable results may be obtained in custom operators.

term <- quote(mean(X) %+-% 1.96 * s / sqrt(N))
math(term)(

X±1.96
)
·s/
√

N

term <- quote('%+-%'(mean(X), 1.96 * s / sqrt(N))) # functional form of '%+-%'
term <- quote(mean(X) %+-% {1.96 * s / sqrt(N)}) # the same
math(term)

X±1.96s/
√

N
The example is a reminder that it is not possible to define the precedence of custom operators in R,

and that expressions with such operators are evaluated strictly from left to right. Again, the problem
can be worked around by the functional form of the operator or a curly brace to hide the parenthesis,
and, at the same time, enforce the correct operator precedence.

More operators are shown in Table 1, including the suggestions by Murrell and Ihaka (2000) for
graphical annotations and arrows in R figures.

Table 1: Custom operators in mathml

Operator Output Operator Output Operator Arrow

A %*% B A×B A != B A ̸=B A %% B A↔B
A %.% B A·B A ~ B A∼B A %->% B A→B
A %x% B A⊗B A %~~% B A≈B A %<-% B A←B
A %/% B ⌊A/B⌋ A %==% B A≡B A %up% B A↑B
A %% B mod(A,B) A %=~% B A∼=B A %down% B A↓B
A & B A∧B A %prop% B A∝B A %<=>% B A⇐⇒ B
A | B A∨B A %in% B A∈B A %=>% B A⇒B
xor(A, B) A⊻B intersect(A, B) A∩B A %<=% B A⇐B
!A ¬A union(A, B) A∪B A %dblup% B A⇑B
A == B A=B crossprod(A, B) AT×B A %dbldown% B A⇓B
A <- B A=B is.null(A) A=∅

Table 2: R functions from base and stats

Function Output Function Output

sin(x) sin x dbinom(k, N, pi) PBi(X=k;N,π)
cosh(x) cosh x pbinom(k, N, pi) PBi(X≤k;N,π)
tanpi(alpha) tan (απ) qbinom(p, N, pi) arg mink[PBi(X≤k;N,π)>p]
asinh(x) sinh−1x dpois(k, lambda) PPo(X=k;λ)
log(p) log p ppois(k, lambda) PPo(X≤k;λ)
log1p(x) log (1+x) qpois(p, lambda) arg maxk[PPo(X≤k;λ)>p]
logb(x, e) logex dexp(x, lambda) fExp(x;λ)
exp(x) exp x pexp(x, lambda) FExp(x;λ)
expm1(x) exp x−1 qexp(p, lambda) F−1

Exp(p;λ)
choose(n, k) (n

k) dnorm(x, mu, sigma) ϕ(x;µ,σ)
lchoose(n, k) log (n

k) pnorm(x, mu, sigma) Φ(x;µ,σ)
factorial(n) n! qnorm(alpha/2L) Φ−1(α/2)
lfactorial(n) log n! 1L - pchisq(x, 1L) 1−Fχ2(1 df)(x)
sqrt(x)

√
x qchisq(1L - alpha, 1L) F−1

χ2(1 df)(1−α)

mean(X) X pt(t, N - 1L) P(T≤t;N−1 df)
abs(x) |x| qt(alpha/2L, N - 1L) Tα/2(N−1 df)
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3.5 Builtin functions

There is support for most functions from package base, with adequate use and omission of parentheses.

term <- quote(sin(x) + sin(x)^2L + cos(pi/2L) + tan(2L*pi) * expm1(x))
math(term)

sin x+(sin x)2+cos (π/2)+tan (2π)·(exp x−1)

term <- quote(choose(N, k) + abs(x) + sqrt(x) + floor(x) + exp(frac(x, y)))
math(term)

(N
k )+|x|+

√
x+⌊x⌋+exp

(
x
y

)
A few more examples are shown in Table 2, including functions from stats.

3.6 Custom functions

For self-written functions, the matter is somewhat more complicated. For instance, if we consider
a function such as g <- function(...) ..., the name g is not transparent to R, because only the
function body is represented. We can still display functions in the form head(x) = body if we embed
the object to be shown into a call "<-"(head, body).

sgn <- function(x)
{
if(x == 0L) return(0L)
if(x < 0L) return(-1L)
if(x > 0L) return(1L)

}

math(sgn)
0, if x=0
−1, if x<0
1, if x>0

math(call("<-", quote(sgn(x)), sgn))

sgn x=


0, if x=0
−1, if x<0
1, if x>0

The function body is generally a nested R call of the form {(L), with L being a list of commands
(the semicolon, not necessary in R, is translated to a newline). The example also illustrates that
mathml provides limited support for control structures such as if that is internally represented as
if(condition, action).

3.7 Indices and powers

Indices in square brackets are rendered as subscripts, powers are rendered as superscript. Moreover,
mathml defines the functions sum_over(x, from, to), and prod_over(x, from, to) that simply
return their first argument. The other two arguments serve as decorations (to is optional), for example,
for summation and product signs.

term <- quote(S[Y]^2L <- frac(1L, N) * sum(Y[i] - mean(Y))^2L)
math(term)

S2
Y=

1
N ·∑

(
Yi−Y

)2

term <- quote(log(prod_over(L[i], i==1L, N)) <- sum_over(log(L[i]), i==1L, N))
math(term)

log ∏N
i=1Li=∑N

i=1log Li
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3.8 Ringing back to R

Rs integrate function takes a number of arguments, the most important ones being the function to
integrate, and the lower and the upper bound of the integration.

term <- quote(integrate(sin, 0L, 2L*pi))
math(term)∫ 2π

0 sin x dx

eval(term)

#> 2.221482e-16 with absolute error < 4.4e-14

For mathematical typesetting in the form of
∫

f (x) dx, mathml needs to find out the name of the
integration variable. For that purpose, the underlying Prolog bridge provides a predicate r_eval/2
that calls R from Prolog. This predicate is used to evaluate formalArgs(args(sin)) and returns the
names of the arguments of sin(), namely, x.

Above, the quoted term is an abbreviation for call("integrate", quote(sin), ...), with sin
being an R symbol, not a function. While the R function integrate() can handle both symbols and
functions, mathml needs the symbol because it is unable to determine the function name of custom
functions.

3.9 Names and order of arguments

One of R’s great features is the possibility to refer to function arguments by their names, not only by
their position in the list of arguments. At the other end, the Prolog handlers for R calls are rather rigid,
for example, integrate/3 accepts exactly three arguments in a particular order and without names,
that is, integrate(lower=0L, upper=2L*pi, sin), would not print the desired result.

