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resampling in the bootstrap. These are quite special-
ized uses of the package and so the user is advised
to read the relevant sections of Davison and Hinkley
(1997) before using these functions.
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Diagnostic Checking in Regression
Relationships
by Achim Zeileis and Torsten Hothorn

Introduction

The classical linear regression model

yi = x>i β+ ui (i = 1, . . . , n) (1)

is still one of the most popular tools for data analy-
sis despite (or due to) its simple structure. Although
it is appropriate in many situations, there are many

pitfalls that might affect the quality of conclusions
drawn from fitted models or might even lead to un-
interpretable results. Some of these pitfalls that are
considered especially important in applied econo-
metrics are heteroskedasticity or serial correlation of
the error terms, structural changes in the regression
coefficients, nonlinearities, functional misspecifica-
tion or omitted variables. Therefore, a rich variety of
diagnostic tests for these situations have been devel-
oped in the econometrics community, a collection of
which has been implemented in the packages lmtest
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and strucchange covering the problems mentioned
above.

These diagnostic tests are not only useful in
econometrics but also in many other fields where lin-
ear regression is used, which we will demonstrate
with an application from biostatistics. As Breiman
(2001) argues it is important to assess the goodness-
of-fit of data models, in particular not only using
omnibus tests but tests designed for a certain di-
rection of the alternative. These diagnostic checks
do not have to be seen as pure significance proce-
dures but also as an explorative tool to extract in-
formation about the structure of the data, especially
in connection with residual plots or other diagnostic
plots. As Brown et al. (1975) argue for the recursive
CUSUM test, these procedures can “be regarded as
yardsticks for the interpretation of data rather than
leading to hard and fast decisions.” Moreover, we
will always be able to reject the null-hypothesis pro-
vided we have enough data at hand. The question is
not whether the model is wrong (it always is!) but if
the irregularities are serious.

The package strucchange implements a variety
of procedures related to structural change of the re-
gression coefficients and was already introduced in
R news by Zeileis (2001) and described in more de-
tail in Zeileis et al. (2002). Therefore, we will fo-
cus on the package lmtest in the following. Most of
the tests and the datasets contained in the package
are taken from the book of Krämer and Sonnberger
(1986), which originally inspired us to write the pack-
age. Compared to the book, we implemented later
versions of some tests and modern flexible interfaces
for the procedures. Most of the tests are based on
the OLS residuals of a linear model, which is spec-
ified by a formula argument. Instead of a formula
a fitted model of class "lm" can also be supplied,
which should work if the data are either contained in
the object or still present in the workspace—however
this is not encouraged. The full references for the
tests can be found on the help pages of the respec-
tive function.

We present applications of the tests contained in
lmtest to two different data sets: the first is a macroe-
conomic time series from the U.S. analysed by Stock
and Watson (1996) and the second is data from a
study on measurments of fetal mandible length dis-
cussed by Royston and Altman (1994).

U.S. macroeconomic data

Stock and Watson (1996) investigate the stability of
76 monthly macroeconomic time series from 1959 to
1993, of which we choose the department of com-
merce commodity price index time series jocci to il-
lustrate the tests for heteroskedasticity and serial cor-
relation. The data is treated with the same methodol-
ogy as all other series considered by Stock and Wat-

son (1996): they were transformed suitably (here by
log first differences) and then an AR(6) model was
fitted and analysed. The transformed series is de-
noted dy and is depicted together with a residual plot
of the AR(6) model in Figure 1.

Not surprisingly, an autoregressive model is nec-
essary as the series itself contains serial correlation,
which can be shown by the Durbin-Watson test

R> data(jocci)

R> dwtest(dy ~ 1, data = jocci)

Durbin-Watson test

data: dy ~ 1

DW = 1.0581, p-value = < 2.2e-16

alternative hypothesis:

true autocorrelation is greater than 0

or the Breusch-Godfrey test which also leads to a
highly significant result. In the AR(6) model given
by

R> ar6.model <-

dy ~ dy1 + dy2 + dy3 + dy4 + dy5 + dy6

where the variables on the right hand side denote the
lagged variables, there is no remaining serial correla-
tion in the residuals:

R> bgtest(ar6.model, data = jocci)

Breusch-Godfrey test for

serial correlation of order 1

data: ar6.model

LM test = 0.2, df = 1, p-value = 0.6547

The Durbin-Watson test is biased in dynamic models
and should therefore not be applied.

