
Vol. 6/2, May 2006 41

J. Terwilliger and J. Ott. Handbook of Human Genetic
Linkage. The Johns Hopkins University Press, Bal-
timore, 2001.

Jing Hua Zhao
MRC Epidemiology Unit
jinghua.zhao@mrc-epid.ac.uk

Non-Standard Fonts in PostScript and PDF
Graphics
by Paul Murrell and Brian Ripley

Introduction

By default, all of the text produced by R graphics de-
vices uses a sans-serif font family (e.g., Helvetica),
and in a PostScript or PDF plot only text in West-
ern European languages has been handled until re-
cently. This article describes several ways in which
the range of font families has been extended for R
2.3.0.

It has been possible to change the overall font
family that is used to draw text within a plot (Mur-
rell, 2004), but the choice of font family for PDF and
PostScript devices was largely restricted to the set of
Adobe Core 14 fonts—Helvetica (4 faces), Times (4
faces), Courier (4 faces), Symbol, and ZapfDingbats
(see Table 1). As from R 2.3.0 much more choice is
available.

The examples in this article are written follow-
ing the conventions needed for a modern Unix-alike
operating system such as Linux, but will work with
minor changes (for example to the locale names) on
most other R platforms including Windows.

A little terminology will be helpful. A charac-
ter is an abstract concept, and a glyph is a visual
representation of a character. Characters can have
more than one representation, for example crossed
and uncrossed sevens, and the variants on Greek let-
ters much loved by mathematicians (see ?plotmath).
This matters as East Asian languages may write the
same character in different ways.1

Minor conveniences

The default font family on a PDF or PostScript device
can be controlled using the family argument. For ex-
ample, the expression pdf(family="Times") opens a
PDF device with the default font family set to Times
(a serif font). This is the simplest way to select a font
family, if the same font (possibly in different faces,
e.g. bold) is to be used for all of the text in a plot.

Prior to R 2.3.0, only a fixed set of font families
could be specified via the family argument (mostly

related to the Adobe Core 14 fonts), but it is now pos-
sible to specify any valid font family as the default.
For example, the expression pdf(family="mono")
opens a PDF device with the default font family set
to be a mono-spaced font (by default Courier on PDF
and PostScript devices).

The section on “Font databases” later in this arti-
cle will clarify what constitutes a “valid” font family.

Changing font family in-line

While it has been possible for some time to be able
to change the font family within a plot (e.g., have the
title in Times and the remaining labels in Helvetica),
in the traditional graphics system, this change could
only be made via the par() function.

It is now also possible to specify the family ar-
gument in low-level traditional graphics functions.
For example, if the default font family was sans-serif,
adding a label to a plot with a serif font used to re-
quire code of the form . . .

> op <- par(family="serif")
> text("A label")
> par(op) # restore the setting

. . . but now the same thing can be achieved by the
following code.

> text("A label", family="serif")

Interationalization

As Martin Maechler likes to say, R has ‘for ever’
supported ISO Latin 1, the character set of the ma-
jor2 Western European languages. Further interna-
tionalization features were introduced into R in ver-
sion 2.1.0 (Ripley, 2005), which allowed users in non-
Western-European locales to use variable names and
produce output in their native language.

There was good support for graphical devices on
Windows, and as from R 2.3.0 on NT-based versions
of Windows it is even possible to change to another
language and output in that language.

The support for the X11() graphics device was as
good as the X server could provide, often limited by

1http://en.wikipedia.org/wiki/Han_unification
2The definition is rather circular, as those are the languages written in Latin-1. Icelandic is the most prominent exception.

R News ISSN 1609-3631

mailto:jinghua.zhao@mrc-epid.ac.uk
http://en.wikipedia.org/wiki/Han_unification

Vol. 6/2, May 2006 42

Table 1: Predefined font families for the PDF and PostScript devices which cover most of the Adobe Core 14
fonts. The Adobe Core fonts are usually available with Adobe (Acrobat) Reader and in PostScript printers and
viewers. The ZapfDingbats font is always included in PDF files produced by R, being used to draw small
circles.

"Helvetica" "Times" "Courier"
Helvetica Times Courier
Helvetica-Bold Times-Bold Courier-Bold
Helvetica-Oblique Times-Italic Courier-Oblique
Helvetica-BoldOblique Times-BoldItalic Courier-BoldOblique
Symbol Symbol Symbol

the availability of glyphs unless extras fonts were in-
stalled and are selected.

