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Figure 1: zθ statistics: Correctly written software. Each
row represents a scalar parameter or batch of parameters;
the circles in each row represent the zθ statistics associated
with that parameter or batch of parameters. Solid circles
represent the zθ statistics associated with the mean of that
batch of parameters. The numbers on the y axis indicate
the number of parameters in the batch. The zθ statistics
are all within the expected range for standard normal ran-
dom variables.
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Figure 2: zθ statistics: Incorrectly written software (er-
ror sampling the parameter α). Each row represents a
scalar parameter or batch of parameters; the circles in each
row represent the zθ statistics associated with that param-
eter or batch of parameters. Solid circles represent the zθ

statistics associated with the mean of that batch of parame-
ters. The numbers on the y axis indicate the number of pa-
rameters in the batch. Values of zθ larger than 2 indicate
a potential problem with the software; this plot provides
convincing evidence that the software has an error.
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Making BUGS Open
by Andrew Thomas, Bob O’Hara, Uwe Ligges, and Sibylle
Sturtz

BUGS1 (Bayesian inference Using Gibbs Sampling,
Spiegelhalter et al., 2005) is a long running software
project aiming to make modern Bayesian analysis
using Markov Chain Monte Carlo (MCMC) simula-
tion techniques available to applied statisticians in an
easy to use Windows package. With the growing re-
alization of the advantages of Open Source software
we decided to release the source code of the BUGS
software plus full program level documentation on

the World Wide Web2. We call this release OpenBUGS
(Thomas, 2004). We hope the BUGS user community
will be encouraged to correct, improve and extend
this software.

We follow a brief outline of how the BUGS soft-
ware works with a more detailed discussion of the
software technology used during the development of
BUGS. We then try and explain why BUGS was de-
veloped using non-standard tools. We hope to con-
vince the reader that although unfamiliar, our tools
are very powerful and simple to use.

1http://www.mrc-bsu.cam.ac.uk/bugs/
2http://mathstat.helsinki.fi/openbugs/
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Much of the ease of use of the BUGS software
comes from its graphical user interface and the idea
of the compound document as a container for differ-
ent types of information. However, much is to be
gained by interfacing BUGS with other software. R
has many useful built-in and contributed functions
but as yet little in the way of Bayesian analysis tools.
The BRugs interface to the BUGS software plus a
small suite of R functions is an attempt to improve
this situation.

All of these (BRugs interface, the whole Open-
BUGS software, and the R functions) have been or-
ganized for the R users’ convenience in an R package
also called BRugs. This package is distributed over
the CRAN network. Its current version (0.2-5) is only
available for Windows.

In R, the user with Internet connection can simply
type

R> install.packages("BRugs")

R> library("BRugs")

and then happily start sampling, benefiting from the
strengths of both OpenBUGS and R.

The R2WinBUGS package by Sturtz et al. (2005)
already provides an approach to connecting BUGS
and R. This has the disadvantage that it is impossible
to interact during processing/sampling by WinBUGS
in any way. If you need Gibbs sampling in R on other
operating systems than Windows, we recommend to
take a look at JAGS (Just Another Gibbs Sampler) by
Plummer (2005).

How BUGS works

The software creates lots of objects, wires the ob-
jects together and then gets the objects to talk to each
other. More formally a dynamic data structure, a di-
rected acyclic graph, of objects is build to represent
the Bayesian model. This graph is able to exploit con-
ditional independence assumptions to efficiently cal-
culate conditional probabilities. A layer of updater
objects is created to sample parameters of the model
and copy them into the graph data structure. Finally
a layer of monitor objects can be created to monitor
(watch) the values of the sampled parameters and
provide summary statistics for them.

How is the graph of objects built? The user writes
a description of the Bayesian model in the BUGS lan-
guage. This model description is also a description of
the graph of objects that BUGS should build. A com-
piler turns the textual representation of the Bayesian
model into the graph of objects. Objects of base class
‘updater’ have a method which is able to decide if
objects of that particular class can (and should) act
as updaters for a particular parameter in the model
based on the functional form of its conditional distri-
bution.

Compilation and inference

Compilation of the description of a Bayesian model
in the BUGS language involves a number of stages.
Firstly lexical analysis, scanning, is performed to
break the stream of characters representing the
model into tokens. Secondly syntactical analysis,
parsing, is performed to build a tree representa-
tion of the model. Thirdly the graph of objects is
constructed by a post order traversal of the parse
tree with objects whose values have been observed
marked as data. Finally conditional independence is
used to produce lists of graph objects that when mul-
tiplied together calculate conditional distributions.

BUGS uses MCMC simulation algorithms to
make inference. These algorithms are computation-
ally expensive but robust to details of the problem
they are applied to. This robustness is an important
property in a system such as BUGS which automat-
ically chooses the inference algorithm. BUGS is able
to match a wide choice of MCMC algorithm, such
as single site Gibbs, slice sampling and continuously
adapting block Metropolis, to the model parameters
that need updating.

