
Vol. 2/3, December 2002 2

Resampling Methods in R: The boot
Package
by Angelo J. Canty

Introduction

The bootstrap and related resampling methods are
statistical techniques which can be used in place
of standard approximations for statistical inference.
The basic methods are very easily implemented
but for the methods to gain widespread acceptance
among users it is necessary that they be implemented
in standard statistical packages. In this article I will
describe the boot package which implements many
variants of resampling methods in R. The package
was originally written as an S-Plus library released
in conjunction with the book by Davison and Hink-
ley (1997). Subsequently the library was ported to
R by Brian Ripley. The boot package described here
is distinct from the limited suite of bootstrap func-
tions which are now included in S-Plus. It is also dis-
tinct from the bootstrap package originally written
by R. Tibshirani for Efron and Tibshirani (1993).

In this paper I describe the main components of
the boot package and their use. I will not go into
any theoretical detail about the methods described.
It is strongly recommended, however, that the user
read Davison and Hinkley (1997) before using the
package. Initially I will describe the basic function
for bootstrapping i.i.d. data and analyzing the boot-
strap output. Then I will describe functions for sam-
pling randomly right-censored data and time series
data. The availability of the bootstrap for such non-
standard cases is one of the major advantages of the
boot package.

The main bootstrap function

The most important function in the package is the
boot function which implements resampling meth-
ods for i.i.d. data. The basic bootstrap in such cases
works by fitting a distribution function F̂ to the un-
known population distribution F. The Monte Carlo
bootstrap method then proceeds by taking R sam-
ples, of the same size as the original sample, from
F̂. In the parametric bootstrap F = Fψ is a member
of a class of distribution functions indexed by the pa-
rameter vectorψ and so F̂ = Fψ̂ where ψ̂ is some con-
sistent estimate of ψ. It is then the responsibility of
the user to supply (through the parameter ran.gen)
a function which takes the original data and returns
a sample from F̂. In the nonparametric case the es-
timate of F is the empirical distribution function. In
this case a sample from F̂ can be found by sampling

with replacement from the original data, X1, . . ., Xn.
In boot all R samples are found by constructing an
R× n matrix of random integers from 1:n. Indexing
the original data by each row of this matrix gives a
bootstrap sample.

Let us now suppose that interest is in some func-
tional θ = t(F). The plug-in estimate of this func-
tional is then t = t(F̂). Corresponding to a bootstrap
sample is a distribution function F̂∗. We can then use
t∗ = t(F̂∗) to estimate t. Under suitable regularity
conditions we can then approximate the distribution
of t −θ by the empirical distribution of t∗ − t. Thus
estimates of the bias and variance of the estimator T
are

b = t̄∗ − t, v =
1

R− 1

R

∑
r=1

(t∗r − t̄∗)2 (1)

Since boot is designed to be a general function
for the bootstrap, the user must supply a func-
tion (statistic) which calculates the required func-
tional. In the parametric bootstrap this is simply a
function of a dataset. In the non-parametric case,
statistic must be a function of the original dataset
and a second argument which is used to determine
a bootstrap sample. The simplest form that this sec-
ond argument can take is to be a vector of indices
such as a row of the index matrix constructed by
boot. An equivalent method for exchangeable data
is to supply the vector of frequencies of the original
data points in the bootstrap sample. Another alterna-
tive is to supply the probability weights correspond-
ing to F̂∗. For bootstrap samples such weights are
simply the frequencies divided by the sample size.
They have the advantage, however, that any set of n
weights which sum to 1 can be used. This allows
for numerical differentiation of the functional t(·)
at the datapoints which gives us the empirical influ-
ence values. Note that boot automatically normalizes
weights to sum to 1 prior to calling statistic. The
user must tell boot which second argument is being
expected by statistic, this is achieved by specify-
ing the stype parameter which can be "i", "f" or
"w".

The following is an example of using boot at its
most basic level. For many uses, this will be suffi-
cient to run the bootstrap. The code performs a non-
parametric bootstrap for the mean of the aircondit
data.

