
Vol. 5/2, November 2005 9

Classes and methods for spatial data in R
by Edzer J. Pebesma and Roger S. Bivand

R has been used for spatial statistical analysis for a
long time: packages dedicated to several areas of
spatial statistics have been reviewed in Bivand and
Gebhardt (2000) and Ripley (2001), and more recent
packages have been published (Ribeiro and Diggle,
2001; Pebesma, 2004; Baddeley and Turner, 2005). In
addition, R links to GIS have been developed (Bi-
vand, 2000, 2005; Gómez-Rubio and López-Quílez,
2005). A task view of spatial statistical analysis is be-
ing maintained on CRAN.

Many of the spatial packages use their own data
structures (classes) for the spatial data they need or
create, and provide methods, e.g. for plotting them.
However, up to now R has been lacking a full-grown
coherent set of classes and methods for the major
spatial data types: points, lines, polygons, and grids.
Package sp, available on CRAN since May 2005, has
the ambition to fill this gap.

We believe there is a need for sp because

(i) with support for a single package for spatial
data, it is much easier to go from one spatial
statistics package to another. Its classes are ei-
ther supported directly by the packages, read-
ing and writing data in the new spatial classes,
or indirectly e.g. by supplying data conver-
sion between sp and the package in an inter-
face package. This requires one-to-many links,
which are easier to provide and maintain than
many-to-many links,

(ii) the new package provides a well-tested set
of methods (functions) for plotting, printing,
subsetting and summarizing spatial objects, or
combining (overlay) spatial data types,

(iii) packages with interfaces to GIS and geographic
(re)projection code support the new classes,

(iv) the new package provides Lattice plots, con-
ditioning plots, plot methods that combine
points, lines, polygons and grids with map el-
ements (reference grids, scale bars, north ar-
rows), degree symbols (52◦N) in axis labels, etc.

This article introduces the classes and methods
provided by sp, discusses some of the implementa-
tion details, and the state and potential of linking sp
to other packages.

Classes and implementation

The spatial classes in sp include points, lines, poly-
gons and grids; each of these structures can have
multiple attribute variables, describing what is actu-
ally registered (e.g. measured) for a certain location

or area. Single entries in the attribute table may cor-
respond to multiple lines or polygons; this is useful
because e.g. administrative regions may consist of
several polygons (mainland, islands). Polygons may
further contain holes (e.g. a lake), polygons in holes
(island in lake), holes in polygons in holes, etc. Each
spatial object registers its coordinate reference sys-
tem when this information is available. This allows
transformations between latitude/longitude and/or
various projections.

The sp package uses S4 classes, allowing for
the validation of internal consistency. All Spatial
classes in sp derive from an abstract class Spatial,
which only holds a bounding box and the projec-
tion or coordinate reference system. All classes are
S4 classes, so objects may be created by function
new, but we typically envisage the use of helper
functions to create instances. For instance, to create
a SpatialPointsDataFrame object from the meuse
data.frame, we might use:

> library(sp)

> data(meuse)

> coords = SpatialPoints(meuse[c("x", "y")])

> meuse = SpatialPointsDataFrame(coords, meuse)

> plot(meuse, pch=1, cex = .05*sqrt(meuse$zinc))

the plot of which is shown in figure 1.

Figure 1: Bubble plot of top soil zinc concentration

The function SpatialPoints() creates a
SpatialPoints object. SpatialPointsDataFrame()
merges this object with an attribute table to creates
an object of class SpatialPointsDataFrame.

R News ISSN 1609-3631

http://cran.r-project.org/src/contrib/Views/Spatial.html

Vol. 5/2, November 2005 10

data type class attributes extends
points SpatialPoints none Spatial*
points SpatialPointsDataFrame AttributeList SpatialPoints*
pixels SpatialPixels none SpatialPoints*
pixels SpatialPixelsDataFrame AttributeList SpatialPixels*

SpatialPointsDataFrame**
full grid SpatialGrid none SpatialPixels*
full grid SpatialGridDataFrame AttributeList SpatialGrid*
line Line none
lines Lines none Line list
lines SpatialLines none Spatial*, Lines list
lines SpatialLinesDataFrame data.frame SpatialLines*
polygon Polygon none Line*
polygons Polygons none Polygon list
polygons SpatialPolygons none Spatial*, Polygons list
polygons SpatialPolygonsDataFrame data.frame SpatialPolygons*

* by direct extension; ** by setIs() relationship;

Table 1: Overview of the spatial classes provided by sp. Classes with topology only are extended by classes
with attributes.

