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segmented: An R Package to Fit
Regression Models with Broken-Line
Relationships
by Vito M. R. Muggeo

Introduction

Segmented or broken-line models are regression
models where the relationships between the re-
sponse and one or more explanatory variables are
piecewise linear, namely represented by two or more
straight lines connected at unknown values: these
values are usually referred as breakpoints, change-
points or even joinpoints. Hereafter we use such
words indistinctly.

Broken-line relationships are common in
many fields, including epidemiology, occupational
medicine, toxicology, and ecology, where sometimes
it is of interest to assess threshold value where the ef-
fect of the covariate changes (Ulm, 1991; Betts et al.,
2007).

Formulating the model, estimation
and testing

A segmented relationship between the mean re-
sponse µ = E[Y] and the variable Z, for observation
i = 1, 2, . . . , n is modelled by adding in the linear
predictor the following terms

β1zi +β2(zi −ψ)+ (1)

where (zi −ψ)+ = (zi −ψ)× I(zi > ψ) and I(·) is
the indicator function equal to one when the state-
ment is true. According to such parameterization,
β1 is the left slope, β2 is the difference-in-slopes and
ψ is the breakpoint. In this paper we tacitly as-
sume a GLM with a known link function and possi-
ble additional covariates, xi, with linear parameters
δ, namely link(µi) = x′iδ+β1zi +β2(zi −ψ)+; how-
ever, since the discussed methods only depend on
(1), we leave out from our presentation the response,
the link function, and the possible linear covariates.

Breakpoints and slopes of such segmented rela-
tionship are usually of main interest, although pa-
rameters relevant to the additional covariates may be
of some concern. Difficulties in estimating and test-
ing problems are well-known in such models, see for
instance Hinkley (1971). A simple and common ap-
proach to estimate the model is via grid-search type
algorithms: basically, given a grid of possible candi-
date values of {ψk}k=1,...,K, one fits K linear models
and seeks for the value corresponding to the model

with the best fit. There are at least two drawbacks
in using this procedure: (i) estimation might be quite
cumbersome with more than one breakpoint and/or
with large datasets and (ii) depending on sample size
and configuration of data, estimating the model with
fixed changepoint may lead the standard error of the
other parameters to be too narrow, since uncertainty
in the breakpoint is not taken into account.

The package segmented offers facilities to esti-
mate and summarize generalized linear models with
segmented relationships; virtually, no limit on the
number of segmented variables and on the number
of changepoint exists. segmented uses a method that
allows the modeler to estimate simultaneously all the
model parameters yielding also, at the possible con-
vergence, the approximate full covariance matrix.

Estimation

Muggeo (2003) shows that the nonlinear term (1) has
an approximate intrinsic linear representation which,
to some extent, allows us to translate the problem
into the standard linear framework: given an initial
guess for the breakpoint, ψ̃ say, segmented attempts
to estimate model (1) by fitting iteratively the linear
model with linear predictor

β1zi +β2(zi − ψ̃)+ +γ I(zi > ψ̃)− (2)

where I(·)− = −I(·) and γ is the parameter which
may be understood as a re-parameterization ofψ and
therefore accounts for the breakpoint estimation. At
each iteration, a standard linear model is fitted, and
the breakpoint value is updated via ψ̂ = ψ̃+ γ̂/β̂2;
note that γ̂ measures the gap, at the current estimate
of ψ, between the two fitted straight lines coming
from model (2). When the algorithm converges, the
‘gap’ should be small, i.e. γ̂ ≈ 0, and the standard
error of ψ̂ can be obtained via the Delta method for
the ratio γ̂

β̂2
which reduces to SE(γ̂)/|β̂2| if γ̂ = 0.

The idea may be used to fit multiple segmented
relationships, only by including in the linear predic-
tor the appropriate constructed variables for the ad-
ditional breakpoints to be estimated: at each step, ev-
ery breakpoint estimate is updated through the rele-
vant ‘gap’ and ‘difference-in-slope’ coefficients. Due
to its computational facility, the algorithm is able to
perform multiple breakpoint estimation in a very ef-
ficient way.

