Vol. 5/2, November 2005

13

R. Bivand. Using the R statistical data analysis lan-
guage on GRASS 5.0 GIS data base files. Computers
& Geosciences, 26:1043-1052, 2000. 9

R. Bivand and A. Gebhardt. Implementing functions
for spatial statistical analysis using the R language.
Journal of Geographical Systems, 3(2):307-317, 2000.
9

V. Gémez-Rubio and A. Lépez-Quilez. RArcInfo: us-
ing GIS data with R. Computers & Geosciences, 31:
1000-1006, 2005. 9

E. Pebesma. Multivariable geostatistics in S: the
gstat package. Computers & Geosciences, 30:683—
691,2004. 9

P. Ribeiro and P. Diggle. geoR: A package for geo-
statistical analysis. R-News, 1(2), 2001. URL:
www.r-project.org, ISSN: 1609-3631. 9

Running Long R Jobs

by Xianhong Xie

For statistical computing, R and S-Plus have been
around for quite some time. As our computational
needs increase, the running time of our programs
can get longer and longer. A simulation that runs
for more than 12 hours is not uncommon these days.
The situation gets worse with the need to run the pro-
gram many times. If one has the access to a cluster
of machines, he or she will definitely want to submit
the programs to different machines, the management
of the submitted jobs could prove to be quite chal-
lenging. Luckily, we have batch systems like Con-
dor (http://www.cs.wisc.edu/condor), PBS (http:
//pbs.mrj.com/service.html), etc. available.

What is Condor?

Condor is a batch processing system for clusters of
machines. It works not only on dedicated servers for
running jobs, but also on non-dedicated machines,
such as PCs. Some other popular batch processing
systems include PBS, which has similar features as
Condor. The results presented in this article should
translate to PBS without much difficulties. But Con-
dor provides some extra feature called checkpoint-
ing, which I will discuss later.

As a batch system, Condor can be divided into
two parts: job management and resource manage-
ment. The first part serves the users who have some
jobs to run. And the second part serves the machines
that have some computing power to offer. Condor

R News

B. Ripley. Spatial statistics in R. R-News, 1(2), 2001.
URL: www.r-project.org, ISSN: 1609-3631. 9

B. Ripley. Spatial Statistics. Wiley, New York, 1981.
11

B. Rowlingson, A. Baddeley, R. Turner, and P. Dig-
gle. Rasp: A package for spatial statistics. In A. Z.
K. Hornik, F. Leisch, editor, Proceedings of the 3rd In-
ternational Workshop on Distributed Statistical Com-
puting (DSC 2003), March 20-22, Vienna, Austria.,
2003. ISSN 1609-395X. 12

Edzer Pebesma
e.pebesma@geog.uu.nl

Roger Bivand

Norwegian School of Economics and Business Adminis-
tration

Roger.Bivand@nhh.no

with Condor DAG

matches the jobs and machines through the ClassAd
mechanism which, as indicated by its name, works
like the classified ads in the newspapers.

The machine in the Condor system could be a
computer sitting on somebody else’s desk. It serves
not only the Condor jobs but also the primary user
of the computer. Whenever someone begins using
the keyboard or mouse, the Condor job running on
the computer will get preempted or suspended de-
pending on how the policy is set. For the first case,
the memory image of the evicted job can be saved to
some servers so that the job can resume from where
it left off once a machine is available. Or the image is
just discarded, and the job has to start all over again
after a machine is available. The saving/resuming
mechanism is called checkpointing, which is only
available with the Condor Standard universe jobs.
To be able to use this feature, one must have access
to the object code files for the program, and relink
the object code against the Condor library. There are
some restrictions on operations allowed in the pro-
gram. Currently these preclude creating a Standard
universe version of R.

Another popular Condor universe is the Vanilla
universe, under which most batch ready jobs should
be able to run. One doesn’t need to have access to
the object code files, nor is relinking involved. The
restrictions on what one can do in one’s programs
are much less too. Anything that runs under the
Standard universe should be able to run under the
Vanilla universe, but one loses the nice feature of
checkpointing.

Condor supports parallel computing applications

ISSN 1609-3631


mailto:e.pebesma@geog.uu.nl
mailto:Roger.Bivand@nhh.no
http://www.cs.wisc.edu/condor
http://pbs.mrj.com/service.html
http://pbs.mrj.com/service.html

Vol. 5/2, November 2005

14

with 2 universes called PVM and MPI. In addition, it
has one universe for handling jobs with dependen-
cies, one universe that extends Condor to grid com-
puting, and one universe specifically for Java appli-
cations.

Condor in Action

The typical steps for running a Condor job are:
preparing the programs to make them batch ready,
creating Condor submit file(s), submitting the jobs to
Condor, checking the results. An example is given in
the following.

Suppose we have to run some simulations; each
of them accepts one parameter i which controls
how many iterations needs to be done. To dis-
tribute these simulations to different machines and to
make the management of jobs easier, one could con-
sider using Condor. The Condor submit file (named
Rjobs.submit) for the jobs contains

Universe = vanilla
Executable = /path/to/R
Getenv = true
Arguments = --vanilla
Input = foo.R
Error = foo.err
Log = foo.log
Environment = i=20
Output = foo_1l.out
Queue

Environment = i=25
Output = foo_2.out
Queue

Environment = i=30
Output = foo_3.out
Queue

Note in the submit file, there are 2 occurrences of
vanilla. The first one is the Condor universe under
which the R jobs run. The second occurrence tells R
not to load the initialization files and not to save the
".RData’ file, among other things. We let all the jobs
shared the same log file and error file to reduce the
number of files generated by Condor. To pass differ-
ent inputs to the R code, we used one environmental
variables i, which can be retrieved in R with i <-
as.numeric(Sys.getenv("i")). To submit the jobs
to Condor, one can do

% condor_submit Rjobs.submit
Submitting job(s)...

