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so when you first g.data.attach the directory, the
object loaded into memory as x1 is a “promise ob-
ject” (which is very small). When you actually use
x1 (e.g., to query its dimensions), the promise is ful-
filled, and g.data.load does two things:

1. It loads the actual large object, and

2. It returns that object for the query.

Henceforth, the object in memory as x1 is the real
(large) object.
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ate Responses
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Introduction

geepack is designed to provide an inferential basis
for both the association structure and the mean struc-
ture in multivariate analysis, using the Generalized
Estimating Equations (GEE) approach.

Consider a sample of K independent clusters
yT

i = (yi1, · · · , yini ), i = 1, · · · , K, of ni-variate re-
sponses. In a generalized linear model setup, the
variance of yit, Vit, can be factored as

var(yit) = φitv(µit),

where φit is the scale parameter, v is the variance
function v(µit), where µit = E(yit). To model the as-
sociation, we decompose cov(yi) into two parts, the
variance and the correlation,

cov(yi) = V1/2RV1/2,

where V is the diagonal matrix of Vit, and R is the
correlation matrix of yi.

Let X1i , X2i and X3i be the covariate matrices for
the mean, the scale, and the correlation of the re-
sponse yi, with dimensions ni × p, ni × r, and ni(ni −
1)/2× q, respectively. The models are

g1(µi) = X1iβ, (1)
g2(φi) = X2iγ, (2)
g3(ρi) = X3iα, (3)

where gi , i = 1, 2, 3, are known link functions, µi is a
ni × 1 vector containing E(yi|X1i),φi is a ni × 1 vector
containing var(yi|X2i)/vit, where vit = v(µit) is the
variance function, and ρi is a ni(ni − 1)/2× 1 vector
containing cor(yis, yit|X3i). β, γ, andα are the mean,
the scale, and the correlation parameters of dimen-
sion p× 1, r× 1, and q× 1, respectively.

The mean link has been well studied. The scale
link is often taken to be log, while it is natural to let
the correlation link be “logistic” (i.e., Fisher’s z trans-
formation), in which case the inverse link function is
the hyperbolic tangent, that is,

ρits = cor(yis, yit|X3i) =
exp(X3i(s,t)α)− 1
exp(X3i(s,t)α) + 1

, (4)

where X3i(s,t) is the row in matrix X3i corresponding
to the correlation of yis and yit. These links ensure
that the scale is positive and that the correlation is in
(−1, 1). The scale model is useful in situations where
parameters are needed for covariate effects either on
over- or under-dispersion or on heteroscedasticity.

A convenient set of estimating equations for the
three-link model is

U1(β,γ,α) =
K

∑
i=1

DT
1iV

−1
1i (yi −µi) = 0 (5)

U2(β,γ,α) =
K

∑
i=1

DT
2iV

−1
2i (si −φi) = 0 (6)

U3(β,γ,α) =
K

∑
i=1

DT
3iV

−1
3i (zi − ρi) = 0 (7)

where si is the ni × 1 vector of sit = (yit −µit)2/vit, zi
is the ni(ni − 1)/2× 1 vector of zits = (yit −µit)(yis −
µis)/

√
φitvitφisvis, D1i = ∂µi/∂βT , D2i = ∂φi/∂γT ,

D3i = ∂ρi/∂αT , and V1i, V2i and V3i are the condi-
tional working covariance matrices of yi, si, and zi.

The matrix V1i generally contains scale parame-
ters γ and correlation parameters α. The matrices
V2i and V3i may contain other estimated quantities
which characterize the third and fourth order mo-
ments. In practice, in order to avoid specification
of higher order moments, estimation of higher order
nuisance parameters, and convergence problems, V2i
may be chosen to be a diagonal matrix whose di-
agonal elements are 2φit, following the indepen-
dence Gaussian working matrix in Prentice and Zhao
(1991), and V3i may be an identity matrix (Ziegler
et al., 1998, p.129), at the cost of potential efficiency
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loss. These simplifications are implemented in geep-
ack.

Features

• Allows different covariates in separate models
for the mean, scale, and correlation via various
link functions.

• Provides “sandwich” and jackknife variance
estimators for all the parameter estimates, ex-
tending Ziegler et al. (2000).

• Handles clustered ordinal data, allowing co-
variates in the odds ratio model, using the
method in Heagerty and Zeger (1996).

An example: Epileptic seizures

As an illustration, the epileptic seizure data (Thall
and Vail, 1990) is analyzed. The dataset arose from
a clinical trial of 59 epileptic patients, randomized
to receive either the anti-epileptic drug pragabide
or a placebo, as an adjuvant to standard chemother-
apy. There are four 2-week interval seizure counts for
each patient. The covariates are treatment, age, and
baseline counts on a 8-week interval before the trial.
We first reshape the data into a “long” format for lon-
gitudinal data, and create new covariates identical to
those used in Thall and Vail (1990),

> data(seizure)

> seiz.l <-

+ reshape(seizure,

+ varying = list(c("y1", "y2",

+ "y3", "y4")),

+ v.names = "y", direction = "long")

> seiz.l <-

+ seiz.l[order(seiz.l$id, seiz.l$time),]

> seiz.l$lbase <- log(seiz.l$base / 4)

> seiz.l$lage <- log(seiz.l$age)

> seiz.l$v4 <- ifelse(seiz.l$time == 4, 1, 0)

Next we use the function geese to fit a GEE model
for the seizure counts, with the same mean model as
that in Thall and Vail (1990). We treat time as a factor
and include it in the scale model using a log link. To
illustrate the usage of the correlation model, we use
an ar1 correlation structure (together with the scale
model, this specifies a heterogeneous AR(1) covari-
ance structure), and fisherz link, and include pa-
tient age in the correlation model. The models for the
mean, scale, and correlation are fit using GEE and the
results are summarized in the following.

