
Vol. 1/3, September 2001 11

A. Zeileis, F. Leisch, K. Hornik, and C. Kleiber.
strucchange: An R package for testing for struc-
tural change in linear regression models. Re-
port 55, SFB “Adaptive Information Systems and
Modelling in Economics and Management Sci-
ence”, May 2001. URL http://www.wu-wien.ac.

at/am/reports.htm#55. 10

Achim Zeileis
Technische Universität Wien, Austria
zeileis@ci.tuwien.ac.at

Programmer’s Niche: Macros in R
Overcoming R’s virtues

by Thomas Lumley

A familiar source of questions on the R mailing lists
is the newly converted R user who is trying to write
SAS or Stata code in R. Bill Venables then points out
to them that R is not a macro language, and gently
explains that there is a much easier solution to their
problems. In this article I will explain what a macro
is, why it’s good that R isn’t a macro language, and
how to make it into one.

There are two reasons for this. It has been fa-
mously observed1 that a Real Programmer can write
Fortran code in any language, and it is similarly
an interesting exercise to see how R can implement
macros. Secondly, there are a few tasks for which
macros are genuinely useful, which is why languages
like LISP, for example, provide them.

What is a macro language?

Suppose you have a series of commands

table(treatment, gender)

table(treatment, race)

table(treatment, age.group)

table(treatment, hospital)

table(treatment, diabetic)

These commands can be created by taking the skele-
ton

table(treatment, variable)

substituting different pieces of text for variable, and
evaluating the result. We could also repeatedly call
the table() function with two arguments, the first
being the values of treatment and the second being
the values of the other variable.

R takes the latter approach: evaluate the argu-
ments then use the values. We might define

rxtable <- function(var){

table(treatment, var)

}

Stata typically takes the former approach, substitut-
ing the arguments then evaluating. The ’substitute

then evaluate’ approach is called a macro expansion, as
opposed to a function call. I will write this in pseudo-
R as

rxtable <- macro(var){

table(treatment, var)

}

Why not macros?

In this simple example it doesn’t make much differ-
ence which one you use. In more complicated ex-
amples macro expansion tends to be clumsier. One
of its advantages is that you get the actual argument
names rather than just their values, which is useful
for producing attractive labels, but R’s lazy evalua-
tion mechanism lets you do this with functions.

One problem with macros is that they don’t have
their own environments. Consider the macro

mulplus <- macro(a, b){

a <- a+b

a * b

}

to compute (a + b)(b). This would work as a func-
tion, but as a macro would have undesirable side-
effects: the assignment is not to a local copy of a but
to the original variable. A call like y <- mulplus(x,
2) expands to y <- {x<-x+2; x*2}. This sets y to
the correct value, 2x + 4, but also increments x by 2.
Even worse is mulplus(2, x), which tries to change
the value of 2, giving an error.

We could also try

mulplus <- macro(a, b){

temp <- a+b

temp * b

}

This appears to work, until it is used when we al-
ready have a variable called temp. Good macro lan-
guages need some way to provide variables like temp
that are guaranteed not to already exist, but even this
requires the programmer to declare explicitly which
variables are local and which are global.

The fact that a macro naturally tends to modify
its arguments leads to one of the potential uses of
macro expansion in R. Suppose we have a data frame

1“Real Programmers don’t use Pascal” by Ed Post — try any web search engine

R News ISSN 1609-3631

http://www.wu-wien.ac.at/am/reports.htm#55
http://www.wu-wien.ac.at/am/reports.htm#55
mailto:zeileis@ci.tuwien.ac.at

Vol. 1/3, September 2001 12

in which one variable is coded -9 for missing. We
need to replace this with NA, eg,

library(survival)

data(pbc)

pbc$bili[pbc$bili %in% -9] <- NA

For multiple missing values and many variables
this can be tedious and error-prone. Writing a func-
tion to do this replacement is tricky, as the modifica-
tions will then be done to a copy of the data frame.
We could use the <<- operator to do the assignment
in the calling environment. We then face the prob-
lem that the function needs to know the names pbc
and bili. These problems are all soluble, but indi-
cate that we may be going about things the wrong
way.

