Vol. 1/3, September 2001

27

A Primer on the R-Tcl/Tk Package

by Peter Dalgaard

Introduction

Tcl/Tk is a combination of a scripting language and
a toolkit for graphical user interfaces. Since version
1.1.0, R has had a tcltk package to access the Tk
toolkit, replacing Tcl code with R function calls (Dal-
gaard, 2001). There are still some design problems in
it, but it is quite useful already in its current state.

This paper intends to get you started with the R-
Tcl/Tk interface. Tcl/Tk is a large package, so it is
only possible to explain the basic concepts here.

The presentation here is based on the X11/Unix
version of R. The tcltk package also works on Win-
dows. It (currently) does not work with Mac OS
Classic but it does work with OS X. It is only the
Linux variants that come with Tcl/Tk; on other sys-
tems some footwork will be necessary to get it in-
stalled.

Widgets

A widget is a GUI element. Tk comes with a selection
of basic widgets: text editing windows, sliders, text
entry fields, buttons, labels, menus, listboxes, and a
canvas for drawing graphics. These can be combined
to form more complex GUI applications.

Let us look at a trivial example:

library(tcltk)

tt <- tktoplevel()

1bl <- tklabel(tt, text="Hello, World!")
tkpack(1bl)

This will cause a window to be displayed contain-
ing the “Hello, World!” message. Notice the overall
structure of creating a container widget and a child
widget which is positioned in the container using a
geometry manager (tkpack). Several widgets can be
packed into the same container, which is the key to
constructing complex applications out of elementary
building blocks. For instance, we can add an “OK”
button with

but <- tkbutton(tt, text="OK")
tkpack (but)

The window now looks as in Figure 1. You can
press the button, but no action has been specified for
it.

R News

Hello, World!

Figure 1: Window with label widget and button wid-
get.

The title of the window is “1” by default. To set a
different title, use

tktitle(tt) <- "My window"

Geometry managers

A geometry manager controls the placement of slave
widgets within a master widget. Three different ge-
ometry managers are available in Tcl/Tk. The sim-
plest one is called the placer and is almost never used.
The others are the packer and the grid manager.

The packer “packs widgets in order around edges
of cavity”. Notice that there is a packing order and a
packing direction.

In the example, you saw that the window auto-
sized to hold the button widget when it was added.
If you enlarge the window manually, you will see
that the slave widgets are placed centered against the
top edge. If you shrink it, you will see that the last
packed item (the button) will disappear first. (Man-
ual resizing disables autosizing. You can reenable it
with tkwm.geometry (tt,"").)

Widgets can be packed against other sides as
well. A widget along the top or bottom is allocated a
parcel just high enough to contain the widget, but oc-
cupying as much of the width of the container as pos-
sible, whereas widgets along the sides get a parcel of
maximal height, but just wide enough to contain it.
The following code may be illustrative (Figure 2):

tkdestroy(tt) # get rid of old example
tt <- tktoplevel()
edge <- c("top","right","bottom","left")
buttons <- lapply(1:4,

function(i) tkbutton(tt, text=edgel[il))
for (i in 1:4)

tkpack(buttons[[i]], side=edgeli],

fill="both")

ISSN 1609-3631

Vol. 1/3, September 2001

28

Figure 2: Geometry management by the packer

The fill argument causes each button to oc-
cupy its entire parcel. Similarly expand=TRUE causes
parcels to increase in width or height (depending on
the packing direction) to take up remaining space in
the container. This occurs after allotment of parcels;
in the above example only “left” can expand.

If an object does not fill its parcel, it needs to be
anchored. The anchor argument to tkpack can be set
to compass-style values like "n" or "sw" for place-
ment in the middle top, respectively bottom left. The
default is "center".

It is useful at this point to consider what the
packer algorithm implies for some typical layouts:

Simple vertical or horizontal stacking is of course
trivial, you just keep packing against the same side.

For a text widget with a scrollbar on the side, you
want £ill="y" for the scrollbar and fill="both"
and expand=TRUE for the text area. The scrollbar
should be packed before the text widget so that the
latter shrinks first.

A text widget with scrollbar and a row of buttons
beneath it? You cannot do that with the packer al-
gorithm! This is where frames come in. These are
containers for further widgets with separate geome-
try management. So you pack the buttons inside a
frame, pack the frame against the bottom, then pack
the scrollbar and text widget.

The combination of the packer and frames gives
a lot of flexibility in creating GUI layouts. How-
ever, some things are tricky, notably lining widgets
up both vertically and horizontally.

Suppose you want multiple lines, each containing
an entry widget preceded by a label. With the packer
there is no simple way to keep the beginning of the
entry fields lined up.