To “canonicalize” function calls with named arguments and arguments in unusual order, mathml
provides an auxiliary R function canonical(f, drop) that reorders the argument list of calls to known
R functions and, if drop=TRUE (which is the default), also removes the names of the arguments.

term <- quote(integrate(lower=0L, upper=2L*pi, sin))
canonical(term)

#> integrate(sin, 0L, 2L * pi)

math(canonical(term))∫ 2π
0 sin x dx

This function can be used to feed mixtures of partially named and positional arguments into the
renderer. For details, see the R function match.call().

3.10 Matrices and Vectors

Of course, mathml also supports matrices and vectors.

v <- 1:3
math(call("t", v))

(1 2 3)T

A <- matrix(data=11:16, nrow=2, ncol=3)
B <- matrix(data=21:26, nrow=2, ncol=3)
term <- call("+", A, B)
math(term)(

11 13 15
12 14 16

)
+

(
21 23 25
22 24 26

)
Note that the seemingly more convenient term <- quote(A + B) yields A + B in the output—

instead of the desired matrix representation. This behavior is expected because quotation of R calls
also quote the components of the call (here, A and B).
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3.11 Short mathematical names for R symbols

In typical R functions, variable names are typically longer than just single letters, which may yield
unsatisfactory results in the mathematical output.

term <- quote(pbinom(successes, Ntotal, prob))
math(term)

PBi(X≤successes;Ntotal,prob)

hook(successes, k)
hook(quote(Ntotal), quote(N), quote=FALSE)
hook(prob, pi)
math(term)

PBi(X≤k;N,π)

To improve the situation, mathml provides a simple hook that can be used to replace elements (e.g.,
verbose variable names) of the code by concise mathematical symbols, as illustrated in the example.
To simplify notation, hook() uses non-standard evaluation of its arguments. If the quote flag of hook()
is set to FALSE, the user has to provide the quoted expressions. Care should be taken to avoid recursive
hooks such as hook(s, s["A"]) that endlessly replace the s from sA as in sAAA···

.

The hooks can also be used for more complex elements such as R calls, with dotted symbols
representing Prolog variables.

hook(pbinom(.K, .N, .P), sum_over(dbinom(i, .N, .P), i=0L, .K))
math(term)

∑k
i=0PBi(X=i;N,π)

Further customization requires the assertion of new Prolog rules math/2, ml/3, jax/3, as shown in
the Appendix.

3.12 Abbreviations

We consider the t-statistic for independent samples with equal variance. To avoid clutter in the
equation, the pooled variance s2

pool is abbreviated, and a comment is given with the expression for

s2
pool. For this purpose, mathml provides a function denote(abbr, expr, info), with expr actually

being evaluated, abbr being rendered, plus a comment of the form “with expr denoting info”.

hook(m_A, mean(X)["A"]) ; hook(s2_A, s["A"]^2L) ;
hook(n_A, n["A"])
hook(m_B, mean(X)["B"]) ; hook(s2_B, s["B"]^2L)
hook(n_B, n["B"]) ; hook(s2_p, s["pool"]^2L)

term <- quote(t <- dfrac(m_A - m_B,
sqrt(denote(s2_p, frac((n_A - 1L)*s2_A + (n_B - 1L)*s2_B, n_A + n_B - 2L),

"the pooled variance.") * (frac(1L, n_A) + frac(1L, n_B)))))
math(term)

t=
XA−XB√

s2
pool·

(
1

nA
+ 1

nB

) , with s2
pool=

(nA−1)·s2
A+(nB−1)·s2

B
nA+nB−2 denoting the pooled variance.

The term is evaluated below. print() is needed because the return value of an assignment of the
form t <- dfrac(...) is not visible in R.

m_A <- 1.5; s2_A <- 2.4^2; n_A <- 27; m_B <- 3.9; s2_B <- 2.8^2; n_B <- 20
print(eval(term))

#> [1] -3.157427

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 284

3.13 Context-dependent rendering

Consider an educational scenario in which we want to highlight a certain element of a term, for
example, that a student has forgotten to subtract the null hypothesis in a t-ratio:

t <- quote(dfrac(omit_right(mean(D) - mu[0L]), s / sqrt(N)))
math(t, flags=list(error="highlight"))

D���− µ0

s/
√

N

math(t, flags=list(error="fix"))

D − µ0

s/
√

N
The R function omit_right(a + b) uses non-standard evaluation techniques (e.g., Wickham 2019)

to return only the left part an operation, and cancels the right part. This may not always be desired,
for example, when illustrating how to fix the mistake.

For this purpose, the functions mathml(), mathjax(), mathout() and math() have an optional
argument flags which is a list with named elements. In this example, we use this argument to
tell mathml how to render such erroneous expressions using the flag error which can be “asis”,
“highlight”, “fix”, or “ignore”. For more examples, see Table 3.

Table 3: Highlighting elements of a term

Operation error = asis highlight fix ignore

omit_left(a + b) b ��a+ b a+ b a+b

omit_right(a + b) a a��+ b a + b a+b

list(quote(a), quote(omit(b))) a a�b a b a b
add_left(a + b) a+b a+ b ��a+ b b

add_right(a + b) a+b a + b a��+ b a

list(quote(a), quote(add(b))) a b a b a�b a
instead(a, b) + c a+c a︸︷︷︸

instead of b

+c b +c b+c

4 A case study

This case study describes a model by Schwarz (1994) from mathematical psychology using the features
of package mathml. Schwarz (1994) presents a new explanation of redundancy gains that occur
when observers respond to stimuli of different sources, and the same information is presented on
two or more channels. In Schwarz’s (1994) model, decision-making builds on a process of noisy
accumulation of information over time (e.g., Ratcliff et al. 2016). In redundant stimuli, the model
assumes a superposition of channel-specific diffusion processes that eventually reach an absorbing
barrier to elicit the response. For a detailed description the reader may refer to the original article.

Schwarz’s (1994) model refers to two stimuli A and B, presented either alone or in combination
(AB, redundant stimuli), with the redundant stimuli being presented either simultaneously or with
onset asynchrony τ. The channel activation is described as a two-dimensional Wiener process with
drifts µi, variances σ2

i , and initial conditions Xi(t = 0) = 0, i = A, B. The buildup of channel-specific
activation may be correlated with ρAB, but we assume ρAB = 0 for simplicity.

A response is elicited when the process reaches an absorbing barrier c > 0 for the first time. In
single-target trials, the first passages of c are expected at

ED_single <- function(c, mu)
dfrac(c, mu)

# display as E(D; mu), c is a scaling parameter
hook(ED_single(.C, .Mu), E(`;`(D, .Mu)))
math(call("=", quote(ED_single(c, mu)), ED_single))
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E(D;µ)=
c
µ

One would typically use chunk option echo=FALSE to suppress the R code.