An alternative to the calls to SpatialPoints()
and SpatialPointsDataFrame() above is to use
coordinates<-, as in

> coordinates(meuse) = c("x", "y")

Reading polygons from a shapefile (a com-
monly used format by GIS) can be done by the
readShapePoly function in maptools, which de-
pends on sp. It returns an object of class
SpatialPolygonsDataFrame, for which the plot
method is in sp. An example that uses a shapefile
provided by package maptools is:

> library(maptools)

> fname = system.file("shapes/sids.shp",

+ package="maptools")

> p4s = CRS("+proj=longlat +datum=NAD27")

> nc = readShapePoly(fname, proj4string=p4s)

> plot(nc, axes = TRUE, col=grey(1-nc$SID79/57))

for which the plot is shown in figure 2. The function
CRS defines the coordinate reference system.

84°W 82°W 80°W 78°W 76°W

34
°N

35
°N

36
°N

37
°N

Figure 2: North Carolina sudden infant death (SID)
cases in 1979 (white 0, black 57)

An overview of the classes for spatial data in sp is
given in Table 1. It shows that the points, pixels and
grid classes are highly related. We decided to imple-
ment two classes for gridded data: SpatialPixels

for unordered points on a grid, SpatialGrid for a
full ordered grid, e.g. needed by the image com-
mand. SpatialPixels store coordinates but may be
efficient when a large proportion of the bounding
box has missing values because it is outside the study
area (‘sparse’ images).

A single Polygons object may consist of multiple
Polygon elements, which could be islands, or holes,
or islands in holes, etc. Similarly, a Lines entity may
have multiple Line segments: think of contour lines
as an example.

This table also shows that several classes store
their attributes in objects of class AttributeList,
instead of data.frames, as the class name would
suggest. An AttributeList acts mostly like a
data.frame, but stores no row.names, as row names
take long to compute and use much memory to store.
Consider the creation of a 1000× 1000 grid:

> n = 1000

> df = data.frame(expand.grid(x=1:n, y=1:n),

+ z=rnorm(n * n))

> object.size(df)

[1] 56000556 # mostly row.names!

> library(sp)

> coordinates(df) = ~x+y

> object.size(df)

[1] 16002296 # class SpatialPointsDataFrame

> gridded(df) = TRUE

> object.size(df)

[1] 20003520 # class SpatialPixelsDataFrame

> fullgrid(df) = TRUE

> object.size(df)

[1] 8003468 # class SpatialGridDataFrame

Using data.frame as attribute tables for moderately
sized grids (e.g. Europe on a 1 km × 1 km grid) be-
came too resource intensive on a computer with 2 Gb
RAM, and we decided to leave this path.

R News ISSN 1609-3631

Vol. 5/2, November 2005 11

method what it does
[select spatial items (points, lines, polygons, or rows/cols from a grid) and/or

attributes variables
$, $<-, [[, [[<- retrieve, set or add attribute table columns
spsample sample points from a set of polygons, on a set of lines or from a gridded area,

using the simple sampling methods given in Ripley (1981)
spplot lattice (Trellis) plots of spatial variables (figure 3; see text)
bbox give the bounding box
proj4string get or set the projection (coordinate reference system)
coordinates set or retrieve coordinates
polygons set or retrieve polygons
gridded verify whether an object is a grid, or convert to a gridded format
dimensions get the number of spatial dimensions
coerce convert from one class to another
transform (re-)project spatial coordinates (uses spproj)
overlay combine two different spatial objects (see text)
recenter shift or re-center geographical coordinates for a Pacific view

Table 2: Methods provided by package sp

For classes SpatialLinesDataFrame and
SpatialPolygonsDataFrame we expect that the spa-
tial entities corresponding to each row in the at-
tribute table dominate memory usage; for the other
classes it is reversed. If row names are needed in a
points or gridded data structure, they must be stored
as a (character) attribute column.

SpatialPolygons and SpatialLines objects
have IDs stored for each entity. For these classes,
the ID is matched to attribute table IDs when a
Spatial*DataFrame object is created. For points,
IDs are matched when present upon creation. If
the matrix of point coordinates used in creating
a SpatialPointsDataFrame object has rownames,
these are matched against the data frame row.names,
and subsequently discarded. For points and both
grid classes IDs are not stored because, for many
points, this wastes processing time and memory. ID
matching is an issue for lines and polygons when
topology and attributes often come from different
sources (objects, files). Points and grids are usually
created from a single table, matrix, or array.

Methods

Beyond the standard print, plot and summary meth-
ods, methods that sp provides for each of the classes
are shown in table 2.

