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Introduction

The likelihood function represents the basic ingre-
dient of many commonly used statistical methods
for estimation, testing and the calculation of confi-
dence intervals. In practice, much application of like-
lihood inference relies on first order asymptotic re-
sults such as the central limit theorem. The approx-
imations can, however, be rather poor if the sample
size is small or, generally, when the average infor-
mation available per parameter is limited. Thanks
to the great progress made over the past twenty-
five years or so in the theory of likelihood inference,
very accurate approximations to the distribution of
statistics such as the likelihood ratio have been devel-
oped. These not only provide modifications to well-
established approaches, which result in more accu-
rate inferences, but also give insight on when to rely
upon first order methods. We refer to these develop-
ments as higher order asymptotics.

One intriguing feature of the theory of higher or-
der likelihood asymptotics is that relatively simple
and familiar quantities play an essential role. The
higher order approximations discussed in this paper
are for the significance function, which we will use
to set confidence limits or to calculate the p-value
associated with a particular hypothesis of interest.
We start with a concise overview of the approxi-
mations used in the remainder of the paper. Our
first example is an elementary one-parameter model
where one can perform the calculations easily, cho-
sen to illustrate the potential accuracy of the proce-
dures. Two more elaborate examples, an application
of binary logistic regression and a nonlinear growth
curve model, follow. All examples are carried out us-
ing the R code of the hoa package bundle.

Basic ideas

Assume we observed n realizations y1, . . . , yn of in-
dependently distributed random variables Y1, . . . , Yn
whose density function f (yi ;θ) depends on an un-
known parameter θ. Let `(θ) = ∑n

i=1 log f (yi ;θ)
denote the corresponding log likelihood and θ̂ =
argmaxθ`(θ) the maximum likelihood estimator. In
almost all applications the parameter θ is not scalar
but a vector of length d. Furthermore, we may
re-express it as θ = (ψ, λ), where ψ is the d0-
dimensional parameter of interest, about which we
wish to make inference, and λ is a so-called nuisance
parameter, which is only included to make the model
more realistic.

Confidence intervals and p-values can be com-
puted using the significance function p(ψ; ψ̂) =
Pr(Ψ̂ ≤ ψ̂;ψ) which records the probability left of
the observed “data point” ψ̂ for varying values of
the unknown parameterψ (Fraser, 1991). Exact elim-
ination of λ, however, is possible only in few special
cases (Severini, 2000, Sections 8.2 and 8.3). A com-
monly used approach is to base inference aboutψ on
the profile log likelihood `p(ψ) = `(ψ, λ̂ψ), which we
obtain from the log likelihood function by replacing
the nuisance parameter with its constrained estimate
λ̂ψ obtained by maximising `(θ) = `(ψ, λ) with re-
spect to λ for fixedψ. Let jp(ψ) = −∂2`p(ψ)/∂ψ∂ψ>
denote the observed information from the profile log
likelihood. Likelihood inference for scalar ψ is typi-
cally based on the

• Wald statistic, w(ψ) = jp(ψ̂)1/2(ψ̂−ψ);

• likelihood root,

r(ψ) = sign(ψ̂−ψ)
[
2{`p(ψ̂)− `p(ψ)}

]1/2 ;

or

• score statistic, s(ψ) = jp(ψ̂)−1/2d`p(ψ)/dψ.

Under suitable regularity conditions on f (y;θ), all of
these have asymptotic standard normal distribution
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up to the first order. Using any of the above statis-
tics we can approximate the significance function by
Φ{w(ψ)}, Φ{r(ψ)} or Φ{s(ψ)}. When d0 > 1, we
may use the quadratic forms of the Wald, likelihood
root and score statistics whose finite sample distribu-
tion is χ2

d0
with d0 degrees of freedom up to the sec-

ond order. We refer the reader to Chapters 3 and 4 of
Severini (2000) for a review of first order likelihood
inference.