> mean.w <- function(x, w) sum(x*w)

> air.boot <- boot(data=aircondit$hours,

+ statistic=mean.w,

+ R=999, stype="w")

The use of this second argument may seem con-
fusing at first but it allows more flexibility in the

R News ISSN 1609-3631



Vol. 2/3, December 2002 3

types of data structures that we can bootstrap and
how bootstrapping is applied to the data. For ex-
ample, consider the case of bootstrapping for lin-
ear models. The data would generally be a matrix
or dataframe. The two methods that could be used
are to resample rows or resample residuals and then
reconstruct a response vector. The following code
shows how both of these can be achieved for the
catsM data set.

> data(catsM)

> cats.lm <-lm(Hwt~Bwt, data=catsM)

> cats1 <- catsM

> cats1$fit <- fitted(cats.lm)

> cats1$res <- resid(cats.lm)

> cats.fit <- function(data) {

+ mod <- lm(data$Hwt~data$Bwt)

+ c(coef(mod),

+ summary(mod)$coef[,2]^2) }

> case.fun <- function(d,i)

+ cats.fit(d[i,])

> model.fun <- function(d,i) {

+ d$Hwt <- d$fit+d$res[i]

+ cats.fit(d) }

> cats.case <- boot(cats1, case.fun,

+ R=999)

> cats.mod <- boot(cats1, model.fun,

+ R=999)

One advantage of the boot package is that it im-
plements many variants on the basic non-parametric
bootstrap method. One obvious extension is to
multi-sample problems. The user need only spec-
ify strata as a numeric vector or factor defining
the groups. This fits different empirical distribution
functions to each stratum and samples accordingly.
Another possibility is that we may want to resam-
ple from the data with unequal weights. This arises
in the context of bootstrap hypothesis testing and
in using importance sampling with the bootstrap as
suggested by Johns (1988) and Davison (1988). The
sampling probabilities are passed using the weights
argument to boot. Other types of resampling can
also be done and are specified using the sim argu-
ment. Two of these are attempts at more efficient
Monte Carlo sampling for the bootstrap; the bal-
anced bootstrap (Davison et al., 1986) and the anti-
thetic bootstrap (Hall, 1989). The final option is to re-
sample without replacement as required for permu-
tation tests.

Analysis of bootstrap output

The result of calling the boot function is that an ob-
ject having the class "boot" is returned. This object
contains most of the inputs to the boot function or
the default values of those not specified. It also con-
tains three additional components. The first of these
is t0 which is the result of evaluating the statistic
on the original dataset. The second, t, is the ma-
trix of bootstrap replicates. Each row of the matrix

corresponds to the value of the statistic applied to a
bootstrap dataset. Finally, there is a component seed
which contains the value of .Random.seed used to
start the Monte Carlo sampling. There are two main
reasons why this component is useful. The first is
the issue of reproducibility of the bootstrap. In re-
search it is often useful to apply different statistics to
the same set of bootstrap samples for comparisons.
Without the saved random seed this would not be
possible. The second reason is that there are situa-
tions in which it is important to be able to look at the
bootstrap samples themselves. This can be done by
constructing the matrix of bootstrap indices (or fre-
quencies). In an early version of the package that ma-
trix was stored but that required excessive storage.
By storing the random seed we can recreate the ma-
trix whenever required in very little time. The func-
tion boot.array does this.

The two main methods for boot objects are print
and plot methods. If the user prints a boot object
then a short summary of the bootstrap results are
given. Here are the results of case resampling the
catsM dataset.

> cats.case

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:

boot(data = cats1, statistic = case.fun,

R = 999)

Bootstrap Statistics :

original bias std. error

t1* -1.1841 0.029573 1.14684

t2* 4.3127 -0.010809 0.40831

t3* 0.9966 -0.012316 0.16043

t4* 0.1155 -0.001534 0.01769

In this example, the statistic returns a vector of length
4, the first two components are the coefficient esti-
mates and the second two are the estimated vari-
ances of the estimates from the usual linear model
theory. We note that the bootstrap standard errors
are 15–20% higher than the usual standard errors.