R News ISSN 1609-3631



Vol. 8/1, May 2008 21

Testing for a breakpoint

If the breakpoint does not exist the difference-in-
slopes parameter has to be zero, then a natural test
for the existence of ψ is

H0 : β2(ψ) = 0. (3)

Note that here we write β2(ψ) to stress that the pa-
rameter of interest, β2, depends on a nuisance pa-
rameter, ψ, which vanishes under H0. Conditions
for validity of standard statistical tests (Wald, for in-
stance) are not satisfied. More specifically, the p-
value returned by classical tests is heavily underes-
timated, with an empirical levels about three to five
times larger than the nominal levels. segmented em-
ploys the Davies (1987) test for performing hypoth-
esis (3). It works as follows: given K fixed ordered
values of breakpoints ψ1 < ψ2 < . . . < ψK in the
range of Z , and relevant K values of the test statistic
{S(ψk)}k=1,...,K having a standard Normal distribu-
tion for fixed ψk, Davies provides an upper bound
given by

p-value ≈ Φ(−M) + V exp{−M2/2}(8π)−1/2 (4)

where M = max{S(ψk)}k is the maximum of the
K test statistics, Φ(·) is the standard Normal distri-
bution function, and V = ∑k(|S(ψk) − S(ψk−1)|) is
the total variation of {S(ψk)}k. Formula (4) is an
upper bound, hence the reported p-value is some-
what overestimated and the test is slightly conserva-
tive. Davies does not provide guidelines for select-
ing number and location of the fixed values {ψk}k,
however a reasonable strategy is to use the quan-
tiles of the distribution of Z ; some simulation ex-
periments have shown that 5 ≤ K ≤ 10 usually
suffices. Formula (4) refers to one-sided hypothesis
test, the alternative being H1 : β2(ψ) > 0. The p-
value for the ‘lesser’ alternative is obtained by us-
ing M = min{S(ψk)}k, while for the two-sided case
let M = max{|S(ψk)|}k and double the (4) (Davies,
1987).

The Davies test is appropriate for testing for a
breakpoint, but it does not appear useful for select-
ing the number of the joinpoints. Following results
by Tiwari et al. (2005), we suggest using the BIC for
this aim.

Examples

Black dots in Figure 1 plotted on the logit scale,
show the percentages of babies with Down Syn-
drome (DS) on births for mothers with different age
groups (Davison and Hinkley, 1997, p.371). It is well-
known that the risk of DS increases with the mother’s
age, but it is important to assess where and how such
a risk changes with respect to the mother age. Pre-
sumably, at least three questions have to answered:
(i) does the mother’s age increase the risk of DS?;

(ii) is the risk constant over the whole range of age?
and (iii) if the risk is age-dependent, does a threshold
value exist?

In a wider context, the problem is to estimate the
broken-line model and to provide point estimates
and relevant uncertainty measures of all the model
parameters. The steps to be followed are straight-
forward with segmented. First, a standard GLM is
estimated and a broken-line relationship is added af-
terwards by re-fitting the overall model. The code be-
low uses the dataframe down shipped with the pack-
age.

> library("segmented")
> data("down")
> fit.glm<-glm(cases/births~age, weight=
+ births, family=binomial, data=down)
> fit.seg<-segmented(fit.glm, seg.Z=~age,
+ psi=25)

segmented takes the original (G)LM object (fit.glm)
and fits a new model taking into account the piece-
wise linear relationship. The argument seg.Z is a
formula (without response) which specifies the vari-
able, possibly more than one, supposed to have a
piecewise relationship, while in the psi argument
the initial guess for the breakpoint must be supplied.
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Figure 1: Scatter plot (on the logit scale) of propor-
tion of babies with DS against mother’s age and fits
from models fit.seg and fit.seg1.

