
Vol. 6/1, March 2006 7

Acknowledgements

We gratefully acknowledge support from the United
States National Science Foundation (Grants SES-
0350646 and SES-0350613), the Department of Politi-
cal Science and the Weidenbaum Center at Washing-
ton University, and the Department of Government
and the Institute for Quantitative Social Science at
Harvard University. Neither the Foundation, Wash-
ington University, nor Harvard University bear any
responsibility for this software.

Bibliography

J. Clinton, S. Jackman, and D. Rivers. The statistical
analysis of roll call data. American Political Science
Review, 98:355–370, 2004. 4

J. Geweke. Exact inference in the inequality con-
strained normal linear regression model. Journal
of Applied Econometrics, 1(2):127–141, 1986. 6

A. D. Martin and K. M. Quinn. Dynamic ideal point
estimation via Markov chain Monte Carlo for the
U.S. Supreme Court, 1953-1999. Political Analysis,
10:134–153, 2002. 4

A. D. Martin and K. M. Quinn. MCMCpack: Markov
chain Monte Carlo (MCMC) Package, 2005. URL
http://mcmcpack.wustl.edu. R package version
0.6-3. 2

A. D. Martin, K. M. Quinn, and D. B. Pemstein. Scythe
Statistical Library, 2005. URL http://scythe.
wustl.edu. Version 1.0. 2

M. Plummer. JAGS: Just Another Gibbs Sampler,
2005. URL http://www-fis.iarc.fr/~martyn/
software/jags/. Version 0.8. 2

M. Plummer, N. Best, K. Cowles, and K. Vines. coda:
Output Analysis and Diagnostics for MCMC, 2005.
URL http://www-fis.iarc.fr/coda/. R package
version 0.9-2. 3

D. Spiegelhalter, A. Thomas, N. Best, and D. Lunn.
WinBUGS, 2004. URL http://www.mrc-bsu.cam.
ac.uk/bugs/winbugs/. Version 1.4.1. 2

A. Thomas. OpenBUGS, 2004. URL http://
mathstat.helsinki.fi/openbugs/. 2

W. N. Venables and B. D. Ripley. Modern Applied
Statistics with S. Springer, New York, fourth edi-
tion, 2002. 5

Andrew D. Martin
Department of Political Science
Washington University in St. Louis, USA
admartin@wustl.edu

Kevin M. Quinn
Department of Government
Harvard University, USA
kevin quinn@harvard.edu

CODA: Convergence Diagnosis and
Output Analysis for MCMC
by Martyn Plummer, Nicky Best, Kate Cowles and Karen
Vines

At first sight, Bayesian inference with Markov Chain
Monte Carlo (MCMC) appears to be straightforward.
The user defines a full probability model, perhaps
using one of the programs discussed in this issue;
an underlying sampling engine takes the model def-
inition and returns a sequence of dependent sam-
ples from the posterior distribution of the model pa-
rameters, given the supplied data. The user can de-
rive any summary of the posterior distribution from
this sample. For example, to calculate a 95% cred-
ible interval for a parameter α, it suffices to take
1000 MCMC iterations of α and sort them so that
α1 < α2 < . . . < α1000. The credible interval esti-
mate is then (α25,α975).

However, there is a price to be paid for this sim-

plicity. Unlike most numerical methods used in sta-
tistical inference, MCMC does not give a clear indi-
cation of whether it has converged. The underlying
Markov chain theory only guarantees that the distri-
bution of the output will converge to the posterior
in the limit as the number of iterations increases to
infinity. The user is generally ignorant about how
quickly convergence occurs, and therefore has to fall
back on post hoc testing of the sampled output. By
convention, the sample is divided into two parts: a
“burn in” period during which all samples are dis-
carded, and the remainder of the run in which the
chain is considered to have converged sufficiently
close to the limiting distribution to be used. Two
questions then arise:

1. How long should the burn in period be?

2. How many samples are required to accurately

R News ISSN 1609-3631

http://mcmcpack.wustl.edu
http://scythe.wustl.edu
http://scythe.wustl.edu
http://www-fis.iarc.fr/~martyn/software/jags/
http://www-fis.iarc.fr/~martyn/software/jags/
http://www-fis.iarc.fr/coda/
http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/
http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/
http://mathstat.helsinki.fi/openbugs/
http://mathstat.helsinki.fi/openbugs/
mailto:admartin@wustl.edu
mailto:kevinelax $@@underline {hbox { }}mathsurround z@ $elax quinn@harvard.edu


Vol. 6/1, March 2006 8

estimate posterior quantities of interest?