It is not safe to use the output of a bootstrap with-
out first looking at a graphical plot of the bootstrap
replicates. They are the first and most basic check
that the bootstrap has produced sensible results. One
common problem is that of discreteness of the boot-
strap distribution. If this is a problem it should be
fairly evident from the plots. The solution may be as
simple as increasing the number of replicates or there
may be some fundamental problem such as occurs in
the case of the sample maximum. In either case the
plots will alert the user that the results of this boot-
strap cannot be used for inference. The plots may
also show up bugs in the coding of the statistic which
were not previously evident. Because of the nature of
a bootstrap sample, it is possible to get datasets not
normally seen in practice (such as having many ties)
and the code which worked for the original sample

R News ISSN 1609-3631



Vol. 2/3, December 2002 4

Figure 1: Plots of the bootstrap output for the slope of the catsM dataset using case resampling. The command
used was plot(cats.case, index=2).

may not work for some bootstrap samples. Figure 1
shows the plots for the slope estimate of the catsM
dataset using case resampling.

A more sophisticated diagnostic tool is the
Jackknife-after-bootstrap plot suggested by Efron
(1992). The plot method may call the function
jack.after.boot to draw these. Users should note
that the plots produced by jack.after.boot are
very different from those produced by the S-Plus
function plot.jack.after.bootstrap. As a diag-
nostic, I think that the version I have used are more
informative.

Having examined the bootstrap output and de-
termined that it seems to be sensible the user can
proceed to use the output. The most common use
is to producing confidence intervals. The function
boot.ci can be used for this. This takes a boot-
strap output object and returns one or more types
of confidence interval for a scalar component of the
functional being estimated. There is an index ar-
gument to specify which component should be an-
alyzed. boot.ci can produce five different types of
bootstrap confidence interval. The bootstrap normal
interval assumes an asymptotic normal distribution
an used the bootstrap estimates of bias and variance
for the parameters of the distribution. The basic boot-
strap and bootstrap percentile intervals have less re-
strictive assumptions. All three intervals are asymp-
totically equivalent but the latter two tend to have
better small sample properties when the normal as-
sumption is questionable. This can be checked us-
ing the normal quantile plot produced by the plot
method. Two intervals that are asymptotically bet-
ter than these are the studentized and BCa intervals.
The price for this improvement is more calculation.

For the studentized bootstrap one needs a consistent
estimate of the variance of each bootstrap replicate.
Such variances can be found using asymptotic con-
siderations or through methods such as the jackknife
or non-parametric delta method (infinitesimal jack-
knife). Another alternative is to use a nested boot-
strap but this can rapidly become computationally
prohibitive. Whichever method is chosen, it must be
done for each bootstrap sample. The BCa interval
requires calculation of the empirical influence values
for the original sample only so the extra computation
is minimal but the statistic should be in weighted
form unless a closed form is readily available. See
Canty et al. (1996) for a simulation study comparing
the various intervals

Resampling censored data

In many practical settings, data is censored and so
the usual bootstrap is not applicable. The func-
tion censboot implements the bootstrap for random
right-censored data. Such data is typically com-
prised of the bivariate observations (Yi , Di) where

Yi = min(Xi , Ci) Di = I(Xi ≤ Ci)

where Xi ∼ F and Ci ∼ G independently and
I(A) is the indicator function of the event A. Non-
parametric estimates of F and G are given by the
Kaplan–Meier estimates F̂ and Ĝ, the latter being ob-
tained by replacing di by 1− di. We can then proceed
by sampling X∗

1 , . . . , X∗
n from F̂ and independently

sampling C∗
1 , . . . , C∗

n from Ĝ. (Y∗
i , D∗

i ) can then be
found from (X∗

i , C∗
i ) in the same way as for the origi-

nal data. Efron (1981) showed that this is identical to
resampling with replacement from the original pairs.

R News ISSN 1609-3631



Vol. 2/3, December 2002 5

An alternative approach is the conditional boot-
strap. This approach conditions the resampling on
the observed censoring pattern since this is, in effect,
an ancillary statistic. We therefore sample X∗

1 , . . . , X∗
n

from F̂ as before. If the ith observation is censored
then we set C∗

i = yi and if it is not censored we sam-
ple an observation from the estimated conditional
distribution of Ci given that Ci > yi. Having thus ob-
tained X∗

1 , . . . , X∗
n and C∗

1 , . . . , C∗
n we proceed as be-

fore. There is one technicality which must be ad-
dressed for this method to proceed. Suppose that the
maximum value of y1, . . . , yn, yk say, is a censored
observation. Then X∗

k < yk and C∗
k = yk so the boot-

strap observation will always be uncensored. Alter-
natively, if the the maximum value is uncensored, the
estimated conditional distribution does not exist. In
order to overcome these problems we add one ex-
tra point to the dataset which has an observed value
greater than max(y1, . . . , yn) and has the opposite
value of the censoring indicator to the maximum.