These features did not at first include graphical
output on PDF or PostScript devices, but this has
been much improved in R 2.3.0, with support for
many Eastern European and Asian locales.

European and Cyrillic fonts

R now automatically selects an appropriate encod-
ing for PDF and PostScript output based on your lo-
cale. In multi-byte locales such as those using UTF-
8, an appropriate single-byte encoding is chosen, so
now the PDF and PostScript devices allow encodings
other than ISO Latin 1.

For example, consider the character ń, which is
needed in a Polish locale to write ‘hello’. This char-
acter is part of the ISO Latin 2 character set. For
demonstration purposes, we will temporarily switch
to a Polish locale using the following call:

> Sys.setlocale(category="LC_CTYPE",
locale="pl_PL.utf8")

Now when we start a PDF or PostScript device, it au-
tomatically selects an ISO Latin 2 encoding so that the
appropriate characters are available.

To show an example for users who do not have a
Polish keyboard, we will use an explicit Unicode es-
cape sequence to enter the character we want. This
will only work in UTF-8 locales in R 2.3.0.3

> library(grid)

> pdf("polish.pdf", width=3, height=0.8)
> grid.text(" Dzie\u0144 dobry

is 'hello' in Polish ")
> dev.off()

 Dzień dobry
 is ’hello’ in Polish

On systems without access to UTF-8 locales, we
can achieve the same thing by switching to a Latin-2
locale: a Windows4 user could write

> Sys.setlocale(category="LC_CTYPE",
locale="polish")

> grid.text(" Dzie\xf1 dobry
is 'hello' in Polish ")

It is still possible to explicitly specify an encoding
when starting the pdf device if the automated selec-
tion is not correct on your platform.

This process ought to work well whenever the
language you want can be written in a single-byte
locale: this includes all the Western and Eastern
European, Cyrillic and Greek languages written in
ISO 8859-1 (Western), -2 (Eastern), -5 (Cyrillic), -7
(Greek), -13 (Baltic rim), 15 (Western with Euro) and
KOI8-R, KOI8-U and the equivalent Microsoft code-
pages.

Installed fonts

By specifying the correct encoding you can create
a PDF or PostScript file that contains the correct de-
scription of the characters you want, but if you actu-
ally want to view or print that text, you also need
to have an appropriate font installed on your system
that contains the relevant characters.

In the above example we were fortunate because
the default Helvetica font does include the glyph ń.
In general, you may have to specify an appropriate
font (and ensure that it is installed on your system!).
The section “Font databases” will describe the issue
of specifying new fonts in detail.

Even if the glyph is known to R, it may not be
known to your viewer. For example, to view non-
Western European languages with Adobe Reader
you may need to install a Central European font
pack.5

A word of warning: the Adobe Core fonts are
often replaced by clones. This happens both in

3Unicode escape sequences will work in all locales in R 2.3.1 on platforms which support multi-byte character sets.
4NT4, 2000 or later, or (untested) a Polish-language version of 95/98/ME.
5http://www.adobe.com/products/acrobat/acrrasianfontpack.html

R News ISSN 1609-3631

http://www.adobe.com/products/acrobat/acrrasianfontpack.html

Vol. 6/2, May 2006 43

PostScript viewers (ghostscript uses the equivalent
URW fonts) and PDF viewers (recent versions of
Adobe Reader use multiple-master fonts) as well as
in some printers. So it can be hard to tell if you
have exceeded the set of glyphs that can reasonably
be assumed to be always available. If you use any-
thing beyond ISO Latin 1, it is safest to embed the
fonts (see below). However, for local use where up-
to-date URW fonts can be assumed the coverage is
much wider including Eastern European and Cyril-
lic glyphs.

CJK fonts

Some support has also been added for locales with
very large character sets, such as the Chinese,
Japanese, and Korean (CJK) ideographic languages.
On PDF and PostScript devices, it is now possible to
select from a small set of font families covering many
of the glyphs used in writing those languages.

There are tens of thousands of (originally) Chi-
nese characters which are common to Chinese
(where they are called hanzi), Japanese (kanji), and
Korean (hanja). However, different glyphs may be
used, for example in Simplified Chinese (used in
most of PR China and in Singapore) and Traditional
Chinese (used in Taiwan and some of PR China).