> z <- model.matrix(~ age, data = seizure)

> m1 <- geese(y ~ lbase*trt + lage + v4,

+ sformula = ~ as.factor(time) - 1,

+ id = id, data = seiz.l,

+ corstr = "ar1", family = poisson,

+ zcor = z, cor.link = "fisherz",

+ sca.link = "log")

> summary(m1)

Mean Model:

Mean Link: log

Variance to Mean Relation: poisson

Coefficients:

estimate san.se wald p

(Intercept) -2.544 0.8291 9.41 0.002154

lbase 0.964 0.0898 115.22 0.000000

trt -1.491 0.4557 10.71 0.001068

lage 0.826 0.2387 11.98 0.000539

v4 -0.143 0.0721 3.95 0.046850

lbase:trt 0.601 0.1864 10.38 0.001272

Scale Model:

Scale Link: log

Estimated Scale Parameters:

estimate san.se wald p

as.factor(time)1 1.240 0.255 23.6 1.18e-06

as.factor(time)2 1.544 0.366 17.8 2.49e-05

as.factor(time)3 2.019 0.498 16.5 4.98e-05

as.factor(time)4 0.864 0.204 18.0 2.24e-05

Correlation Model:

Correlation Structure: ar1

Correlation Link: fisherz

Estimated Correlation Parameters:

estimate san.se wald p

(Intercept) 2.558 0.7064 13.11 0.000294

age -0.047 0.0229 4.21 0.040192

Returned Error Value: 0

Number of clusters: 59 Maximum cluster size: 4

Since there is one possible outlier in the dataset
(Diggle et al., 1994, pp.166–168), it might be inter-
esting to compare the “sandwich” variance estimate
with the jackknife variance estimate. Jackknife vari-
ance estimate may be obtained by setting jack, j1s,
or fij to TRUE, requesting approximated, one-step,
and fully iterated jackknife variance estimate, respec-
tively; see Ziegler et al. (2000).

> m2 <- geese(y ~ lbase*trt + lage + v4,

+ sformula = ~ as.factor(time) - 1,

+ id = id, data = seiz.l,

+ corstr = "ar1", family = poisson,

+ zcor = z, cor.link = "fisherz",

+ sca.link = "log", jack = TRUE,

+ j1s = TRUE, fij = TRUE)

Summarizing the fitted object (not shown here) sug-
gests that there is noticeable difference between the
sandwich and the jackknife variance estimator for
the covariate effect of trt and lbase:trt. If the jack-
knife variance estimators were used, these two ef-
fects would become insignificant at level 0.05.
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Future developments

Different components within a cluster may have dif-
ferent link functions. For example, the data analyzed
by Prentice and Zhao (1991) have two responses for
each patient. One is continuous and its mean is mod-
eled with the identity link, and the other is binary
and its mean is modeled with the logit link. The C++
code for geepack was designed to permit this situa-
tion. An R interface will be developed for this exten-
sion.
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On Multiple Comparisons in R
by Frank Bretz, Torsten Hothorn and Peter Westfall

Description

The multiplicity problem arises when several infer-
ences are considered simultaneously as a group. If
each inference has a 5% error rate, then the error
rate over the entire group can be much higher than
5%. This article shows practical examples of multi-
ple comparisons procedures that control the error of
making any incorrect inference.

The multcomp package for the R statistical en-
vironment allows for multiple comparisons of pa-
rameters whose estimates are generally correlated,
including comparisons of k groups in general lin-
ear models. The package has many common mul-
tiple comparison procedures “hard-coded”, includ-
ing Dunnett, Tukey, sequential pairwise contrasts,
comparisons with the average, changepoint analy-
sis, Williams’, Marcus’, McDermott’s, and tetrad con-
trasts. In addition, a free input interface for the con-
trast matrix allows for more general comparisons.

The comparisons themselves are not restricted to

balanced or simple designs. Instead, the package is
designed to provide general multiple comparisons,
thus allowing for covariates, nested effects, corre-
lated means, likelihood-based estimates, and miss-
ing values. For the homoscedastic normal linear
models, the functions in the package account for the
correlations between test statistics by using the ex-
act multivariate t-distribution. The resulting proce-
dures are therefore more powerful than the Bonfer-
roni and Holm methods; adjusted p-values for these
methods are reported for reference. For more general
models, the program accounts for correlations using
the asymptotic multivariate normal distribution; ex-
amples include multiple comparisons based on rank
transformations, logistic regression, GEEs, and pro-
portional hazards models. In the asymptotic case,
the user must supply the estimates, the asymptotic
covariance matrix, and the contrast matrix.

Basically, the package provides two functions.
The first, simint, computes confidence intervals
for the common single-step procedures. This ap-
proach is uniformly improved by the second func-
tion (simtest), which utilizes logical constraints and
is closely related to closed testing. However, no con-
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