Although it is common to treat `p(ψ) as if it were
an ordinary log likelihood, first order approxima-
tions can give poor results, particularly if the dimen-
sion of λ is high and the sample size small. An im-
portant variant of the likelihood root is the modified
likelihood root

r∗(ψ) = r(ψ) +
1

r(ψ)
log {q(ψ)/r(ψ)} , (1)

where q(ψ) is a suitable correction term. Expres-
sion (1) is a higher order pivot whose finite sample
distribution is standard normal up to the third or-
der. As it was the case for its first order counter-
part r, the significance function is approximated by
Φ{r∗(ψ)}, and there is a version of r∗ for multidi-
mensional ψ (Skovgaard, 2001, Section 3.1). More
details about the computation of the q(ψ) correction
term are given in the Appendix.

It is sometimes useful to decompose the modified
likelihood root as

r∗(ψ) = r(ψ) + rinf(ψ) + rnp(ψ),

where rinf is the information adjustment and rnp is the
nuisance parameter adjustment. The first term accounts
for non normality of r, while the second compensates
r for the presence of the nuisance parameter λ. Pierce
and Peters (1992, Section 3) discuss the behaviour of
these two terms in the multiparameter exponential
family context. They find that while rnp is often ap-
preciable, the information adjustment rinf has typi-
cally a minor effect, provided theψ-specific informa-
tion jp(ψ̂) is not too small relative to the dimension
of λ.

A simple example

Suppose that a sample y1, . . . , yn is available from
the Cauchy density

f (y;θ) =
1

π{1 + (y−θ)2} . (2)

The maximum likelihood estimate θ̂ of the unknown
location parameter θ is the value which maximises
the log likelihood function

`(θ; y) = −
n

∑
i=1

log{1 + (yi −θ)2}.

For n = 1, we obtain the exact distribution of θ̂ = y
from (2) as F(θ̂;θ) = F(y;θ) = π−1 arctan(y−θ).

−4 −2 0 2 4

0.0

0.2

0.4

0.6

0.8

1.0

θ

si
gn

ifi
ca

nc
e 

fu
nc

tio
n

Figure 1: Significance functions for the location pa-
rameter of a Cauchy distribution when y = 1.32:
exact (bold), Wald pivot (dotted), r (dashed) and r∗

(solid). The vertical dashed line corresponds to the
null hypothesis θ = 0.

Assume that y = 1.32 was observed. In Figure 1
we compare the exact significance function p(θ; y) =
Pr(Y ≤ y;θ) (bold line) to the two first order approx-
imations obtained from the Wald statistic

w(θ) =
√

2(y−θ),

(dotted line), and from the likelihood root

r(θ) = sign(θ̂−θ)
[
2 log{1 + (y−θ)2}

]1/2
,

(dashed line). We also show the third order approx-
imation Φ{r∗(θ)} (solid line). Since this is a location
model and there is no nuisance parameter, the statis-
tic q(θ) in (1) is the score statistic

s(θ) =
√

2(y−θ)/{1 + (y−θ)2}
(see formula (6) in the Appendix). The vertical
dashed line corresponds to the null hypothesis that
θ = 0. The exact p-value is 0.413, while the first
and third order approximations yield 0.0619 (Wald),
0.155 (r) and 0.367 (r∗). The r∗ statistic is strikingly
accurate, while the first order approximations are
very poor. This is surprising if we consider that the
score function is not monotonic in y and that only
one observation is available. Figure 2 summarises
the R code used to generate Figure 1 and obtain the
above p-values.

Suppose now that we observed a sample of size
n = 15 from the Student t distribution with 3 de-
grees of freedom. It is no longer possible to derive
the exact distribution of the maximum likelihood es-
timator θ̂, but we may use the code provided in the
marg package of the hoa package bundle to compute
the p-values for testing the significance of the loca-
tion parameter.
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## likelihood pivots

> wald.stat <- function(theta, y) {

+ sqrt(2) * (y - theta) }

> lik.root <- function(theta, y) {

+ sign(y - theta) * sqrt( 2 * log(1 + (y - theta)^2) ) }

> score.stat <- function(theta, y) {

+ ( sqrt(2) * (y - theta) )/( 1 + (y - theta)^2 ) }

> rstar <- function(theta, y) {

+ lik.root(theta, y) + 1/lik.root(theta, y) * log( score.stat(theta, y)/lik.root(theta, y) ) }

