
Vol. 6/1, March 2006 17

Bibliography

A. Gelfand and A. Smith. Sampling-based Ap-
proaches to Calculating Marginal Densities. Jour-
nal of the American Statistical Association, 85:398–
409, 1990. 15

Insightful Corporation. S-PLUS 6.2. Insightful Cor-
poration, Seattle, WA, USA, 2004. URL http:
//www.insightful.com. 14

M. Plummer. JAGS: Version 0.90 manual, 2005. URL
http://www-ice.iarc.fr/~martyn/software/
jags/. 13

M. Plummer, N. Best, K. Cowles, and K. Vines. coda:
Output Analysis and Diagnostics for MCMC, 2005. R
package version 0.10-3. 15

D. Spiegelhalter, N. Best, B. Carlin and A. van der
Linde. Bayesian Measures of Complexity and Fit.
Journal of the Royal Statistical Society/B, 64:583–639,
2002. 16

D. Spiegelhalter, A. Thomas, N. Best, and D. Lunn.
WinBUGS: User Manual, Version 2.10. Medical Re-
search Council Biostatistics Unit, Cambridge, 2005.
12, 15

S. Sturtz, U. Ligges, and A. Gelman. R2WinBUGS:
A Package for Running WinBUGS from R. Jour-
nal of Statistical Software, 12(3):1–16, 2005. URL
http://www.jstatsoft.org/. 13, 14

A. Thomas. BRugs User Manual, Version 1.0. Dept of
Mathematics & Statistics, University of Helsinki,
2004. 12, 15

C. Weihs and U. Ligges. Parameter Opti-
mization in Automatic Transcription of Music.
In M. Spiliopoulou, R. Kruse, A. Nürnberger,
C. Borgelt, and W. Gaul, editors, From Data and In-
formation Analysis to Knowledge Engineering, pages
740–747, Berlin, 2006. Springer-Verlag. 15

Andrew Thomas, Bob O’Hara
Department of Mathematics & Statistics
University of Helsinki, Finland
ant@rni.helsinki.fi, bob.ohara@helsinki.fi

Uwe Ligges, Sibylle Sturtz
Fachbereich Statistik, SFB475
Universität Dortmund, Germany
<ligges,sturtz>@statistik.uni-dortmund.de

The BUGS Language
by Andrew Thomas

The BUGS language is a computer language not un-
like the S language (Becker et al., 1988) in appear-
ance, but it has a very different purpose.

Statistical models must be described before they
can be used. A language to describe statistical mod-
els is needed by both the users of the model and the
software that makes inference about the model. The
language should be a formal language with well de-
fined rules which can be processed automatically. It
should not be concerned with the technology used
to make inference about the model. We have devel-
oped a model description language called the BUGS
language because of its use in the Bayesian inference
Using Gibbs Sampling (OpenBUGS) package. How-
ever, the BUGS language can be used outside the
OpenBUGS software. For example, it is used in the
JAGS package (Plummer, 2005) and has influenced
other packages such as Bassist (Toivonen et al., 1999)
and AUTOBAYES (Fisher and Schumann, 2003).

We choose to describe statistical models in terms
of a joint probability distribution. Model descrip-
tion in terms of a joint probability distribution is both
very general and very explicit. We consider these
good points. We do not consider it a good idea to
have a patchwork of specialized (maybe very ele-

gant) notations for different types of model. We want
to be able to combine small submodels to build larger
models using a consistent notation. A small change
to a model should not lead to a large change in the
way that model is described. Examples of small
changes to the model are: choice of sampling dis-
tribution, form of regression, covariate measurement
error, missing data, interval censoring, etc. Explic-
itness is important in a model description language.
There should be no doubt if two models are the same.

We hope the BUGS language will be useful to any-
one who uses complex statistical models, and even
to people who do not want to use the OpenBUGS
package to make inference. Is the BUGS language re-
ally about statistics? OpenBUGS has many users who
do not think of themselves primarily as statisticians,
who are mainly interested in the deterministic skele-
ton of a model. We think that if a probabilistic model
is used to explain observations, given this determin-
istic skeleton, that this is a form of statistics.

