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Another example can be found in the package
lspls, which is available on CRAN. lspls uses ordi-
nary least squares regression and PLSR to fit a re-
sponse to a sequence of matrices (Jørgensen et al.,
2005).
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Some Applications of Model-Based
Clustering in Chemistry
by Chris Fraley and Adrian E. Raftery

Interest in clustering has experienced a recent surge
due to the emergence of new areas of application.
Prominent among these is the analysis of images re-
sulting from new technologies involving chemical
processes, such as microarray or proteomics data,
and contrast-enhanced medical imaging. Cluster-
ing is applied to the image data to produce segmen-
tations that are appropriately interpretable. Other
applications include minefield detection (Dasgupta
and Raftery 1998; Stanford and Raftery 2000), finding
flaws in textiles (Campbell et al. 1997; 1999), group-
ing coexpressed genes (Yeung et al. 2001), in vivo
MRI of patients with brain tumors (Wehrens et al.
2002), and statistical process control (Thissen et al.
2005).

The use of clustering methods based on proba-
bility models rather than heuristic procedures is be-
coming increasingly common due to recent advances
in methods and software for model-based cluster-
ing, and the fact that the results are more easily in-
tepretable. Finite mixture models (McLachlan and
Peel, 2000), in which each component probability
corresponds to a cluster, provide a principled statis-
tical approach to clustering. Models that differ in the

number of components and/or component distribu-
tions can be compared using statistical criteria. The
clustering process estimates a model for the data that
allows for overlapping clusters, as well as a proba-
bilistic clustering that quantifies the uncertainty of
observations belonging to components of the mix-
ture.

The R package mclust (Fraley and Raftery 1999,
2003) implements clustering based on normal mix-
ture models. The main clustering functionality is
provided by the function EMclust, together with its
associated summary and plot methods. Users can
specify various parameterizations of the variance or
covariance of the normal mixture model, includ-
ing spherical and diagonal models in the multivari-
ate case, along with the desired numbers of mix-
ture components to consider. The mixture parame-
ters are estimated via the EM algorithm (Dempster
et al. 1977; McLachlan and Krishnan 1997), initialized
by model-based hierarchical clustering (Banfield and
Raftery 1993; Fraley 1998). The best model is selected
according to the Bayesian Information Criterion or
BIC (Schwarz 1978), a criterion that adds a penalty to
the loglikelihood that increases with the number of
parameters in the model.

In this article, we discuss an application of model-
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based clustering to diabetes diagnosis from glucose
and insulin levels in blood plasma. We also discuss
two applications in image segmentation. In the first,
model-based clustering is used to give an initial seg-
mentation of microarray images for signal extraction.
In the second, model-based clustering is used to seg-
ment a dynamic breast MR image to reveal possible
tumors.

Model-based Clustering

In model-based clustering, the data x are viewed as
coming from a mixture density f (x) = ∑G

k=1 τk fk(x),
where fk is the probability density function of the ob-
servations in group k, and τk is the probability that an
observation comes from the kth mixture component
(0 < τk < 1 for all k = 1, . . . , G and ∑k τk = 1).

Each component is usually modeled by the nor-
mal or Gaussian distribution. In the univariate case,
component distributions are characterized by the
mean µk and the variance σ2

k , and have the proba-
bility density function

φ(xi ; µk,σ2
k ) =

1√
(2πσ2

k )
exp

{
− (xi −µk)2

2σ2
k

}
. (1)

In the multivariate case, component distributions are
characterized by the mean µk and the covariance ma-
trix Σk, and have the probability density function

φ(xi ; µk, Σk) =
exp{− 1

2 (xi −µk)TΣ−1
k (xi −µk)}√

det(2πΣk)
.

(2)
The likelihood for data consisting of n observations
assuming a Gaussian mixture model with G multi-
variate mixture components is

n

∏
i=1

G

∑
k=1

τkφ(xi ; µk, Σk). (3)

For reviews of model-based clustering, see McLach-
lan and Peel (2000) and Fraley and Raftery (2002).

For a fixed number of components G, the model
parameters τk, µk, and Σk can be estimated using
the EM algorithm initialized by hierarchical model-
based clustering (Dasgupta and Raftery 1998; Fra-
ley and Raftery 1998). Data generated by mixtures
of multivariate normal densities are characterized by
groups or clusters centered at the means µk, with
increased density for points nearer the mean. The
corresponding surfaces of constant density are ellip-
soidal.