## significance functions : Figure 1

> theta.seq <- seq(-4, 4, length = 100)

> par( las = 1, mai = c(0.9, 0.9, 0.2, 0.2) )

> plot( theta.seq, pcauchy( q = 1.32 - theta.seq ), type = "l", lwd = 2, ylim = c(0,1),

+ xlab = expression(theta), ylab = "significance function", cex.lab = 1.5, cex.axis = 1.5 )

> lines( theta.seq, pnorm( wald.stat(theta.seq, 1.32) ), lty = "dotted" )

> lines( theta.seq, pnorm( lik.root(theta.seq, 1.32) ), lty = "dashed" )

> lines( theta.seq, pnorm( rstar(theta.seq, 1.32) ), lty = "solid" )

> abline( v = 0, lty = "longdash" )

## p-values

> 2 * ( min( tp <- pt(1.32, df = 1), 1 - tp ) )

> 2 * ( min( tp <- pnorm( wald.stat(0, 1.32) ), 1 - tp ) )

> 2 * ( min( tp <- pnorm( lik.root(0, 1.32) ), 1 - tp ) )

> 2 * ( min( tp <- pnorm( rstar(0, 1.32) ), 1 - tp ) )

Figure 2: R code for drawing Figure 1 and calculating the p-values for testing the significance of the location
parameter θ of a Cauchy distribution when y = 1.32.

## simulated data
> library(marg)
> set.seed(321)
> y <- rt(n = 15, df = 3)
> y.rsm <- rsm(y ~ 1, family = student(3))
> y.cond <- cond(y.rsm, offset = 1)
> summary(y.cond, test = 0)

The previous set of instructions yields the p-values
0.282 (Wald), 0.306 (r) and 0.354 (r∗). The difference
between first order and higher order approximations
is slightly smaller than it was the case before. For this
particular model a sample size of n = 15 still does
not provide enough information on the scalar param-
eter θ to wipe out completely the effect of higher or-
der corrections.

Higher order asymptotics in R

hoa is an R package bundle which implements higher
order inference for three widely used model classes:
logistic regression, linear non normal models and
nonlinear regression with possibly non homoge-
neous variance. The corresponding code is organ-
ised in three packages, namely cond, marg and nlreg.
We already saw a (very elementary) application of
the marg code. The two examples which follow will
give a glimpse of the use of the routines in cond
and nlreg. Attention is restricted to the calculation
of p-values and confidence intervals, although sev-

eral routines for accurate point estimation and model
checking are also available. The hoa bundle includes
a fourth package, called sampling, which we will not
discuss here. It implements a Metropolis-Hastings
sampler which can be used to simulate from the
conditional distribution of the higher order statistics
considered in marg.

The hoa package bundle will soon be available on
CRAN. More examples of applications, and gener-
ally of the use of likelihood asymptotics, are given in
Brazzale et al. (to appear).

Example 1: Binary data

Collet (1998) gives a set of binary data on the pres-
ence of a sore throat in a sample of 35 patients un-
dergoing surgery during which either of two devices
was used to secure the airway. In addition to the
variable of interest, device type (1=tracheal tube or
0=laryngeal mask), there are four further explana-
tory variables: the age of the patient in years, an in-
dicator variable for sex (1=male, 0=female), an indi-
cator variable for lubricant use (1=yes, 0=no) and
the duration of the surgery in minutes. The obser-
vations form the data frame airway which is part of
the hoa bundle.

A natural starting point for the analysis is a logis-
tic regression model with success probability of the
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form

Pr(Y = 1;β) =
exp(x>β)

1 + exp(x>β)
,

where x represents the explanatory variables associ-
ated with the binary response Y (1=sore throat and
0=no sore throat). The following set of instructions
fits this model to the data with all five explanatory
variables included.

