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Optmatch: Flexible, Optimal Matching for
Observational Studies
Ben B. Hansen

Observational studies compare subjects who re-
ceived a specified treatment to others who did not,
without controlling assignment to treatment and
comparison groups. When the groups differ at base-
line in ways that are relevant to the outcome, the
study has to adjust for the differences. An old and
particularly direct method of making these adjust-
ments is to match treated subjects to controls who
are similar in terms of their pretreatment charac-
teristics, then conduct an outcome analysis condi-
tioning upon the matched sets. Adjustments of this
type enjoy properties of robustness (Rubin, 1979) and
transparency not shared with purely model-based
adjustments, such as covariance adjustment without
matching or stratification; and with the introduction
of propensity scores to matching (Rosenbaum and
Rubin, 1985), the approach was shown to be more
broadly applicable than was previously thought. Ar-
guably, the reach of techniques based on matching
now exceeds that of purely model-based adjustment
(Hansen, 2004).

To achieve these benefits, matched adjustment re-
quires the analyst to articulate a distinction between
desirable and undesirable potential matches, and
then to match treated and control subjects in such a
way as to favor the more desirable pairings. Propen-
sity scoring fits under the first of these tasks, as do
the construction of Mahalanobis matching metrics
(Rosenbaum and Rubin, 1985), prognostic scoring
(Hansen, 2006b), and the distance metric optimiza-
tion of Diamond and Sekhon (2006). The second task,
matching itself, is less statistical in nature, but doing
it well can substantially improve the power and ro-
bustness of matched inference (Hansen and Klopfer,
2006; Hansen, 2004). The main purpose of optmatch
is to relieve the analyst of responsibility for this im-
portant, if potentially tedious, undertaking, freeing
attention for other aspects of the analysis. Given
discrepancies between each treatment and control
subject that might potentially be matched, optmatch
places them into non-overlapping matched sets, in
the process solving the discrete optimization prob-
lems needed to make sums of matched discrepancies
as small as possible; after this, the analysis can pro-
ceed using permutation inference (Rosenbaum, 2002;
Hothorn et al., 2006; Bowers and Hansen, 2006), con-
ditional inference (Breslow and Day, 1980; Cox and
Snell, 1989; Hansen, 2004; Lumley and Therneau,
2006), approximately conditional inference (Pierce
and Peters, 1992; Brazzale, 2005; Brazzale et al., 2006),
or multilevel models (Smith, 1997; Raudenbush and
Bryk, 2002; Gelman and Hill, 2006).

Optimal matching of two groups

To illustrate the meaning of optimal matching, con-
sider Cox and Snell’s (1981, p.81) study of costs of
nuclear power. Of 26 light water reactor plants con-
structed in the U.S. between 1967 and 1972, seven
had been built on the site of existing plants. The
problem is to estimate the cost benefit (or penalty)
of building on an existing site as opposed to a new
one. A matched analysis seeks to adjust for back-
ground characteristics determinative of cost, such as
the date of construction and the capacity of the plant,
by linking similar refurbished and new plants: plants
of about the same capacity and constructed at about
the same time, for example. To highlight the anal-
ogy with intervention studies, I refer to existing-site
plants as “treatments” and new-site plants as “con-
trols.”

Consider the problem of arranging the plants
in disjoint triples, each containing one treatment
and two controls, placing each treatment and 14
of the 19 controls into some matched triple or an-
other. A straightforward way to create such a
match is to move down the list of treatments, pair-
ing each to the two most similar controls that have
not yet been matched; this is nearest-available match-
ing. Figure 1 shows the 26 plants, their capaci-
ties and dates of construction, and a 1 : 2 match-
ing constructed in this way. First A was matched
to I and J, then B to L and N, and so forth. This
example is discussed by Rosenbaum (2002, ch.10).

Existing site
date capacity

A 2.3 660
B 3.0 660
C 3.4 420
D 3.4 130
E 3.9 650
F 5.9 430
G 5.1 420

“date” is date of construc-
tion, in years after 1965;
“capacity” is net capac-
ity of the power plant, in
MWe above 400.