The coda package for R contains a set of functions de-
signed to help the user answer these questions. Some
of these convergence diagnostics are simple graphi-
cal ways of summarizing the data. Others are formal
statistical tests.

History of CODA

The coda package has a long history. The original
version of coda (Cowles, 1994) was written for S-
PLUS as part of a review of convergence diagnostics
(Cowles and Carlin, 1996). It was taken up and fur-
ther developed by the BUGS development team to
accompany the prototype of WinBUGS now known
as “classic BUGS” (Spiegelhalter et al., 1995). Classic
BUGS had limited facilities for output analysis, but
dumped the sampled output to disk, in a form now
known as “CODA format”, so that it could be read
into coda for further analysis.

Later BUGS versions, known as WinBUGS
(Spiegelhalter et al., 2004), had a sophisticated graph-
ical user interface which incorporated all of the fea-
tures of coda. However, as the name suggests, Win-
BUGS only ran on Microsoft Windows (until the re-
cent release of its successor OpenBUGS which also
runs on Linux on the x86 platform). BUGS users on
UNIX and Linux were either limited to using classic
BUGS or they developed their own MCMC software,
and a residual user base for coda remained.

The coda package for R arose out of an attempt to
port the coda suite of S-PLUS functions to R. Differ-
ences between S-PLUS and R made this difficult, and
the porting process ended with a more substantial
rewrite. Likewise, changes in S-PLUS 5.0 meant that
coda ceased to run on S-PLUS 1, and an initial patch
by Brian Smith, led to a complete rewrite known as
boa (Bayesian Output Analysis), which has subse-
quently been ported to R (Smith, 2005).

MCMC objects

S-PLUS coda had a menu-driven interface aimed at
the casual S-PLUS user. The menu interface was re-
tained in the R package as the codamenu() function,
but one of the design goals was to build this inter-
face on top of an object-based infrastructure so that
the diagnostics could also be used on the command
line. A new class called mcmc was created to hold
MCMC output. The mcmc class was designed from
the starting point that MCMC output can be viewed
as a time series. More precisely, MCMC output and
time series share some characteristics, but there are
important differences in the way they are used.

• An MCMC time series evolves in discrete time
(measured in iterations) and time is always
positive.

• The time series is not assumed to be stationary.
In fact the primary goal of convergence diagno-
sis is to identify and remove any non-stationary
parts from the beginning of the series. A priori
an MCMC time series is more likely to be sta-
tionary at iteration 10000 than at iteration 1.

• An MCMC time series is artificially generated.
This means it can be extended, if necessary. It
can also be replicated. A replicated time series
arises from a so-called “parallel” chain, derived
from the same model, but using different start-
ing values for the parameters and a different
seed for the random number generator.

• The autocorrelation structure of the time series
is a nuisance. A maximally informative series
of a given length has no autocorrelation: each
iteration is an independent sample from the
posterior distribution. In order to obtain such
a series we may choose to lengthen the MCMC
run by a factor of n and take every nth iteration,
a process known as “thinning”.

To reflect this close relation with time series, mcmc ob-
jects have methods for the generic time series func-
tions time, start, end, frequency, and window.
The thin() function is used to extract the “thinning
interval”, i.e. the number of iterations between con-
secutive samples in a chain that has been thinned.
The window() function is used to get a subset of iter-
ations from an mcmc object, usually by removing the
inital part of the chain, or increasing the thinning in-
terval.

x <- window(x, start=100, thin=5)

Numeric vectors or matrices in R can be con-
verted to mcmc objects using the mcmc() function, and
mcmc objects representing parallel chains can be com-
bined with mcmc.list(). As the name suggests, the
mcmc.list() function returns a list of mcmc objects,
but it also checks that each component of the list
contains data on the same variables over the same
set of iterations. It is not sufficient to combine par-
allel chains using the list() function, since func-
tions in the coda package require the presence of the
mcmc.list class attribute as proof of consistency be-
tween the list components.