One other method for resampling from censored
data is the weird bootstrap introduced by Ander-
sen et al. (1993). This works by simulating from
the Nelson-Aalen estimate of the cumulative hazard
function.

The function censboot implements all of these
resampling schemes. The user simply specifies
the data (as a matrix or data.frame with at least
2 columns), the statistic (an R function taking the
dataset as its input), the number of resamples and
the Kaplan–Meier estimates of the survival and cen-
soring distributions as found using the function
survfit in the recommended package survival.

In practice there are usually covariates which af-
fect the survival distribution. The most common as-
sumption is that the survival distribution depends
on the covariates, x, through a Cox Proportional Haz-
ards Model (Cox, 1972).

1− F(y;β, x) = {1− F0(y)}exp(xTβ)

where β is a vector of unknown parameters and
1 − F0(y) is a baseline survivor function. The func-
tion coxph in the survival package fits such models.
For the bootstrap this does not cause a great compli-
cation. The only difference from before is the esti-
mated distribution from which failure times are gen-
erated. Earlier we mentioned that, without covari-
ates, sampling from the model was identical to sam-
pling pairs, this is no longer true in the case with co-
variates. Both methods are possible with censboot,
specifying sim="ordinary" will always sample cases
whereas sim="model" will resample from the Cox
model if appropriate and otherwise will resample
cases.

The following example looks at the ulcerated
cases in the melanoma dataset. The aim is to produce
a confidence interval for the exponent of the coeffi-
cient of tumor thickness in the proportional hazards
model. Note that it is necessary to ensure that the

censoring indicator is of the form specified above.

> data(melanoma)

> library(survival)

> mel <- melanoma[melanoma$ulcer==1,]

> mel$cens <- 1*(mel1$status==1)

> mel.cox <- coxph(Surv(time, cens)

+ ~thickness, data=mel)

> mel.surv <- survfit(mel1.cox)

> mel.cens <- survfit(Surv(time,1-cens)

+ ~1, data=mel)

> mel.fun <- function(d) {

+ coxph(Surv(time, cens)~thickness,

+ data=d)$coefficients }

> mel.boot <- censboot(mel, mel.fun,

+ R=999, sim="cond",

+ F.surv=mel.surv,

+ G.surv=mel.cens,

+ cox=mel.cox,

index=c(1,8))

> mel.boot

CONDITIONAL BOOTSTRAP FOR CENSORED DATA

Call:

censboot(data=mel, statistic=mel.fun,

R=999, F.surv=mel.surv,

G.surv=mel.cens, sim="cond",

cox=mel.cox, index=c(1,8))

Bootstrap Statistics :

original bias std. error

t1* 0.09971374 0.03175672 0.0456912

> boot.ci(mel.boot,

+ type=c("basic", "perc"),

+ h=exp)

BOOTSTRAP CONFIDENCE INTERVAL

CALCULATIONS

Based on 999 bootstrap replicates

CALL :

boot.ci(boot.out=mel.boot,

type=c("basic", "perc"), h=exp)

Intervals :

Level Basic Percentile

95% (0.952, 1.158) (1.052, 1.258)

Calculations and Intervals on

Transformed Scale

The usual interval from summary(mel.cox) is
(1.0205, 1.1962) which is narrower than the boot-
strap intervals suggesting that the asymptotic inter-
val may be undercovering.