For example, the following code selects one of the
CJK font families to display ‘hello’ in (Traditional)
Chinese.

> pdf("chinese.pdf", width=3, height=1)
> grid.text("\u4F60\u597D", y=2/3,

gp=gpar(fontfamily="CNS1"))
> grid.text(

"is 'hello' in (Traditional) Chinese",
y=1/3)

> dev.off()

is 'hello' in (Traditional) Chinese

Note that we select the CJK font family only to dis-
play Chinese: although these font families can dis-
play English, they do so poorly. You should switch
back to a more standard font such as Helvetica for
producing Latin characters.

The appropriate CJK fonts include non-Chinese
glyphs, for example Hiragana and Katakana for use
in Japanese and Hangul for use in Korean.

Again, R does not check whether the fonts are
properly installed on your system. For example,
in order to view the file chinese.pdf with Adobe
Reader, you will have to download the Traditional
Chinese font pack.6

The CJK font families available in R have been
chosen because they are widely (or freely) available
for common print or viewing technology. Table 2 lists
the font families and where they can be obtained.

The CJK fonts can be used in mathematical for-
mulas (see ?plotmath), but the metric information
on the sizes of characters is not as good as for Type 1
fonts, so the result may not be aesthetically pleasing.

Note that in this example we did not need to se-
lect an appropriate UTF-8 locale. It will in fact work
in any UTF-8 locale, and also in the older multi-byte
locales used on Unix-alikes (such as EUC-JP) and in
the double-byte locales used on Windows for the CJK
languages.

Font databases

In the previous two sections we mentioned that, in
addition to having the correct encoding, you may
also have to specify an appropriate font in order to
get all of the characters that you need. Here is an
example where that becomes necessary: we want to
write ‘hello’ in Russian and the Cyrillic characters
are not included in Helvetica; so we need to specify
a font that does contain Cyrillic characters. (A sim-
pler workaround would be to use the URWHelvetica
family which does since 2002 include Cyrillic glyphs,
but the versions installed with ghostscript on Win-
dows are from 2000. So we need to illustrate a more
general procedure.)

Again, we will pretend to be Russian temporarily
by setting the locale for the R session:

> Sys.setlocale(category="LC_CTYPE",
locale="ru_RU.utf8")

Now the single-byte encoding is automatically set to
ISO Latin 5, but we must also specify a font that con-
tains Cyrillic characters. We will generate a new one
using the function Type1Font() and specifying the
font name and a path to metric (.afm) files for the
font.

The font used in this example is from the PSCyr
font pack7. For this demonstration, the files have
only been downloaded to a local directory (not for-
mally installed) to keep the path manageable8. The
following command creates a Type 1 font object.

6http://www.adobe.com/products/acrobat/acrrasianfontpack.html
7ftp://ftp.vsu.ru/pub/tex/font-packs/pscyr
8The location of the installed .afm files will vary depending on your system. Most of the fonts used in this article are from TEX packages,

so on a Linux system they might reside in /usr/share/texmf/fonts/afm/public/<fontpackname>.

R News ISSN 1609-3631

http://www.adobe.com/products/acrobat/acrrasianfontpack.html

Vol. 6/2, May 2006 44

Table 2: The CJK fonts available for use in R. These were collected from examples found on various systems,
and suggestions of Ei-ji Nakama.

Font family name
in the font database PostScript font name PDF font name

"Japan1" HeiseiKakuGo-W5: a Linotype
Japanese printer font.

KozMinPro-Regular-Acro: from the
Adobe Reader 7.0 Japanese Font
Pack

"Japan1HeiMin" HeiseiMin-W3: a Linotype Japanese
printer font.

HeiseiMin-W3-Acro: a version of
the PostScript font, from the Adobe
Reader 4.0 Japanese Font Pack.

"Japan1GothicBBB" GothicBBB-Medium: a Japanese-
market PostScript printer font.

GothicBBB-Medium

"Japan1Ryumin" Ryumin-Light: a Japanese-market
PostScript printer font.

Ryumin-Light

"Korea1" Baekmuk-Batang: a True-
Type font found on some
Linux systems, and from ftp:
//ftp.mizi.com/pub/baekmuk/.

HYSMyeongJoStd-Medium-Acro:
from the Adobe Reader 7.0 Korean
Font Pack

"Korea1deb" Batang-Regular: a TrueType font
found on some Linux systems, prob-
ably the same as Baekmuk-Batang.