Some of these methods are much for user conve-
nience, to make the spatial data objects behave just
like data.frame objects where possible; others are
specific for spatial topology. For example, the over-
lay function can be used to retrieve the polygon in-
formation on point locations, or to retrieve the infor-
mation for a collection of points falling inside each
of the polygons. Alternatively, points and grid cells
may be overlayed, resulting in a point-in-gridcell

operation. Other overlay methods may be imple-
mented when they seem useful. Method summary
shows the data class, bounding box, projection infor-
mation, number of spatial entities, and a summary of
the attribute table if present.

Trellis maps

When plotting maps one usually needs to add spatial
reference elements such as administrative bound-
aries, coastlines, cities, rivers, scale bars or north ar-
rows. Traditional plots allow the user to add com-
ponents to a plot, by using lines, points, polygon
or text commands, or by using add=TRUE in plot or
image. Package sp provides traditional plot methods
for e.g. points, lines and image, but has in addi-
tion an spplot command which lets you plot Trel-
lis plots (provided by the lattice package) to produce
plots with multiple maps. Method spplot allows for
addition of spatial elements and reference elements
on all or a selection of the panels.

The example in figure 3 is created by:

> arrow = list("SpatialPolygonsRescale",

+ layout.north.arrow(2),

+ offset = c(-76,34), scale = 0.5, which=2)

> spplot(nc, c("SID74","SID79"),as.table=TRUE,

+ scales=list(draw=T), sp.layout = arrow)

where the arrow object and sp.layout argument en-
sure the placement of a north arrow in the second
panel only.

R News ISSN 1609-3631

Vol. 5/2, November 2005 12

34°N
34.5°N
35°N
35.5°N
36°N
36.5°N

SID74

34°N
34.5°N

35°N
35.5°N

36°N
36.5°N

84°W 82°W 80°W 78°W 76°W

SID79

0

10

20

30

40

50

60

Figure 3: Trellis graph created by spplot

Connections to GIS

On the R-spatial web site (see below) a number of ad-
ditional packages are available, linking sp to several
external libraries or GIS:

spproj allows (re)projection of sp objects,

spgpc allows polygon clipping with sp objects, and
can e.g. check whether polygons have holes,

spgrass6 read and write sp objects from and to a
GRASS 6.0 data base,

spgdal read and write sp objects from gdal data sets:
it provides a "[" method that reads in (part of)
a gdal data and returns an sp grid object.

It is not at present likely that a single package for
interfacing external file and data source formats like
the recommended package foreign will emerge, be-
cause of large and varying external software depen-
dencies.

Connections to R packages

CRAN packages maintained by the sp authors do al-
ready use sp classes: package maptools has code to
read shapefiles and Arc ASCII grids into sp class ob-
jects, and to write sp class objects to shapefiles or Arc
ASCII grids. Package gstat can deal with points and
grids, and will compute irregular block kriging esti-
mates when a polygons object is provided as new-
data (prediction ‘regions’).

The splancs, DCluster, and spdep packages are
being provided with ways of handling sp objects for
analysis, and RArcInfo for reading ArcInfo v. 7 GIS
binary vector E00 files.

Interface packages present which convert to or
from some of the data structures adopted by spatial
statistics packages include spPBS, spmaps; packages
under development are spspatstat, spgeoR, spfields

and spRandomFields. These interface packages de-
pend on both sp and the package they interface to,
and provide methods to deal with sp objects in the
target functions. Whether to introduce dependence
on sp into packages is of course up to authors and
maintainers. The interface framework, with easy in-
stallation from the R-spatial repository on Source-
Forge (see below), is intended to help users who need
sp facilities in packages that do not use sp objects
directly — for example creating an observation win-
dow for spatstat from polygons read from a shape-
file.

Further information and future

The R-spatial home page is

http://r-spatial.sourceforge.net/

Announcements related to sp and interface packages
are sent to the R-sig-geo mailing list.

A first point for obtaining more information on
the classes and methods in sp is the package vignette.
There is also a demo, obtained by

> library(sp)

> demo(gallery)

which gives the plots of the gallery also present at
the R-spatial home page.

Development versions of sp and related pack-
ages are on cvs on sourceforge, as well as interface
packages that are not (yet) on CRAN. An off-CRAN
package repository with source packages and Win-
dows binary packages is available from sourceforge
as well, so that the package installation should be
sufficiently convenient before draft packages reach
CRAN:

> rSpatial = "http://r-spatial.sourceforge.net/R"

> install.packages("spproj", repos=rSpatial)

Acknowledgements

The authors want to thank Barry Rowlingson (whose
ideas inspired many of the methods now in sp, see
Rowlingson et al. (2003)), and Virgilio Gómez-Rubio.