Geometric features (shape, volume, orientation)
of the clusters are determined by the covariances Σk,
which may also be parametrized to impose cross-
cluster constraints. There are a number of possible
parameterizations of Σk, many of which are imple-
mented in mclust. Common instances include Σk =

λI, where all clusters are spherical and of the same
size; Σk = Σ constant across clusters, where all clus-
ters have the same geometry but need not be spheri-
cal; and unrestricted Σk, where each cluster may have
a different geometry.

Banfield and Raftery (1993) proposed a general
framework for geometric cross-cluster constraints in
multivariate normal mixtures by parametrizing co-
variance matrices through eigenvalue decomposi-
tion in the following form:

Σk = λkDk AkDT
k , (4)

where Dk is the orthogonal matrix of eigenvectors,
Ak is a diagonal matrix whose elements are propor-
tional to the eigenvalues, and λk is an associated con-
stant of proportionality. Their idea was to treat λk, Ak
and Dk as independent sets of parameters, and either
constrain them to be the same for each cluster or al-
low them to vary among clusters. When parameters
are fixed, clusters will share certain geometric prop-
erties: Dk governs the orientation of the kth compo-
nent of the mixture, Ak its shape, and λk its volume,
which is proportional to λd

k det(Ak). The model op-
tions available in mclust are summarized in Table 1.

A ‘best’ model for the data can be estimated by fit-
ting models with differing parameterizations and/or
numbers of clusters to the data by maximum like-
lihood, and then applying a statistical criterion for
model selection. The Bayesian Information Criterion
or BIC (Schwarz 1978) is the model selection criterion
provided in the mclust software; the ‘best’ model is
taken to be the one with the highest BIC value.

Example 1: Diabetes Diagnosis
from Glucose and Insulin Levels

We first illustrate the use of mclust on the diabetes
dataset (Reaven and Miller 1979) giving three mea-
surements for each of 145 subjects:

glucose - plasma glucose response
to oral glucose

insulin - plasma insullin response
to oral glucose

sspg - steady-state plasma glucose
(measures insulin resistance)

This dataset is included in the mclust package. The
subjects were clinically diagnosed into three groups:
normal, chemically diabetic, and overtly diabetic.
The diagnosis is given in the first column of the
diabetes dataset, which is excluded from the clus-
ter analysis.

The following code computes the BIC curves us-
ing the function EMclust and then plots them (see
Figure 1, upper left):

> data(diabetes)
> diBIC <- EMclust(diabetes[,-1])
> plot(diBIC)
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Table 1: Parameterizations of the multivariate Gaussian mixture model available in mclust. In the column
labeled ‘# covariance parameters’, d denotes the dimension of the data, and G denotes the number of mixture
components. The total number of parameters for each model can be obtained by adding Gd parameters for the
means and G− 1 parameters for the mixing proportions.

identifier Model # covariance parameters Distribution Volume Shape Orientation
EII λI 1 Spherical = = NA
VII λk I G Spherical = NA
EEI λA d Diagonal = = axes
VEI λk A G + (d-1) Diagonal = axes
EVI λAk 1 + G(d-1) Diagonal = axes
VVI λk Ak Gd Diagonal axes
EEE λDADT d(d+1)/2 Ellipsoidal = = =
EEV λDk ADT

k 1 + (d-1) + G[d(d-1)/2] Ellipsoidal = =
VEV λkDk ADT

k G + (d-1) + G[d(d-1)/2] Ellipsoidal =
VVV λkDk AkDT

k G[d(d+1)/2] Ellipsoidal

EII VII EEI VEI EVI VVI EEE EEV VEV VVV
"A" "B" "C" "D" "E" "F" "G" "H" "I" "J"

The model parameters can then be extracted via
the summary function, and results can be plotted us-
ing the function coordProj as follows:

> diS <- summary(diBIC,diabetes[,-1])
> coordProj(diabetes[,-1], dimens=c(2,3),

mu=diS$mu, sigma=diS$sigma,
type="classification",

classification=diS$classification)

The summary object diS contains the parameters and
classification for the best (highest BIC) model. The
function coordProj can be used to plot the data and
mclust classification, marking the means and draw-
ing ellipses (with axes) corresponding to the variance
for each group (see Figure 1, lower left).