Resampling time series
In applying the bootstrap to time series data it is
essential that the autocorrelations be properly ac-
counted for. The most common way of doing this is
to sample the observations in blocks rather than in-
dividually (Künsch, 1989). Thus if we choose a block
length l and we have n = ml for some integer m then
the resampled time series is constructed by putting
m blocks together. When m = n/l is not an integer

R News ISSN 1609-3631



Vol. 2/3, December 2002 6

the last block is shortened so that the resampled time
series is of the appropriate length. Blocks are usually
taken as overlapping so that there are n − l + 1 pos-
sible blocks. This can be increased to n by allowing
blocks to wrap around from the end to the start of the
time series. One problem with the block bootstrap is
that the resulting time series is not stationary. Politis
and Romano (1994) proposed the stationary bootstrap
to overcome this problem. In the stationary boot-
strap the block length is randomly generated with a
geometric distribution and the block start is selected
randomly from the integers {1, . . . , n}. Wrapping at
the end of the time series is necessary for this method
to work correctly. tsboot can do either of these meth-
ods by specifying sim="fixed" or sim="geom" re-
spectively. A simple call to tsboot includes the time
series, a function for the statistic (the first argument
of this function being the time series itself), the num-
ber of bootstrap replicates, the simulation type and
the (mean) block length .

> library(ts)

> data(lynx)

> lynx.fun <- function(tsb) {

+ fit <- ar(tsb, order.max=25)

+ c(fit$order, mean(tsb)) }

> tsboot(log(lynx), lynx.fun, R=999

+ sim="geom", l=20)

STATIONARY BOOTSTRAP FOR TIME SERIES

Average Block Length of 20

Call:

tsboot(tseries=log(lynx),

statistic=lynx.fun,

R=999, l=20, sim="geom")

Bootstrap Statistics :

original bias std. error

t1* 11.000000 -6.593593594 2.5400596

t2* 6.685933 -0.001994561 0.1163937

An alternative to the block bootstrap is to use
model based resampling. In this case a model is fit-
ted to the time series so that the errors are i.i.d. The
observed residuals are sampled as an i.i.d. series and
then a bootstrap time series is reconstructed. In con-
structing the bootstrap time series from the residu-
als, it is recommended to generate a long time se-
ries and then discard the initial burn-in stage. Since
the length of burn-in required is problem specific,
tsboot does not actually do the resampling. Instead
the user should give a function which will return the
bootstrap time series. This function should take three
arguments, the time series as supplied to tsboot, a
value n.sim which is the length of the time series re-
quired and the third argument containing any other
information needed by the random generation func-
tion such as coefficient estimates. When the random
generation function is called it will be passed the ar-
guments data, n.sim and ran.args passed to tsboot
or their defaults.

One problem with the model-based bootstrap is
that it is critically dependent on the correct model

being fitted to the data. Davison and Hinkley (1997)
suggest post-blackening as a compromise between the
block bootstrap and the model-based bootstrap. In
this method a simple model is fitted and the residuals
are found. These residuals are passed as the dataset
to tsboot and are resampled using the block (or sta-
tionary) bootstrap. To create the bootstrap time series
the resampled residuals should be put back through
the fitted model filter. The function ran.gen can be
used to do this.

> lynx1 <- log(lynx)

> lynx.ar <- ar(lynx1)

> lynx.res <- lynx.ar$resid

> lynx.res <- [!is.na(lynx.res)]

> lynx.res <- lynx.res-mean(lynx.res)

> lynx.ord <- c(lynx.ar$order,0,0)

> lynx.mod <- list(order=lynx.ord,

+ ar=lynx.ar$ar)

> lynx.args <- list(mean=mean(lynx1),

+ model=lynx.mod)

> lynx.black <- function(res, n.sim,

+ ran.args) {

+ m <- ran.args$mean

+ ts.mod <- ran.args$model

+ m+filter(res, ts.mod$ar,

+ method="recursive") }

> tsboot(lynx.res, lynx.fun, R=999,

+ l=20, sim="fixed", n.sim=114,

+ ran.gen=lynx.black,

+ ran.args=lynx.args)

POST-BLACKENED BLOCK BOOTSTRAP FOR

TIME SERIES

Fixed Block Length of 20

Call:

tsboot(tseries=lynx.res,

statistic=lynx.fun, R=999,

l=20, sim="fixed", n.sim=114,

ran.gen=lynx.black,

ran.args=lynx.args)

Bootstrap Statistics :

original bias std. error

t1* 0.000000e+00 9.732733 3.48395113

t2* -4.244178e-18 6.685819 0.09757974

A final method which is available for bootstrap-
ping of time series is phase scrambling. Unlike the
other methods described above, phase scrambling
works on the frequency domain. See Braun and
Kulperger (1997) for a discussion of the properties of
this method.