Influences

Formal languages have rules both for syntax and for
semantics. For the BUGS language, syntax has been
influenced by the S language (Becker et al., 1988) and

R News ISSN 1609-3631

http://www.insightful.com
http://www.insightful.com
http://www-ice.iarc.fr/~martyn/software/jags/
http://www-ice.iarc.fr/~martyn/software/jags/
http://www.jstatsoft.org/
mailto:ant@rni.helsinki.fi
mailto:bob.ohara@helsinki.fi
mailto:<ligges,sturtz>@statistik.uni-dortmund.de

Vol. 6/1, March 2006 18

semantics by graphical models. A model described
in the BUGS language looks like a piece of S code
but the meaning is completely different. The BUGS
language is declarative. It describes static relations
beween quantities, not how to do calculations.

Many joint probability distributions can be writ-
ten as a product of factors. This leads to a graphi-
cal notation for describing joint probability distribu-
tions. Each factor in the joint probability distribu-
tion is a function of several variables. It is possible
to order these variables for each factor so that the
factor is represented by a node in a directed acyclic
graph (DAG) labeled by one of the variables of the
factor with the remaining variables being parents of
the node in the graph. Describing the DAG is equiv-
alent to describing the joint probability distribution.
A DAG can be described by specifying the parents
of each node. In the simplest case, the factors are
probability distribution functions whose parameters
are given by the values of the node’s parents. In the
more general case the parameters of the distribution
will be functions of the values of the node’s parents.

alpha

tau

Y

mu

beta

Figure 1: A simple directed acyclic graph

Consider the small graph in figure 1. This repre-
sents the joint probability distribution

P1(Y|mu, tau) P2(alpha) P3(beta) P4(tau)

where P1, P2, P3 and P4 are probability distributions
associated with nodes in the graph. Nodes with solid
arrows pointing into them represent stochastic rela-
tions and those with hollow arrows logical relations.
Hence mu is some function of the values of alpha and
beta.

Example 1: Growth curve in rats

An example of a simple model is the hierarchical lin-
ear growth curve model considered by Gelfand and
Smith (1990). This model has a simple representa-
tion as a DAG (drawn with the DoodleBUGS editor),
shown in figure 2. The plate, a rectangular box with
four parallel lines along its bottom and right edges,
is used as a metaphor for repetition.

To describe the DAG in the BUGS language,
a textual language, we need two types of rela-
tion: stochastic relations and logical relations. The
stochastic relations tell which probability distribu-
tion function is associated with which node in the
model. The logical relations define how to calculate
the values of the parameters of the probability distri-
bution functions in terms of the values of the node’s
parents. For stochastic relations we use the tilde (~)
as the relational operator and for logical relations the
left pointing arrow (<-). A final element in the BUGS
language is a notation for repetition. We use the no-
tation

for (i in M:N) { ... }

where the statements between the braces are dupli-
cated with the place holder i replaced by the integer
values M through N. Comments in the BUGS language
are any characters that follow the hash sign (#) up to
the end of the line.

Written in the BUGS language, our example is

model

{

for (i in 1:N) {

for (j in 1:T) {

Y[i,j] ~ dnorm(mu[i,j],tau.c)

linear growth curve

mu[i,j] <- alpha[i]+beta[i]*(x[j]-xbar)

}

alpha[i] ~ dnorm(alpha.c,alpha.tau)

beta[i] ~ dnorm(beta.c,beta.tau)

}

tau.c ~ dgamma(0.001,0.001)

sigma <- 1/sqrt(tau.c)

alpha.c ~ dnorm(0.0,1.0E-6)

alpha.tau ~ dgamma(0.001,0.001)

beta.c ~ dnorm(0.0,1.0E-6)

beta.tau ~ dgamma(0.001,0.001)

alpha0 <- alpha.c-xbar*beta.c

}

We make some comments about this model. The
data Y consists of the weight of N rats measured at T
time points. A linear model is fitted for each rat. The
slope and intercept for each rat are drawn from nor-
mal distributions with unknown hyper parameters
alpha.c, alpha.tau, beta.c and beta.tau. These
hyper parameters are given vague priors.