HYGothic-Medium-Acro: from the
Adobe Reader 4.0 Korean Font Pack.

"CNS1" (Traditional Chinese) MOESung-Regular: from Ken
Lunde’s CJKV resources; can be
installed for use with ghostscript

MSungStd-Light-Acro: from the
Adobe Reader 7.0 Traditional Chi-
nese Font Pack.

"GB1" (Simplified Chinese) BousungEG-Light-GB: a True-
Type font found on some
Linux systems, and from
ftp://ftp.gnu.org/pub/non-gnu/
chinese-fonts-truetype/.

STSong-Light-Acro: from the
Adobe Reader 7.0 Simplified Chi-
nese Font Pack.

R News ISSN 1609-3631

ftp://ftp.mizi.com/pub/baekmuk/
ftp://ftp.mizi.com/pub/baekmuk/
ftp://ftp.gnu.org/pub/non-gnu/chinese-fonts-truetype/
ftp://ftp.gnu.org/pub/non-gnu/chinese-fonts-truetype/

Vol. 6/2, May 2006 45

> RU <- Type1Font(
"TimesNewRomanPSMT-Regular",
c("fonts/afm/public/pscyr/times.afm",
"fonts/afm/public/pscyr/timesbd.afm",
"fonts/afm/public/pscyr/timesi.afm",
"fonts/afm/public/pscyr/timesbi.afm"))

This next command registers the Type 1 font in the
font database for PDF devices. The database records
all valid font family names for use with PDF devices.
After this, for the duration of the current R session,
the font family "RU" can be used as a font family
name in graphics functions.

> pdfFonts(RU=RU)

Now we can use this font family like any other and
to produce Cyrillic characters (we do not assume a
Russian keyboard so fake typing the Cyrillic keys by
specifying the appropriate Unicode values9).

> pdf("russian.pdf", width=3, height=0.8)
> grid.text("\u0417\u0434\u0440

\u0430\u0432\u0441\u0442\u0432
\u0443\u0439\u0442\u0435
is 'hello' in Russian (Cyrillic)",
gp=gpar(fontfamily="RU"))

> dev.off()

Здравствуйте
 is ’hello’ in Russian (Cyrillic)

A separate function, postscriptFonts(), is pro-
vided for querying and modifying the font database
for PostScript devices, and there is a CIDFont() func-
tion for defining new CJK (CID-keyed) fonts10.

Embedding fonts

The Russian example above is not quite complete yet.
If you try to view it with Adobe Reader, it will almost
certainly not look as we intended11. The problem is
that Adobe Reader knows nothing about the PSCyr
font so it substitutes a font it knows about, trying to
make it look as close as possible to the font we’ve
asked for.

By defining a Type 1 font object, we have given R
enough information about the Cyrillic font to create

a PDF or PostScript file, but if we want to view that
file or print it, we may also have to install the font for
the viewing software or the printer. Furthermore, if
we want to share the file with someone else (e.g., put
it on the web), then that someone else may have to
install the font.

The best solution to all of these problems is to em-
bed (enough of) the font within the file itself. This
means that the font becomes part of the document
and viewing software or printers do not need any
additional information to display or print the text.
(Note that licence restrictions on the fonts may limit
or prohibit this approach.)

The new R function embedFonts() performs this
task (by calling ghostscript12).

Here is how to embed the PSCyr fonts for the
russian.pdf plot; the file russianembed.pdf is the
result. Because we have the fonts in a local direc-
tory, we must specify a font path so that ghostscript
knows where to find the font.

> embedFonts("russian.pdf",
outfile="russianembed.pdf",
fontpaths="fonts/type1/public/pscyr")

For most of the examples in this article we have em-
bedded the fonts using this function, which is why
you can view all of these different character sets
without having to download any extra fonts.

A Computer Modern fonts example

Computer Modern fonts are the fonts designed by
Donald Knuth for the TEX system (Knuth, 1984) and
are the default fonts used in LATEX (Lamport, 1994).

For a long time, it has been possible to make
use of Computer Modern fonts to produce PostScript
plots specifically for inclusion in LATEX documents
via a special "ComputerModern" font family (see
?postscript). However, this mechanism does have
some limitations: some characters are not available
(e.g., less-than and greater-than signs, curly braces,
and a number of mathematical symbols) and, more
importantly, it does not work for PDF output. A sim-
ple way to avoid these restrictions is to use a different
set of Computer Modern fonts that contain a more
complete set of characters.

