Vol. 7/1, April 2007

Viewing Binary Files with the hexView

Package
by Paul Murrell

I really like plain text files.

I like them because I can see exactly what is in
them. I can even easily modify the file if I'm feeling
dangerous. This makes me feel like I understand the
file.

I am not so fond of binary files. I always have to
use specific software to access the contents and that
software only shows me an interpretation of the ba-
sic content of the file. The raw content is hidden from
me.

Sometimes I want to know more about a real bi-
nary file, for example when I need to read data in a
binary format that no existing R function will read.
When things go wrong, like when an R workspace
file becomes “corrupt”, I may have a strong need to
know more.

Hex editors are wonderful tools that provide a
view of the raw contents of a binary (or text) file,
whether just to aid in understanding the file or to in-
spect or recover a file. The hexView package is an
attempt to bring this sort of facility to R.

Viewing raw text files

The viewRaw() function reads and displays the raw
content of a file. The content is displayed in three
columns: the left column provides a byte offset
within the file, the middle column shows the raw
bytes, and the right column displays each byte as an
ASCII character. If the byte does not correspond to
a printable ASCII character then a full stop is dis-
played.

As a simple example, we will look at a plain text
file, "rawTest.txt", that contains a single line of
text. This file was created using the following code
(on a Linux system).

> writeLines("test pattern", "rawTest.txt")

A number of small example files are included as
part of the hexView package and the hexViewFile ()
function is provided to make it convenient to refer
to these files. The readLines() function from the
base package reads in the lines of a plain text file as
a vector of strings, so the plain text content of the file
"rawTest.txt" can be retrieved as follows.

> readLines (hexViewFile("rawTest.txt"))
[1] "test pattern"
The following code uses the viewRaw() function

from hexView to display the raw contents of this file.

R News

> viewRaw(hexViewFile("rawTest.txt"))

0O : 74 65737420 70 61 74 |
8 : T4 65 72 6e Oa |

test pat
tern.

As this example shows, by default, the raw bytes
are printed in hexadecimal format. The first byte
in this file is 74, which is 7 * 16 +4 = 116 in dec-
imal notation—the ASCII code for the character t.
This byte pattern can be seen several times in the file,
wherever there is a t character.

The machine argument to the viewRaw() function
controls how the raw bytes are displayed. It defaults
to "hex" for hexadecimal output, but also accepts the
value "binary", which means that the raw bytes are
printed in binary format, as shown below.

> viewRaw(hexViewFile("rawTest.txt"),
machine="binary")

0 01110100 01100101 01110011 | tes
3 01110100 00100000 01110000 | t p
6 01100001 01110100 01110100 | att
9 01100101 01110010 01101110 | ern
12 00001010

One noteworthy feature of this simple file is the
last byte, which has the hexadecimal value 0Oa (or
00001010 in binary; the decimal value 10) and no
printable ASCII interpretation. This is the ASCII
code for the newline or line feed (LF) special char-
acter that indicates the end of a line in text files. This
is a simple demonstration that even plain text files
have details that are hidden from the user by stan-
dard viewing software; viewers will show text on
separate lines, but do not usually show the “charac-
ter” representing the start of a new line.

The next example provides a more dramatic
demonstration of hidden details in text files. The file
we will look at contains the same text as the previous
example, but was created on a Windows XP system
with Notepad using “Save As...” and selecting “Uni-
code” as the “Encoding”. The readLines () function
just needs the file to be opened with the appropriate
encoding, then it produces the same result as before.

> readLines(
file(hexViewFile("rawTest.unicode"),
encoding="UCS-2LE"))

[1] "test pattern"

However, the raw content of the file is now very dif-
ferent.

> viewRaw(hexViewFile("rawTest.unicode"))

ISSN 1609-3631

Vol. 7/1, April 2007

0 : ff fe 74 00 65 00 73 00 | t.e.s
8 : T4 0020 0070 006100 | t. .p.a
16 : 74 00 74 00 65 00 72 00 | t.t.e.r
24 : 6e 00 04 00 Oa 00 | n.....