New site
date capacity

H 3.6 290
I 2.3 660
J 3.0 660
K 2.9 110
L 3.2 420
M 3.4 60
N 3.3 390
O 3.6 160
P 3.8 390
Q 3.4 130
R 3.9 650
S 3.9 450
T 3.4 380
U 4.5 440
V 4.2 690
W 3.8 510
X 4.7 390
Y 5.4 140
Z 6.1 730

Figure 1: 1:2 matching by a nearest-available algo-
rithm.

How might this process be improved? To com-
plete step i, the nearest-available algorithm requires
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a ranking of potential matches for treatment unit i,
an ordering of available controls accounting for their
differences with plant i in generating capacity and in
year of construction. Typically controls j are ordered
in terms of a numeric discrepancy, d[i, j], from i; Fig-
ure 1’s match follows Rosenbaum (2002, ch.10) in us-
ing the sum of rank differences on the two covariates
(after restricting to a subset of the plants, pt!=1):

> data("nuclear", package="boot")
> attach(nuclear[nuclear$pt!=1,])
> drk <- rank(date)
> d <- outer(drk[pr==1], drk[pr!=1], "-")
> d <- abs(d)
> crk <- rank(cap)
> d <- d +

abs(outer(crk[pr==1], crk[pr!=1], "-"))

(where pr==1 indicates the treatment group). The
d that results from these operations is shown (after
rounding) in Figure 3. Having calculated this d, one
can pose the task of matching as a discrete optimiza-
tion problem: find the match M = {(i, j)} minimiz-
ing ∑M d(i, j) among all sets of pairs (i, j) in which
each treatment i appears twice and each control j ap-
pears at most once.

Optimal matching refers to algorithms guaran-
teed to find matches attaining this minimum, or
falling within a specified tolerance of it, given a
nt × nc discrepancy matrix M. Optimal matching’s
performance advantage over heuristic, non-optimal
algorithms can be striking. For example, in the prob-
lem of Figure 1 optimal matching reduces nearest-
available’s sum of discrepancies by 23%. This opti-
mal solution, found by optmatch’s pairmatch func-
tion, is shown in Figure 2.

Existing site
date capacity

A 2.3 660
B 3.0 660
C 3.4 420
D 3.4 130
E 3.9 650
F 5.9 430
G 5.1 420

By evaluating potential
matches all together rather
than sequentially, optimal
matching (blue lines) reduces
the sum of distances by 23%.

New site
date capacity

H 3.6 290
I 2.3 660
J 3.0 660
K 2.9 110
L 3.2 420
M 3.4 60
N 3.3 390
O 3.6 160
P 3.8 390
Q 3.4 130
R 3.9 650
S 3.9 450
T 3.4 380
U 4.5 440
V 4.2 690
W 3.8 510
X 4.7 390
Y 5.4 140
Z 6.1 730

Figure 2: Optimal vs. greedy 1:2 matching.

An optimal match is optimal relative to given
structural requirements, here that all treatments and
a corresponding number of controls be arranged in
1 : 2 matched sets, and a given distance, here d. It
is best-possible for the purposes of the analyst only

insofar as the given distance and structural stipula-
tions best represent the analyst’s goals; in this sense
“optimal” in “optimal matching” is analogous to
the “maximum” of “maximum likelihood,” which is
never better than the chosen likelihood model it max-
imizes.

For example, in the problem just discussed the
structural stipulation that the matched sets all be 1:2
triples may be poorly tailored to the goal of reduc-
ing baseline differences between the groups. It is
appropriate if these differences stem entirely from a
small minority of controls being too unlike any treat-
ment subjects to bear comparison to them, since it
does exclude 5/19 of potential controls from the fi-
nal match; but differences on a larger number of con-
trols, even small differences, require the techniques
to be described under Generalizations of pair match-
ing, below, which may also give similar or better bias
reduction without excluding as many control obser-
vations. (See also Discussion, below.)