We really want to take the expression

df$var[df$var %in% values] <- NA

and substitute new terms for df, var and values,
and then evaluate. This can be done with the
substitute() function

eval(substitute(

df$var[df$var %in% values] <- NA,

list(df=quote(pbc), var=quote(bili),

values=-9)))

but this is even more cumbersome than writing out
each statement by hand. If we could define a macro

setNA<-macro(df, var, values){

df$var[df$var %in% values] <- NA

}

we could simply write

setNA(pbc, bili, -9)

Using macro expansion in R

The example using substitute() shows that macro
expansion is possible in R. To be useful it needs to be
automated and simplified. Adding macro to the lan-
guage as a new keyword would be too much work
for the benefits realised, so we can’t quite implement
the notation for macros that I have used above. We
can keep almost the same syntax by defining a func-
tion defmacro() that has the argument list and the
body of the macro as arguments.

Using this function the setNA macro is defined as

setNA <- defmacro(df, var, values, expr={

df$var[df$var %in% values] <- NA

})

and used with

setNA(pbc, bili, -9).

The argument list in defmacro can include default ar-
guments. If−9 were a commonly used missing value
indicator we could use

setNA <- defmacro(df, var, values = -9, expr={

df$var[df$var %in% values] <- NA

})

Macros can also provide another implementation
of the ‘density of order statistics’ example from the
R-FAQ. The density of the rth order statistic from a
sample of size n with cdf F and density f is

f(r),n(x) =
n(n− 1)!

(n− r)!(r− 1)!
F(x)r−1(1− F(x))n−r f (x).

The FAQ explains how to use lexical scope to imple-
ment this, and how to use substitute() directly. We
can also use a macro

dorder <- defmacro(n, r, pfun, dfun,expr={

function(x) {

con <- n*choose(n-1, r-1)

con*pfun(x)^(r-1)*(1-pfun(x))^(n-r)*dfun(x)

}

})

so that the median of a sample of size 11 from an ex-
ponential distribution has density

dmedian11 <- dorder(11, 6, pexp, dexp)

In this case lexical scope may be an easier solu-
tion, but ‘functions to write functions’ are a standard
use of macros in LISP.

So how does it work?

The function defmacro() looks like

defmacro <- function(..., expr){

expr <- substitute(expr)

a <- substitute(list(...))[-1]

process the argument list

nn <- names(a)

if (is.null(nn)) nn <- rep("", length(a))

for(i in seq(length=length(a))) {

if (nn[i] == "") {

nn[i] <- paste(a[[i]])

msg <- paste(a[[i]], "not supplied")

a[[i]] <- substitute(stop(foo),

list(foo = msg))

}

}

names(a) <- nn

a <- as.list(a)

this is where the work is done

ff <- eval(substitute(

function(){

tmp <- substitute(body)

eval(tmp, parent.frame())

},

list(body = expr)))

add the argument list

formals(ff) <- a

create a fake source attribute

mm <- match.call()

mm$expr <- NULL

mm[[1]] <- as.name("macro")

R News ISSN 1609-3631

Vol. 1/3, September 2001 13

attr(ff, "source") <- c(deparse(mm),

deparse(expr))

return the ’macro’

ff

}

The kernel of defmacro() is the call

ff <- eval(substitute(

function(){

tmp <- substitute(body)

eval(tmp, parent.frame())

},

list(body = expr)))

In the setNA example this creates a function

function(){

tmp <- substitute(

df$var[df$var %in% values] <- NA)

eval(tmp, parent.frame())

}

that performs the macro expansion and then evalu-
ates the expanded expression in the calling environ-
ment. At this point the function has no formal argu-
ment list and most of defmacro() is devoted to cre-
ating the correct formal argument list.