The estimated model can be visualized by
the relevant methods print(), summary() and
print.summary() of class segmented. The sum-
mary shown in Figure 2 is very similar to one
of summary.glm(). Additional printed informa-
tion include the estimated breakpoint and rele-
vant (approximate) standard error (computed via
SE(ψ̂) = SE(γ̂)/|β̂2|), the t value for the ‘gap’ vari-
able which should be ‘small’ (|t| < 2, say) when the
algorithm converges, and the number of iterations
employed to fit the model. The variable labeled with
U1.age stands for the ‘difference-in-slope parameter
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> summary(fit.seg)

***Regression Model with Segmented Relationship(s)***

Call: segmented.glm(obj = fit.glm, seg.Z = ~age, psi = 25)

Estimated Break-Point(s):

Est. St.Err

31.0800 0.7242

t value for the gap-variable(s) V: 7.367959e-13

Meaningful coefficients of the linear terms:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -6.78243778 0.43140674 -15.7216777 1.074406e-55

age -0.01341037 0.01794710 -0.7472162 4.549330e-01

U1.age 0.27422124 0.02323945 11.7998172 NA

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 625.210 on 29 degrees of freedom

Residual deviance: 43.939 on 26 degrees of freedom

AIC: 190.82

Convergence attained in 5 iterations with relative change 1.455411e-14

Figure 2: Output of summary.segmented()

of the variable age’ (β2 in equation (1)) and the es-
timate of the gap parameter γ is omitted since it is
just a trick to estimate ψ. Note, however, that the
model degrees of freedom are correctly computed
and displayed.

Also notice that the p-value relevant to U1.age is
not reported, and NA is printed. The reason is that,
as discussed previously, standard asymptotics do not
apply. In order to test for a significant difference-
in-slope, the Davies’ test can be used. The use of
davies.test() is straightforward and requires to
specify the regression model (lm or glm), the ‘seg-
mented’ variable whose a broken-line relationship
is being tested, and the number of the evaluation
points,

> davies.test(fit.glm,"age",k=5)

Davies’ test for a change in the slope

data: Model = binomial , link = logit

formula = cases/births ~ age

segmented variable = age

‘Best’ at = 32, n.points = 5, p-value < 2.2e-16

alternative hypothesis: two.sided

Currently davies.test() only uses the Wald
statistic, i.e. S(ψk) = β̂2/SE(β̂2) for each fixed ψk,
although alternative statistics could be used.

If the breakpoint exists, the limiting distribu-
tion of β̂2 is gaussian, therefore estimates (and
standard errors) of the slopes can be easily com-
puted via the function slope() whose argument

conf.level specifies the confidence level (defaults to
conf.level=0.95),

> slope(fit.seg)

$age

Est. St.Err. t value CI(95%).l CI(95%).u

slope1 -0.01341 0.01795 -0.7472 -0.04859 0.02177

slope2 0.26080 0.01476 17.6700 0.23190 0.28970

Davison and Hinkley (1997) discuss that it might
be of some interest to test for a null left slope, and at
this aim they use isotonic regression. On the other
hand, the piecewise parameterization allows to face
this question in a straightforward way since only a
test for H0 : β1 = 0 has be performed; for instance, a
Wald test is available directly from the summary (see
Figure 2, t = −0.747). Under a null-left-slope con-
straint, a segmented model may be fitted by omit-
ting from the ‘initial’ model the segmented variable,
namely

> fit.glm<-update(fit.glm,.~.-age)

> fit.seg1<-update(fit.seg)

While the fit is substantially unchanged, the (ap-
proximate) standard error of the breakpoint is notice-
ably reduced (compare the output in Figure 2)

> fit.seg1$psi

Initial Est. St.Err

psi1.age 25 31.45333 0.5536572

Instead, as firstly observed in Hinkley (1971) and
shown by some simulations, the breakpoint estima-
tor coming from a null left slope model is more effi-
cient as compared to the one coming from a nonnull
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left slope fit. Fitted values for both segmented mod-
els are displayed in Figure 1 where broken-lines and
bars for the breakpoint estimates have been added
via the relevant methods plot() and lines() de-
tailed at the end of this section.