Further comments

In this article I have attempted to describe concisely
the main functions in the boot package for bootstrap-
ping. The package also has functions which imple-
ment saddlepoint approximations to the bootstrap as
described in Canty and Davison (1999). There are
also functions which do exponential tilting of the re-
sampling distribution and other forms of importance

R News ISSN 1609-3631



Vol. 2/3, December 2002 7

resampling in the bootstrap. These are quite special-
ized uses of the package and so the user is advised
to read the relevant sections of Davison and Hinkley
(1997) before using these functions.

Acknowledgments

I would like to thank A. C. Davison and V. Ventura
for their many helpful suggestions in the develop-
ment of this library. Thanks are also due to B. D. Rip-
ley for a great deal of help and for porting the code
to R. Any bugs in the code, however, are my respon-
sibility and should be reported to me in the first in-
stance.

Bibliography

Andersen, P. K., Borgan, Ø., Gill, R. D., and Keiding,
N. (1993), Statistical Models Based on Counting Pro-
cesses, New York: Springer. 5

Braun, W. J. and Kulperger, R. J. (1997), “Properties of
a Fourier bootstrap method for time series,” Com-
munications in Statistics — Theory and Methods, 26,
1329–1327. 6

Canty, A. J. and Davison, A. C. (1999), “Implementa-
tion of saddlepoint approximations in resampling
problems,” Statistics and Computing, 9, 9–15. 6

Canty, A. J., Davison, A. C., and Hinkley, D. V.
(1996), “Reliable confidence intervals. Discussion
of “Bootstrap confidence intervals”, by T. J. DiCi-
ccio and B. Efron,” Statistical Science, 11, 214–219.
4

Cox, D. R. (1972), “Regression Models and Life Ta-
bles” (with discussion), Journal of the Royal Statisti-
cal Society series B, 34, 187–220. 5

Davison, A. C. (1988), “Discussion of the Royal Sta-
tistical Society meeting on the bootstrap,” Journal
of the Royal Statistical Society series B, 50, 356–357. 3

Davison, A. C. and Hinkley, D. V. (1997), Bootstrap
Methods and Their Application, Cambridge: Cam-
bridge University Press. 2, 6, 7

Davison, A. C., Hinkley, D. V., and Schecht-
man, E. (1986), “Efficient bootstrap simulation,”
Biometrika, 73, 555–566. 3

Efron, B. (1981), “Censored data and the bootstrap,”
Journal of the American Statistical Association, 76,
312–319. 4

—— (1992), “Jackknife-after-bootstrap standard er-
rors and influence functions ” (with discussion),
Journal of the Royal Statistical Society series B, 54, 83–
127. 4

Efron, B. and Tibshirani, R. J. (1993), An Introduction
to the Bootstrap, New York: Chapman & Hall. 2

Hall, P. (1989), “On efficient bootstrap simulation,”
Biometrika, 76, 613–617. 3

Johns, M. V. (1988), “Importance sampling for boot-
strap confidence intervals,” Journal of the American
Statistical Association, 83, 709–714. 3

Künsch, H. R. (1989), “The jackknife and boot-
strap for general stationary observations,” Annals
of Statistics, 17, 1217–1241. 5

Politis, D. N. and Romano, J. P. (1994), “The station-
ary bootstrap,” Journal of the American Statistical As-
sociation, 89, 1303–1313. 6

Angelo J. Canty
McMaster University, Hamilton, Ont, Canada
cantya@mcmaster.ca

Diagnostic Checking in Regression
Relationships
by Achim Zeileis and Torsten Hothorn

Introduction

The classical linear regression model

yi = x>i β+ ui (i = 1, . . . , n) (1)

is still one of the most popular tools for data analy-
sis despite (or due to) its simple structure. Although
it is appropriate in many situations, there are many

pitfalls that might affect the quality of conclusions
drawn from fitted models or might even lead to un-
interpretable results. Some of these pitfalls that are
considered especially important in applied econo-
metrics are heteroskedasticity or serial correlation of
the error terms, structural changes in the regression
coefficients, nonlinearities, functional misspecifica-
tion or omitted variables. Therefore, a rich variety of
diagnostic tests for these situations have been devel-
oped in the econometrics community, a collection of
which has been implemented in the packages lmtest

R News ISSN 1609-3631

mailto:cantya@mcmaster.ca

