
Vol. 4/2, September 2004 2

Lazy Loading and Packages in R 2.0.0
by Brian D. Ripley

Lazy Loading

One of the basic differences between R and S is how
objects are stored. S stores its objects as files on the
file system, whereas R stores objects in memory, and
uses garbage collection from time to time to clear out
unused objects. This led to some practical differ-
ences:

1. R can access objects faster, particularly on first
use (although the difference is not as large as
one might think, as both S and the file system
will do caching).

2. R slows down the more objects that there are in
memory.

3. R’s performance is more sensitive to the num-
ber and size of packages that are loaded.

These differences are blurred considerably by the
advent of lazy loading in R 2.0.0. This is optional, but
is used by all the standard and recommended pack-
ages, and by default when a package with more than
25Kb of R code is installed (about 45% of those cur-
rently on CRAN). This is ‘lazy’ in the same sense
as lazy evaluation, that is objects are not loaded into
memory until they are actually used. This leads to
some immediate differences:

1. R uses much less memory on startup: on my
32-bit system, 4.2Mb rather than 12.5Mb. Such
a gain would have been very valuable in the
early days of R, but nowadays most of us have
far more RAM than those numbers.

2. The start-up time is much shorter: 0.4s on my
system. This is almost entirely because many
fewer objects have been loaded into memory,
and loading them takes time.

3. Tasks run a little faster, as garbage collection
takes much less time (again, because there are
many fewer objects to deal with).

4. There is much less penalty in loading up lots of
packages at the beginning of a session. (There
is some, and loading R with just the base pack-
age takes under 0.1s.)

For data, too

Another R/S difference has been the use of data()
in R. As I understand it this arose because data ob-
jects are usually large and not used very often. How-
ever, we can apply lazy-loading to datasets as well as
to other R objects, and the MASS package has done

so since early 2003. This is optional when installing
packages in 2.0.0 (and not the default), but applies
to all standard and most recommended packages. So
for example to make use of the dataset heart in pack-
age survival, just refer to it by name in your code.

There is one difference to watch out for:
data(heart) loaded a copy of heart into the
workspace, from the package highest on the search
path offering such a dataset. If you subsequently
altered heart, you got the altered copy, but using
data(heart) again gave you the original version. It
still does, and is probably the only reason to continue
to use data with an argument.

For packages with namespaces there is a subtle
difference: data objects are in package:foo but not in
namespace:foo. This means that data set fig cannot
be accessed as foo::fig. The reason is again subtle:
if the objects were in the namespace then functions in
foo would find fig from the namespace rather than
the object of that name first on the search path, and
modifications to fig would be ignored by some func-
tions but by not others.

Under the bonnet (or ‘hood’)

The implementation of lazy loading makes use of
promises, which are user-visible through the use of
the delay function. When R wants to find an ob-
ject, it looks along a search path determined by the
scope rules through a series of environments until it
encounters one with a pointer to an object matching
the name. So when the name heart is encountered in
R code, R searches until it finds a matching variable,
probably in package:survival. The pointer it would
find there is to an object of type PROMSXP which con-
tains instructions on how to get the real object, and
evaluating it follows those instructions. The follow-
ing shows the pattern

> library(survival)

> dump("heart", "", evaluate = FALSE)

heart <- delay(lazyLoadDBfetch(key, datafile,

compressed, envhook), <environment>)

Warning message: deparse may be incomplete

The actual objects are stored in a simple database,
in a format akin to the .rda objects produced
by save(compress = TRUE, ascii = FALSE). Func-
tion lazyLoadDBfetch fetches objects from such
databases, which are stored as two files with exten-
sions .rdb and .rdx (an index file). Readers nay be
puzzled as to how lazyLoadDBfetch knows which
object to fetch, as key seems to be unspecified. The
answer lies (literally) in the environment shown as
<environment> which was not dumped. The code in
function lazyLoad contains essentially

R News ISSN 1609-3631

Vol. 4/2, September 2004 3

wrap <- function(key) {

key <- key

mkpromise(expr, environment())

}

for (i in along(vars))

set(vars[i], wrap(map$variables[[i]]), envir)

so key is found from the immediate environment and
the remaining arguments from the enclosing envi-
ronment of that environment, the body of lazyLoad.

This happens from normal R code completely
transparently, perhaps with a very small delay when
an object is first used. We can see how much by a
rather unrealistic test:

> all.objects <-

unlist(lapply(search(), ls, all.names=TRUE))

> system.time(sapply(all.objects,

function(x) get(x); TRUE),

gcFirst = TRUE)

[1] 0.66 0.06 0.71 0.00 0.00

> system.time(sapply(all.objects,

function(x) get(x); TRUE),

gcFirst = TRUE)

[1] 0.03 0.00 0.03 0.00 0.00

Note the use of the new gcFirst argument to
system.time. This tells us that the time saved in start
up would be lost if you were to load all 2176 objects
on the search path (and there are still hidden objects
in namespaces that have not been accessed).

People writing C code to manipulate R objects
may need to be aware of this, although we have only
encountered a handful of examples where promises
need to be evaluated explicitly, all in R’s graphical
packages.