1It was no longer possible to use a replacement function on an object unless that object already existed, a language feature also shared
by R.

R News ISSN 1609-3631



Vol. 6/1, March 2006 9

3000 3500 4000 4500 5000

15
16

17
18

19
20

Iterations

Trace of mu

14 15 16 17 18 19 20 21

0.
0

0.
1

0.
2

0.
3

0.
4

N = 2001   Bandwidth = 0.261

Density of mu

Figure 1: Example of a trace plot and density plot produced by the plot method for mcmc objects.

Reading MCMC data into R

Externally generated MCMC output can be read into
R from files written in CODA format. In this format,
each parallel chain has its own output file and there
is a single index file . The read.coda() function reads
output from an output/index file pair and returns an
mcmc object.

Short-cut functions are provided for output from
JAGS (Plummer, 2005) and OpenBUGS. In JAGS,
the output file is, by default, called ‘jags.out’ and
the index file ‘jags.ind’. A call to read.jags(),
without any arguments, will read the data in
from these files. In OpenBUGS, the index file is,
by default, ‘CODAindex.txt’, and the output files
are ‘CODAchain1.txt’, ‘CODAchain2.txt’, etc.. The
read.openbugs() function reads these files and re-
turns an mcmc.list object containing output from all
chains.

Graphics

The coda package contains several graphics func-
tions for visualising MCMC output. The graphical
output from plotting functions is quite extensive. A
separate plot is produced for each scalar parameter,
and for each element of a vector or array parameter.
A single function call can thus create a large num-
ber of plots. In order to make the plotting functions
more user-friendly, an appropriate multi-frame lay-
out is automatically chosen and interactive plotting
devices are paused in between pages.

The plot method for the mcmc class creates two
plots for each parameter in the model, illustrated

in Figure 1. The first is a trace plot, which shows
the evolution of the MCMC output as a time series.
The second is a density plot, which shows a kernel
density estimate of the posterior distribution. Trace
plots are useful for diagnosing very poor mixing, a
phenomenon in which the MCMC sampler covers
the support of the posterior distribution very slowly.
Figure 1 shows an extreme example of this. Poor
mixing invalidates the kernel density estimate, as it
implies that the MCMC output is not a representative
sample from the posterior distribution. The density
plots produced by coda have some useful features:
distributions that are bounded on [0, 1] or [0, ∞) are
recognized automatically and the density plots are
modified so that the smooth density curve does not
spill over the boundaries. For integer-valued param-
eters, a bar plot is produced instead of a density plot.

Two additional plotting functions allow the cor-
relation structure of the parameters to be explored.
The function autocorr.plot() produces an acf ob-
ject from the MCMC output and plots it. The re-
sulting plot can be useful in identifying slow mix-
ing, and may suggest a suitable thinning interval for
the sample to attain a sequence of approximately in-
dependent samples from the posterior. The function
crosscorr.plot() shows an image of the posterior
correlation matrix. It identifies parameters that are
highly correlated (a frequent cause of slow mixing
when using Gibbs sampling) and may suggest re-
parameterization of the model, or the use of an sam-
pling method that updates these parameters together
in a block. Figure 2 shows crosscorr.plot() output
from the same example as Figure 1. It is clear that
there is a strong negative correlation between mu and
alph[1].

R News ISSN 1609-3631



Vol. 6/1, March 2006 10

Further plotting functions are available in the
coda package. In particular, Lattice plots have re-
cently been added by Deepayan Sarkar.

Summary statistics

The summary method for the mcmc class prints a
fairly verbose summary of each parameter, giving
the mean, standard deviation, standard error of the
mean and a selection of quantiles.