The parameterization used by each distribution
must be documented. For example, the dnorm dis-
tribution parameterizes the normal distribution in
terms of its mean and precision (the reciprocal of the
variance), not the standard deviation. Logical nodes

R News ISSN 1609-3631

Vol. 6/1, March 2006 19

for(j IN 1 : T)
for(i IN 1 : N)

sigma

tau.c
x[j]

Y[i, j]

mu[i, j]

beta[i]alpha[i]

beta.taubeta.calpha0alpha.calpha.tau

Y[i, j]

name: Y[i, j] type: stochastic density: dnorm
mean mu[i, j] precision tau.c upper bound upper bound

Figure 2: Directed Acyclic Graph for a hierarchical linear growth model

can be added to the model to calculate functions of
stochastic nodes, for example sigma and alpha0 in
this model. We can easily change the model: the dis-
tribution of the data Y can be changed from the nor-
mal (dnorm) to, say, the t distribution (dt) to allow
for outliers, or the linear growth curve relation for mu
could be changed to a non-linear one, etc.

Example 2: Biopsy data

A slightly more complex model is the biopsy data
considered by Spiegelhalter and Stovin (1983). In this
model, the state of an internal organ (the heart) is
probed by taking tissue samples with a hollow nee-
dle. The true (latent) state of the organ is at least as
bad as the worst category of the tissue sample taken.
Multiple tissue samples are taken from each organ
giving rise to multinomial data. The probability vec-
tor of proportions in the multinomial is modeled as a
mixture of Dirichlet distributions with the constraint
that elements of the error matrix above the leading
diagonal are zero (no false positives). This model is
quite difficult to draw as a graph using the Doodle-
BUGS editor but easy to write in the BUGS language.

model

{

for (i in 1:ns){

nbiops[i] <- sum(biopsies[i,])

true[i] ~ dcat(p[])

biopsies[i,1:4] ~

dmulti(error[true[i],],nbiops[i])

}

error[2,1:2] ~ ddirch(prior[1:2])

error[3,1:3] ~ ddirch(prior[1:3])

error[4,1:4] ~ ddirch(prior[1:4])

error[1,1] <- 1 error[1, 2] <- 0

error[1,3] <- 0 error[1, 4] <- 0

error[2,3] <- 0 error[2, 4] <- 0

error[3,4] <- 0

prior for p

p[1:4] ~ ddirch(prior[])

}

Note the use of variable indexing in the relation
for biopsies: the variable true[i] takes a value in
{1, 2, 3, 4} and picks which row of the error matrix
is used in the multinomial distribution. In the BUGS
language, a variable index must always be a named
quantity in the model. If the index is non variable,
then an expression that evaluates to a constant can
also be used. Nested indexing is allowed.

Data

Usually some of the quantities in the statistical model
have fixed values: they are data. Within the BUGS
language there is no distinction between quantities
that are data and quantities about which inference is
required. We put quantities with fixed values in a
data set. The syntax we have chosen for data sets
is the S list format containing scalars, vectors and
multi dimensional arrays (in the form of structures).

R News ISSN 1609-3631

Vol. 6/1, March 2006 20

If a quantity has both fixed components and compo-
nents that need estimating, then the later will be rep-
resented as NAs in the data set. The OpenBUGS soft-
ware processes both the model description language
and the associated data sets to build the joint proba-
bility distribution.

Correctness

Using the BUGS language it is easy to write down
a complex statistical model. But is the model cor-
rect? The model must be both syntactically and se-
mantically correct. Checking syntactic correctness
is quite easy: parsing the model will detect any er-
rors and produce clear error messages. It is much
harder to check that the description of a model in
the BUGS language plus a data set (or data sets) de-
fines a complete and consistent model. We take a
constructive approach to this problem. OpenBUGS
tries to compile the BUGS language into a detailed
graph that represents the joint probability distribu-
tion. The completeness and consistency of this graph
are then checked. This approach can detect many er-
rors. However, users have found the error messages
produced somewhat cryptic. Some typical cases of
lack of consistancy are:

1. The data set defines the length of a vector quan-
tity to be say L and the model uses a component
of this vector quantity with a index greater than
L.