Software development

BUGS is written in the language Component Pascal
(CP) using the BlackBox Component Builder from
Oberon microsystems3. CP is a very modern com-
piled language with both modular and object ori-
entated features. The language is highly dynamic
with runtime loading and linking of modules. Com-
piled modules contain meta information that allows
the module loader to verify that the loaded mod-
ule provides the services required by the client. It
is also an extremely safe language because of its very
strong type system and automatic heap management
(garbage collection).

CP software typically consists of many unlinked
modules plus a small executable or dynamic link li-
brary that is able to load modules as required. The
modules are arranged as a directed acyclic graph un-
der the import (make use of) relation. Loading a
module causes all modules in the sub-graph to be
loaded. Module initialization code is executed when
a module is loaded. Modules are grouped into sub-
systems with the subsystem name used as a prefix
to the module name. Physically modules are repre-
sented by files with the location and name of the file
derived from the module name. Each subsystem is
kept in a separate subdirectory while the executable
(or dynamic link library) is kept in the root directory.

The BlackBox Component Builder comes with
several subsystems of modules which make the de-
velopment of graphical user interfaces simple. More

3http://www.oberon.ch/
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novel is the idea of a compound document, an ed-
itable text document that is able to contain graph-
ics views. Graphics views can be developed by ex-
tending a view class. Graphics views can be made
editable and special purpose drawing tools such as
DoodleBUGS can be easily developed. About one
quarter of the modules comprising OpenBUGS im-
plement the graphical user interface and various
graphics views used for output.

These GUI modules are only available for 32-bit
Windows. The package BRugs does not make use
of any GUI module. All other modules in the Open-
BUGS distribution can be used under Linux on x86
based platforms as well.

Metaprogramming

Metaprogramming is self awareness for software.
Software can ask itself questions. For example does
module Foo export an item called Bar? What sort
of item is Bar? Can such a thing be done with Bar?
More formally we can ask if a particular module is
loaded. If the module is loaded we can examine its
metadata and then query this metadata. For example
we could ask if a module Foo is loaded and if not load
the module. Then we could ask if module Foo con-
tains a procedure Bar with say no parameters and if
so to call (execute) this procedure. Note that this pro-
cess is safe: we do not just hope that Foo contains a
Bar of the right sort (with a crash if this is not so).

BUGS makes use of metaprogramming in many
places. These uses of metaprogramming fall into
two broad groups: program configuration and inter-
facing. In the first group are support for the BUGS
language, loading sampling algorithms and loading
data reading algorithms. In the second group con-
struction of GUI interfaces, implementing a scripting
language and interfacing to R.

Each time the BUGS language parser comes
across the name of a distribution it uses metapro-
gramming to load the module that implements this
distribution. The link between distribution name
and module name is stored in a configuration file
called ‘grammar’. A list of modules implementing
sampling algorithms is stored in a file. When BUGS
starts up this file is read and the appropriate modules
are loaded. Currently BUGS can read data in two
formats: the S-PLUS (Insightful Corporation, 2004)
format and rectangular format. Again the modules
that implement reading these formats are loaded at
program start up. Other data reading option such as
from SQL tables could be added.

Metaprogramming makes construction of the
widgets typical of a GUI simple. For example a but-
ton is just a region of a window which responds to
a mouse click by executing a procedure (without pa-
rameters). A string containing the module and pro-
cedure names is associated with the button and when

the mouse is clicked metaprogramming is used to
load the module and execute the procedure. Note
in this approach no code is written to represent the
button.

In a scripting language, typing a command at
a prompt causes the system to execute some ac-
tion. This involves some sort of interpreter. This is
easily written using metaprogramming. The com-
mand in the scripting language is a string which is
mapped into a series of procedures in the CP lan-
guage. Metaprogramming is then used to load and
execute these procedures. For example the command
modelCheck(^0) in the BUGS scripting language gets
mapped to

BugsCmds.SetFilePath(’^0’);
BugsCmds.ParseGuard;
BugsCmds.ParseFile

where ^0 is a holder for a string. The mapping be-
tween commands in the BUGS scripting language
and the corresponding CP procedure is stored in a
file, making the language extensible.

BRugs: Interfacing to R

The R interface to OpenBUGS is realized by a very
small dynamic link library ‘brugs.dll’ corresponding
to the ‘WinBUGS.exe’. It exports a couple of .C()
entry points, among those several for direct access
to the BUGS scripting language. This way, it is
possible to realize R functions that are very similar
to commands in the BUGS scripting language, not
only sharing the same names (e.g. modelCheck()) but
also sharing almost the same (order of) arguments.
Therefore, it was possible to implement a huge num-
ber of R functions that allow almost full control of
OpenBUGS in R.