In redundant stimuli, the activation from the channel-specific diffusion processes adds up,
XAB(t) = XA(t) + XB(t), hence the name, superposition. XAB(t) is again a Wiener process with
drift µA + µB and variance σ2

A + σ2
B. For the expected first-passage time, we have

hook(mu_A, mu["A"])
hook(mu_B, mu["B"])
hook(sigma_A, sigma["A"])
hook(sigma_B, sigma["B"])
hook(mu_M, mu["M"])
hook(M, overline(X))

math(call("=", quote(E(D["AB"])), quote(ED_single(c, mu_A + mu_B))))

E(DAB)=E(D;µA+µB)

For asynchronous stimuli, Schwarz (1994) derived the expected first-passage time as a function of
the stimulus onset asynchrony τ,

ED_async <- function(tau, c, mu_A, sigma_A, mu_B)
{ dfrac(c, mu_A) + (dfrac(1L, mu_A) - dfrac(1L, mu_A + mu_B)) *

((mu_A*tau - c) * pnorm(dfrac(c - mu_A*tau, sqrt(sigma_A^2L*tau)))
- (mu_A*tau + c) * exp(dfrac(2L*c*mu_A, sigma_A^2L))
* pnorm(dfrac(-c - mu_A*tau, sqrt(sigma_A^2L*tau))))

}

hook(ED_async(.Tau, .C, .MA, .SA, .MB), E(`;`(D[.Tau], `,`(.MA, .SA, .MB))))
math(call("=", quote(E(D[tau])), ED_async))

E(Dτ)=
c

µA
+

(
1

µA
− 1

µA+µB

)
·

(µAτ−c)·Φ

 c−µAτ√
σ2

Aτ

−(µAτ+c)·exp

(
2cµA

σ2
A

)
·Φ

−c−µAτ√
σ2

Aτ


For negative onset asynchrony (i.e., B before A), the parameters are simply switched.

ED <- function(tau, c, mu_A, sigma_A, mu_B, sigma_B)
{
if(tau == Inf) return(ED_single(c, mu_A))
if(tau == -Inf) return(ED_single(c, mu_B))
if(tau == 0L) return(ED_single(c, mu_A + mu_B))
if(tau > 0L) return(ED_async(tau, c, mu_A, sigma_A, mu_B))
if(tau < 0L) return(ED_async(abs(tau), c, mu_B, sigma_B, mu_A))

}

hook(ED(.Tau, .C, .MA, .SA, .MB, .SB), E(`;`(D[.Tau], `,`(.MA, .SA, .MB, .SB))))
math(call("=", quote(ED(tau, c, mu_A, sigma_A, mu_B, sigma_B)), ED))

E(Dτ ;µA,σA,µB,σB)=



E(D;µA), if τ=∞
E(D;µB), if τ=−∞
E(D;µA+µB), if τ=0
E(Dτ ;µA,σA,µB), if τ>0
E
(

D|τ|;µB,σB,µA

)
, if τ<0

The observable response time is assumed to be the sum of D, the time employed to reach the
threshold for the decision, and a residual M denoting other processes such as motor preparation and
execution. Correspondingly, the expected response time amounts to

ET <- function(tau, c, mu_A, sigma_A, mu_B, sigma_B, mu_M)
ED(tau, c, mu_A, sigma_A, mu_B, sigma_B) + mu_M

hook(ET(.Tau, .C, .MA, .SA, .MB, .SB, .MM),
E(`;`(T[.Tau], `,`(.MA, .SA, .MB, .SB, .MM))))

math(call("=", quote(E(T[tau])), ET))
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E(Tτ)=E(Dτ ;µA,σA,µB,σB)+µM

Schwarz (1994) applied the model to data from a redundant signals task (Miller 1986) with 13 onset
asynchronies 0,±33,±67,±100,±133,±167,±∞ ms, where τ = 0 refers to the synchronous condition,
and ±∞ to the single-target presentations. Each condition was replicated 400 times. The observed
mean response times and their standard deviations are given in Table 4.

Table 4: Miller (1986) data

τ m s n

−∞ 231 56 400
−167 234 58 400
−133 230 40 400
−100 227 40 400
−67 228 32 400
−33 221 28 400
0 217 28 400
33 238 28 400
67 263 26 400
100 277 30 400
133 298 32 400
167 316 34 400
∞ 348 92 400

Assuming that the model is correct, the observable mean reaction times follow an approximate
Normal distribution around the model prediction E(Tτ) for each condition. We can, therefore, use a
standard goodness-of-fit measure by z-standardization.

z <- function(m, s, n, tau, c, mu_A, sigma_A, mu_B, sigma_B, mu_M)
dfrac(m - denote(mu[tau], ET(tau, c, mu_A, sigma_A, mu_B, sigma_B, mu_M),

"the expected mean response time"),
s / sqrt(n))

math(call("=", quote(z[tau]), z))

zτ=
m−µτ

s/
√

n
, with µτ=E(Tτ ;µA,σA,µB,σB,µM) denoting the expected mean response time

The overall goodness-of-fit is the sum of the squared z-statistics for each onset asynchrony. As-
suming again that the architecture of the model is correct, but the parameters are adjusted to the data,
it follows a χ2(8 df)-distribution.

zv <- Vectorize(z, vectorize.args = c('m', 's', 'n', 'tau'))
hook(zv(.M, .S, .N, .Tau, .C, .MA, .SA, .MB, .SB, .MM), z[.Tau])

gof <- function(par, tau, m, s, n)
sum(zv(m, s, n, tau, c=100L, mu_A=par["mu_A"], sigma_A=par["sigma_A"],

mu_B=par["mu_B"], sigma_B=par["sigma_B"], mu_M=par["mu_M"])^2L)

math(call("=", quote(X["8 df"]^2L), gof))

X2
8df=∑ z2

τ

with the degrees of freedom given by the difference between the number of observations (13) and
the number of free model parameters θ = ⟨µA, σA, µB, σB, µM⟩; the barrier c is only a scaling parameter.

θ̂=arg min go f (θ)
The best fitting parameter values and their confidence intervals are given in Table 5.

The goodness-of-fit statistic indicates some lack of fit, X2(8 df) = 28.34, p = 0.0004. Given the
large trial numbers in the original study, this is not an unexpected result. For more detail, especially
on fitting the observed standard deviations, the reader is referred to the original paper (Schwarz 1994).
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Table 5: Model fit

Parameter Estimate CI

µA 0.53 (0.51,0.55)
σA 4.55 (3.95,5.16)
µB 1.36 (1.23,1.49)
σB 13.46 (7.80,19.11)
µM 161.09 (156.91,165.28)

5 Conclusion

This package allows R to render its terms in pretty mathematical equations. It extends the current
features of R and existing packages for displaying mathematical formulas in R (Murrell and Ihaka
2000), but most importantly, mathml bridges the gap between computational needs, presentation of
results, and their reproducibility. The package supports both MathML and LaTeX/MathJax for use in
R Markdown documents, presentations and Shiny App webpages.

