Vol. 5/1, May 2005

39

PKGNAME = myPkg
RLIBRARY = /tmp/
R =R

install

install: $(RFILES) $(PDFFILES)
@echo ’Installing $(PKGNAME) at $(RLIBRARY)’
@cd ../..; \
$(R) CMD INSTALL -1 $(RLIBRARY) $(PKGNAME)

where the variables ‘PKGNAME’, ‘RLIBRARY” and ‘R’
are specified separately, so that it is easy to change
them for different packages, different locations on
$R_LIBS or different versions of R. These are best put
at the top of the ‘Makefile’. The target install should
be added to the .PHONY line.

Issuing the make install command when every-
thing is up-to-date gives:

debreu) make --dry-run install

echo ’Installing myPkg at /tmp/’

cd ../..; R CMD INSTALL -1 /tmp/ myPkg

debreu), make install

Installing myPkg at /tmp/

* Installing *source* package ’myPkg’ ...

*x R

** inst

** help

>>> Building/Updating help pgs for package ’myPkg’
Formats: text html latex example

* DONE (myPkg)

If some of the files were not up-to-date then they
would have been rebuilt from the original *.nw files
first.

CRAN Task Views

by Achim Zeileis

With the fast-growing list of packages on CRAN (cur-
rently about 500), the following two problems be-
came more apparent over the last years:

1. When a new user comes to CRAN and is look-
ing for packages that are useful for a certain
task (e.g., econometrics, say), which of all the
packages should he/she look at as they might
contain relevant functionality?

2. If it is clear that a collection of packages is use-
ful for a certain task, it would be nice if the full
collection could be installed easily in one go.

The package ctv tries to address both problems by
providing infrastructure for maintained task views
on CRAN:-style repositories. The idea is the follow-
ing: a (group of) maintainer(s) should provide: (a)
a list of packages that are relevant for a specific task
(which can be used for automatic installation) along

R News

Conclusion

The great thing about literate programming is that
there is no arguing with the documentation, since the
documentation actually includes the code itself, pre-
sented in a format that is easy to check. For those
of us who use IXTEX, noweb is a very simple literate
programming tool. I have found using noweb to be a
good discipline when developing code that is mod-
erately complicated. I have also found that it saves
a lot of time when providing code for other people,
because the programmer’s notes and the documen-
tation become one and the same thing: I shudder to
think how I used to write the code first, and then doc-
ument it afterwards.

For large projects, for which the development of
an R package is appropriate, it is often possible to
break the tasks down into chunks, and assign each
chunk to a separate file. At this point the Unix make
utility is useful both for automating the processing
of the individual files, and also for speeding up this
process by not bothering with up-to-date files. The
‘Makefile” that controls this process is almost com-
pletely generic, so that the one described above can
be used in any package which conforms to the out-
line given in the introduction, and which uses the
tags ‘R’, ‘man’ and so on to identify the type of code
chunk in each *.nw file.

Jonathan Rougier
Department of Mathematical Sciences, University of
Durham, UK

J.C.Rougier@durham.ac.uk

with (b) meta-information (from which HTML pages
can be generated) giving an overview of what each
package is doing. Both aspects of the task views are
equally important as is the fact that the views are
maintained. This should provide some quality con-
trol and also provide the meta-information in the jar-
gon used in the community that the task view ad-
dresses.

Using CRAN task views is very simple: the
HTML overviews are available at http://CRAN.
R-project.org/src/contrib/Views/ and the task
view installation tools are very similar to the package
installation tools. The list of views can be queried by
CRAN.views() that returns a list of "ctv" objects:

R> library(ctv)
R> x <- CRAN.views()
R> x

CRAN Task Views

ISSN 1609-3631

mailto:J.C.Rougier@durham.ac.uk
http://CRAN.R-project.org/src/contrib/Views/
http://CRAN.R-project.org/src/contrib/Views/

Vol. 5/1, May 2005

40

Name: Econometrics

Topic: Computational Econometrics
Maintainer: Achim Zeileis

Repository: http://cran.r-project.org

Name: Finance

Topic: Empirical Finance

Maintainer: Dirk Eddelbuettel
Repository: http://cran.r-project.org
Name: Machinelearning

Topic: Machine Learning&Statistical Learning
Maintainer: Torsten Hothorn
Repository: http://cran.r-project.org
Name: gR

Topic: gRaphical models in R
Maintainer: Claus Dethlefsen
Repository: http://cran.r-project.org

R> x[[1]]

CRAN Task View

Name : Econometrics

Topic: Computational Econometrics
Maintainer: Achim Zeileis

Repository: http://cran.r-project.org
Packages: bayesm, betareg, car*, Design,

dse, dynlm, Ecdat, fCalendar,
Hmisc, ineq, its, lmtest*, Matrix,
micEcon, MNP, nlme, quantreg,
sandwich*, segmented, sem,
SparseM, strucchange, systemfit,
tseries*, urca*, uroot, VR,
zicounts, zoo*

(*x = core package)

Note that currently each CRAN task view is as-
sociated with a single CRAN-style repository (i.e.,
a repository which has in particular a src/contrib
structure), future versions of ctv should relax this
and make it possible to include packages from var-
ious repositories into a view, but this is not imple-
mented, yet.

A particular view can be installed subsequently
by either passing its name or the corresponding
"ctv" object to install.views():

R> install.views("Econometrics",

+ 1lib = "/path/to/foo")
R> install.views(x[[1]],
+ 1lib = "/path/to/foo")

An overview of these client-side tools is given on
the manual page of these functions.

Writing a CRAN task is also very easy: all infor-
mation can be provided in a single XML-based for-
mat called .ctv. The .ctv file specifies the name,
topic and maintainer of the view, has an information
section (essentially in almost plain HTML), a list of
the associated packages and further links. For exam-
ples see the currently available views in ctv and also
the vignette contained in the package. All it takes for
a maintainer to write a new task view is to write this
.ctv file, the rest is generated automatically when
the view is submitted to us. Currently, there are task
views available for econometrics, finance, machine
learning and graphical models in R—furthermore,
task views for spatial statistic and statistics in the so-
cial sciences are under development. But to make
these tools more useful, task views for other topics
are needed: suggestions for new task views are more
than welcome and should be e-mailed to me. Of
course, other general comments about the package
ctv are also appreciated.

Achim Zeileis
Wirtschaftsuniversitit Wien, Austria
Achim.Zeileis@R-project.org

Using Control Structures with Sweave

Damian Betebenner

Sweave is a tool loaded by default with the utils
package that permits the integration of R/S with
KIEX. In one of its more prominant applications,
Sweave enables literate statistical practice—where
R/S source code is interwoven with correspond-
ing IATEX formatted documentation (R Development
Core Team, 2005; Leisch, 2002a,b). A particularly ele-
gant implementation of this is the vignette () func-
tion (Leisch, 2003). Another, more pedestrian, use

R News

of Sweave, which is the focus of this article, is the
batch processing of reports whose contents, includ-
ing figures and variable values, are dynamic in na-
ture. Dynamic forms are common on the web where
abase .html template is populated with user specific
data drawn, most often, from a database. The incor-
poration of repetitive and conditional control struc-
tures into the processed files allows for almost limit-
less possibilities to weave together output from R/S
within the confines of a KTEX document and produce
professional quality dynamic output.

ISSN 1609-3631

mailto:Achim.Zeileis@R-project.org