Note that when we said that there were many
fewer objects to garbage collect, that does not mean
fewer named objects, since each named object is still
there, perhaps as a promise. It is rather that we do
not have in memory the components of a list, the el-
ements of a character vector and the components of
the parse tree of a function, each of which are R ob-
jects. We can see this via

> gc()
used (Mb) gc trigger (Mb)

Ncells 140236 3.8 350000 9.4
Vcells 52911 0.5 786432 6.0
> memory.profile()

NILSXP SYMSXP LISTSXP CLOSXP
1 4565 70606 959

ENVSXP PROMSXP LANGSXP SPECIALSXP
2416 2724 27886 143

BUILTINSXP CHARSXP LGLSXP
912 13788 1080 0

INTSXP REALSXP CPLXSXP
0 2303 2986 0

STRSXP DOTSXP ANYSXP VECSXP
8759 0 0 1313

EXPRSXP BCODESXP EXTPTRSXP WEAKREFSXP
0 0 10 0

> sapply(all.objects,
function(x) get(x); TRUE) -> junk

> gc()
used (Mb) gc trigger (Mb)

Ncells 429189 11.5 531268 14.2
Vcells 245039 1.9 786432 6.0
> memory.profile()

NILSXP SYMSXP LISTSXP CLOSXP
1 7405 222887 3640

ENVSXP PROMSXP LANGSXP SPECIALSXP
822 2906 101110 208

BUILTINSXP CHARSXP LGLSXP
1176 44308 4403 0

INTSXP REALSXP CPLXSXP
0 824 11710 9

STRSXP DOTSXP ANYSXP VECSXP
24877 0 0 2825

EXPRSXP BCODESXP EXTPTRSXP WEAKREFSXP
0 0 106 0

Notice the increase in the number of LISTSXP and
LANGSXP (principally storing parsed functions)
and STRSXP and CHARSXP (character vectors and
their elements), and in the sum (the number of ob-
jects has trebled to over 400,000). Occasionally peo-
ple say on R-help that they ‘have no objects in mem-
ory’, but R starts out with hundreds of thousands of
objects.

Installing packages

We have taken the opportunity of starting the 2.x.y
series of R to require all packages to be reinstalled,
and to do more computation when they are installed.
Some of this is related to the move to lazy loading.

• The ‘DESCRIPTION’ and ‘NAMESPACE’ files
are read and parsed, and stored in a binary for-
mat in the installed package’s ‘Meta’ subdirec-
tory.

• If either lazy loading of R code or a saved image
has been requested, we need to load the code
into memory and dump the objects created to
a database or a single file ‘all.rda’. This means
the code has to parse correctly (not normally
checked during installation), and all the pack-
ages needed to load the code have to be already
installed.

This is simplified by accurate use of the
‘Describe’, ‘Suggests’ and ‘Import’ fields in
the ‘DESCRIPTION’ file: see below.

• We find out just what data() can do. Pre-
viously there was no means of finding out
what, say, data(sunspot) did without try-
ing it (and in the base system it created ob-
jects sunspot.months and sunspot.years but
not sunspot, but not after package lattice was

R News ISSN 1609-3631

Vol. 4/2, September 2004 4

loaded). So we do try loading all the possible
datasets—this not only tests that they work but
gives us an index of datasets which is stored in
binary format and used by data() (with no ar-
gument).

We have always said any R code used to make
datasets has to be self-sufficient, and now this
is checked.

• If lazy loading of data is requested, the datasets
found in the previous step are dumped into a
database in the package directory data.

If we need to have one package installed to in-
stall another we have a dependency graph amongst
packages. Fortuitously, installing CRAN packages in
alphabetical order has worked (and still did at the
time of writing), even though for example RMySQL
required DBI. However, this is not true of BioCon-
ductor packages and may not remain true for CRAN,
but install.packages is able to work out a feasible
install order and use that. (It is also now capable of
finding all the packages which need already to be in-
stalled and installing those first: just ask for its help!)

One problem with package A require()ing
package B in .First.lib/.onLoad was that package
B would get loaded after package A and so precede
it on the search path. This was particularly problem-
atic if A made a function in B into an S4 generic, and
the file ‘install.R’ was used to circumvent this (but
this only worked because it did not work as docu-
mented!).

We now have a much cleaner mechanism. All
packages mentioned in the ‘Depends’ field of the
‘DESCRIPTION’ file of a package are loaded in the
order they are mentioned, both before the package
is prepared for lazy-loading/save image and before
it is loaded by library. Many packages currently
have unneeded entries in their ‘Depends’ field (often
to packages that no longer exist) and will hopefully
be revised soon. The current description from ‘Writ-
ing R Extensions’ is

• Packages whose namespace only is needed to

load the package using library(pkgname)
must be listed in the ‘Imports’ field.

• Packages that need to attached to successfully
load the package using library(pkgname)
must be listed in the ‘Depends’ field.

• All packages that are needed to successfully
run R CMD check on the package must be listed
in one of ‘Depends’ or ‘Suggests’ or ‘Imports’.

For Package Writers

The previous section ended with a plea for accu-
rate ‘DESCRIPTION’ files. The ‘DESCRIPTION’ file is
where a package writer can specify if lazy loading of
code is to be allowed or mandated or disallowed (via
the ‘LazyLoad’ field), and similarly for lazy loading
of datasets (via the ‘LazyData’ field). Please make use
of these, as otherwise a package can be installed with
options to R CMD INSTALL that may override your in-
tentions and make your documentation inaccurate.

Large packages that make use of saved images
would benefit from being converted to lazy loading.
It is possible to first save an image then convert the
saved image to lazy-loading, but this is almost never
necessary. The normal conversion route is to get the
right ‘Depends’ and ‘Imports’ fields, add ‘LazyLoad:
yes’ then remove the ‘install.R’ file.

For a few packages lazy loading will be of little
benefit. One is John Fox’s Rcmdr, which accesses vir-
tually all its functions on startup to build its menus.

Acknowledgement

Lazy loading was (yet another) idea from Luke Tier-
ney, who wrote the first implementation as a package
lazyload.

Brian D. Ripley
University of Oxford, UK
ripley@stats.ox.ac.uk

R News ISSN 1609-3631

mailto:ripley@stats.ox.ac.uk