It is fairly straightforward to identify some parts of
this file. The ASCII codes from the previous example
are there again, but there is an extra 00 byte after each
one. This reflects the fact that, on Windows, Unicode
text is stored using two bytes per character!.

Instead of the 13 bytes in the original file, we
might expect 26 bytes in this file, but there are actu-
ally 30 bytes. Where did the extra bytes come from?

The first two bytes at the start of the file are a
byte order mark (BOM). With two bytes to store for
each character, there are two possible orderings of
the bytes; for example, the two bytes for the charac-
ter t could be stored as 74 00 (called little endian) or
as 00 74 (big endian). The BOM tells software which
order has been used. Another difference occurs at the
end of the file. The newline character is there again
(with an extra 00), but just before it there is a 0d char-
acter (with an extra 00). This is the carriage return
(CR) character. On Windows, a new line in a text file
is signalled by the combination CR+LF, but on UNIX
a new line is just indicated by a single LE.

As this example makes clear, software sometimes
does a lot of work behind the scenes in order to dis-
play even “plain text”.

Viewing raw binary files
An example of a binary file is the native binary for-
mat used by R to store information via the save ()
function. The following code was used to create the
file "rawTest.bin".
> save(rnorm(50), file="rawTest.bin")

We can view this file with the following code; the
nbytes argument is used to show the raw data for

only the first 80 bytes.

> viewRaw(hexViewFile("rawTest.bin"),

nbytes=80)

0O : 1f 8 08 00 00 00 00 OO |
8 : 000301 cOO013f feb2 | 7.R
16 : 44 58 32 0a 58 0a 00 00 | DX2.X

24 : 00 02 00 02 05 00 00 02 |
32 : 03 00 00 00 04 02 00 00 |
40 : 00 01 00 00 10 09 00 00 |
48 : 00 01 7a 00 00 00 Oe 00 | ..z.....
56 : 00 00 32 3f e7 60 e6 49 | 2701
64 : c6 fe 0d 3f el 3b c5 2f | ...7.;./
72 : bb 4e 18 bf c4 9e Of 1a | .N......

This is a good example of a binary file that is in-
triguing to view, but there is little hope of retriev-
ing any useful information because the data has been
compressed (encoded). In other cases, things are a
not so hopeless, and it is not only possible to view the
raw bytes, but also to see useful patterns and struc-
tures.

The next example looks at a binary file with a
much simpler structure. The file "rawTest . int" only
contains (uncompressed) integer values and was cre-
ated by the following code.

> writeBin(1:50, "rawTest.int", size=4)

This file only contains the integers from 1 to 50,
with four bytes used for each integer. The raw con-
tents are shown below; this time the nbytes argu-
ment has been used to show only the raw data for
the first 10 integers (the first 40 bytes).

> viewRaw(hexViewFile("rawTest.int"),

nbytes=40)
0O : 01 0000000200000 |
8 : 03 0000 0004000000 |
16 : 05 00 00 00 06 00 00 00 |
24 : 07 00 00 00 08 00 00 OO0 |
32 : 09 00 00 00 O0a 00 00 OO |

None of the bytes correspond to printable ASCII
characters in this case, so the right column of out-
put is not terribly interesting. The viewRaw() func-
tion has two arguments, human and size, which con-
trol the way that the raw bytes are interpreted and
displayed. In this case, rather than interpreting each
byte as an ASCII character, it makes sense to interpret
each block of four bytes as an integer. This is done in
the following code using human="int" and size=4.