Researchers or teachers can already use R Markdown to conduct analyses and show results, and
mathml smoothes this process and allows for integrated calculations and output. As shown in the
case study of the previous section, mathml can help to improve data analyses and statistical reports
from an aesthetical perspective, as well as regarding reproducibility of research.

Furthermore, the package may also allow for a better detection of possible mistakes in R programs.
Similar to most programming languages (Green 1977), R code is notoriously hard to read, and the
poor legibility of the language is one of the main sources of mistakes. For illustration, we consider
again Equation 10 in Schwarz (1994).

f1 <- function(tau)
{ dfrac(c, mu_A) + (dfrac(1L, mu_A) - dfrac(1L, mu_A + mu_B) *

((mu_A*tau - c) * pnorm(dfrac(c - mu_A*tau, sqrt(sigma_A^2L*tau)))
- (mu_A*tau + c) * exp(dfrac(2L*mu_A*tau, sigma_A^2L))
* pnorm(dfrac(-c - mu_A*tau, sqrt(sigma_A^2L*tau)))))

}

math(f1)

c
µA

+

 1
µA
− 1

µA+µB
·

(µAτ−c)·Φ

 c−µAτ√
σ2

Aτ

−(µAτ+c)·exp

(
2µAτ

σ2
A

)
·Φ

−c−µAτ√
σ2

Aτ


The first version has a wrong parenthesis, which is barely visible in the code, whereas in the

mathematical representation, the wrong curly brace is immediately obvious (the correct version is
shown below for comparison).

f2 <- function(tau)
{ dfrac(c, mu_A) + (dfrac(1L, mu_A) - dfrac(1L, mu_A + mu_B)) *

((mu_A*tau - c) * pnorm(dfrac(c - mu_A*tau, sqrt(sigma_A^2L*tau)))
- (mu_A*tau + c) * exp(dfrac(2L*mu_A*tau, sigma_A^2L))
* pnorm(dfrac(-c - mu_A*tau, sqrt(sigma_A^2L*tau))))

}

math(f2)

c
µA

+

(
1

µA
− 1

µA+µB

)
·

(µAτ−c)·Φ

 c−µAτ√
σ2

Aτ

−(µAτ+c)·exp

(
2µAτ

σ2
A

)
·Φ

−c−µAτ√
σ2

Aτ


As the reader may know from their own experience, missed parentheses are frequent causes

of wrong results and errors that are hard to locate in programming code. This particular example
shows that mathematical rendering can help to substantially reduce the amount of careless errors in
programming.

One limitation of the package is the lack of a convenient way to insert line breaks. This is mostly
due to lacking support by MathML and LaTeX renderers. For example, in its current stage, the LaTeX
package breqn (Robertson et al. 2021) is mostly a proof of concept. Moreover, mathml only works in
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one direction, that is, it is not possible to translate from LaTeX or HTML back to R (see Capretto 2023,
for an example).

The package mathml is available for R version 4.2 and later, and can be easily installed using
the usual install.packages("mathml"). At its present stage, it supports output in HTML, LaTeX,
and Microsoft Word (via pandoc, MacFarlane 2022). The source code of the package is found at
https://github.com/mgondan/mathml.

6 Appendix: Customizing the package

6.1 Implementation details

For convenience, the translation of the R expressions is achieved through a Prolog interpreter provided
by another R package rolog (Gondan 2022). If a version of SWI-Prolog (Wielemaker et al. 2012) is
found on the system, rolog connects to it. Alternatively, the SWI-Prolog runtime libraries can be
conveniently accessed by installing the R package rswipl (Gondan 2023). Prolog is a classical logic
programming language with many applications in expert systems, computer linguistics and symbolic
artificial intelligence. The strength of Prolog lies in its concise representation of facts and rules for
knowledge and grammar, as well as its efficient built-in search engine for closed world domains.
Whereas Prolog is weak in statistical computation, but strong in symbolic manipulation, the converse
may be said for the R language. rolog bridges this gap by providing an interface to a SWI-Prolog
distribution (Wielemaker et al. 2012) in R. The communication between the two systems is mainly
in the form of queries from R to Prolog, but two Prolog functions allow ring back and evaluation of
terms in R.

The proper term for a Prolog “function” is predicate, and it is typically written with name and
arity (i.e., number of arguments), separated by a forward slash. Thus, at the Prolog end, the predicate
math/2 translates the representation of the R call pbinom(K, N, Pi) into a more general representation
of an R function fn/2 with the name P_Bi, one argument X =< K, and the two parameters N and Pi, as
shown below.

math(pbinom(K, N, Pi), M)
=> M = fn(subscript('P', "Bi"), (['X' =< K] ; [N, Pi])).

math/2 operates like a macro that translates one mathematical element (here, pbinom(K, N, Pi))
to another mathematical element, namely fn(Name, (Args ; Pars)). The low-level predicate ml/3 is
used to convert these basic elements to MathML.

ml(fn(Name, (Args ; Pars)), M, Flags)
=> ml(Name, N, Flags),

ml(paren(list(op(;), [list(op(','), Args), list(op(','), Pars)])), X, Flags),
M = mrow([N, mo(&(af)), X]).

The relevant rule for ml/3 builds the MathML entity mrow([N, mo(&(af)), X]), with N representing
the name of the function and X its arguments and parameters enclosed in parentheses. A corresponding
rule jax/3 does the same for MathJax/LaTeX. A list of flags can be used for context-sensitive translation
(see, e.g., the section on errors above).

Several ways exist for translating new R terms to their mathematical representation. We have
already seen above how to use “hooks” to translate long variable names from R to compact mathemat-
ical signs, as well as functions such as cumulative probabilities P(X ≤ k) to different representations
like ∑k

i=0 P(X = i). Obviously, the hooks require that there already exists a rule to translate the target
representation into MathML and MathJax.

In this appendix we describe a few more ways to extend the set of translations according to a
user’s needs. As stated in the background section, the Prolog end provides two classes of rules for
translation, macros math/2,3,4 mirroring the R hooks mentioned above, and the low-level predicates
ml/3 and jax/3 that create proper MathML and LaTeX terms.

6.2 Linear models

To render the model equation of a linear model such as lm(EOT ~ T0 + Therapy, data=d) in
mathematical form (see also Anderson, Heiss, and Sumners 2023), it is sufficient to map the Formula
in lm(Formula, Data) to its respective equation. This can be done in two ways, using either the hooks
described above, or a new math/2 macro at the Prolog end.
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hook(lm(.Formula, .Data), .Formula)

The hook is simple, but is a bit limited because only R’s tilde-form of linear models is shown, and
it only works for a call with exactly two arguments.