Commands and some data are passed directly
from R to OpenBUGS by .C() calls. Some infor-
mation is passed back from OpenBUGS to R as the
value from these calls, as it is common practice in
R programming and interfaces. Unfortunately, we
still have to pass back some other information and
results of sampling using temporary text files that
are imported into R by readLines(), read.table(),
scan() and friends. Transparently reporting error
messages from OpenBUGS to the R user is another
topic that needs further improvement – currently we
are sometimes relying on a good guess for generating
error messages.

BRugs provides at least five kinds of functions:

• basic functions (such as modelCheck()) corre-
sponding to the BUGS scripting language men-
tioned above,

• functions (e.g. write.datafile()) to prepare
R data and inits (in the form of dataframes,
for example) for OpenBUGS adapted from the
R2WinBUGS package (Sturtz et al., 2005),
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• high level functions such as BRugsFit() which
run a whole simulation using only one function
call,

• functions (e.g. buildMCMC()) to prepare the
data for output analysis using the coda pack-
age (Plummer et al., 2005), and

• some internal help functions to read the tempo-
rary buffer file, for example.

Using these functions, it is possible to run an in-
teractive sampling and analysis session in R where
you can sample, calculate some (intermediate) re-
sults and make convergence diagnostics, and sample
further on if required.

For example, Weihs and Ligges (2006) used this
capability of BRugs for some MCMC optimization in
the following manner. In principle, after each 50 or
100 iterations (of OpenBUGS), the convergence of the
error rate of the underlying model was calculated us-
ing linear regression (in R). If the coefficient was no
longer significantly negative (i.e. convergence of the
error), the extremely computational expensive itera-
tions could be stopped, otherwise iterations contin-
ued in OpenBUGS again.

A BRugs session

For demonstration of the use of BRugs we use a
normal hierarchical model for the rats data that is
used throughout the WinBUGS manual (Spiegelhal-
ter et al., 2005). The example is originally taken from
section 6 of Gelfand and Smith (1990).

The WinBUGS manual is available in HTML
format documentation from within R by calling
help.WinBUGS(). Analogously, help.BRugs() starts
up the BRugs manual (Thomas, 2004). For refer-
ences on R functions, the usual help files such as
?help.BRugs for function help.BRugs() itself are
available.

After loading the BRugs package by

R> library(BRugs)

we change the working directory to simplify file
specification in the next steps:

R> oldwd <- getwd()

R> setwd(system.file("OpenBUGS", "Examples",

+ package = "BRugs"))

To initialize a model, the user types functions
corresponding to the BUGS scripting language in-
stead of clicking buttons. First, the model has to be
checked. The model file for the rats model is given
by ‘ratsmodel.txt’:

R> modelCheck("ratsmodel.txt")

Of course, it is also possible to specify the file by the
absolute path (using forward slashes). Afterwards,

data have to be loaded by modelData(). This func-
tion takes a file name as argument. R objects (named
list of data or a vector or list of object names) can be
written to such a file using bugsData(). For example:

R> data(ratsdata)

R> modelData(bugsData(ratsdata))

If data are stored in more than one file, the argument
can be a vector of files as well or the function has to
be called successively.

Now it is time to compile the model. In this ex-
ample, we use three chains to run the MCMC simu-
lation.

R> modelCompile(numChains = 3)

Initial values can be specified by calls to the func-
tion modelInits(). For more than one chain, one
can either call modelInits() with a character vec-
tor of more than one filename (one for each chain) or
call the function successively for each file containing
initial values. For random effect nodes, the function
modelGenInits() can generate appropriate inits.

In order to write files that contain initial values as
accepted by OpenBUGS and the modelInits() func-
tion, the function bugsInits() can be used. Its argu-
ment is a list with one element for each chain. Each
element of this list is itself a list of starting values for
the OpenBUGS model, or a function creating (possi-
bly random) initial values.

Therefore, we demonstrate the use of these three
different approaches to specify initial values, one for
each chain:

R> data(ratsinits)

R> modelInits("ratsinits.txt")

R> modelInits(bugsInits(list(ratsinits),

+ fileName = tempfile()))

R> initfoo <- function() {

+ list(

+ alpha = rnorm(30, mean = 250, sd = 1),

+ beta = rnorm(30, mean = 6, sd = 1),

+ alpha.c = runif(1, 140, 160),

+ beta.c = 10,

+ tau.c = 1,

+ alpha.tau = 1,

+ beta.tau = 1)

+ }

R> modelInits(bugsInits(initfoo,

+ fileName = tempfile()))

The model is initialized now and we start with
1000 updates as a burn-in period:

R> modelUpdate(1000)

By default, sampled parameter values are dis-
carded by WinBUGS after each iteration unless the
user explicitly requests that the values are stored for
later use. This is done with the samplesSet() func-
tion before running the simulation for further 2000
iterations.