Growing your own discrepancy matrix

Figures 1 and 2 both illustrate multivariate distance
matching , aligning units so as to minimize a sum
of rank discrepancies. Optmatch is entirely flexi-
ble about the form of the distance on which matches
are to be made. To propensity-score match nuclear
plants, for example, one would prepare a propensity
distance using

> pscr <- glm(pr ~ . -(pr+cost),
family = binomial,
data = nuclear)$linear.predictors

> PR <- nuclear$pr==1
> pdist <- outer(pscr[PR], pscr[PR], "-")

> pscr.v <- (var(pscr[PR])*(sum(PR)-1)+
var(pscr[!PR])*(sum(!PR)-1))/
(length(PR)-2)

> pdist <- abs(pdist)/sqrt(pscr.v)

or, more simply and reliably,

> pmodel <- glm(pr ~ . -(pr+cost),
family = binomial, data = nuclear)

> pdist <- pscore.dist(pmodel)

Then pdist is passed to pairmatch or fullmatch as
its first argument. Other discrepancies on which one
might match include Mahalanobis distances (which
can be produced using mahal.dist) and combina-
tions of Mahalanobis and propensity-based distances
(Rosenbaum and Rubin, 1985; Gu and Rosenbaum,
1993; Rubin and Thomas, 2000). Many special re-
quirements, such as that matches be made only
within given subclasses, or that specific matches be
avoided, are also introduced through the discrep-
ancy matrix.

First consider the case the matches are to be made
within subclasses only. In the nuclear dataset, plants
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with and without partial turnkey (pt) guarantees
should be compared separately, since the meaning of
the outcome variable, cost, changes with pt. Figure
2 shows only the pt!=1 plants, and its match is gener-
ated with the command pairmatch(d,controls=2),
where d is the matrix in Figure 3. To match also par-
tial turnkey plants to each other, one gathers into
a list, dl, both d and a distance matrix dpt com-
paring new- and existing-site partial turnkey plants,
then feeds dl to pairmatch as its first argument. For
propensity or Mahalanobis matching, pscore.dist
or mahal.dist would do this if given the formula
pr~pt as their optional arguments ‘structure.fmla’.

More generally, the helper function makedist
(which is called by pscore.dist and mahal.dist)
eases the application of a (user-defined) discrepancy
matrix-producing function to each of a sequence of
strata in order to generate a list of distance matri-
ces. For separate summed-rank distances by pt sub-
class, one would write a function that extracts por-
tions of relevant variables from a given data frame,
looking to a treatment-group variable to decide what
portions to take, as in

> capdatediffs <- function(trt, dat) {
crk <- rank(dat[names(trt),"cap"])
names(crk) <- names(trt)
dmt <- outer(crk[trt], crk[!trt],"-")
dmt <- abs(dmt)

drk <- rank(dat[names(trt),"date"])
dmt <- dmt +
abs(outer(drk[trt], drk[!trt],"-"))
dmt
}

Then one would use makedist to apply the function
separately within levels of pr:

> dl <- makedist(pr ~ pt, nuclear,
capdatediffs)

The result of this is a list of two distance matrices,
both submatrices of d created above, one comparing
pt!=1 treatments and controls and a smaller one for
pt==1 plants.

In larger problems, matching can be substantially
faster if preceded by a division of the sample into
subclasses; see Under the hood, below. The use
of pscore.dist, mahal.dist, and makedist carry
another advantage, that the lists of distances they
generate carry metadata to prevent fullmatch or
pairmatch from getting confused about the order of
observations in the data frame from which the dis-
tances were generated.

Another common aim is to forbid unwanted
matches. With optmatch, this is done by placing
NA’s, NaN’s or Inf’s at the relevant places in a distance
matrix. Consider matching nuclear plants within
calipers of three years on date of construction. Pair-
ings of plants that would violate this requirement are

indicated in red in Figure 3. To enforce the caliper,
one could generate a matrix of discrepancies dy on
year of construction, then replace the distance ma-
trix of Figure 3, d, with d/(dy<=3); this new matrix
has an Inf at each entry in Figure 3 currently shown
in red, and otherwise is the same as in Figure 3.

Operations of these types, division and logical
comparison, are compatible with subclassification
prior to matching, despite the fact that the operations
seem to require matrices while subclassification de-
mands lists of matrices. Assuming one has defined a
function datediffs as

> datediffs <- function(trt,data){
sclr <- data[names(trt), 'date']
names(sclr) <- names(trt)
abs(outer(sclr[trt], sclr[!trt], '-'))
}

then the command

> dly <- makedist(pr ~ pt, nuclear,
datediffs)

tabulates absolute differences on date of construc-
tion, separately for pr==1 and pr!=1 strata. With
optmatch, the expression dly<=3 returns a list
of indicators of whether potential matches were
built within three years of one another. Further-
more, dl/(dly<=3) is a list imposing the three-
year caliper upon distances coded in dl . To
pair match on propensity scores, but with a 3-
year date-of-construction caliper, one would use
pairmatch(dl/(dly<=3)).