Below is an example of how to build a linear equation of the form Y = b0 + b1X1 + ... using the
Prolog macros from mathml.

math_hook(LM, M) :-
compound(LM),
LM =.. [lm, ~(Y, Sum) | _Tail],
summands(Sum, Predictors),
findall(subscript(b, X) * X, member(X, Predictors), Terms),
summands(Model, Terms),
M = (Y == subscript(b, 0) + Model + epsilon).

The predicate summands/2 unpacks an expression A + B + C to a list [C, B, A] and vice-versa (see
the file lm.pl for details).

rolog::consult(system.file(file.path("pl", "lm.pl"), package="mathml"))

term <- quote(lm(EOT ~ T0 + Therapy, data=d, na.action=na.fail))
math(term)

EOT=b0+bT0T0+bTherapyTherapy+ϵ

See the section above on short mathematical names for replacing lengthy R labels.

6.3 n-th root

Base R does not provide a function like cuberoot(x) or nthroot(x, n), and the present package does
not support the respective representation. To obtain a cube root, a programmer would typically type
xˆ(1/3) or better xˆ{1/3} (see the practice section why the curly brace is preferred in an exponent),
resulting in x1/3 which may still not match everyone’s taste. Here we describe the steps needed to
represent the n-th root as n

√
x.

We assume that nthroot(x, n) is available in the current namespace (manually defined, or from
R package pracma, Borchers 2022), so that the names of the arguments and their order are accessible to
canonical() if needed. As we can see below, mathml uses a default representation name(arguments)
for such unknown functions.

nthroot <- function(x, n)
x^{1L/n}

term <- canonical(quote(nthroot(n=3L, 2L)))
math(term)

nthroot(2,3)

A proper MathML term is obtained by mlx/3 (the x in mlx indicates that it is an extension and is
prioritized over the default ml/3 rules). mlx/3 recursively invokes ml/3 for translating the function
arguments X and N, and then constructs the correct MathML entity <mroot>...</mroot>.

mlx(nthroot(X, N), M, Flags) :-
ml(X, X1, Flags),
ml(N, N1, Flags),
M = mroot([X1, N1]).

The explicit unification M = ... in the last line serves to avoid clutter in the head of mlx/3. The
Prolog file nthroot.pl also includes the respective rule for LaTeX and can be consulted from the
package folder via the underlying package rolog.

rolog::consult(system.file(file.path("pl", "nthroot.pl"), package="mathml"))

term <- quote(nthroot(a * (b + c), 3L)^2L)
math(term)
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[
3
√

a·(b+c)
]2

term <- quote(a^(1L/3L) + a^{1L/3L} + a^(1.0/3L))
math(term)

3
√

a+a1/3+a(1.00/3)

The file nthroot.pl includes three more statements precx/3 and parenx/3, as well as a math_hook/2
macro. The first sets the operator precedence of the cubic root above the power, thereby putting a
parentheses around nthroot in ( 3

√. . .)2. The second tells the system to increase the counter of the
parentheses below the root, such that the outer parenthesis becomes a square bracket.

The last rule maps powers like aˆ(1L/3L) to nthroot/3, as shown in the first summand. Of course,
mathml is not a proper computer algebra system. As is illustrated by the other terms in the sum, such
macros are limited to purely syntactical matching, and terms like aˆ{1L/3L} with the curly brace or
aˆ(1.0/3L) with a floating point number in the numerator are not detected.
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Changes on CRAN
2023-05-01 to 2023-09-30

by Kurt Hornik, Uwe Ligges, and Achim Zeileis

1 CRAN growth

In the past 5 months, 866 new packages were added to the CRAN package repository.
332 packages were unarchived, 701 were archived and 5 had to be removed. The following
shows the growth of the number of active packages in the CRAN package repository:

2000 2005 2010 2015 2020

0
50

00
10

00
0

15
00

0
20

00
0

Year

Number of CRAN Packages

2000 2005 2010 2015 2020

50
10

0
20

0
50

0
10

00
20

00
50

00
20

00
0

Year

Number of CRAN Packages (Log−Scale)

On 2023-09-30, the number of active packages was around 19932.

2 Changes in the CRAN Repository Policy

The Policy now links to an accompanying document on Using Rust in CRAN packages.

3 CRAN package submissions

From May 2023 to September 2023 CRAN received 12237 package submissions. For these,
20527 actions took place of which 14006 (68%) were auto processed actions and 6521 (32%)
manual actions.

Minus some special cases, a summary of the auto-processed and manually triggered
actions follows:

archive inspect newbies pending pretest publish recheck waiting

auto 3677 1889 2460 0 0 3734 1282 964
manual 2378 186 431 317 52 2423 599 135
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These include the final decisions for the submissions which were

archive publish

auto 3573 (29.7%) 3246 (27%)
manual 2337 (19.4%) 2883 (23.9%)

where we only count those as auto processed whose publication or rejection happened
automatically in all steps.

4 CRAN mirror security

Currently, there are 94 official CRAN mirrors, 76 of which provide both secure downloads
via ‘https’ and use secure mirroring from the CRAN master (via rsync through ssh tunnels).
Since the R 3.4.0 release, chooseCRANmirror() offers these mirrors in preference to the others
which are not fully secured (yet).

5 CRAN Task View Initiative

There is one new task view:

• Actuarial Science: Maintained by Christophe Dutang, Vincent Goulet.

Currently there are 44 task views (see https://CRAN.R-project.org/web/views/), with
median and mean numbers of CRAN packages covered 104 and 122, respectively. Overall,
these task views cover 4496 CRAN packages, which is about 22% of all active CRAN
packages.
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R Foundation News
by Torsten Hothorn

1 Donations and members

Membership fees and donations received between 2023-05-09 and 2023-10-20.