Enter the grid manager. As the name suggests it
lays out widgets in rows and columns. Using this
manager the labeled-entry problem could be solved
as follows (Figure 3

t2 <- tktoplevel()

heading <- tklabel(t2, text="Registration form")
1.name <- tklabel(t2, text="Name")

l.age <- tklabel(t2, text="Age")

e.name <- tkentry(t2, width=30)

e.age <- tkentry(t2, width=3)

tkgrid(heading, columnspan=2)

R News

tkgrid(1l.name, e.name)

tkgrid(l.age, e.age)
tkgrid.configure(e.name, e.age, sticky="w")
tkgrid.configure(l.name, l.age, sticky="e")

)

Registration form

Figure 3: A registration form using the grid manager

With the grid manager it is most convenient to
specify a full row at the time, although options let
you do it otherwise. The columnspan argument joins
grid cells horizontally. The sticky argument works
somewhat like anchoring in the packer. The value
can be any subset of n, s, e, and w and specifies that
the widget should stick to the specified sides of the
cell. If it contains opposite sides, e.g. both n and s,
the widget stretches to fill the space.

You can mix the geometry managers, although
not in the same master frame. Some parts of an appli-
cation may be best handled by the packer and others
by the grid manager.

Communication with widgets

We need a way to get data from widgets to and from
R, and a way to make things happen in response to
widget events. There are two general patterns for
this, namely control variables and callbacks.

Control variables associate the state of some as-
pect of a widget with a variable in Tcl. These
Tcl variables can be accessed from R as (pseudo-
)components of the tclvar object. So we could con-
trol the name entry field of the example above with

tkconfigure(e.name, textvariable="foo")
tclvar$foo <- "Hello, World"

and conversely any change to the content of the en-
try field is reflected in tclvar$foo This mechanism is
not optimal and will likely change in future versions of R/

Control variables are also used by checkbuttons,
radiobuttons, and scales. Radiobutton widgets allow
a value argument so that the button lights up when
the control variable has that value, and the variable
is given that value when the radiobutton is clicked.
A checkbutton will indicate whether its control vari-
able is 0 (FALSE) or not.

Callbacks are functions that are linked to GUI
events. Callbacks are often set up using arguments
named command.

For a simple example consider

t3 <- tktoplevel()
b <- tkbutton(t3, text = "Don’t press me!")

ISSN 1609-3631

Vol. 1/3, September 2001

29

tkpack (b)
change.text <- function() {

cat ("0OW!\n")

tkconfigure(b, text = "Don’t press me again!")
}

tkconfigure(b, command = change.text)

This callback function doesn’t take any argu-
ments, but others do. There are two ways to take
account of this, depending on whether the callback
is actively soliciting information or not. An example
of the latter is the scrollbar protocol as exemplified
below

t4 <- tktoplevel()
txt <- tktext(t4)
scr <- tkscrollbar(t4,

command=function(...) tkyview(txt,...))
tkconfigure(txt,
yscrollcommand=function(...) tkset(scr,...))

tkpack(scr, side="right", fill="y")
tkpack(txt, f£ill="both", expand=TRUE)

This sets up a bidirectional link: Manipulating
the scrollbar changes the view of the text widget and
vice versa. Some care is taken not to add a callback
that refers to a widget before the widget exists.

We don’t need to care what the arguments to the
callbacks are, only to pass them through to tkyview
and tkset respectively. In fact the arguments to
tkyview will be different depending on which part
of the scrollbar is engaged.

In Tcl, you can define a callback command as
myproc %x %y and myproc will be invoked with the
pointer coordinates as arguments. There are several
other “percent codes”. The parallel effect is obtained
in R by defining the callback with specific formal ar-
guments. From the tkcanvas demo:

plotMove <- function(x, y) {
x <- as.numeric(x)
y <- as.numeric(y)
tkmove (canvas, "selected",
x - lastX, y - lastY)
lastX <<- x
lastY <<- y
}
tkbind(canvas, "<Bl-Motion>", plotMove)

The coordinates are passed as text strings, requir-
ing the use of as.numeric.

Events and bindings

The previous example showed a binding of a call-
back to a windows event, containing the event pat-
tern <B1-Motion> — mouse movement with Button 1
pressed.

An event pattern is a sequence of fields separated
by hyphens and enclosed in <>. There are three kinds
of fields, modifier, type, and detail, in that order. There
can be several modifier fields. A generic example is

R News

<Control-Alt-Key-c>, where Control and Alt are
modifiers, Key is the event type, and c is the detail.
If c is left out any key matches. The Key part can be
omitted when there’s a character detail field. Simi-
larly, a numeric detail field is assumed to refer to a
button press event (notice that <Key-1> is different
from <1>).