> viewRaw(hexViewFile("rawTest.int"),
nbytes=40, human="int", size=4)

0 : 01 00 00 00 02 00 00 00 | 1 2
8 : 03 00 00 00 04 00 00 00 | 3 4
16 : 05 00 00 00 06 00 00 00 | 5 6
24 : 07 00 00 00 08 00 00 00 | 7 8
32 : 09 00 00 00 O0a 00 00 00 | 9 10

With this simple binary format, we can see how
the individual integers are being stored. The integer
1 is stored as the four bytes 01 00 00 00, the integer
2 as 02 00 00 00, and so on. This clearly demon-
strates the idea of little endian byte order; the least-
significant byte, the value 1, is stored first. In big en-
dian byte order, the integer 1 would be 00 00 00 01
(as we shall see later).

The other option for interpreting bytes is "real"
which means that each block of size bytes is inter-
preted as a floating-point value. A simple example

1Over-simplification alert! Windows used to use the UCS-2 encoding, which has two bytes per character, but now it uses UTF-16, which
has two or four bytes per character. There are only two bytes per character in this case because these are common english characters.

R News

ISSN 1609-3631

Vol. 7/1, April 2007

is provided by the file "rawTest.real", which was
generated by the following code. I have deliberately
used big endian byte order because it will make it
easier to see the structure in the resulting bytes.

> writeBin(1:50/50, "rawTest.real", size=8,
endian="big")

Here is an example of reading this file and inter-
preting each block of 8 bytes as a floating-point num-
ber. This also demonstrates the use of the width ar-
gument to explicitly control how many bytes are dis-
played per line of output.

> viewRaw(hexViewFile("rawTest.real"),
nbytes=40, human="real", width=8,
endian="big")

O : 3f 94 7a el 47 ae 14 7b | 0.02
8 : 3f a4 7a el 47 ae 14 7b | 0.04
16 : 3f ae b8 51 eb 85 1e b8 | 0.06
24 : 3f b4 Ta el 47 ae 14 7b | 0.08
32 : 3f b9 99 99 99 99 99 9a | 0.10

Again, we are able to see how individual floating-
point values are stored. The following code takes this
a little further and allows us to inspect the bit repre-
sentation of the floating point numbers. The output
is shown in Figure 1.

> viewRaw(hexViewFile("rawTest.real"),
nbytes=40, human="real",
machine="binary", width=8,
endian="big")

The bit representation adheres to the IEEE Stan-
dard for Binary Floating-Point Arithmetic (IEEE,
1985; Wikipedia, 2006). Each value is stored in the
form sign x mantissa x 2°¥P°"¢" The first (left-most)
bit indicates the sign of the number, the next 11 bits
describe the exponent and the remaining 52 bits de-
scribe the mantissa. The mantissa is a binary frac-
tion, with bit i corresponding to 2.

For the first value in "rawTest .real", the first bit
has value 0 indicating a positive number, the expo-
nent bits are 0111111 1001 = 1017, from which we
subtract 1023 to get —6, and the mantissa is an im-
plicit 1 plus0 x 2714+ 1x2724+0x273+0x 274+
0x27°+1x27°.. = 1282 So we have the value
1.28 x 276 = 0.02.

Viewing a Binary File in Blocks

As the examples so far have hopefully demonstrated,
being able to see the raw contents of a file can be a
very good way to teach concepts such as endianness,
character encodings, and floating-point representa-
tions of real numbers. Plus, it is just good fun to poke
around in a file and see what is going on.

In this section, we will look at some more ad-
vanced functions from the hexView package, which
will allow us to take a more detailed look at more
complex binary formats and will allow us to perform
some more practical tasks.

We will start by looking again at R’s native bi-
nary format. The file "rawTest.XDRint" contains
the integers 1 to 50 saved as a binary R object
and was produced using the following code. The
compress=FALSE is important to allow us to see the
structure of the file.

> save(1:50, file="rawTest.XDRint",
compress=FALSE)

We can view (the first 80 bytes of) the raw file us-
ing viewRaw () as before and this does show us some
interesting features. For example, we can see the text
RDX2 at the start of the file (it is common for files to
have identifying markers at the start of the file). If
we look a little harder, we can also see the first few
integers (1 to 9); the data is stored in an XDR format
(Wikipedia, 2006a), which uses big endian byte or-
der, so the integers are in consecutive blocks of four
bytes that look like this: 00 00 00 01, then 00 00 00
02, and so on.