2 Donations

Daniel J. Duarte (Netherlands)

Spyridon Fortis (United States)

Dmitriy Grishin (United States)

Ken Ikeda (Japan)

Nickalus Redell (United States)

Axxos AG (Switzerland)

3 Supporting institutions

Digital Ecology Limited , Berkeley (United Kingdom)

NIFU Nordic Institute for Studies in Innovation, Research and Education, Oslo (Norway)

RIATE (CNRS), Paris (France)

Roseburg Forest Products, Springfield (United States)

University of Iowa, Iowa City (United States)

4 Supporting members

Vedo Alagic (Austria)

Kristoffer Winther Balling (Denmark)

Joaquín Baquer-Miravete (Spain)

Chris Billingham (United Kingdom)

Susan M Carlson (United States)

Robert Carnell (United States)

William Chiu (United States)

Rafael Costa (Brazil)

Charles Cowens (United States)

Terry Cox (United States)

Alistair Cullum (United States)

Gergely Daroczi (Hungary)

Ajit de Silva (United States)

Dubravko Dolic (Germany)

Serban Dragne (United Kingdom)

Laurent Drouet (Italy)

S Ellison (United Kingdom)

Mitch Eppley (United States)

Stephen Ewing (United States)

Gottfried Fischer (Austria)
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David Freedman (United States)

Keita Fukasawa (Japan)

Chris Hanretty (United Kingdom)

James Harris (United States)

Takehiko Hayashi (Japan)

Malik Hebbat (Germany)

Alessamdro Ielpi (Canada)

Brian Johnson (United States)

An Khuc (United States)

Miha Kosmac (United Kingdom)

Jan Herman Kuiper (United Kingdom)

Jindra Lacko (Czechia)

Bernardo Lares (Venezuela)

Rory Lawless (United States)

Seungdoe Lee (Korea, Republic of)

Mauro Lepore (United States)

Amanuel Medhanie (United States)

Harvey Minnigh (Puerto Rico)

Guido Möser (Germany)

Mark Niemann-Ross (United States)

George Ostrouchov (United States)

Jaesung James Park (Korea, Republic of)

Matt Parker (United States)

Bill Pikounis (United States)

Kelly Pisane (Netherlands)

Christian Seubert (Austria)

Jagat Sheth (United States)

Sindri Shtepani (Canada)

David Sides (United States)

Murray Sondergard (Canada)

Olga Starostecka (Germany)

Marco Steenbergen (Switzerland)

Berthold Stegemann (Germany)

Ricardo Torres-Jardón (Mexico)

Nicholas Turner (United States)

Philipp Upravitelev (Russian Federation)

Mark van der Loo (Netherlands)

Frans van Dunné (Costa Rica)

Vincent van Hees (Netherlands)

Yang Hu (New Zealand)
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News from Bioconductor
by Bioconductor Core Developers

Software

Bioconductor version 3.18 was released on Oct 25 2023. The system is compatible with
R 4.3. See the release announcement for full details. Noteworthy additions since our last
report to the R Journal include

• a BSgenome package for the telomere-to-telomere build of the human genome (Agane-
zov et al. (2022)),

• the SparseArray package for overcoming the limit on the number of non-zero elements
allowable in a sparse Matrix instance,

• BiocBook, a package to facilitate the creation of package-based, versioned online books
authored in Quarto,

• a pair of Annotation packages with the the AlphaMissense (Cheng et al. (2023))
pathogenicity scores for coding variants in the human genome for builds hg19 and
hg38.

See the release announcement for full details. The growth of the package repertory is
greatly aided by a group of committed and energetic reviewers. All reviews are conducted
in github issues streams at contributions.bioconductor.org/issues.

Infrastructure

National Science Foundation ACCESS Award BIR190004 provides significant compute
resources in the Jetstream2 academic cloud along with storage provided by the Open Storage
Network.

These resources form the basis for the Galaxy/Kubernetes-backed Bioconductor work-
shop platform originally known as Orchestra. Workshop submissions are now accepted
through a Shiny app made available at the platform site. The “BuildABiocWorkshop” tem-
plate has been updated with GitHub Actions, and now uses the GitHub Container Registry
(ghcr.io)

At present, Bioconductor 3.18 packages are tested regularly on Ubuntu 22.04, macOS 13.6
(arm64), macOS 12.7 (x86_64), and Windows Server 2022 Datacenter. Testing of packages in
the devel branch includes an arm64 Linux platform (openEuler 22.03) thanks to efforts of
Martin Grigorov and Yikun Jiang.

Docker container updates

An active effort to revamp the Bioconductor Docker stack is in progress, maintaining
backwards compatibility, but featuring a number of new capabilities. Notably, all containers
are now published both on DockerHub as well as the GitHub Container Registry (GHCR), so
any container previously pulled as bioconductor/bioconductor_docker for example, can
now also be pulled from GHCR as ghcr.io/bioconductor/bioconductor_docker.

Additionally, the traditional rstudio-based containers, previously published under the
bioconductor/bioconductor_docker name, are now also available under the bioconductor/bioconductor
name, eliminating the need to type the _docker suffix. Moreover, release tags can still be used
as “RELEASE_3_18” as before, but the simpler “3.18” tag now suffices. The latest rstudio-
based container can thus now be pulled as docker pull bioconductor/bioconductor:3.18
and will be identical to bioconductor/bioconductor_docker:RELEASE_3_18.

Bioconductor now has containers built on top of different flavors of rocker such as
bioconductor/r-ver container, a slimmer container with R but not RStudio, and bioconductor/ml-verse,
featuring tidyverse and some GPU drivers pre-installed. These and more container flavors
can be found at DockerHub and GitHub.

Bioc2u alpha release

Ucar and Eddelbuettel (2021) discuss motivations and methods for distributing pre-
compiled R packages via Linux system package managers. Bioconductor has recently
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undergone an effort to make a full package repository of Bioconductor packages and their
dependencies available via apt on Ubuntu systems. Building on top of previous work
from the Debian r-pkg-team and the r2u project, the Bioc2u repository currently offers 3708
packages for the Bioconductor 3.18 release for Ubuntu Jammy. More information can be
found at https://github.com/bioconductor/bioc2u, and alpha testers are welcome to join
the #bioc2u channel on the Bioconductor Community Slack.

Developer support

Bioconductor is developing containers similar to the Bioconductor Linux build machines.
BBS containers are configured like the build machines and aim to provide a comparable
experience for developers to troubleshoot issues observed on the linux build machines. The
3.18 BBS container is available for testing with

docker pull ghcr.io/bioconductor/bioconductor_salt:jammy-bioc-3.18-r-4.3.2

Future work on the BBS containers will focus on testing the container’s performance in
comparison to the linux build machine, building the devel container, and incorporating the
container in a GitHub Action Workflow.

User support

Thanks to support from the Chan-Zuckerberg Initiative Essential Open Source Software
for Science program, the web site at bioconductor.org has been extensively revised.

Partnering with Outreachy

Bioconductor mentored three interns in the May - August 2023 Outreachy cohort. Out-
reachy partners with open source and open science organizations to create paid open source
internships to individuals underrepresented in technology. The organization, which recently
celebrated surpassing 1000 interns, funded the interns for three Bioconductor-mentored
projects through their general fund. Interns are selected based on the contributions they
make to projects as part of their final application.