Gaining access to a wider set of Computer Mod-
ern characters can be achieved simply by using a
version of the Computer Modern fonts that has

9This series of Unicode characters has been broken across lines for this article due to typesetting limitations; do not reproduce these
line breaks if you want to try this code yourself. Also, as there are at least three incompatible single-byte encodings for Russian, we do not
attempt to show how this might be done other than on a UTF-8 system.

10Defining a new CID-keyed font for use with PDF devices requires in-depth knowledge of Adobe font technology and the font itself,
so is not recommended except perhaps for expert users.

11What this actually looks like for you will depend on the fonts you have installed for Adobe Reader, however it is unlikely that you
will have the PSCyr fonts so it should at least look different to the “correct” output; on a vanilla Linux system, the Cyrillic characters are
all missing, and the Latin text is a serif font.

12Ghostscript should be installed already on most Linux systems and is available as a standard download and install for Windows
(http://www.cs.wisc.edu/~ghost/). You may need to tell R where ghostscript is installed via the environment variable R_GSCMD.

R News ISSN 1609-3631

http://www.cs.wisc.edu/~ghost/

Vol. 6/2, May 2006 46

been reordered and regrouped for different encoding
schemes. We will use two such fonts in this example.

The first set of fonts is the CM-LGC font pack13,
which provides a Type 1 version of most of the Com-
puter Modern fonts with an ISO Latin 1 encoding
(e.g., a less-than sign will produce a less-than sign,
not an upside-down exclamation mark as in TEX).
The second font is a special Computer Modern sym-
bol font14 developed by Paul Murrell which covers
almost all of the Adobe Symbol encoding (for pro-
ducing mathematical formulas).

The following code demonstrates the use of the
CM-LGC fonts and the special Computer Modern
symbol font to produce a PDF format “plot” that in-
cludes mathematical symbols. The fonts have again
been unpacked in a local directory.

First of all, we define a new Type 1 Font object for
these fonts and register it with the PDF font database:

> CM <- Type1Font("CM",
c(paste("cm-lgc/fonts/afm/public/cm-lgc/",

c("fcmr8a.afm", "fcmb8a.afm",
"fcmri8a.afm", "fcmbi8a.afm"),

sep=""),
"cmsyase/cmsyase.afm"))

> pdfFonts(CM=CM)

Now we can use this font family in a PDF plot:

pdf("cm.pdf", width=3, height=3,
family="CM")

... much drawing code ommitted ...
dev.off()

Finally, we can embed these fonts in the docu-
ment so that we can embed the plot in other doc-
uments (such as this article) for anyone to view or
print.

> embedFonts("cm.pdf",
outfile="cmembed.pdf",
fontpaths=
c("cm-lgc/fonts/type1/public/cm-lgc",
"cmsyase"))

The final result is shown in Figure 1.

Summary

With R 2.3.0, it is now easier to produce text in PDF
and PostScript plots using character sets other than
English. There is built-in support for a wider range of
encodings and fonts and there is improved support
for making use of non-standard fonts in plots. There
is also now a utility for embedding fonts so that plots
can be more easily included in other documents and
shared across systems.

We believe that it is now possible for users to
produce high-quality graphical output in all human

languages with a sizeable number of R users. Any-
one whose native language is not covered is invited
to contribute suitable encoding files and locale map-
pings so our coverage can be extended.

Computer Modern Font Comparison

cm−lgc < > { } ...

cmr

cmsyase ∑∑ ≠≠ ∏∏
 ...

cmsy

Figure 1: A “plot” that demonstrates the use of Com-
puter Modern fonts in PDF output.

Acknowledgements

Ei-ji Nakama provided the initial patch of the C code
for non-ISO Latin 1 encodings in multi-byte locales,
and for CJK (CID-keyed) font support, and he and
colleagues have patiently explained Japanese typog-
raphy to us.

Bibliography

D. Knuth. The TEXbook. Addison-Wesley, Reading,
MA, 1984.

L. Lamport. LATEX: a document preparation system.
Addison-Wesley, Reading, MA, 1994.

P. Murrell. Fonts, lines, and transparency in R graph-
ics. R News, 4(2):5–9, September 2004. URL http:
//CRAN.R-project.org/doc/Rnews/.