> viewRaw(hexViewFile("rawTest.XDRint"),
width=8, nbytes=80)

0 : 52 44 58 32 0a 58 0a 00 | RDX2.X
8 : 0000 020002040000 |
16 : 02 03 00 00 00 04 02 00 |
24 : 00 00 01 00 00 10 09 00 |
32 : 00 00 01 78 00 00 00 OA | ...x....
40 : 00 00 00 32 00 00 00 O1 | ...2....
48 : 00 00 00 02 00 00 00 03 |
56 : 00 00 00 04 00 00 00 05 |
64 : 00 00 00 06 00 00 00 O7 |
72 : 00 00 00 08 00 00 00 09 |

It is clear that there is some text in the file and that
there are some integers in the file, so neither viewing
the whole file as characters nor viewing the whole
file as integers is satisfactory. What we need to be
able to do is view the text sections as characters and
the integer sections as integers. This is what the func-
tions memFormat (), memBlock (), and friends are for.

The memBlock() function creates a description of
a block of memory, specifying how many bytes are
in the block; the block is interpreted as ASCII char-
acters. The atomicBlock() function creates a de-
scription of a memory block that contains a single
value of a specified type (e.g., a four-byte integer),
and the vectorBlock() function creates a descrip-
tion of a memory block consisting of 1 or more mem-
ory blocks.

A number of standard memory blocks are prede-
fined: integer4 (a four-byte integer) and integerl,

2 At least, as close as it is possible to get to 1.28 with a finite number of bits. Another useful thing about viewing raw values is that it
makes explicit the fact that most decimal values do not have an exact floating-point representation.

R News

ISSN 1609-3631

Vol. 7/1, April 2007 5
0 : 00111111 10010100 01111010 11100001 01000111 10101110 00010100 01111011 | 0.02

8 : 00111111 10100100 01111010 11100001 01000111 10101110 00010100 01111011 | 0.04

16 : 00111111 10101110 10111000 01010001 11101011 10000101 00011110 10111000 | 0.06

24 : 00111111 10110100 01111010 11100001 01000111 10101110 00010100 01111011 | 0.08

32 : 00111111 10111001 10011001 10011001 10011001 10011001 10011001 10011010 | 0.10

Figure 1: The floating point representation of the numbers 0.02 to 0.10 following IEEE 754 in big endian byte

order.

integer2, and integer8; real8 (an eight-byte
floating-point number, or double) and real4; and
ASCIIchar (a single-byte character). There is also
a special ASCIIline memory block for a series of
single-byte characters terminated by a newline.

The memFormat() function collects a num-
ber of memory block descriptions together and
viewFormat () reads the memory blocks and displays
them.

As an example, the following code reads in the
"RDX2" header line of the file "rawTest.XDRint",
treats the next 39 bytes as just raw binary, ignoring
any structure, then reads the first nine integers (as in-
tegers). A new memory block description is needed
for the integers because the XDR format is big endian
(the predefined integer4 is little endian). The names
of the memory blocks within the format are used to
separate the blocks of output.

> XDRint <- atomicBlock("int", endian="big")

> viewFormat (hexViewFile("rawTest.XDRint"),
memFormat (saveFormat=ASCIIline,
rawBlock=memBlock(39),

integers=vectorBlock(XDRint,

9))
========gaveFormat
0O : b2 44 58 32 Oa | RDX2
========rawBlock
5 : 58 0a 00 00 00 02 00 | X......
12 : 02 04 00 00 02 03 00 | ..
19 : 00 00 04 02 00 00 00 | ..
26 : 01 00 00 10 09 00 00 | o
33 : 00 01 78 00 00 00 Od | ..x....
40 : 00 00 00 32 | ...2
========integers
44 : 00 00 00 01 00 00 00 02 | 1 2
52 : 00 00 00 03 00 00O 00O 04 | 3 4
60 : 00 00 00 05 00 00 00 06 | 56
68 : 00 00 00 07 00 00O 0O 08 | 7 8
76 : 00 00 00 09 | 9

The raw 39 bytes can be further broken down—
see the description of R’s native binary format on
pages 11 and 12 of the “R Internals” manual (R De-
velopment Core Team, 2006) that is distributed with
R—but that is beyond the scope of this article.