Atrayee Samanta, an undergraduate student at IIEST Shibpur, India, curated microbiome
studies for BugSigDB, a comprehensive database of published microbial signatures. Daena
Rys, a computer science student from Cameroon, worked on issues within the miaverse,
an ecosystem based on (Tree)SummarizedExperiment for microbiome bioinformatics. Son-
ali Kumari, an IGDTUW student from New Dehli, India, converted Sweave vignettes in
Bioconductor packages to R Markdown for Sweave2Rmd. You can read more about their ex-
periences on the Bioconductor blog at Our Journey as Outreachy Interns with Bioconductor.

Outreachy will also fund three internships with Bioconductor for the December 2023 -
March 2024 Outreachy cohort. Chioma Onyido, Ester Afuape, and Peace Sandy of Nigeria
will curate microbiome studies for BugSigDB.
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R Project Sprint 2023
by Heather Turner and Gabriel Becker

Abstract R Project Sprint 2023 was a three-day event at the University of Warwick, UK, that brought
together novice and experienced contributors to work alongside members of the R Core Team. 55
members of the R community participated, with external contributors selected to balance technical
expertise and provide opportunities for members of historically under-represented groups. Partici-
pants worked collaboratively on contributions to base R and on infrastructure supporting contribution.
Several small tasks were completed within the duration of the sprint, whilst significant steps were
made on larger projects. The event provided a unique opportunity for external contributors to learn
about the R development process and to develop their contribution skills.

1 Introduction

R Project Sprint 2023 was a three-day event hosted at the University of Warwick, UK. The aim of
the event was to bring novice and experienced contributors together to work collaboratively with
members of the R Core Team, who maintain and develop the code and documentation that forms the
base distribution of R (“base R”).

2 Participants

All members of the R Core Team were invited to the event and 11 were able to participate. Another 13
participants were invited/pre-selected - these included local organizers, representatives from sponsors,
and experienced contributors. The remaining 31 participants - along with a few more who were
ultimately unable to participate - were selected from a pool of 71 self-nominated applicants. Figure 1
shows group photos taken on Day 2 and Day 3 of the sprint, a full list of participants is on the sprint
website. Participation was in-person by default, but exceptions were made in a few cases where travel
was not possible, e.g., due to visa issues. The number online was higher than anticipated due to travel
disruptions; in the end seven people participated online.

Members of demographic groups underrepresented within the contributor community were
encouraged to apply for a place, by promoting the event to affinity groups (R-Ladies, MiR, RainbowR,
AfricaR, ArabR, AsiaR, and LatinR) and by direct communication with potential participants. Figure 2
shows the geographical distribution of all 55 participants. There were 16 from Europe with 8 from
the UK; 13 from North America with 12 from the USA; 7 from Asia with 5 from India; 6 from Latin
America with 3 from Argentina; 5 from Africa with 2 from Nigeria; 4 from Oceania - all from New
Zealand, and 3 from the Middle East.

We have further information from the nomination form, which was completed by 40 of the
44 invited/selected contributors. Over half (25/40) self-identified as belonging to one or more
underrepresented groups. Figure 3 summarises the skills of these contributors as assessed by the
selection committee, using data from the nomination forms. A “contributor level” was assigned
based on self-ratings of familiarity with relevant concepts and processes, along with answers to
free text questions about the applicant’s experience and motivation. The committee deliberately
selected participants to achieve the balance shown in the first plot of Figure 3: an equal number of
advanced and novice contributors, with the remainder having intermediate expertise. The second plot
summarises the potential for contribution to translations: 14 of the selected contributors expressed a
specific interest in translation; 8 more were surmised to have potential based on country of residence.
For the remainder (22) there was no evidence as we did not ask about this explicitly in the form.

3 Preparation

There were two sides to preparation for the sprint: gathering suitable tasks to work on and helping
participants brush up their knowledge and skills.

We collected ideas for suitable tasks via the discussion forum on the R Project Sprint 2023 GitHub
repository (GitHub Discussions). This provided a space for participating members of R Core to give
feedback and for participating contributors to express an interest. Sprint participants could propose a
project by adding a page to the Projects section of the sprint website. In the run up to the sprint, ideas
and projects were transferred to issues on the sprint GitHub repository along with further last-minute
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Figure 1: Photos of sprint participants on Day 2 (top) and Day 3 (bottom) including online participants
on screen (not all participants photographed).
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Figure 2: Choropleth showing the distribution of participants on the world map.
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Figure 3: Skills of external contributors as judged by the selection committee. Left: level of expertise
in R contribution. Right: potential as a translator of English to other languages.
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ideas from core developers and members of the R Contribution Working Group (RCWG). This enabled
participants to assign themselves to issues and provided a way to track tasks during the sprint.

In the lead-up to the sprint, participants were pointed to resources created by the R Core Team and
the RCWG, including the R Blog post on reviewing bugs and the useR! 2021 tutorials on analysing
bugs/contributing patches and translating messages in R. In addition, participants were encouraged
to engage with relevant events, in particular the Debugging in R tutorial run by Shannon Pileggi for
R-Ladies Remote, and the C Book Club for R Contributors and R Contributor Office Hours run by the
RCWG.

By the time of the sprint, participants were expected to be able to build R from source on the laptop
they brought along. People new to this were pointed to the R-admin manual, the R Dev Guide and the
prototype GitHub Codespace which provides a virtual environment in which to build R - this was
demonstrated in one of the contributor office hours.

4 Format

The sprint began with a hybrid evening welcome event where Martyn Plummer gave some opening
remarks on contributing to the R Project, then participants split into small groups to chat with a
member of R Core. An informal drinks reception then followed for in-person participants.

Each sprint day started with a kick-off session and ended with a report-back session, both hybrid
to include our online participants. On the first day, R Core members gave short talks in these sessions,
introducing themselves and their work for the R Project, and laying out their broad interests for
work during the sprint. Beyond these introductions, participants used the daily kick-off sessions to
collectively match people to tasks.

The remaining day time was spent working in small groups, sometimes arranging hybrid meetings
to discuss specific issues.

On the second evening, in-person participants enjoyed a conference dinner, whilst on the final
evening the sprint participants joined the Warwick R User Group for a hybrid meetup to present
progress made thus far at the sprint, this was followed by a buffet dinner for in-person participants.

5 Translation

Translating English messages into other languages to enhance localization of R was a core activity at
the sprint.

In 2022, Gergely Daróczi set up a prototype Weblate instance https://translate.rx.studio to
provide a modern, user-friendly interface for contributing translations to the R Project. Under the
RCWG, he has developed and maintained this service, working with Michael Lawrence of R Core
to incorporate translations submitted via Weblate into the R sources. Sprint participants created a
new set of guidelines for translators and a new section in the R Dev Guide on How to contribute
new translations. Several new features were enabled on the Weblate instance, including translation
memory, hyperlinking to the source string location and dedicated reviewers to approve translations.
New components were added, so that the instance not only covers base R (messages, warnings, errors
and the Windows GUI), but also the Mac GUI and recommended packages.