2. Multiple definitions of a node in the model are
given, for example the statement

for(i in 1:10){ x ~ dnorm(0, 1) }

Computation on the graph

A detailed representation of the graph of the model
allows us to easily calculate the joint probability dis-
tribution. It also makes it easy to calculate the con-
ditional distribution of a single node in the model,
holding all other nodes fixed, in an efficient way.
These single node conditional distributions are the
basic building blocks of inference algorithms based
on an extreme divide-and-conquer approach. Condi-
tional distributions of blocks of nodes can be derived
from the single node conditional distributions. These
multi-node conditional distributions are useful for
inference algorithms when the divide approach is
not taken to extremes. The deviance of the model can
be calculated from the distributions associated with
data nodes (including censored observations) in the
model. The OpenBUGS software tries to classify the
functional form of the single node conditional distri-
butions. The more detailed the classification of these
single node conditional distributions, the wider the

choice of algorithms that can be proved valid for
statistical inference on the model. Markov Chain
Monte Carlo (MCMC) simulation makes heavy use
of the calculation of conditional distributions. This
fact makes MCMC simulation a natural choice of in-
ference technology to combine with the BUGS lan-
guage. However other approaches to inference could
be added to the OpenBUGS software.

Outlook

The BUGS language provides a uniform way of spec-
ifying complex statistical models. It allows a model
to be worked on and shared by several people. The
BUGS language can be used by other software that
makes inference about complex models. The Open-
BUGS software provides source code level access to
the lexical and parsing tools used to process the
BUGS language.

Different inference algorithms, for example the
EM algorithm (Dempster et al., 1977), the variational
algorithm (Jaakkola and Jordan, 2000) or particle fil-
ters (Doucet et al., 2001), could be built on top of the
OpenBUGS software. We hope that the separation of
model specification and parameter inference become
more common in the future development of statisti-
cal software.

In many statistical packages, the idea of a model
stays in the background; the emphasis is on fitting
data. This makes interfacing the OpenBUGS software
with, say, R conceptually difficult. R has data objects
and functions for doing computation on data objects
but not model description objects. BRugs, the R in-
terface to OpenBUGS, has to read the model descrip-
tion from a file. This is less than ideal. In outline, the
ideal way of interfacing R and OpenBUGS would be
to have model description objects that could be trans-
lated into compiled model objects. Compiled model
objects could then be passed to inference algorithms
(MCMC etc) to give fitted model objects (for MCMC,
something like an mcmc object from the coda package
(Plummer et al., 2005)). Standard R functions could
then be applied to the fitted model object to compute
any derived quantity of interest. This is a long term
program.

Bibliography

R. A. Becker, J. M. Chambers, and A. R. Wilks. The
new S language: A programming environment for data
analysis and graphics. Wadsworth & Brooks/Cole,
Pacific Grove, Calif, 1988. 17

A. Dempster, N. Laird, and D. Rubin. Maximum like-
lihood from incomplete data via the EM algorithm.
Journal of the Royal Statistical Society, Series B, 39:1,
1977. 20

R News ISSN 1609-3631

Vol. 6/1, March 2006 21

A. Doucet, N. de Freitas, and N. Gordon, editors. Se-
quential Monte Carlo in Practice. Springer-Verlag,
2001. ISBN 0-387-95146-6. 20

B. Fisher and J. Schumann. Autobayes: A system for
generating data analysis programs from statistical
models. Journal of Functional Programming, 13(3):
483–508, May 2003. 17

A. Gelfand and A. Smith. Sampling-based ap-
proaches to calculating marginal densities. Journal
of the American Statistical Association, 85:398–409,
1990. 18

T. Jaakkola and M. I. Jordan. Bayesian parameter esti-
mation via variational methods. Statistics and Com-
puting, 19:25–37, 2000. 20

M. Plummer. JAGS Version 0.90 Manual. Inter-
national Agency for Research on Cancer, Lyon,
France, September 2005. http://www-ice.iarc.
fr/~martyn/software/jags. 17