We continue our illustration of the segmented
package by running a further example using the
plant dataset in the package. This example may
be instructive to describe how to fit multiple seg-
mented relationships with also a zero constraint on
the right slope. Data refer to variables, y, time and
group which represent measurements of a plant or-
gan over time for three attributes (levels of the factor
group). The data have been kindly provided by Dr
Zongjian Yang at School of Land, Crop and Food Sci-
ences, The University of Queensland, Brisbane, Aus-
tralia. Biological reasoning and empirical evidence
as emphasized in Figure 3, indicate that non-parallel
segmented relationships with multiple breakpoints
may allow a well-grounded and reasonable fit. Mul-
tiple breakpoints are easily accounted in equation
(1) by including additional terms β3(zi −ψ2)+ + . . .
segmented allows a such extension in a straightfor-
ward manner by supplying multiple starting points
in the psi argument.

To fit such a broken-line model within seg-
mented, we first need to build the three different ex-
planatory variables, products of the covariate time
by the dummies of group 1,

> data("plant")

> attach(plant)

> X<-model.matrix(~0+group)*time

> time.KV<-X[,1]

> time.KW<-X[,2]

> time.WC<-X[,3]

Then we call segmented on a lm fit, by specifying
multiple segmented variables in seg.Z and using a
list to supply the starting values for the breakpoints
in psi. We assume two breakpoints in each series,

> olm<-lm(y~0+group+ time.KV + time.KW + time.WC)

> os<-segmented(olm, seg.Z= ~ time.KV + time.KW

+ + time.WC, psi=list(time.KV=c(300,450),

+ time.KW=c(450,600), time.WC=c(300,450)))

Warning message:

max number of iterations attained

Some points are probably worth mentioning here.
First, the starting linear model olm could be fitted
via the more intuitive call lm(y~group*time): even
if segmented() would have worked providing the
same results, a possible use of slope() would have
not been allowed. Second, since there are multiple
segmented variables, the starting values - obtained
by visual inspection of the scatter-plots - have to sup-
plied via a named list whose names have to match
with the variables in seg.Z. Last but not least, the

printed message suggests to re-fit the model because
convergence is suspected. Therefore it could be help-
ful to trace out the algorithm and/or to increase the
maximum number of the iterations,

> os<-update(os, control=seg.control(it.max=30,

+ display=TRUE))

0 1.433 (No breakpoint(s))

1 0.108

2 0.109

3 0.108

4 0.109

5 0.108

. . . .

29 0.108

30 0.109

Warning message:

max number of iterations attained

The optimized objective function (residual sum
of squares in this case) alternates among two val-
ues and ‘does not converge’, in that differences never
reach the (default) tolerance value of 0.0001; the
function draw.history() may be used to visualize
the values of breakpoints throughout the iterations.
Moreover, increasing the number of maximum itera-
tions, typically does not modify the result. This is not
necessarily a problem. One could change the toler-
ance by setting toll=0.001, say, or better, stop the al-
gorithm at the iteration with the best value. Also, one
could stabilize the algorithm by shrinking the incre-
ments in breakpoint updates through a factor h < 1,
say; this is attained via the argument h in the auxil-
iary function seg.control(),

> os<-update(os, control=seg.control(h=.3))

However, when convergence is not straightfor-
ward, the fitted model has to be inspected with par-
ticular care: if a breakpoint is understood to exist,
the corresponding difference-in-slope estimate (and
its t value) has to be large and furthermore the ‘gap’
coefficient (and its t value) has to be small (see the
summary(..)$gap). If at the estimated breakpoint the
coefficient of the gap variable is large (greater than
two, say) a broken-line parameterization is some-
what questionable. Finally, a test for the existence
of the breakpoint and/or comparing the BIC values
would be very helpful in these circumstances.

Green diamonds in Figure 3 and output from
slope() (not shown) show that the last slope for
group "KW" may be set to zero. While a left slope
is allowed by fitting only (z−ψ)+ (i.e. by omitting
the main variable z in the initial linear model as in
the previous example), similarly a null right slope
might be allowed by including only (z −ψ)−. seg-
mented does not handle such terms explicitly, how-
ever by noting that (z−ψ)− = −(−z +ψ)+, we can
proceed as follows

1Of course, a corner-point parameterization (i.e. ‘treatment’ contrasts) is required to define the dummies relevant to the grouping
variable; this is the default in R.