## binomial model fit
> airway.glm <- glm( formula(airway),
+ family = binomial, data = airway )
> summary( airway.glm )

[omitted]

Coefficients:
Estimate Std. Error z value Pr(>|z

(Intercept) -2.75035 2.08914 -1.316 0.18
age 0.02245 0.03763 0.597 0.55
sex1 0.32076 1.01901 0.315 0.75
lubricant1 0.08448 0.97365 0.087 0.93
duration 0.07183 0.02956 2.430 0.01
type1 -1.62968 0.94737 -1.720 0.08

[omitted]

The coefficient of device type is only marginally sig-
nificant.

As in the previous example we may wonder
whether the sample size is large enough to allow us
to rely upon first order inference. For the airway data
we have n = 35 and p = 5, so we might expect
higher order corrections to the usual approximations
to have little effect. We can check this using the rou-
tines in the cond package.

## higher order inference
> library(cond)
> airway.cond <- cond( airway.glm,
+ offset = type1 )
> summary( airway.cond )
# produces 95% confidence intervals

As our model is a canonical exponential family,
the correction term q(ψ) in (1) involves the Wald
statistic w(ψ) plus parts of the observed informa-
tion matrix (see formula (5) in the Appendix). The
95% confidence intervals obtained from the Wald
pivot and from the likelihood root are respectively
(−3.486, 0.227) and (−3.682, 0.154). The third or-
der statistic r∗ yields a 95% confidence interval of
(−3.130, 0.256). First and third order results are
rather different, especially with respect to the lower
bound.
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Figure 3: airway data analysis: profile plots of the
pivots w(ψ) (dashed line), r(ψ) (solid line) and r∗(ψ)
(bold line), whereψ is the coefficient of the covariate
device type.

Figure 3 plots the profiles of the first and third order
pivots w(ψ) (dashed line), r(ψ) (solid line) and r∗(ψ)
(bold line). The correction term q(ψ) is particularly
significant for values ofψ belonging to the lower half
of the confidence interval. The nuisance parameter
correction is rnp = 0.51, while rinf = 0.059 is about
ten times smaller.

Example 2: Nonlinear regression

A simple illustration of nonlinear regression is Exam-
ple 7.7 of Davison and Hinkley (1997), which refers
to the calcium data of package boot. This data set
records the calcium uptake (in nmoles/mg) of cells y
as a function of time x (in minutes), after being sus-
pended in a solution of radioactive calcium. There
are 27 observations in all. The model is

yi = β0{1− exp(−β1xi)}+σiεi , (3)

whereβ0 andβ1 are unknown regression coefficients
and the error term εi ∼ N(0, 1) is standard normal.
We complete the definition of model (3) by allowing
the response variance σ2

i = σ2(1 + xi)γ to depend
nonlinearly on the time covariate through the two
variance parameters γ and σ2.

Figure 4 gives the R code for the analysis. The
variables cal and time represent respectively the cal-
cium uptake and suspension time. Model (3) is fitted
by maximum likelihood using the nlreg routine of
package nlreg, which yields β̂0 = 4.317 (s.e. 0.323),
β̂1 = 0.207 (s.e. 0.036), γ̂ = 0.536 (s.e. 0.320), and
log σ̂2 = −2.343 (s.e. 0.634). Note that the base-
line variance σ2 is fitted on the logarithmic scale.
This does not affect inference based on the r and r∗

statistics, which are parametrisation invariant, and
ensures positive values forσ2 when the Wald statistic

1Technical details are omitted from the output.
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> library(boot)

> library(nlreg)

## maximum likelihood fit

> calcium.nl <- nlreg( cal ~ b0 * (1 - exp(-b1 * time)), weights = ~ (1 + time)^g,

+ data = calcium, start = c(b0 = 4, b1 = 0.1, g = 0) )

> summary( calcium.nl ) # yields estimates and standard errors

## pivot profiling for \gamma

> calcium.prof <- profile( calcium.nl, offset = g )

> summary( calcium.prof )