Calculation of the standard error of the mean re-
quires estimating the spectral density of the mcmc
series at zero. This is done by the low-level function
spectrum0(), which is also used by several other
functions in coda. It uses a variation of the esti-
mator proposed by Heidelberger and Welch (1981)
and fits a generalized linear model to the lower part
of the periodogram. Unfortunately MCMC outout
can have extremely high autocorrelation, which may
cause spectrum0() to crash. A more robust estima-
tor, based the best-fitting autoregressive model, is
provided by the function spectrum0.ar().

One of the most important uses of
spectrum0.ar() is in the function effectiveSize().
This answers the question “How many independent
samples from the posterior distribution contain the
same amount of information?”. In the example illus-
trated in Figure 1 there are 3000 sampled iterations,
but the “effective size” of the sample is only 6.9,
clearly inadequate for any further inference.

Formal convergence tests

There are four formal convergence tests at the core of
the coda package. A brief explanation of the underly-
ing theory is given on the corresponding help pages
along with appropriate references, so the details will
not be repeated here. Briefly, geweke.diag() and
gelman.diag() aim to diagnose lack of convergence
using a single chain and multiple parallel chains, re-
spectively. These functions also have graphical ver-
sions that show how convergence is improved by
discarding extra burn-in iterations at the beginning
of the series. The other two diagnostics are de-
signed for run length control based on accurate es-
timation of the mean (heidel.diag()) or a quantile
(raftery.diag()).

Outlook

Although the coda package continues to evolve in-
crementally, its core functionality has not substan-
tially changed in the last 12 years. This is largely due
to the lack of integration between between coda and
the underlying MCMC engine, which means that
coda must fall back on post hoc analysis of the out-
put, assuming nothing about how it was generated.

Closer integration of MCMC engines into R would
enable R functions to interrogate the transition kernel
of the Markov chain and get better estimates of con-
vergence rates. Conversely, run length control could
be done automatically from R. Both of these changes
would improve the practice of Bayesian data analy-
sis. Currently, the use of MCMC methods imposes
an extra burden on the user to check for nonconver-
gence of the MCMC output before it can be used.
Not only does this create extra work, it is also a dis-
traction from the more important process of model
criticism. Eventually this layer of complexity may be
hidden from the user.

Acknowledgements

Many people have provided useful feedback and ex-
tensions to the coda package. In particular we would
like to thank Deepayan Sarkar, Russel Almond, Dou-
glas Bates and Andrew Martin for their contributions
to coda.

mu alph[1] logtlph logtaps

lo
gt

ap
s

lo
gt

lp
h

al
ph

[1
]

m
u

1

−1

0

Figure 2: Example output from the function
crosscorr.plot

Bibliography

M. K. Cowles. Practical issues in Gibbs sampler im-
plementation with application to Bayesian hierarchical
modelling of clinical trial data. PhD thesis, Division
of Biostatistics, University of Minnesota, 1994. 8

M. K. Cowles and B. P. Carlin. Markov Chain Monte
Carlo diagnostics: a comparative review. J. Am.
Statist. Ass., 91:883–904, 1996. 8

P. Heidelberger and P. D. Welch. A spectral method
for confidence interval generation and run length
control in simulations. Communications of the ACM,
24:233–245, 1981. 10

R News ISSN 1609-3631



Vol. 6/1, March 2006 11

M. Plummer. JAGS 0.90 User Manual. IARC, Lyon,
September 2005. URL http://www-ice.iarc.fr/
~martyn/software/jags. 9

B. J. Smith. The boa package. 2005. URL http:
//www.public-health.uiowa.edu/boa/. 8

D. Spiegelhalter, A. Thomas, N. Best, and W. Gilks.
BUGS 0.5: Bayesian inference Using Gibbs Sampling -
Manual (version ii). Medical Research Council Bio-
statistics Unit, Cambridge, Cambridge, 1995. 8

D. Spiegelhalter, A. Thomas, N. Best, and D. Lunn.
WinBUGS user manual, version 2.0. Medical
Research Council Biostatistics Unit, Cambridge,
Cambridge, June 2004. URL http://www.math.
stat.helsinki.fi/openbugs. 8