M. Plummer, N. Best, K. Cowles, and K. Vines.
CODA: Output analysis and diagnostics for MCMC,
2005. R package version 0.10-3. 20

D. J. Spiegelhalter and P. G. I. Stovin. An analysis
of repeated biopsies following cardiac transplan-
tation. Statistics in Medicine, 2:33–40, 1983. 19

H. Toivonen, H. Mannila, J. Seppänen, and K. Vasko.
Bassist user’s guide for version 0.8.3. Technical Re-
port C-1999-36, Dept of Computer Science, Univer-
sity of Helsinki, 1999. http://www.cs.helsinki.
fi/research/fdk/bassist/. 17

Andrew Thomas
Department of Mathematics & Statistics
University of Helsinki, Finland
ant@rni.helsinki.fi

Bayesian Data Analysis using R
by Jouni Kerman and Andrew Gelman

Introduction

Bayesian data analysis includes but is not limited
to Bayesian inference (Gelman et al., 2003; Kerman,
2006a). Here, we take Bayesian inference to refer to
posterior inference (typically, the simulation of ran-
dom draws from the posterior distribution) given a
fixed model and data. Bayesian data analysis takes
Bayesian inference as a starting point but also in-
cludes fitting a model to different datasets, alter-
ing a model, performing inferential and predictive
summaries (including prior or posterior predictive
checks), and validation of the software used to fit the
model.

The most general programs currently available
for Bayesian inference are WinBUGS (BUGS Project,
2004) and OpenBUGS, which can be accessed from R
using the packages R2WinBUGS (Sturtz et al., 2005)
and BRugs. In addition, various R packages ex-
ist that directly fit particular Bayesian models (e.g.
MCMCPack, Martin and Quinn (2005)). or emulate
aspects of BUGS (JAGS). In this note, we describe our
own entry in the “inference engine” sweepstakes but,
perhaps more importantly, describe the ongoing de-
velopment of some R packages that perform other as-
pects of Bayesian data analysis.

Umacs

Umacs (Universal Markov chain sampler) is an R
package (to be released in Spring 2006) that facilitates

the construction of the Gibbs sampler and Metropo-
lis algorithm for Bayesian inference (Kerman, 2006b).
The user supplies data, parameter names, updating
functions (which can be some mix of Gibbs sam-
plers and Metropolis jumps, with the latter deter-
mined by specifying a log-posterior density func-
tion), and a procedure for generating starting points.
Using these inputs, Umacs writes a customized R
sampler function that automatically updates, keeps
track of Metropolis acceptances (and uses acceptance
probabilities to tune the jumping kernels, following
Gelman et al. (1995)), monitors convergence (follow-
ing Gelman and Rubin (1992)), summarizes results
graphically, and returns the inferences as random
variable objects (see rv, below).

Umacs is customizable and modular, and
can be expanded to include more efficient
Gibbs/Metropolis steps. Current features include
adaptive Metropolis jumps for vectors and matrices
of random variables (which arise, for example, in hi-
erarchical regression models, with a different vector
of regression parameters for each group).

Figure 1 illustrates how a simple Bayesian hier-
archical model (Gelman et al., 2003, page 451) can
be fit using Umacs: y j ∼ N(θ j,σ2

j), j = 1, . . . , J
(J = 8), where σ j are fixed and the means θ j are
given the prior tν(µ, τ). In our implementation of
the Gibbs sampler, θ j is drawn from a Gaussian dis-
tribution with a random variance component Vj. The
conditional distributions of θ, µ, V, and τ can be cal-
culated analytically, so we update them each by a
direct (Gibbs) update. The updating functions are
to be specified as R functions (here, theta.update,

R News ISSN 1609-3631

http://www-ice.iarc.fr/~martyn/software/jags
http://www-ice.iarc.fr/~martyn/software/jags
http://www.cs.helsinki.fi/research/fdk/bassist/
http://www.cs.helsinki.fi/research/fdk/bassist/
mailto:ant@rni.helsinki.fi