Figure 4 gives a summary of activity on Weblate during the sprint: around 2000 messages were
changed over 14 languages. The vast majority of this activity can be attributed to the sprint directly
or indirectly - the Hungarian translations were imported from earlier work in 2011 and the Turkish
translations were made by external contributors after the Mac GUI component was added.

6 Code and Documentation

The remaining activity at the sprint related to code and documentation in base R. Code issues were
split into topics to help organize work groups: accessibility, graphics, packages, statistics, translation
and low-level. The translation issues here related to infrastructure maintained by the R Core Team, as
opposed to Weblate. The low-level topic was a catch-all that covered utility functions and/or issues
that required advanced technical expertise, e.g., in C.

Figure 5 shows the progress of issues at the end of the sprint and two months after. An issue
is considered closed if a corresponding bug report on R’s Bugzilla (https://bugs.r-project.org)
was closed, if a corresponding patch was committed to base R, or if the issue was closed by an
update to a CRAN package. By the end of the sprint, ten issues had been closed. Seven of these
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Figure 4: Changes in the R Project components on Weblate during the three days of the sprint
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Figure 5: Status of issues at the end of the sprint and two months after

were documentation bugs, including one that was closed just before the sprint due to a participant
reviewing issues in preparation. However, progress had been made on thirty-four other issues, ranging
from discussing the issue, through defining a roadmap, to work in progress or proposing a patch. Two
months after the sprint, another twelve issues had been closed and six more had progressed status
(e.g., from roadmap to work in progress). These eighteen issues included three that were not started at
the sprint, but worked on soon after as follow-up to a partial fix or due to participants reviewing the
progress of sprint issues.

The low-level issues included new functionality, e.g., supporting custom parallel backends; refac-
toring, e.g., improving the speed of scalar random number generation; improving behaviour, e.g.,
better formating of complex numbers, and bug fixes, e.g. managing long names when creating tarballs.

Participants working on documentation began by triaging all open documentation bugs on Bugzilla
to identify ones that could be closed without fixing, or ones that appeared straight-forward to fix,
hence the high closure rate for these issues. Some closed bugs had been open for several years.

Package-related issues included adding support for defining vignette order, improving messages
to CRAN maintainers, and caching installed packages.

Translation-related issues included identifying untranslated strings in the R source files, and
creating a roadmap towards internationalization of help pages. The R Consortium are funding a
project by participants Elio Campitelli and Renata Hirota for the first step on this roadmap.

Statistics issues included improving the behaviour of t.test.formula() and wilcox.test.formula()
for paired tests and enhancing sample.int() for unequal probability sampling, for which a prototype
package was developed after the sprint for testing.

Accessibility focused on two issues faced by screenreader users: logging base graphics and logging
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Figure 6: Activities of external contributors, based on 32 responses to the participant survey.

R sessions. Functions resulting from this work are now implemented in BrailleR.

Finally there were two issues related to graphics, one fixed during the sprint implementing 3-digit
hex colors and one larger project on adding alpha masks to the Quartz graphics device.

There were more issues prepared for the sprint than are summarised here, but they were not taken
up at the sprint. In some cases there was insufficient support from R Core to pursue the idea, or it
was considered out of scope for the sprint, or there were no available participants with relevant skills
and/or bandwidth to take the idea forward. Often participants were interested in multiple issues and
were encouraged to favour issues/topics where larger group discussions were taking place, to take
advantage of everyone being together.

7 Participant experience

As well as aiming to make progress on contributions to the R Project, the sprint was intended to
develop participants’ knowledge and experience in contribution and motivate them to continue
contributing after the sprint. We further looked to improve visibility and networking between the R
Core Team and the R community (as represented by sprint participants).

Figure 6 summarises the activities engaged in at the sprint, for 32 out of 44 external contributors
that responded to a post-sprint survey. Around two-thirds were involved in working on code issues
and around a third worked on documentation and/or translation. Scoping work was also an important
activity, in which a third of contributors engaged.

Figure 7 summarises the activities that contributors engaged in for the first time either during the
sprint, or to prepare for or follow up on work done at the sprint. For around two-thirds of contributors
it was the first time they had discussed a bug or issue with an R Core member, whether online or in
person. About a third commented on Bugzilla for the first time and around a quarter posted their first
patch. Around half the contributors built R from source for the first time, either on their own laptop or
in the GitHub Codespace (or both) and for about half the contributors it was their first time working
on R, C, or Rd (R documentation) files in base R.

8 Organizers and sponsors

The organization of the sprint was led by Heather Turner, as part of a research fellowship funded by
the UK Engineering and Physical Sciences Research Council. This fellowship provided core funding
and was supplemented by additional sponsorship:

• Platinum Sponsor (R Core travel): the R Foundation.
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Figure 7: R core interactions and R contribution activities that external contributors engaged in for the
first time, based on 32 responses to participant survey.

• Gold sponsors (evening events, participant travel): the R Consortium; the Centre for Research
in Statistical Methodology, University of Warwick, and Posit.

• Silver Sponsors (participant travel): Seminar for Statistics, ETH Zurich; Rx Studio; The Prostate
Cancer Clinical Trials Consortium, and Google.

This sponsorship funded travel, accommodation and subsistence for all participants.

Martyn Plummer and Ella Kaye completed the local organizer team. The selection committee was
made up of Heather, Ella, and Gabe Becker of the RCWG.

Members of the RCWG helped with the planning, especially Gabe Becker who also helped gather
issues in the run up to the sprint.

9 Summary

R Project Sprint 2023 was a very collaborative event, where external contributors had a unique
opportunity to work closely with R Core members. Good progress was made across a broad range of
issues with continued impact after the sprint. The feedback from both R Core and external participants
was very positive, e.g.,

Thank you for organizing an incredible sprint and creating space for newcomers

There were many different parts that contributed so well to make it very productive,
envigourating, and motivating

From arrival to departure, everything was seamless and I had a great time discovering
what it takes to maintain R.

I’m exhausted but also super excited by all the work we did and that I take as homework.

Several participants - as well as R community members that could not attend this time - asked
when we would hold a repeat event. Finding funding for ~50 people from around the world to attend
a 3-day sprint is quite a challenge. So in the short term we plan to run 1-day events in collaboration
with in-person conferences. Whilst this will limit the scope of tasks that can be tackled, we can benefit
from people already travelling for the conference, with conference scholarship schemes helping to
support inclusion.

10 Links

• Sprint website: https://contributor.r-project.org/r-project-sprint-2023/
• GitHub repository: https://github.com/r-devel/r-project-sprint-2023
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