Martyn Plummer
International Agency for Research on Cancer
Lyon, France
plummer@iarc.fr

Nicky Best
Department of Epidemiology and Public Health
Faculty of Medecine
Imperial College
London, UK

Kate Cowles
Department of Biostatistics, College of Public Health
The University of Iowa, USA

Karen Vines
Department of Statistics
The Open University
Milton Keynes, UK

Bayesian Software Validation
by Samantha Cook and Andrew Gelman

BayesValidate is a package for testing Bayesian
model-fitting software. Generating a sample from
the posterior distribution of a Bayesian model often
involves complex computational algorithms that are
programmed “from scratch.” Errors in these pro-
grams can be difficult to detect, because the correct
output is not known ahead of time; not all errors
lead to crashes or results that are obviously incor-
rect. Software is often tested by applying it to data
sets where the “right answer” is known or approx-
imately known. Cook et al. (2006) extend this strat-
egy to develop statistical assessments of the correct-
ness of Bayesian model-fitting software; this method
is implemented in BayesValidate. Generally, the val-
idation method involves simulating “true” param-
eter values from the prior distribution, simulating
fake data from the model, performing inference on
the fake data, and comparing these inferences to the
“true” values. Geweke (2004) presents an alternative
simulation-based method for testing Bayesian soft-
ware.

More specifically, let θ(0) represent the “true”
parameter value drawn from the prior distribution
p(θ). Data y are drawn from p(y|θ(0)), and the
posterior sample of size L to be used for inference,
θ(1), . . . ,θ(L), is drawn using the to-be-tested soft-
ware. With this sampling scheme, θ(0) as well as
θ(1), . . . ,θ(L) are, in theory, draws from p(θ|y). If the
Bayesian software works correctly, then, θ(0) should
look like a random draw from the empirical distribu-
tion θ(1), . . . ,θ(L), and therefore the (empirical) pos-
terior quantile of θ(0) with respect to θ(1), . . . ,θ(L)

should follow a Uniform(0, 1) distribution. Testing
the software amounts to testing that the posterior
quantiles for scalar parameters of interest are in fact
uniformly distributed.

One “replication” of the validation simulation
consists of: 1) Generating parameters and data; 2)
generating a sample from the posterior distribution;
and 3) calculating posterior quantiles. Performing
many replications creates, for each scalar param-
eter whose posterior distribution is generated by
the model-fitting software, a collection of quantiles
whose distribution will be uniform if the software
works correctly. If Nrep is the number of replica-
tions and q1, q2, . . . , qNrep are the quantiles for a scalar

parameter, the quantity ∑
Nrep
i=1

(
Φ−1(qi)

)2 will follow
a χ2

Nrep
distribution if the software works correctly,

where Φ−1 represents the inverse normal cumulative
distribution function (CDF). For each scalar parame-
ter, a p-value is then obtained by comparing the sum
of the transformed quantiles with the χ2

Nrep
distribu-

tion. BayesValidate analyzes each scalar parameter
separately, but also creates combined summaries for
each vector parameter; these scalar results and sum-
maries are in the graphical output as well.

BayesValidate performs a specified number of
replications and calculates a p-value for each scalar
parameter. The function returns a Bonferroni-
adjusted p-value and a graphical display of the zθ

statistics, which are the inverse normal CDFs of the
p-values. Figures 1 and 2 show the graphical output
for two versions of a program written to fit a simple
hierarchical normal model with parameters σ2, τ2,
µ, and α1,α2, . . . ,α6; one version correctly samples
from the posterior distribution and one has an error.

R News ISSN 1609-3631

http://www-ice.iarc.fr/~martyn/software/jags
http://www-ice.iarc.fr/~martyn/software/jags
http://www.public-health.uiowa.edu/boa/
http://www.public-health.uiowa.edu/boa/
http://www.math.stat.helsinki.fi/openbugs
http://www.math.stat.helsinki.fi/openbugs
mailto:plummer@iarc.fr