Callbacks are associated with events using
tkbind, or sometimes tktag.bind or tkitembind.

Text widgets

The text widget in Tk embodies the functionality of a
basic text editor, allowing you to enter and edit text,
move around in the text with cursor control keys,
and mark out sections of text for cut-and-paste op-
erations. Here, we shall see how to add or delete text
and how to extract the text of pieces thereof. These
methods revolve around indices, tags, and marks.

A simple index is of the form line.char where
line is the line number and char is the character po-
sition within the line. In addition there are special
indices like end for the end of the text.

Tags provide a way of referring to parts of the
text. The part of the text that has been marked as
selected is tagged sel. Any tag can be used for in-
dexing using the notation tag.first and tag.last.

Marks are somewhat like tags, but provide names
for locations in the text rather than specific charac-
ters. The special mark insert controls and records
the position of the insertion cursor.

To extract the entire content of a text widget, you

say
X <- tkget(txt, "0.0", "end")

Notice that you have to give 0.0 as a character string,
not as a number. Notice also that the result of tkget
is a single long character string; you may wish to con-
vert it to a vector of strings (one element per line) us-
ing strsplit (X, "\n").

In a similar fashion, you can extract the selected
part of the text with

X <- tkget(txt, "sel.first", "sel.last")

However, there is a pitfall: If there is no selection, it
causes an error. You can safeguard against this by
checking that

tktag.ranges(txt, "sel") != ""
Inserting text at (say) the end of a file is done with
tkinsert (txt, "end", string)

The string needs to be a single string just like the one
obtained from tkget. If you want to insert an entire
character array, you will need to do something along
the lines of

tkinsert (txt, "end",
paste(deparse(ls), collapse="\n"))

ISSN 1609-3631

Vol. 1/3, September 2001

30

You can set the insertion cursor to the top of the text
with

tkmark.set (txt, "insert", "0.0")
tksee(txt, "insert")

The tksee function ensures that a given index is vis-
ible.

An insertion leaves the insertion mark in place,
but when it takes place exactly at the mark it is am-
biguous whether to insert before or after the mark.
This is controllable via mark gravity. The default is
“right” (insert before mark) but it can be changed
with

tkmark.gravity (txt, "insert", "left")

Creating menus

Tk menus are independent widgets. They can be
used as popup menus, but more often they attach to
the menu bar of a toplevel window, a menubutton,
or a cascade entry in a higher-level menu.

Menus are created in several steps. First you
setup the menu with tkmenu, then you add items
with tkadd. There are so many possible options for a
menu item that this is a more practicable approach.

Menu items come in various flavours. A com-
mand entry is like a button widget and invokes a
callback function. Cascade entries invoke secondary
menus. Checkbutton and radiobutton entries act like
the corresponding widgets and are used for optional
selections and switches. Special entries include sep-
arators which are simply non-active dividing lines
and tear-offs which are special entries that you can
click to detach the menu from its parent. The latter
are on by default but can be turned off by passing
tearoff=FALSE to tkmenu.

Here is a simple example of a menubutton with a
menu which contains three radiobutton entries:

tclvar$color<-"blue"

tt <- tktoplevel()

tkpack(mb <- tkmenubutton(tt, text="Color"))
m <- tkmenu(mb)

tkconfigure (mb,menu=m)

for (i in c("red", "blue", "green"))
tkadd(m, "radio", label=i, variable="color",
value=i)

A simple application:
widgets

Scripting

The following code is a sketch of a scripting wid-
get (Figure 4. The widget can be used to edit mul-
tiple lines of code and submit them for execution. It
can load and save files using tk_getOpenFile and
tk_getSaveFile. For simplicity, the code is executed
with parse and eval.

R News

Notice that tkcmd is used to call Tcl commands
that have no direct R counterpart. Future versions of
the tcltk package may define functions tkclose, etc.

Tcl has file functions that by and large do the
same as R connections do although they tend to work
a little better with other Tcl functions.