Generalizations of pair matching

Matching with a varying number of con-
trols

In Figures 1 and 2, both non-optimal and optimal
matches insist on precisely two controls per treat-
ment. If one’s aim is to match as closely as possible,
this is a limitation. To optimally match 14 of the 19
controls, as Figure 2 does, but without requiring that
they always be matched two-to-one to treatments,
one would use the command fullmatch, with op-
tions ‘min.controls=1’ and ‘omit.fraction=5/19’.
The flexibility this adds improves matching even
more than the switch from greedy to optimal match-
ing did; while optimal pair matching reduced greedy
pair matching’s net discrepancy from 82 to 63, op-
timal matching with a varying number of controls
brings it to 44, just over half its original value.

If mvnc is the match created in this way, then the
structure of mvnc is returned by

> stratumStructure(mvnc)
stratum treatment:control ratios
1:1 1:2 1:3 1:5
4 1 1 1
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Exist- New sites
ing H I J K L M N O P Q R S T U V W X Y Z

A 28 0 3 22 14 30 17 28 26 28 20 22 23 26 21 18 34 40 28
B 24 3 0 22 10 27 14 26 24 24 16 19 20 23 18 16 31 37 25
C 10 18 14 18 4 12 6 11 9 10 14 12 6 14 22 10 16 22 28
D 7 28 24 8 14 2 10 6 12 0 24 22 4 24 32 20 18 16 38
E 17 20 16 32 18 26 20 18 12 24 0 2 20 6 8 4 14 20 14
F 20 31 28 35 20 29 22 20 14 26 12 9 22 5 15 12 9 11 12
G 14 32 29 30 18 24 17 16 10 22 12 10 17 6 16 14 4 8 17

Figure 3: Rank discrepancies of new- and existing-site nuclear plants without partial turnkey guarantees. New-
and existing-site plants which differ by more than 3 years in date of construction are indicated in red.

This means it consists of four matched pairs and a
matched triple, quadruple, and sextuple, all contain-
ing precisely one treatment. Ming and Rosenbaum
(2000) discuss matching with a varying number of
controls, implementing it in their example with a
somewhat different algorithm.

Full matching

A propensity score is the conditional probability,
p(x), of falling in the treatment group given covari-
ates x (or an increasing transformation of it, such
as its logit). Because subjects with large propensity
scores more frequently fall in the treatment group,
and subjects with low propensity scores are more fre-
quently controls, propensity score matching is fun-
damentally at odds with matching treatments and
controls in fixed ratios, such as 1 : 1 or 1 : k. These
ratios must be allowed to adapt, so that 1:1 matches
can be made where p(x)/(1 − p(x)) ≈ 1 while 1 : k
matches are made where p(x)/(1 − p(x)) ≈ 1/k;
otherwise either some subjects will have to go un-
matched or some subjects are bound to be poorly
matched on their propensity scores. Matching with
multiple controls addresses part of this problem, but
only full matching (Rosenbaum, 1991) addresses it in
its entirety, by also permitting l:1 matches, for when
p(x)/(1− p(x)) ≈ l ≥ 2.

In general, full matching is useful when there
are some regions of covariate space in which con-
trols outnumber treatments but others in which treat-
ments outnumber controls. This pattern emerges
most clearly when matching on a propensity score,
but they influence the quality of matches even with-
out propensity scores. The rank discrepancies of
new- and existing-site pt==1 plants, shown in Fig-
ure 4, show it; earlier dates of construction, and
smaller capacities, are more common among controls
(d and e) than treatments (b only), and this is re-
flected in Figure 4’s sums of discrepancies on rank.
As a consequence, full matching achieves a net rank
discrepancy (3) that is half of the minimum possible
(6) with techniques that don’t permit both 1:2 and 2:1
matched sets.

Exist- New sites
ing d e f

a 6 6 0
b 0 3 6
c 6 6 0

Figure 4: Rank discrepancies of new- and existing-
site nuclear plants with partial turnkey guarantees.
Boxes indicate the optimal full matching of these
plants.