Logging submit event(s)...

3 job(s) submitted to cluster 6.

The output shows 3 jobs were submitted to one clus-
ter, the submit events being logged in the given log
file. To check the Condor queue, one can do

R News

% condor_q

-- Submitter: gaia.stat.wisc.edu : <128.105.5.24:34459> : ...

ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
6.0 xie 5/17 15:27 0+00:00:00 I 0 0.0 R --vanilla
6.1 xie 5/17 15:27 0+00:00:00 I 0 0.0 R --vanilla
6.2 xie 5/17 15:27 0+00:00:00 I 0 0.0 R --vanilla

3 jobs; 3 idle, O running, O held

The jobs are all idle at first. When they are finished,
the Condor queue will become empty and one can
check the results of the jobs.

Why Use Condor DAG?

Due to the restrictions of Condor, there is no Con-
dor Standard universe version of R. This means R can
only be run under the Vanilla universe of Condor. In
the scenario described before, long-running Vanilla
jobs could be evicted many times without making
any progress. But when we divide the big jobs into
smaller ones (say 3 four-hour jobs instead of one 12-
hour job), there is a much better chance that all the
smaller jobs will finish. Since the smaller jobs are
parts of the big job, there are usually some depen-
dencies between them. The Condor Directed Acyclic
Graph (DAG) system was created to handle Condor
jobs with dependencies.

Brief Description of Condor DAG

In a Condor DAG, each node represents a Condor
job, which is specified by a Condor submit file. The
whole graph is specified by a DAG file, where the
lists of the nodes, relationships between the nodes,
macro variables for each node, and other things are
described. When a DAG job is submitted to Condor,
Condor deploys the parent jobs in the DAG first; a
child job is not deployed until all its parents have
been finished. Condor does this for all the jobs in
the DAG file.

An Example of R and Condor DAG

Here is a fake example in which a big R job is di-
vided into 3 parts. We suppose they can only be run
sequentially. And we want to replicate the sequence
100 times. The Condor DAG file will look like this

Job Al Rjob_stepl.submit
Job Bl Rjob_step2.submit
Job C1 Rjob_step3.submit
Job A2 Rjob_stepl.submit
Job B2 Rjob_step2.submit
Job C2 Rjob_step3d.submit

Parent A1 Child B1
Parent B1 Child Ci

ISSN 1609-3631



Vol. 5/2, November 2005

15

Vars A1 i="1"
Vars B1 i="1"
Vars C1 i="1"

Notice in the DAG file, we let all the R jobs for
the same step share one submit file. And we pass a
macro variable i to each job to identify which repli-
cate the job belongs to. The submit file for step one
of the replicate looks like this

Universe = vanilla
Executable = /path/to/R
Arguments = --vanilla

Input = foo_test_stepl.R
Getenv = true

Environment = i=$(i)

Error = foo_test.err

Log = foo_test.log
Notification = never

Queue

In the submit file, we used the macro substitu-
tion facility $(var) provided by Condor. The envi-
ronment variable i can be retrieved in R as before.
This variable is used in generating the names of the
files for input and output within the R code. Step 2
of one replicate will read the data generated by step
1 of the same replicate. So is the case with step 3 and
step 2 of the same replicate. We set Notification to
be never in the submit file to disable excessive notifi-
cation from Condor, because we have 100 replicates.

To run the DAG job we just created, we can use
the following command

condor_submit_dag foo_test.dag

say, where ‘foo_test.dag’ is the name of the DAG file.

To check how the DAG jobs are doing, we use the
command condor_q -dag. If one wants to remove
all the DAG jobs for some reason, he or she can do
the following condor_rm dagmanid, where dagmanid
is the id of the DAG manager job that controls all the
DAG jobs. Condor starts one such job for each DAG
job submitted via condor_submit_dag.

Generating DAG File with R Script

Notice the DAG file given before has a regular struc-
ture. To save the repetitive typing, a little R scripting
is in order here. The R code snippet for generating
the DAG file is given in the following.

R News

con <- file("foo_test.dag", "wt")
for (i in 1:100) {
cat("Job\tA", i, "\tRjob_stepl.submit\n",

sep="", file=con)
cat("Job\tB", i, "\tRjob_step2.submit\n",
sep="", file=con)
cat("Job\tC", i, "\tRjob_step3.submit\n",
sep="", file=con)
}
close(con)

Other Ways of Parallel Computing

In the article, we discussed a way of dividing big
R jobs into smaller pieces and distributing indepen-
dent jobs to different machines. This in principle
is parallel computing. Some other popular mecha-
nisms for doing this are PVM and MPI. There are R
packages called Rmpi and rpvm, which provide in-
terfaces for MPI and PVM respectively in R. It is un-
wise to argue which way is better, Condor DAG or
Rmpi/rpvm. Our way of doing parallel computing
should be considered as an alternative to the existing
methods. Condor has 2 universes for PVM jobs and
MPT jobs too. But they require the code be written in
Cor C++.

Conclusion

Condor is a powerful tool for batch processing. DAG
is a very nice feature of Condor (especially DAG’s
potential for parallel computing). To run the statisti-
cal computing jobs in R that take very long to finish,
we can divide the R jobs into smaller ones and make
use of the DAG capability of Condor extensively. The
combination of Condor DAG and R makes the man-
aging of R jobs easier. And we can get more long
running R jobs done under Condor in a reasonable
amount of time.

Thanks

The author would like to thank Dr. Douglas Bates for
suggesting that I write this article.

Xianhong Xie

University of Wisconsin-Madison, USA
xie@stat.wisc.edu

ISSN 1609-3631


mailto:xie@stat.wisc.edu