Bibliography

A. Baddeley and R. Turner. Spatstat: an R pack-
age for analyzing spatial point patterns. Jour-
nal of Statistical Software, 12(6):1–42, 2005. URL:
www.jstatsoft.org, ISSN: 1548-7660. 9

R. Bivand. Interfacing GRASS 6 and R. GRASS
Newsletter, 3:11–16, June 2005. ISSN 1614-8746. 9

R News ISSN 1609-3631

http://runhbox voidb@x kern z@ char `discretionary {-}{}{}spatial.sourceforge.net/
http://stat.ethz.ch/mailman/listinfo/r-sig-geo

Vol. 5/2, November 2005 13

R. Bivand. Using the R statistical data analysis lan-
guage on GRASS 5.0 GIS data base files. Computers
& Geosciences, 26:1043–1052, 2000. 9

R. Bivand and A. Gebhardt. Implementing functions
for spatial statistical analysis using the R language.
Journal of Geographical Systems, 3(2):307–317, 2000.
9

V. Gómez-Rubio and A. López-Quílez. RArcInfo: us-
ing GIS data with R. Computers & Geosciences, 31:
1000–1006, 2005. 9

E. Pebesma. Multivariable geostatistics in S: the
gstat package. Computers & Geosciences, 30:683–
691, 2004. 9

P. Ribeiro and P. Diggle. geoR: A package for geo-
statistical analysis. R-News, 1(2), 2001. URL:
www.r-project.org, ISSN: 1609-3631. 9

B. Ripley. Spatial statistics in R. R-News, 1(2), 2001.
URL: www.r-project.org, ISSN: 1609-3631. 9

B. Ripley. Spatial Statistics. Wiley, New York, 1981.
11

B. Rowlingson, A. Baddeley, R. Turner, and P. Dig-
gle. Rasp: A package for spatial statistics. In A. Z.
K. Hornik, F. Leisch, editor, Proceedings of the 3rd In-
ternational Workshop on Distributed Statistical Com-
puting (DSC 2003), March 20–22, Vienna, Austria.,
2003. ISSN 1609-395X. 12

Edzer Pebesma
e.pebesma@geog.uu.nl

Roger Bivand
Norwegian School of Economics and Business Adminis-
tration
Roger.Bivand@nhh.no

Running Long R Jobs with Condor DAG
by Xianhong Xie

For statistical computing, R and S-Plus have been
around for quite some time. As our computational
needs increase, the running time of our programs
can get longer and longer. A simulation that runs
for more than 12 hours is not uncommon these days.
The situation gets worse with the need to run the pro-
gram many times. If one has the access to a cluster
of machines, he or she will definitely want to submit
the programs to different machines, the management
of the submitted jobs could prove to be quite chal-
lenging. Luckily, we have batch systems like Con-
dor (http://www.cs.wisc.edu/condor), PBS (http:
//pbs.mrj.com/service.html), etc. available.

What is Condor?

Condor is a batch processing system for clusters of
machines. It works not only on dedicated servers for
running jobs, but also on non-dedicated machines,
such as PCs. Some other popular batch processing
systems include PBS, which has similar features as
Condor. The results presented in this article should
translate to PBS without much difficulties. But Con-
dor provides some extra feature called checkpoint-
ing, which I will discuss later.

As a batch system, Condor can be divided into
two parts: job management and resource manage-
ment. The first part serves the users who have some
jobs to run. And the second part serves the machines
that have some computing power to offer. Condor

matches the jobs and machines through the ClassAd
mechanism which, as indicated by its name, works
like the classified ads in the newspapers.

The machine in the Condor system could be a
computer sitting on somebody else’s desk. It serves
not only the Condor jobs but also the primary user
of the computer. Whenever someone begins using
the keyboard or mouse, the Condor job running on
the computer will get preempted or suspended de-
pending on how the policy is set. For the first case,
the memory image of the evicted job can be saved to
some servers so that the job can resume from where
it left off once a machine is available. Or the image is
just discarded, and the job has to start all over again
after a machine is available. The saving/resuming
mechanism is called checkpointing, which is only
available with the Condor Standard universe jobs.
To be able to use this feature, one must have access
to the object code files for the program, and relink
the object code against the Condor library. There are
some restrictions on operations allowed in the pro-
gram. Currently these preclude creating a Standard
universe version of R.

Another popular Condor universe is the Vanilla
universe, under which most batch ready jobs should
be able to run. One doesn’t need to have access to
the object code files, nor is relinking involved. The
restrictions on what one can do in one’s programs
are much less too. Anything that runs under the
Standard universe should be able to run under the
Vanilla universe, but one loses the nice feature of
checkpointing.

Condor supports parallel computing applications

R News ISSN 1609-3631

mailto:e.pebesma@geog.uu.nl
mailto:Roger.Bivand@nhh.no
http://www.cs.wisc.edu/condor
http://pbs.mrj.com/service.html
http://pbs.mrj.com/service.html