Two-sided confidence intervals for g

lower upper

r* - Fr (0.95) -0.14340 1.191

r* - Sk (0.95) -0.14320 1.190

r (0.95) -0.12441 1.154

Wald (0.95) -0.08991 1.163

Estimate Std. Error

g 0.5364 0.3196

[omitted]

## inference on proportion of maximum

> calcium.nl <- nlreg( cal ~ b0 * (1 - exp(- log(1 + exp(psi)) * time / 15)),

+ data = calcium, start = c(b0 =4.3, psi =2) )

> calcium.prof <- profile( calcium.nl, offset = psi )

> calcium.sum <- summary( calcium.prof )

> exp(calcium.sum$CI) / (1 + exp(calcium.sum$CI)) # 95% confidence intervals for \pi

## profile and contour plots : Figure 5

> calcium.prof <- profile( calcium.nl )

> par( las = 1, mai = c(0.5, 0.5, 0.2, 0.2) )

> contour( calcium.prof, alpha = 0.05, cl1 = "black", cl2 = "black", lwd2 = 2 )

Figure 4: calcium uptake data analysis: R code for model fitting and pivot profiling for different parameters
of interest (variance parameter γ and “proportion of maximum” π).

is used. Figure 4 shows also how to use the profile
method of the nlreg package to set various first and
higher order 95% confidence intervals for the vari-
ance parameter γ.1 A difficulty we had not to face in
the previous two examples is that it is no longer pos-
sible to calculate the correction term in (1) exactly.
The profile function implements two slightly dif-
ferent versions of the higher order pivot r∗ which we
obtain by using the two approximations of q(ψ) dis-
cussed in the Appendix. The four statistics agree in
letting us question the heterogeneity of the response
variance.

Davison and Hinkley (1997, p. 356) consider not
only inference on the nonlinear mean function, but
also on other aspects of the model such as the
“proportion of maximum”, π = 1 − exp(−β1x).
For x = 15 minutes they give the estimate π̂ =
0.956 and the associated 95% bootstrap confidence
interval (0.83, 0.98). We may obtain the corre-
sponding first and higher order likelihood analogues
by reparametrizing the mean response curve into

(π ,β0) and re-running the whole analysis. This time
we assume that the response variance is homoge-
neous. Because of the constraint that π must lie
in the interval (0, 1), we actually fit the model for
ψ = log{π/(1− π)} and back-transform to the orig-
inal scale by π = exp(ψ)/{1 + exp(ψ)}. This yields
the intervals (0.87, 0.99) and (0.88, 0.99) for respec-
tively the Wald and likelihood root statistics and
(0.87, 0.99) for both versions of r∗, which is in agree-
ment with the bootstrap simulation.

The profile method of the nlreg package pro-
vides also all elements needed to display graphi-
cally a fitted nonlinear model, as done for instance
in Figure 5 with respect to the second model fit. The
contour method of the nlreg package represents,
in fact, an enhanced version of the original algo-
rithm by Bates and Watts (1988, Chapter 6), to which
we refer the reader for the interpretation of these
plots. The dashed, solid and bold lines represent re-
spectively the Wald pivot, the likelihood root r and
Skovgaard’s (1996) approximation to the r∗ statistic
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Figure 5: calcium uptake data analysis: profile plots and profile pair sketches for the parameters β0, ψ and
logσ2 using the Wald statistic (dashed), the likelihood root r (solid) and Skovgaard’s (1996) approximation to
r∗ (bold).