Gu and Rosenbaum (1993) compare full and other
forms of matching in an extensive simulation study,
while Hansen (2004) and Hansen and Klopfer (2006)
present applications. This literature emphasizes the
importance of using structural restrictions , upper
limits on K in K : 1 matched sets and on L in 1 :
L matched sets, when full matching, in order to
control the variance of matched estimation. With
fullmatch, an upper limit K :1 on treatment:control
ratios is conveyed using ‘min.controls=1/K’, while
a lower limit of 1 : L on the treatment : control ra-
tio would be given with ‘max.controls=L’. Hansen
(2004) and Hansen and Klopfer (2006) give strate-
gies to optimize these tuning parameters. In the
context of a specific application, Hansen (2004) finds
(min.controls, max.controls) = (1/2, 2) · (1 − p̂)/ p̂
to work best, where p̂ represent the proportion
treated in the stratum being matched. In an unre-
lated application, Stuart and Green (2006) find these
values to work well; they may be a good starting
point for general use.

A somewhat related technique is matching “with
replacement,” in which overlap between matched
sets is permitted in the interests of achieving closer
matches. Because of the overlap, methods appropri-
ate to stratified data are not generally appropriate for
samples matched with replacement. The technique
forces one to resort to specialized techniques, such
as those of Abadie and Imbens (2006). On the other
hand, with-replacement matching would appear to
offer the possibility of closer matches, since its pair-
ing of one treatment unit in no way limits its pairing
of the next treatment unit.

However, it is a surprising, and evidently
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little-known, fact that with-replacement matching
achieves no closer matches than full matching, a
without-replacement matching technique. As dis-
cussed by Rosenbaum (1991) and (more explicitly)
by Hansen and Klopfer (2006), given any criterion
for a potential pairing of subjects to be acceptable,
full matching matches all subjects with at least one
suitable match in their comparison group, match-
ing them only to acceptable counterparts. So one
might insist, in particular, that each treatment unit be
matched only to one of its nearest neighbors; by shar-
ing controls among treated units where necessary,
omitting controls who are not the nearest neighbor of
some treatment, and matching to multiple controls
where that can be done, full matching finds a way
to honor this requirement. Since the matched sets
produced by full matching never overlap, it has the
advantage over with-replacement matching of com-
bining with any method of estimation appropriate to
finely stratified data.

Under the hood

Hansen and Klopfer (2006) describe the network-
flows algorithm on which optmatch relies in some
detail, establishing its optimality for full matching
and matching with a fixed or varying number of con-
trols. They also give upper bounds for the time com-
plexity of the algorithm: roughly, O(n3 log(nC)),
where n is the size of the sample and C is the quo-
tient of largest discrepancy in the distance matrix
and the matching tolerance. This is comparable to
the time complexity of squaring a n× n matrix. More
precisely, the algorithm requires O(nntnc log(nC))
floating-point operations, where nt and nc are the
sizes of the treatment and control groups.

These bounds have two practical consequences
for optmatch. First, computational costs grow
steeply with the size of the discrepancy matrix. Just
as squaring two (n/2) × (n/2) submatrices of an
n× n matrix is about four times faster than squaring
the full n× n matrix, matching is made much faster
by subdividing large matching problems into smaller
ones. For this reason makedist is written so as to fa-
cilitate subclassification prior to matching, the effect
of which is to split larger matching problems into a
sequence of smaller ones. Second, the C-factor con-
tributes secondarily to computational cost; its contri-
bution is reduced by increasing the value of the ‘tol’
argument to fullmatch or pairmatch.

Discussion

When and how matching reduces system-
atic differences between groups

Matching can address bias in observational studies
in either of two ways. In matched sampling, it is used

to select a subset of control subjects most like treat-
ments, with the remainder of subjects excluded from
analysis; in matched adjustment, it is used to force
treatment control comparisons to be based on indi-
vidualized comparisons made within matched sets,
which will have been so engineered that matched
counterparts are more like one another than are treat-
ments and controls on the whole. Matched sam-
pling is typically followed by matched adjustment,
but matched adjustment can be useful even when not
preceded by matched sampling.