The residual plot suggests that the variance of the
error component increases over time, which is em-
phasized by all three tests for heteroskedasticity im-
plemented in lmtest: the Breusch-Pagan test fits a
linear regression model to the residuals and rejects if
too much of the variance is explained by the auxiliary
explanatory variables, which are here the squared
lagged values:

R> var.model <-

~ I(dy1^2) + I(dy2^2) + I(dy3^2) +

I(dy4^2) + I(dy5^2) + I(dy6^2)

R> bptest(ar6.model, var.model, data = jocci)

studentized Breusch-Pagan test

data: ar6.model

BP = 22.3771, df = 6, p-value = 0.001034

The Goldfeld-Quandt test gqtest() and the
Harrison-McCabe test hmctest() also give highly
significant p values. Whereas the Breusch-Pagan
test and the Harrison-McCabe test do not assume
a particular timing of the change of variance, the
Goldfeld-Quandt test suffers from the same prob-
lem as the Chow test for a change of the regression
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Figure 1: The jocci series and AR(6) residual plot

coefficients: the breakpoint has to be known in ad-
vance. By default it is taken to be after 50% of the
observations, which leads to a significant result for
the present series.

The mandible data

Royston and Altman (1994) discuss a linear regres-
sion model for data taken from a study of fetal
mandible length by Chitty et al. (1993). The data
comprises measurements of mandible length (in
mm) and gestational age (in weeks) in 158 fetuses.
The data (after log transformation) is depicted in Fig-
ure 2 together with the fitted values of a linear model
length ~ age and a quadratic model length ~ age
+ I(age^2).
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Figure 2: The mandible data

Although by merely visually inspecting the raw
data or the residual plots in Figure 3 a quadratic
model seems to be more appropriate, we will first fit
a linear model for illustrating some tests for nonlin-
earity and misspecified functional form.

The suitable tests in lmtest are the Harvey-Collier
test, which is essentially a t test of the recursive resid-
uals (standardized one step prediction errors), and
the Rainbow test. Both try to detect nonlinearities

when the data is ordered with respect to a specific
variable.

R> data(Mandible)

R> mandible <- log(Mandible)

R> harvtest(length ~ age, order.by = ~ age,

data = mandible)

R> raintest(length ~ age, order.by = ~ age,

data = mandible)

Both lead to highly significant results, suggesting
that the model is not linear in age. Another appropri-
ate procedure is the RESET test, which tests whether
some auxiliary variables improve the fit significantly.
By default the second and third powers of the fitted
values are chosen:

R> reset(length ~ age, data = mandible)

RESET test

data: length ~ age

RESET = 26.1288, df1 = 2, df2 = 163,

p-value = 1.436e-10

In our situation it would also be natural to consider
powers of the regressor age as auxiliary variables

R> reset(length ~ age, power = 2,

type = "regressor", data = mandible)

RESET test

data: length ~ age

RESET = 52.5486, df1 = 1, df2 = 164,

p-value = 1.567e-11

which also gives a highly significant p value (higher
powers do not have a significant influence). These
results correspond to the better fit of the quadratic
model which can both be seen in Figure 2 and 3. Al-
though its residual plot does not look too suspicious
several tests are able to reveal irregularities in this
model as well. The Breusch-Pagan tests gives a p
value of 0.043 and the Rainbow test gives
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Figure 3: Residual plots for mandible models

R> raintest(length ~ age + I(age^2),

order.by = ~ age, data = mandible)

Rainbow test

data: length ~ age + I(age^2)

Rain = 1.5818, df1 = 84, df2 = 80,

p-value = 0.01995

and finally an supF test from the strucchange pack-
age would also reject the null hypothesis of stability
at 10% level (p = 0.064) in favour of a breakpoint
after about 90% of the observations. All three tests
probably reflect that there is more variability in the
edges (especially the right one) than in the middle
which the model does not describe sufficiently.

Conclusions

We illustrated the usefulness of a collection of di-
agnostic tests for various situations of deviations
from the assumptions of the classical linear regres-
sion model. We chose two fairly simple data sets—an
econometric and a biometric application—to demon-
strate how the tests work, but they are also partic-
ularly helpful to detect irregularities in regressions
with a larger number of regressors.
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