You may want to experiment with the code to add
features. Consider e.g. adding an Exit menu item, or
binding a pop-up menu to Button 3.

tkscript <- function() {
wfile <= ""
tt <- tktoplevel()
txt <- tktext(tt, height=10)
tkpack(txt)
save <- function() {
file <- tkcmd(”tk_getSaveFile",
initialfile=tkcmd("file", "tail", wfile),
initialdir=tkcmd("file", "dirname", wfile))
if (!length(file)) return()
chn <- tkcmd("open", file, "w")
tkcmd ("puts", chn, tkget(txt,"0.0","end"))
tkcmd("close", chn)
wfile <<- file
}
load <- function() {
file <- tkcmd("tk_getOpenFile")
if (!'length(file)) return()
chn <- tkcmd("open", file, "r")
tkinsert (txt, "0.0", tkcmd("read", chn))
tkcmd("close", chn)
wfile <<- file
}
run <- function() {
code <- tkget(txt,"0.0","end")
e <- try(parse(text=code))
if (inherits(e, "try-error")) {
tkemd ("tk_messageBox",
message="Syntax error",
icon="error")
return()
}
cat ("Executing from script window:",
W ", code, "result:", sep="\n")
print(eval(e))
}
topMenu <- tkmenu(tt)
tkconfigure(tt, menu=topMenu)
fileMenu <- tkmenu(topMenu, tearoff=FALSE)
tkadd(fileMenu, "command", label="Load",
command=1load)
tkadd(fileMenu, "command", label="Save",
command=save)
tkadd (topMenu, "cascade", label="File",
menu=fileMenu)
tkadd (topMenu, "command", label="Run",
command=run)

Further information

Some further coding examples are available in the
demos of the tcltk package.

ISSN 1609-3631

Vol. 1/3, September 2001

31

toclvarscolor<-"hlue"
tt <- tktoplewel()

m <— tlmenu {mb}
tkeonfigqure (mb, mena=m)

for { 1 in ci("red", "hlue",
| tlkadd {m,

"green"))

tkpack(mbh <- tkmenubutton(tt, text="Coloc"))

"radio", label=1i, warishle="color", walue=1)

Figure 4: A simple scripting widget.

Most of the functions in the tcltk package are re-
ally just a thin layer covering an underlying Tcl com-
mand. Converting all the Tcl/ Tk documentation for
Ris a daunting task, so you have to make do with the
help for Tcl/ Tk itself. This is fairly easy once you get
the hang of some simple translation rules.

For the tkbutton function, you would look at the
help for button. The R functions add a tk prefix to
avoid name clashes. The button command in Tcl/Tk
has a -text argument followed by the text string to
display. Such options are replaced in the R counter-
part by named arguments like text="B1". The argu-
ment value is a string, but logical or numerical val-
ues, as well as (callback) functions are automatically
converted.

When translating commands, there are a couple
of special rules which are briefly outlined below.

One general difference is that Tcl encodes the
widget hierarchy in the name of the widgets so that
widget .a has subwidgets .a.band .a.c, etc. This is
impractical in R so instead of Tcl’s

button .a.b -text foo

we specify the parent directly in the widget creation
call

but <- tkbutton(parent, text="foo")

This pattern is used for all commands that create
widgets. Another difference is that Tcl has widget
commands like

.a.b configure -text fum

which in R is replaced by a command acting on a
widget

tkconfigure(but, text="fum")
Some widget commands have subcommands as in

.a.b selection clear 0 end

R News

which are turned into separate functions
tkselection.clear(1lb, 0, "end")

In a few cases, the translation rules create ambi-
guities — for instance there is both a general bind
command and a bind widget command for canvases.
This has been resolved by making the widget com-
mands tkitembind.

There is quite a large literature on Tcl and Tk. A
well-reputed book is Welch (2000). A smaller refer-
ence item is Raines and Tranter (1999), although it is
mostly a paper copy of online information. The main
web site isat http://tcl.activestate.com/.

The useful tclhelp program comes with the TclX
package. There is also a nice widget demo in the Tk
distribution.

Bibliography

Peter Dalgaard. The R-Tcl/Tk interface. In
Kurt Hornik and Fritz Leisch, editors, Pro-
ceedings of the 2nd International Workshop on
Distributed Statistical Computing, March 15-17,
2001, Technische Universitit Wien, Vienna, Aus-
tria, 2001. URL http://www.ci.tuwien.ac.
at/Conferences/DSC-2001/Proceedings/. ISSN
1609-395X. 27

Paul Raines and Jeff Tranter. Tcl/Tk in a Nutshell.

O'Reilly, 1999. 31

Brent B. Welch. Practical Programming in Tcl and Tk.
Prentice-Hall PTR, New Jersey, 3rd edition, 2000.
31

Peter Dalgaard
University of Copenhagen, Denmark
P.Dalgaard@biostat.ku.dk

ISSN 1609-3631

http://tcl.activestate.com/
http://www.ci.tuwien.ac.at/Conferences/DSC-2001/Proceedings/
http://www.ci.tuwien.ac.at/Conferences/DSC-2001/Proceedings/
mailto:P.Dalgaard@biostat.ku.dk