B. D. Ripley. Internationalization features of R 2.1.0.
R News, 5(1):2–7, May 2005. URL http://CRAN.
R-project.org/doc/Rnews/.

Paul Murrell
The University of Auckland, New Zealand
paul@stat.auckland.ac.nz

Brian D. Ripley
University of Oxford, UK
ripley@stats.ox.ac.uk

13http://www.ctan.org/tex-archive/help/Catalogue/entries/cm-lgc.html, and available as a package for some Linux systems.
14http://www.stat.auckland.ac.nz/~paul/R/CM/CMR.html

R News ISSN 1609-3631

http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/
mailto:paul@stat.auckland.ac.nz
mailto:ripley@stats.ox.ac.uk
http://www.ctan.org/tex-archive/help/Catalogue/entries/cm-lgc.html
http://www.stat.auckland.ac.nz/~paul/R/CM/CMR.html

Vol. 6/2, May 2006 47

The doBy package
by Søren Højsgaard

This article is not about rocket science; in fact it is not
about science at all. It is a description of yet another
package with utility functions.

I have used R in connection with teaching gener-
alized linear models and related topics to Ph.d. stu-
dents within areas like agronomy, biology, and vet-
erinary science at the Danish Institute of Agricultural
Sciences.

These students, many of whom are familiar with
the SAS system, have almost all come to appreciate R
very quickly. However, they have also from time to
time complained that certain standard tasks are hard
to do in R – and certainly harder than in SAS. The
doBy package is an attempt to make some of these
standard tasks easier.

Airquality data

The presentation of the package is based on the
airquality dataset which contains air quality mea-
surements in New York, May to September 1973.
(Note that months are coded as 5, . . . , 9).

> head(airquality)

Ozone Solar.R Wind Temp Month Day
1 41 190 7.4 67 5 1
2 36 118 8.0 72 5 2
3 12 149 12.6 74 5 3
4 18 313 11.5 62 5 4
5 NA NA 14.3 56 5 5
6 28 NA 14.9 66 5 6

The summaryBy function

With the summary procedure of SAS (PROC SUMMARY)
one can easily calculate things like “the mean and
variance of x for each combination of two factors A
and B”. To calculate mean and variance of Ozone
and Wind for each combination of Month, do:

> summaryBy(Ozone + Wind ~ Month,

+ data = airquality, FUN = c(mean,

+ var), prefix = c("m",

+ "v"), na.rm = TRUE)

Month m.Ozone m.Wind v.Ozone v.Wind
1 5 23.62 11.623 493.9 12.471
2 6 29.44 10.267 331.5 14.207
3 7 59.12 8.942 1000.8 9.217
4 8 59.96 8.794 1574.6 10.407
5 9 31.45 10.180 582.8 11.980

The result above can clearly be obtained in other
ways. For example by using the aggregate function,
the summarize function in the Hmisc package or by

> a <- by(airquality, airquality$Month,

+ function(d) {

+ c(mean(d[, c("Ozone",

+ "Wind")], na.rm = T),

+ diag(var(d[, c("Ozone",

+ "Wind")], na.rm = T)))

+ })

> do.call("rbind", a)

However, my students have found this somewhat
cumbersome!

The orderBy function

Ordering (or sorting) a data frame is possible with
the orderBy function. Suppose we want to order the
dataframe by Temp and by Month (within Temp) and
that the ordering should be decreasing. This can be
achieved by:

> x <- orderBy(~Temp + Month,

+ data = airquality, decreasing = T)

The first lines of the result are:

Ozone Solar.R Wind Temp Month Day
120 76 203 9.7 97 8 28
122 84 237 6.3 96 8 30
121 118 225 2.3 94 8 29
123 85 188 6.3 94 8 31
126 73 183 2.8 93 9 3
127 91 189 4.6 93 9 4

Again, this can clearly be achieved in other ways,
but presumably not with so few commands as above.

The splitBy function

Suppose we want to split data into a list of
dataframes, e.g. one dataframe for each month. This
can be achieved by:

> x <- splitBy(~Month, data = airquality)

Information about the grouping is stored as a
dataframe in an attribute called groupid:

> attr(x, "groupid")

Month
1 1
2 2
3 3
4 4
5 5

R News ISSN 1609-3631