(see the Appendix). The bivariate contour plots in
the lower triangle are plotted on the original scale,
whereas the ones in the upper triangle are on the
r scale. Figure 5 highlights different aspects of the
model fit. First, the maximum likelihood estimate
of logσ2 is biased downwards, which we can tell
from the fact the corresponding r∗ profile is shifted
to the right of r. Otherwise, there does not seem to
be a huge difference between first and higher order
methods as the corresponding profiles and contours
are not too different. The finite sample estimates of
β0 and ψ are strongly correlated, while they are al-
most independent of log σ̂2. The contours of r(ψ)
and r∗(ψ) are close to elliptic which indicates that
the log likelihood function is not too far from being
quadratic. A further indication for a small curvature
effect due to parametrisation is that the contours on
the original and on the r scale look similar.
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Appendix: q(ψ) correction term

In this appendix we give the general expression of
the correction term q(ψ) in (1) and the explicit for-
mulae for two special model classes, that is, linear ex-
ponential families and regression-scale models. We
will furthermore discuss two ways of approximating
q(ψ) in case we cannot calculate it explicitly.

Basic expression

Let `(θ) = `(ψ, λ) be the log likelihood function,
θ̂ = (ψ̂, λ̂) the maximum likelihood estimator of the
d-dimensional parameter θ = (ψ, λ), and j(θ) =
−∂2`(θ)/∂θ∂θ> the d× d observed information ma-
trix. Denote λ̂ψ the constrained maximum likeli-
hood estimator of the nuisance parameter λ given
the value of the scalar parameter of interest ψ. Write
jλλ(θ) the corner of j(θ) = j(ψ, λ) which corre-
sponds to λ, and θ̂ψ = (ψ, λ̂ψ).
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The basic expression for q(ψ) is

q(ψ) =
|`;θ̂(θ̂)− `;θ̂(θ̂ψ) `λ> ;θ̂(θ̂ψ)|{

| jλλ(θ̂ψ)|| j(θ̂)|
}1/2

, (4)

where | · | indicates determinant (Severini, 2000, Sec-
tion 7.4.1). The d× d matrix appearing in the numer-
ator of q(ψ) consists of a column vector formed using
so-called sample space derivatives

`;θ̂(θ) =
∂`(θ; θ̂|a)

∂θ̂
,

and a d× (d− 1) matrix of mixed derivatives

`λ> ;θ̂ =
∂2`(ψ, λ; θ̂|a)

∂λ>∂θ̂
.

The former are defined as the derivatives of the log
likelihood function `(ψ, λ; θ̂|a) with respect to the
maximum likelihood estimator θ̂; mixed derivatives
furthermore involve differentiation with respect to
the whole parameter θ or parts of it (Severini, 2000,
Section 6.2.1). Note that to do so, the data vector
has to be re-expressed as y = (θ̂, a), where a repre-
sents the observed value of an ancillary statistic upon
which we condition.

Approximations

Exact computation of the sample space derivatives
involved in expression (4) requires that we are able to
write the data vector y as a function of the maximum
likelihood estimator θ̂ and of an ancillary statistic a.
This is, with few exceptions, only feasible for linear
exponential families and transformation models, in
which cases the q(ψ) term involves familiar likeli-
hood quantities. If the reference model is a full rank
exponential family with ψ and λ taken as canonical
parameters, the correction term

q(ψ) = w(ψ)
{
| jλλ(θ̂)|/| jλλ(θ̂ψ)|

}1/2 (5)

depends upon the Wald statistic. In case of a
regression-scale model, that is, of a linear regression
model with non necessarily normal errors,

q(ψ) = s(ψ)
{
| jλλ(θ̂ψ)|/| jλλ(θ̂)|

}1/2 (6)

involves the score statistic. Here, ψ is linear in (β,σ)
and the nuisance parameter λ is taken linear inβ and
ξ = logσ , where β and σ represent respectively the
regression coefficients and the scale parameter.

In general, the calculation of the sample space
derivatives `;θ̂(θ) and mixed derivatives `λ> ;θ̂(θ)
may be difficult or impossible. To deal with this dif-
ficulty, several approximations were proposed. For
a comprehensive review we refer the reader to Sec-
tion 6.7 of Severini (2000). Here we will mention
two of them. A first approximation, due to Fraser

et al. (1999), is based upon the idea that in order to
differentiate the likelihood function `(θ; θ̂|a) on the
surface in the n-dimensional sample space defined
by conditioning on a we need not know exactly the
transformation from y to (θ̂, a), but only the d vec-
tors which are tangent to this surface (Severini, 2000,
Section 6.7.2). Skovgaard (1996) on the other hand
suggests to approximate the sample space and mixed
derivatives by suitable covariances of the log like-
lihood and of the score vector (Severini, 2000, Sec-
tion 6.7.3). While the first approximation maintains
the third order accuracy of r∗, we lose one degree
when following Skovgaard’s (1996) approach. See
Sections 7.5.3 and 7.5.4 of Severini (2000) for the de-
tails.