R News ISSN 1609-3631



Vol. 8/1, May 2008 24

> neg.time.KW<- -time.KW

> olm1<-lm(y~0+group+time.KV+time.WC)

> os1<-segmented(olm1, seg.Z=~ time.KV + time.WC+

+ neg.time.KW, psi=list(time.KV=c(300,450),

+ neg.time.KW=c(-600,-450), time.WC=c(300,450)))

The ‘minus’ of the explanatory variable in group
"KW" requires that the corresponding starting guess
has to be supplied with reversed sign and, as con-
sequence, the signs of estimates for the correspond-
ing group will be reversed. The method segmented
for confint() may be used to display (large sam-
ple) interval estimates for the breakpoints; confi-
dence intervals are computed using ψ̂ ∓ zα/2SE(ψ̂)
where SE(ψ̂) comes from the Delta method for the
ratio γ̂

β̂2
and zα/2 is the quantile of the standard Nor-

mal. Optional arguments are parm to specify the
segmented variable of interest (default to all vari-
ables) and rev.sgn to change the sign of output be-
fore printing (this is useful when the sign of the seg-
mented variable has been changed to constrain the
last slope as in example at hand).

> confint(os1,rev.sgn=c(FALSE,FALSE,TRUE))

$time.KV

Est. CI(95%).l CI(95%).u

psi1.time.KV 299.9 256.9 342.8

psi2.time.KV 441.9 402.0 481.8

$time.WC

Est. CI(95%).l CI(95%).u

psi1.time.WC 306.0 284.2 327.8

psi2.time.WC 460.1 385.5 534.7

$neg.time.KW

Est. CI(95%).l CI(95%).u

psi1.neg.time.KW 445.4 398.5 492.3

psi2.neg.time.KW 609.9 549.7 670.0

The slope estimates may be obtained using
slope(); again, parm and rev.sgn may be specified
when requested,

> slope(os1, parm="neg.time.KW", rev.sgn=TRUE)

$neg.time.KW

Est. St.Err. t value CI(95%).l CI(95%).u

slope1 0.0022640 8.515e-05 26.580 0.0020970 0.002431

slope2 0.0008398 2.871e-04 2.925 0.0002771 0.001403

slope3 0.0000000 NA NA NA NA

Notice that in light of the constrained right slope,
standard errors, t-values, and confidence limits are
not computed.

Figure 3 emphasizes the constrained fit which has
been added to the current device via the relevant
plot() method. More specifically, plot() allows to
draw on the current or new device (depending on
the logical value TRUE/FALSE of add) the fitted piece-
wise relationship for the variable term. To get sensi-
ble plots with fitted values to be superimposed to the
observed points, the arguments const and rev.sgn

have to be set carefully. The role of rev.sgn is intu-
itive and has been discussed above while const indi-
cates a constant to be added to the fitted values be-
fore plotting,

> plot(os1, term="neg.time.KW", add=TRUE, col=3,

+ const=coef(os1)["groupRKW"], rev.sgn=TRUE)

const defaults to the model intercept, and for re-
lationships by group the group-specific intercept is
appropriate, as in the "KW" group example above.
However when a ‘minus’ variable has been consid-
ered, simple algebra on the regression equation show
that the correct constant for the other groups is given
by the current estimate minus a linear combination
of difference-in-slope parameters and relevant break-
points. For the "KV" group we add the fitted lines
after computing the ‘adjusted’ constant,

> const.KV<-coef(os1)["groupRKV"]-

+ coef(os1)["U1.neg.time.KW"]*

+ os1$psi["psi1.neg.time.KW","Est."]-

+ coef(os1)["U2.neg.time.KW"]*

+ os1$psi["psi2.neg.time.KW","Est."]

> plot(os1, "time.KV", add=TRUE, col=2, const=const.KV)

and similarly for group "WC".
Finally the estimated join points with relevant

confidence intervals are added to the current device
via the lines.segmented() method,

> lines(os1,term="neg.time.KW",col=3,rev.sgn=TRUE)

> lines(os1,term="time.KV",col=2,k=20)

> lines(os1,term="time.WC",col=4,k=10)

where term selects the segmented variable, rev.sgn
says if the sign of the breakpoint values (point esti-
mate and confidence limits) have to be reversed, k
regulates the vertical position of the bars, and the
remaining arguments refer to options of the drawn
segments.
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Figure 3: The plant dataset: data and constrained fit
(model os1).