For this data, model-based clustering chooses a
model with three components, each having a differ-
ent covariance. Moreover, the corresponding three-
group classification matches the three clinically di-
agnosed groups with 88% accuracy.

The uncertainty of a classification can also be
assessed in model-based clustering. The function
uncerPlot can be used to display the uncertainty of
misclassified objects when there is a known classifi-
cation for comparison. More generally, the function
coordProj can be used to display the relative uncer-
tainty of a classification:

> uncerPlot(diS$z,diabetes[,1])
> coordProj(diabetes[,-1], dimens=c(2,3),

mu=diS$mu, sigma=diS$sigma,
type="uncertainty",

uncertainty=diS$uncertainty)

The resulting plots are shown in Figure 1, upper right
and lower right. In this case, the misclassified data
points tend to be among the most uncertain.

Example 2: Microarray Image Seg-
mentation

Microarray technology is now a widely-used tool in
a number of large-scale assays. While many array
platforms exist, a common method for making DNA
arrays consists of printing the single-stranded DNA
representing the genes on a solid substrate using a
robotic spotting device. In the two-color array, the
cDNA extracted from the experimental and control
samples are first labelled using the Cy3 (green) and
Cy5 (red) fluorescent dyes. Then they are mixed
and hybridized with the arrayed DNA spots. After
hybridization, the arrays are scanned at the corre-
sponding wavelengths separately to obtain the im-
ages corresponding to the two channels. The fluores-
cence measurements are used to determine the rela-
tive abundance of the mRNA or DNA in the samples.

The quantification of the amount of fluorescence
from the hybridized sample can be affected by a vari-
ety of defects that occur during both the manufactur-
ing and processing of the arrays, such as perturba-
tions of spot positions, irregular spot shapes, holes
in spots, unequal distribution of DNA probe within
spots, variable background, and artifacts such as
dust and precipitates. Ideally these events should be
automatically recognized in the image analysis, and
the estimated intensities adjusted to take account of
them.

Li et al. (2005) proposed a robust model-based
method for processing microarray images so as to
estimate foreground and background intensities. It
starts with an automatic gridding algorithm that
uses a sliding window to find the peaks and valleys.
Then model-based clustering is applied to the (uni-
variate) sum of the intensities of the two channels
measuring the red and green signals to provide an
initial segmentation. Based on known information
about the data, it is assumed there can be no more
than three groups in the model (background, fore-
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Figure 1: Upper left: BIC computed by EMclust for the 10 available model parameterizations and up to 9 clusters for the
diabetes dataset. Different letters encode different model parameterizations, as output from the plot method. The ‘best’
model is taken to be the one with the highest BIC among the fitted models. Lower left: A projection of the diabetes data,
with different symbols indicating the classification corresponding to the best model as computed by EMclust. The compo-
nent means are marked and ellipses with axes are drawn corresponding to their covariances. In this case there are three
components, each with a different covariance. Upper right: Uncertainty of the classification of each observation in the best
model. Observations are ordered by increasing uncertainty along the horizontal axis. Vertical lines indicate misclassified
observations, which in this case tend to be among the most uncertain. Lower right: A projection of the diabetes data
showing classfication uncertainty. Larger symbols indicate the more uncertain observations.

ground, uncertain). If there is more than one group,
connected components below a certain threshold in
size are removed (designated as unknown) from the
brightest group as a precaution against artifacts. The
procedure is depicted in Figure 2.

An implementation is available in Bioconductor
(see http://www.bioconductor.org). The package is
called spotSegmentation, and consists of two basic
functions:

spotgrid: determines spot locations in blocks
within microarray slides

spotseg: determines foreground and background
signals within individual spots

1. Automatic gridding.

2. Model-based clustering for ≤ 3 groups.

3. Threshold connected components.

4. Foreground / background determination:

• If there is more than one group, the fore-
ground is taken to be the group of high-
est mean intensity and the background the
group of lowest mean intensity.

• If there is only one group, it is assumed
that no foreground signal is detected.

Figure 2: Basic Procedure for Model-based Segmentation
of Microarray Blocks.
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These functions will be illustrated on the
spotSegTest dataset supplied with the package,
which consists of a portion of the first block from
the first microarray slide image from van’t Wout et
al. (2003). This data set is a data frame, with two
columns, one from each of the two channels of ab-
sorption intensities. The spotSegTest dataset can be
obtained via the data command once the spotSeg-
mentation package is installed.