The hoa package

The expressions of q(ψ) implemented in the hoa
package bundle are: i) (5) and (6) for respectively the
cond and marg packages (logistic and linear non nor-
mal regression), and ii) the two approximations dis-
cussed above for the nlreg package (nonlinear het-
eroscedastic regression). The formulae are given in
Brazzale et al. (to appear). The nlreg package also
implements Skovgaard’s (2001, Section 3.1) multipa-
rameter extension of the modified likelihood root.
The implementation of the cond and nlreg packages
is discussed in Brazzale (1999) and Bellio and Braz-
zale (2003).
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Fitting linear mixed models in R
Using the lme4 package

by Douglas Bates

The lme function, which fits linear mixed models of
the form described in Pinheiro and Bates (2000), has
been available in the required R package nlme for
several years. Recently my colleagues and I have
been developing another R package, called lme4, and
its lmer function which provides more flexible fitting
of linear mixed models and also provides extensions
to generalized linear mixed models.

The good news for lme users is that the lmer func-
tion fits a greater range of models, is more reliable,
and is faster than the lme function. The bad news
is that the model specification has been changed
slightly. The purpose of this article is to introduce
lmer, to describe how it can be used to fit linear
mixed models and to highlight some of the differ-
ences between lmer and lme.

Linear mixed models

Before describing how to fit linear mixed models I
will describe what they are. In building a statisti-
cal model for experimental or observational data we
often want to characterize the dependence of a re-
sponse, such as a patient’s heart rate, on one or more
covariates, such as the patient identifier, whether the
patient is in the treatment group or the control group,
and the time under treatment. We also want to char-
acterize the “unexplained” variation in the response.
Empirical models (i.e., models that are derived from
the data itself, not from external assumptions on the
mechanism generating the data) are generally cho-
sen to be linear in the parameters as these are much
simpler to use than are nonlinear models.

Some of the available covariates may be repeat-
able in the sense that (conceptually, at least) we can
obtain new observations with the same values of the
covariate as in the current study. For example, we

can recruit a new patient to the study and assign
this patient to the treatment group or to the control
group. We can then observe this patient’s heart rate
at one minute, five minutes, etc. after treatment.
Hence we would regard both the treatment factor
and the time after treatment covariate as repeatable.

A factor is repeatable if the set of possible levels
of the factor is fixed and each of these levels is itself
repeatable. In most studies we would not regard the
patient identifier factor (or, more generally, the “sub-
ject” factor or any other factor representing an exper-
imental unit) as being repeatable. Instead we regard
the subjects in the study as a random sample from
the population of interest.

Our goals in modeling repeatable covariates and
non-repeatable covariates are different. With a
repeatable covariate we want to characterize the
change in the response between different levels and
for this we use fixed-effects terms that represent, say,
the typical rate of change of the response with respect
to time under treatment or the difference between
a typical response in the treatment and the control
groups. For a non-repeatable covariate we want to
characterize the variation induced in the response by
the different levels of the covariate and for this we
use random-effects terms.

A statistical model that incorporates both fixed-
effects terms and random-effects terms is called a
mixed-effects model or, more simply, a mixed model.

Single grouping factor

As indicated above, a random effect is associated
with a grouping factor, which would be the patient
identifier in our example, and possibly with other co-
variates. We specify a random-effects term in lmer by
a linear model term and a grouping factor separated
by ‘|’, which we would read as “given” or “condi-
tional on”. That is, a random effect is a linear model
term conditional on the level of the grouping factor.

Because the precedence of ‘|’ as an operator
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