Conclusions

We illustrated the key-ideas of broken-line regres-
sion and how such a class of models may be fitted
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in R through the package segmented. Although al-
ternative approaches could be undertaken to model
nonlinear relationships, for instance via splines, the
main appealing of segmented models lies on inter-
pretability of the parameters. Sometimes a piecewise
parameterization may provide a reasonable approx-
imation to the shape of the underlying relationship,
and threshold and slopes may be very informative
and meaningful.

However it is well known that the likelihood in
segmented models may not be concave, hence there
is no guarantee the algorithm finds the global max-
imum; moreover it should be recognized that the
method works by approximating the ‘true’ model (1)
by (2), which could make the estimation problematic.
A possible and useful strategy - quite common in the
nonlinear optimization field - is to run the algorithm
starting with different initial guesses for the break-
point in order to assess possible differences. This is
quite practicable due to computational efficiency of
the algorithm. However, the more the clear-cut the
relationship, the less important the starting values
become.

The package is not concerned with estimation of
the number of the breakpoints. Although the BIC
has been suggested, in general nonstatistical issues
related to the understanding of the mechanism of
the phenomenon in study could help to discriminate
among several competing models with a different
number of joinpoints.

Currently, only methods for LM and GLM ob-
jects are implemented; however, due to the ease of
the algorithm which only depends on the linear pre-
dictor, methods for other models (Cox regression,
say) could be written straightforwardly following
the skeleton of segmented.lm or segmented.glm.

Finally, for the sake of novices in breakpoint es-
timation, it is probably worth mentioning the differ-
ence existing with the other R package dealing with
breakpoints. The strucchange package by Zeileis
et al. (2002) substantially is concerned with regres-
sion models having a different set of parameters for
each ‘interval’ of the segmented variable, typically
the time; strucchange performs breakpoint estima-
tion via a dynamic grid search algorithm and al-
lows for testing for parameter instability. Such ‘struc-
tural breaks models’, mainly employed in economics
and econometrics, are somewhat different from the
broken-line models discussed in this paper, since
they do not require the fitted lines to join at the es-

timated breakpoints.

Acknowledgements

This work was partially supported by grant ‘Fondi
di Ateneo (ex 60%) 2004 prot. ORPA044431: ‘Verifica
di ipotesi in modelli complessi e non-standard’ (‘Hy-
pothesis testing in complex and nonstandard mod-
els’). The author would like to thank the anonymous
referee for useful suggestions which improved the
paper and the interface of the package itself.

Bibliography

M. Betts, G. Forbes, and A. Diamond. Thresholds in
songbird occurrence in relation to landscape struc-
ture. Conservation Biology, 21:1046–1058, 2007.

R. B. Davies. Hypothesis testing when a nuisance
parameter is present only under the alternative.
Biometrika, 74:33–43, 1987.

A. Davison and D. Hinkley. Bootstrap methods and
their application. Cambridge University Press, 1997.

D. Hinkley. Inference in two-phase regression. Jour-
nal of American Statistical Association, pages 736–
743, 1971.

V. Muggeo. Estimating regression models with un-
known break-points. Statistics in Medicine, 22:
3055–3071, 2003.

R. Tiwari, K. A. Cronin, W. Davis, E. Feuer, B. Yu, and
S. Chib. Bayesian model selection for join point
regression with application to age-adjusted cancer
rates. Applied Statistics, 54:919–939, 2005.

K. Ulm. A statistical methods for assessing a
threshold in epidemiological studies. Statistics in
Medicine, 10:341–349, 1991.

A. Zeileis, F. Leisch, K. Hornik, and C. Kleiber.
strucchange: An R package for testing for struc-
tural change in linear regression models. Journal of
Statistical Software, 7(2):1–38, 2002.

Vito M. R. Muggeo
Dipartimento Scienze Statistiche e Matematiche ‘Vianelli’
Università di Palermo, Italy
vmuggeo@dssm.unipa.it

R News ISSN 1609-3631

mailto:vmuggeo@dssm.unipa.it