R> samplesSet(c("alpha", "beta"))

R> modelUpdate(2000)
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To analyse the results of this simulation, we can
take a look at the summary statistics, similar to click-
ing stats in the Sample Monitor tool within Win-
BUGS.

R> samplesStats("*")

An asterisk ("*") can be entered instead of a node
name as shorthand for all the stored samples.

All these calls can be performed conveniently by
a single call to the meta function BRugsFit():

R> BRugsFit(data = ratsdata,

+ inits = initfoo,

+ para = c("alpha", "beta"),

+ nBurnin = 1000, nIter = 2000,

+ modelFile = "ratsmodel.txt", numChains = 3,

+ working.directory =

+ system.file("OpenBUGS", "Examples",

+ package = "BRugs"))

It returns a list containing the summary statistic as
samplesStats() as well as the Deviance Information
Criterion (DIC, Spiegelhalter et al., 2002), a Bayesian
extension of the Akaike Information Criterion to hi-
erarchical models. The DIC can also be imported into
R by the low level functions dicSet() (for setting)
and dicStats() (for getting).

BRugsFit() is only one wrapper function sum-
marizing a couple of functions from the whole
BRugs framework. Users might want to come up
with their own wrapper functions fitting their own
purposes, or some plot functions appropriate for
their analyses, for example based on the code of
BRugsFit().

Plots known from WinBUGS are also provided
by BRugs, for example history of the simula-
tion (samplesHistory()), plots of autocorrelations
(samplesAutoC()), plots of smoothed kernel den-
sity estimates (samplesDensity()), etc. Of course,
graphical parameters may be passed as additional ar-
guments to these plot functions.

As an example, we plot the smoothed kernel den-
sity estimates for the first 6 components of node
"alpha" (figure 1):

R> samplesDensity("alpha[1:6]")

To finish this example session, we reset the work-
ing directory by

R> setwd(oldwd)

Outlook

OpenBUGS has made modern Bayesian inference
software available in an Open Source package. The
software is also open in the sense that it has been
designed so that new features such as distributions,
sampling methods, and user interfaces can be easily
added. An OpenBUGS user has already contributed
Component Pascal modules to implement the gen-
eralised extreme value and generalised pareto distri-
butions.

The R package BRugs links components of Open-
BUGS into R. This allows users to combine the
strengths of both applications and make use of them
interactively.

Unfortunately, currently BRugs is only available
for Windows. We hope to provide a Linux version
of BRugs shortly along with Component Pascal de-
velopment tools for Linux. Until these tools become
available to the public there is no alternative to dis-
tributing binary versions of the package for Win-
dows and Linux.
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Figure 1: Density plot for the first 6 components of
node "alpha".
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The BUGS Language
by Andrew Thomas

The BUGS language is a computer language not un-
like the S language (Becker et al., 1988) in appear-
ance, but it has a very different purpose.

Statistical models must be described before they
can be used. A language to describe statistical mod-
els is needed by both the users of the model and the
software that makes inference about the model. The
language should be a formal language with well de-
fined rules which can be processed automatically. It
should not be concerned with the technology used
to make inference about the model. We have devel-
oped a model description language called the BUGS
language because of its use in the Bayesian inference
Using Gibbs Sampling (OpenBUGS) package. How-
ever, the BUGS language can be used outside the
OpenBUGS software. For example, it is used in the
JAGS package (Plummer, 2005) and has influenced
other packages such as Bassist (Toivonen et al., 1999)
and AUTOBAYES (Fisher and Schumann, 2003).

We choose to describe statistical models in terms
of a joint probability distribution. Model descrip-
tion in terms of a joint probability distribution is both
very general and very explicit. We consider these
good points. We do not consider it a good idea to
have a patchwork of specialized (maybe very ele-

gant) notations for different types of model. We want
to be able to combine small submodels to build larger
models using a consistent notation. A small change
to a model should not lead to a large change in the
way that model is described. Examples of small
changes to the model are: choice of sampling dis-
tribution, form of regression, covariate measurement
error, missing data, interval censoring, etc. Explic-
itness is important in a model description language.
There should be no doubt if two models are the same.

We hope the BUGS language will be useful to any-
one who uses complex statistical models, and even
to people who do not want to use the OpenBUGS
package to make inference. Is the BUGS language re-
ally about statistics? OpenBUGS has many users who
do not think of themselves primarily as statisticians,
who are mainly interested in the deterministic skele-
ton of a model. We think that if a probabilistic model
is used to explain observations, given this determin-
istic skeleton, that this is a form of statistics.

Influences

Formal languages have rules both for syntax and for
semantics. For the BUGS language, syntax has been
influenced by the S language (Becker et al., 1988) and
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