3There is a readRaw () function too.

R News

Extracting Blocks from a Binary
File

As well as viewing different blocks of a binary
file, we may want to extract the values from each
block. For this purpose, the readFormat () function
is provided to read a binary format, as produced
by memFormat (), and generate a "rawFormat" object
(but not explicitly print it). A "rawFormat" object is
a list with a component "blocks" that is itself a list
of "rawBlock" objects, one for each memory block
defined in the memory format. A "rawBlock" object
contains the raw bytes read from a file.

The blockValue() function extracts the inter-
preted value from a "rawBlock" object. The
blockString() function is provided specifically
for extracting a null-terminated string from a
"rawBlock" object.

The following code reads in the file
"rawTest.XDRint" and just extracts the 50 integer
values.

> XDRfile <-
readFormat (hexViewFile ("rawTest.XDRint"),
memFormat (saveFormat=ASCIIline,
rawBlock=memBlock(39),
integers=vectorBlock (XDRint,
50)))
> blockValue(XDRfile$blocks$integers)

(1] 1+ 2 3 4 5 6 7 8 910 11 12 13
[14] 14 15 16 17 18 19 20 21 22 23 24 25 26
[27] 27 28 29 30 31 32 33 34 35 36 37 38 39
[40] 40 41 42 43 44 45 46 47 48 49 50

A Caution

On a typical 32-bit platform, R uses 4 bytes for rep-
resenting integer values in memory and 8 bytes for
floating-point values. This means that there may be
limits on what sort of values can be interpreted cor-
rectly by hexView.

For example, if a file contains 8-byte integers, it is
possible to view each set of 8 bytes as an integer, but
on my system R can only represent an integer using
4 bytes, so 4 of the bytes are (silently) dropped. The
following code demonstrates this effect by reading

ISSN 1609-3631

Vol. 7/1, April 2007

the file "testRaw.int" and interpreting its contents
as 8-byte integers.

> viewRaw(hexViewFile("rawTest.int"),
nbytes=40, human="int", size=8)

0 : 0100 00 00 02000000 | 1
8 : 03 00 00 00 04 00 00 00 | 3
16 : 05 00 00 00 06 00 00 00 | 5
24 : 07 00 00 00 08 00 00 00 | 7
32 : 09 00 00 00 0a 00 00 OO | 9

An extended example:
Reading EViews Files

On November 18 2006, Dietrich Trenkler sent a mes-
sage to the R-help mailing list asking for a func-
tion to read files in the native binary format used
by Eviews, an econometrics software package (http:
//wwu.eviews.com/). No such function exists, but
John C Frain helpfully pointed out that an unoffi-
cial description of the basic structure of Eviews files
had been made available by Allin Cottrell (creator of
gretl, the Gnu Regression, Econometrics and Time-
series Library). The details of Allin Cottrell’s reverse-
engineering efforts are available on the web (http:
//www.ecn.wfu.edu/"cottrell/eviews_format/).

In this section, we will use the hexView package
to explore an Eviews file and produce a new function
for reading files in this format. The example data file
we will use is from Ramu Ramanathan’s Introduc-
tory Econometrics text (Ramanathan, 2002). The data
consists of four variables measured on single family
homes in University City, San Diego, in 1990:

price: sale price in thousands of dollars.
sqft: square feet of living area.

bedrms: number of bedrooms.

baths: number of bath rooms.