Because it excludes some five control subjects, the
match depicted in Figures 1 and 2 might be used in
a context of matched sampling, although it differs in
important respects from typical matched samples. In
archetypal cases, matched sampling is used when for
cost reasons the number of controls to be followed
up for outcome data has to be reduced anyway, not
when outcome data is already available for the entire
sample already; and in archetypal cases, the reservoir
of potential controls is many times larger than the
size of the desired control group. See, e.g., Althauser
and Rubin (1970) or Rosenbaum and Rubin (1985).
The matches in Figures 1 and 2 are typical of matched
sampling in matching a fixed number of controls to
each treatment subject. When bias can be addressed
by being very selective in the choice of controls, flex-
ibility in the structure of matched sets becomes less
important.

When there is no additional data to be collected,
there may be little use for matched sampling per se,
while matched adjustment may still be attractive. In
these cases, it is important to recognize that match-
ing, even optimal matching, does not in itself reduce
systematic differences between treatment and con-
trol groups unless it is specifically given the flexi-
bility to do so. Suppose, for instance, that adjust-
ment for the variable t2 is needed in the compari-
son of new- and existing site-plants. This variable,
which represents the time between the issue of an
operating permit and a construction permit, differs
markedly in its distribution among “treatments” and
“controls,” as seen in Figure 5: treatments have sys-
tematically larger values of it, although the two dis-
tributions well overlap. When two groups compare
in this way, no fixed-ratio matching of them can re-
duce their overall discrepancy. Some of the observa-
tions will have to be set aside — or, better yet, one
could match the two groups in varying ratios, us-
ing matching with multiple controls or full match-
ing. These techniques have surprising power to rec-
oncile differences between treatments and controls
while setting aside few or even no subjects because
they lack suitable counterparts; the reader is referred
to Hansen (2004, § 2) for general discussion and a
case study.
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Figure 5: New and existing sites’ differences on the
variable t2. To reduce these differences, one has ei-
ther to drop observations or to use flexible matching
techniques.

In practice, one should look critically at an opti-
mal match before moving ahead with it toward out-
come analysis, refining its generating distance and
structural requirements as appropriate, just as a care-
ful analyst deploys various diagnostics in the pro-
cess of developing and refining a likelihood-based
analysis. Diagnostics for matching are discussed in
various methodological papers, many of them recent
(Rosenbaum and Rubin, 1985; Rubin, 2001; Lee, 2006;
Hansen, 2006a; Sekhon, 2007).

optmatch output

Matched pairs are often analyzed by methods partic-
ular to that structure, for example the paired t-test.
However, matching with multiple controls and full
matching require methods that treat the matched sets
as strata. With these uses in mind, matching func-
tions in optmatch give factor objects as their output,
creating unique identifiers for each matched set and
tagging them as such in the factor. (Strictly speaking,
the value of a call to fullmatch or pairmatch is of
the class c("optmatch", "factor"), but it is safe to

treat it as a factor.) If one in fact has produced a pair
match, then one can recover the paired differences
using the split command:

> pm <- pairmatch(dl)
> attach(nuclear)
> unlist(split(cost[PR],pm[PR])) -

unlist(split(cost[!PR],pm[!PR]))

— the result of which is the vector of differences

0.1 0.2 0.3 ... 1.2 1.3
-9.77 -10.09 184.75 ... -17.77 -4.52

For matched comparisons after full matching or
matching with a varying number of controls, one
uses such commands as

> fm <- fullmatch(dl)
> tapply(cost[PR], fm[PR], mean) -

tapply(cost[!PR], fm[!PR], mean)

to return differences of treatment and control means
by matched set. The sizes of the matched sets, in
terms of treatment units, controls, or both, can be tab-
ulated by

> tapply(PR, fm, sum)
> tapply(!PR, fm, sum)
> tapply(fm,fm,length)

respectively. Unmatched units are automatically
dropped, and split and tapply return matched-set
specific results in a common ordering (that of the lev-
els of the match object, e.g. pm or fm.)

Summary

Optmatch offers a comprehensive implementation of
matching of two groups, such as treatments and con-
trols or cases and controls, including optimal pair
matching, optimal matching with k controls, optimal
matching with a varying number of controls, and full
matching, with and without structural restrictions.
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