> data(spotSegTest)

Because the data are encoded for compact stor-
age, they need to be transformed as follows in order
to extract the intensities:

> dataTrans <- function(x)
(256*256-1-x)^2*4.71542407E-05

> chan1 <- matrix(dataTrans(spotSegTest[,1]),
144, 199)

> chan2 <- matrix(dataTrans(spotSegTest[,2]),
144, 199)

Note that this transformation is specific to this data;
in general stored image data must be converted as
needed to image intensities. The function spotgrid
can be used to divide the microarray image block
into a grid separating the individual spots.

> Grid <- spotgrid( chan1, chan2, rows = 4,
cols = 6, show = FALSE)

> Grid
$rowcut
[1] 17 50 77 104 139

$colcut
[1] 12 41 66 94 123 151 183

Here we have used the knowlege that there are 4
rows and 6 columns in this subset of spots from the
microarray image. The show option allows display of
the gridded image.
The individual spots can now be segmented using
the function spotseg, which does model-based clus-
tering for up to 3 groups via mclust followed by a
connected component analysis. The following seg-
ments all spots in the block:

Seg <- spotseg( chan1, chan2,
Grid$rowcut, Grid$colcut)

plot(Seg)

The corresponding plot is shown in Figure 3.

Example 3: Dynamic MRI Segmen-
tation

Dynamic contrast-enhanced magnetic resonance
imaging (MRI) is emerging as a powerful tool for the
diagnosis of breast abnormalities (e.g. Hylton 2005).
Because of the high reactivity of breast carcinomas

after gadolinium injection, this technology has the
potential to allow differentiation between malignant
and benign tissues. Its unique ability to provide mor-
phological and functional information can be used
to assist in the differential diagnosis of lesions that
other methods find questionable. It is currently used
as a complementary diagnostic modality in breast
imaging. However, data acquistion, postprocessing,
image analysis and interpretation of dynamic breast
MRI are still active areas of research. Forbes et al.
(2006) developed a region of interest (ROI) selection
method that combines model-based clustering with
Bayesian morphology (Forbes and Raftery 1999), to
produce a classification of the data for potential use
in diagnosis.

Each dynamic MR image consists of 25 sequential
images recording signal intensity after gadolinium
injection. Instead of working directly with the image
data, they are summarized in terms of five derived
variables considered to be of significance in cancer
diagnosis:

• Time to peak: the time at which the signal
peaks.

• Difference at peak: absolute increase of inten-
sity between the beginning of the signal and
the time at which the signal peaks.

• Enhancement slope: in units of intensity/time.

• Maximum step: maximum change between
two adjacent dynamic samples.

• Washout slope: in units of intensity/time.

Model-based classification for up to four groups is
then applied to this data to segment the image. The
choice of four groups is based on knowledge about
the data: the main distinguishable components in
breast tissue are blood vessels, air, fat, and possi-
bly lesions or tumors. Figure 4 gives an example of
model-based clustering applied to multivariate data
derived as decribed above from dynamic contrast-
enhanced breast MRI. Further steps using Bayesian
morphology may then be applied to smooth the re-
sulting image.

Summary

The contributed R package mclust implements pa-
rameter estimation for normal mixture models with
and without constraints, with higher-level functions
for model-based clustering and discriminant analy-
sis. It includes functions for displaying the fitted
models and clustered data.

The Bioconductor package spotSegmentation
uses mclust to determine foreground and back-
ground of spots in microarray images.
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Figure 3: Left: The sum of channel signals from a portion of a microarray block containing HIV data, with the grid pro-
duced by spotgrid superimposed. Right: the corresponding segmented spots produced by spotseg, based on the grid
produced by spotgrid. The color scheme is as follows: black denotes the spots, yellow denotes background, gray denotes
pixels of uncertain classification.

Figure 4: Reference image (left) and four-class mclust classification (right). The tumor area is shown in red, with the colors
assigned automatically according to the size of the mean difference at peak for pixels within each cluster.
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Model-based clustering can be used successfully
in a variety of technologies involving chemical pro-
cesses, including image segmentation for cDNA mi-
croarrays and dynamic contrast-enhanced MR.
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