The data are included in both plain text for-
mat, as "data4-1.txt", and Eviews format, as
"datad-1.wf1", as part of the hexViews package.*
For later comparison, the data from the plain text for-
mat are shown below, having been read in with the
read.table() function.

> read.table(hexViewFile("data4-1.txt"),
col.names=c("price", "sqft",

"bedrms", "baths"))

price sqft bedrms baths

1 199.9 1065 3 1.75
2 228.0 1254 3 2.00
3 235.0 1300 3 2.00
4 285.0 1577 4 2.50

5 239.0 1600 3 2.00
6 293.0 1750 4 2.00
7 285.0 1800 4 2.75
8 365.0 1870 4 2.00
9 295.0 1935 4 2.50
10 290.0 1948 4 2.00
11 385.0 2254 4 3.00
12 505.0 2600 3 2.50
13 425.0 2800 4 3.00
14 415.0 3000 4 3.00

An Eviews file begins with a header, starting with
the text “New MicroTSP Workfile” and including im-
portant information about the size of the header and
the number of variables and the number of observa-
tions in the file. The following code defines an ap-
propriate "memFormat" object for this header infor-
mation.

> EViewsHeader <-
memFormat (firstline=memBlock(80),

headersize=integers,
unknown=memBlock (26) ,
numvblesplusone=integer4,
date=vectorBlock(ASCIIchar, 4),
unkown=memBlock(2),
datafreq=integer2,
startperiod=integer2,
startobs=integer4,
unkown=memBlock(8) ,
numobs=integer4)

We can use readFormat () to read this header from
the file as follows. The number of variables reported
is one greater than the actual number of variables
and also includes two “boiler plate” variables that
are always included in Eviews files (hence 7 instead
of the expected 4).

> data4.l.header <-
readFormat (hexViewFile("datad4-1.wf1"),
EViewsHeader)
> data4.l.header

=========firstline
0 : 4e 65 77 20 4d 69 | New Mi
6 : 63 72 6f 54 53 50 | croTSP
12 : 20 57 6f 72 6b 66 | Workf
18 : 69 6c 65 00 00 00 | ile...
24 : d8 be 0Oe 01 00 00 | T
30 : 00 00 00 00 08 00 |
36 : 15 00 00 00 00 00 | I
42 : ff ff ff ff 21 00 | P I
48 : 00 00 00 00 00 00 | I
54 : 00 00 06 00 00 00 |
60 : Of 00 00 00 06 00 | I
66 : 00 00 01 00 01 00 | I
72 : 66 03 00 00 00 0O | f.....
78 : 00 00 |

=========headersize
80 : 90 00 00 00 OO OO 00 00 | 144

=========unknown
88 : 01 00 00 00 01 00 | I

“The original source of the files was: http://ricardo.ecn.wfu.edu/pub/gretl_cdrom/data/

R News

ISSN 1609-3631

http://www.eviews.com/
http://www.eviews.com/
http://www.ecn.wfu.edu/~cottrell/eviews_format/
http://www.ecn.wfu.edu/~cottrell/eviews_format/
http://ricardo.ecn.wfu.edu/pub/gretl_cdrom/data/

Vol. 7/1, April 2007

94 : 00 00 01 00 00 00 |
100 : 00 00 00 00 00 00 [
106 : 00 00 00 00 00 00 |
112 : 00 00 [

=========pumvblesplusone
114 : 07 00 00 00 |7
=========date
d5 b7 0d 3a [
unkown
06 00 |
=========datafreq
124 : 01 00 [1
=========gtartperiod
126 : 00 00 (O]
=========startobs
128 : 01 00 00 00 [1
=========unkown
132 : 00 bd 67 0Oe 01 59 | .1g..Y
138 : 8b 41 | .A
=========pumobs
140 : Oe 00 00 00 | 14

We can extract some pieces of information from
this header and use them to look at later parts of the
file.

> headerSize <-
blockValue(
data4.1.header$blocks$headersize)
> numQObs <-
blockValue(
data4.1.header$blocks$numobs)

At a location 26 bytes beyond the header size,
there are several blocks describing each variable in
the Eviews file. Each of these blocks is 70 bytes long
and contains information on the variable name and
the location within the file where the data values re-
side for that variable. The following code creates a
description of a block containing variable informa-
tion, then uses readFormat () to read the information
for the first variable (the number of bath rooms); the
offset argument is used to start reading the block
at the appropriate location within the file. We also
extract the location of the data for this variable.

> EViewsVblelInfo <-
memFormat (unknown=memBlock(6) ,
recsize=integer4,
memsize=integer4,
ptrtodata=integer8,
vblename=vectorBlock (ASCIIchar,
32),
ptrtohistory=integers,
vbletype=integer2,
unknown=memBlock (6))
> datad.1.vinfo <-
readFormat (hexViewFile("data4-1.wf1"),
EViewsVblelInfo,
offset=headerSize + 26)
> datad4.1l.vinfo

=========unknown

170 : 00 00 00 OO Ob OO |
=========recsize

176 : 86 00 00 00 | 134

=========memsize

180 : 70 00 00 00 | 112
=========ptrtodata

184 : £6 03 00 00 00 00 00 00 | 1014
=========yblename

192 : 42 41 54 48 53 00 00 00 00 00 | BATHS.....
202 : 00 00 00 00 00 00 00 00 00 00 |
212 : 00 00 00 00 00 00 00 00 00 00 |
222 : 00 00 |
=========ptrtohistory

224 : 00 00 00 00 d5 b7 0d 3a | o
=========ybletype

232 : 2c 00 | 44
=========unknown

234 : 60 02 10 00 01 00 | I

> firstVbleLoc <-
blockValue(data4.1l.vinfo$blocks$ptrtodata)

The data for each variable is stored in a block
containing some preliminary information followed
by the data values stored as eight-byte floating-point
numbers. The code below creates a description of a
block of variable data and then reads the data block
for the first variable.

> EViewsVbleData <- function(numObs) {
memFormat (numobs=integer4,
startobs=integer4,
unknown=memBlock(8),
endobs=integer4,
unknown=memBlock(2) ,
values=vectorBlock(real8,
num0Obs))
}
> viewFormat (hexViewFile("data4-1.wf1"),
EViewsVbleData(numObs),
offset=firstVbleLoc)

=========numobs
1014 : 0Oe 00 00 00 | 14
=========startobs
1018 : 01 00 00 00 |1
=========unknown
1022 : 00 00 OO OO OOOO | ...,
1028 : 00 00 |
=========endobs
1030 : 0Oe 00 00 00 | 14

unknown

00 00 |
=========values
1036 : 00 00 00 00 00 00 fc 3f | 1.75
1044 : 00 00 00 00 00 00 00 40 | 2.00
1052 : 00 00 00 00 00 00 00 40 | 2.00
1060 : 00 00 00 00 00 00 04 40 | 2.50
1068 : 00 00 00 00 00 00 00 40 | 2.00
1076 : 00 00 00 00 00 00 00 40 | 2.00
1084 : 00 00 00 00 00 00 06 40 | 2.75
1092 : 00 00 00 00 00 00 00 40 | 2.00
1100 : 00 00 00 00 00 00 04 40 | 2.50
1108 : 00 00 00 00 00 00 00 40 | 2.00
1116 : 00 00 00 00 00 00 08 40 | 3.00
1124 : 00 00 00 00 00 00 04 40 | 2.50
1132 : 00 00 00 00 00 00 08 40 | 3.00
1140 : 00 00 00 00 00 00 08 40 | 3.00

This manual process of exploring the file struc-
ture can easily be automated within a function. The
hexView package includes such a function under the

ISSN 1609-3631

Vol. 7/1, April 2007

name readEViews (). With this function, we can read
in the data set from the Eviews file as follows.

> readEViews (hexViewFile("data4-1.wf1"))

Skipping boilerplate variable
Skipping boilerplate variable
BATHS BEDRMS PRICE SQFT

1 1.75 3 199.9 1065
2 2.00 3 228.0 1254
3 2.00 3 235.0 1300
4 2.50 4 285.0 1577
5 2.00 3 239.0 1600
6 2.00 4 293.0 1750
7 2.75 4 285.0 1800
8 2.00 4 365.0 1870
9 2.50 4 295.0 1935
10 2.00 4 290.0 1948
11 3.00 4 385.0 2254
12 2.50 3 505.0 2600
13 3.00 4 425.0 2800
14 3.00 4 415.0 3000

This solution is not the most efficient way to read
Eviews files, but the hexView package does make it
easy to gradually build up a solution, it makes it easy
to view the results, and it does provide a way to solve
the problem without having to resort to C code.

Summary

The hexView package provides functions for view-
ing the raw byte contents of files. This is useful for
exploring a file structure and for demonstrating how
information is stored on a computer. More advanced
functions make it possible to read quite complex bi-
nary formats using only R code.

Acknowledgements

At the heart of the hexView package is the
readBin() function and the core facilities for work-

ing with "raw" binary objects in R code (e.g.,
rawToChar ()); thanks to the R-core member(s) who
were responsible for developing those features.

I would also like to thank the anonymous re-
viewer for useful comments on early drafts of this
article.

Bibliography

IEEE Standard 754 for Binary Floating-Point Arithmetic.
IEEE computer society, 1985. 4

R Development Core Team. R Internals. R Foun-
dation for Statistical Computing, Vienna, Austria,
2006. URL http://www.R-project.org. ISBN 3-
900051-14-3. 5

R. Ramanathan. INTRODUCTORY ECONOMET-
RICS WITH APPLICATIONS. Harcourt College, 5
edition, 2002. ISBN 0-03-034342-9. 6

Wikipedia.
wikipedia, the free encyclopedia, 2006a.
http://en.wikipedia.org/w/index.php?
title=External_Data_Representation&oldid=
91734878. [Online; accessed 3-December-2006]. 4

External data representation —
URL

Wikipedia. IEEE floating-point standard —
wikipedia, the free encyclopedia, 2006b. URL
http://en.wikipedia.org/w/index.php?
title=IEEE_floating-point_standard&oldid=
89734307. [Online; accessed 3-December-2006]. 4

Paul Murrell

Department of Statistics

The University of Auckland
New Zealand
paul@stat.auckland.ac.nz

FlexMix: An R Package for Finite Mixture

Modelling

by Bettina Griin and Friedrich Leisch

Introduction

Finite mixture models are a popular method for
modelling unobserved heterogeneity or for approx-
imating general distribution functions. They are ap-
plied in a lot of different areas such as astronomy, bi-
ology, medicine or marketing. An overview on these

R News

models with many examples for applications is given
in the recent monographs McLachlan and Peel (2000)
and Frithwirth-Schnatter (2006).

Due to this popularity there exist many (stand-
alone) software packages for finite mixture mod-
elling (see McLachlan and Peel, 2000; Wedel and Ka-
makura, 2001). Furthermore, there are several dif-
ferent R packages for fitting finite mixture models
available on CRAN. Packages which use the EM algo-

ISSN 1609-3631

http://www.R-project.org
http://en.wikipedia.org/w/index.php?title=External_Data_Representation&oldid=91734878
http://en.wikipedia.org/w/index.php?title=External_Data_Representation&oldid=91734878
http://en.wikipedia.org/w/index.php?title=External_Data_Representation&oldid=91734878
http://en.wikipedia.org/w/index.php?title=IEEE_floating-point_standard&oldid=89734307
http://en.wikipedia.org/w/index.php?title=IEEE_floating-point_standard&oldid=89734307
http://en.wikipedia.org/w/index.php?title=IEEE_floating-point_standard&oldid=89734307
mailto:paul@stat.auckland.ac.nz