Finally, as printing of functions in R actually uses
the source attribute rather deparsing the function,
we can make this print in a more user-friendly way.
The last lines of defmacro() tell the function that its
source code should be displayed as

macro(df, var, values){

df$var[df$var %in% values] <- NA

}

To see the real source code, strip off the source at-
tribute:

attr(setNA, "source") <- NULL

It is interesting to note that because substitute
works on the parsed expression, not on a text string,
defmacro avoids some of the problems with C pre-
processor macros. In

mul <- defmacro(a, b, expr={a*b})

a C programmer might expect mul(i, j + k) to ex-
pand (incorrectly) to i*j + k. In fact it expands cor-
rectly, to the equivalent of i*(j + k).

Conclusion

While defmacro() has many (ok, one or two) practi-
cal uses, its main purpose is to show off the powers
of substitute(). Manipulating expressions directly
with substitute() can often let you avoid messing
around with pasting and parsing strings, assigning
into strange places with <<- or using other functions
too evil to mention. To make defmacro really useful
would require local macro variables. Adding these is
left as a challenge for the interested reader.

Thomas Lumley
University of Washington, Seattle
tlumley@u.washington.edu

More on Spatial Data Analysis
by Roger Bivand

Introduction

The second issue of R News contained presenta-
tions of two packages within spatial statistics and
an overview of the area; yet another article used a
fisheries example with spatial data. The issue also
showed that there is still plenty to do before spatial
data is as well accommodated as date-time classes
are now. This note will add an introduction to the
splancs package for analysing point patterns, men-
tion briefly work on packages for spatial autocorre-
lation, and touch on some of the issues raised in han-
dling spatial data when interfacing with geographi-
cal information systems (GIS).

●

●
●

●

●

●
●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●●
●

●

●●●

●

●

● ●
●● ●

●

●
●

●

●

●

●
●

●

●

●

●
●●

●

●

●
●
●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●
●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●
●

●

●●●
●

●

●

●
●

●

●

●●

●

● ●

●
●

●
●

● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

200 250 300 350 400

25
0

30
0

35
0

40
0

Data map

Distance
10

20
30

Tim
e

500

1000
1500

D

0e+00
2e+05
4e+05
6e+05
8e+05

D plot

●

●●●

●

●
●●

●

●

●
●
●●

●●
●
●
●●

●

●
●●

●

●
●

●

●●

●
●●
●

●●●

●●

●

●

●

●
●

●

●
●

●

●●

●

●
●

●●●●

●
●

●●

●
●

●

●
●●

●

●
●

●

●●
●●

●
●

●●

●

●●●
●

●●

●

●

●

●

●

●●
●
●
●
●

●
●

●
●

●

●●
●●

●

●
●

●

●

●●
●●

●●

●

●

●

●

●
●●●

●

●
●
●

●

●

●●
●

●●●

●

●

●

●●●
●●

●

●●

●

●

●

●●
●

●
●●

●

●

●

●●●

●●
●

●●

●

●

●

●●●
●

●
●

●

●

●

●●
●
●

●●
●

●

●

●

●

● ● ●
●● ●

●

●

●

●●

●●
●

●
●

●

●
●

●

● ●
●

● ● ●

●

●

●

●
●

●

●●

●●

●

●
●

●

● ● ●
● ● ●

●

●

●●
●

●

●●

●
●

●

●
●

●

● ●
● ● ● ● ●

●

●●●

●

●●

● ●

●

●

●

●

●
●

● ● ● ● ●
●

●

●●

●

●●
● ●

●

●

●

●

● ●

● ● ● ● ●

●
●

0.0e+00 1.0e+07 2.0e+07

0
1

2
3

4
5

K(s)K(t)

R

Residual Plot

Test statistic

F
re

qu
en

cy

−6e+07 −2e+07 2e+07 6e+07

0.
0

0.
5

1.
0

1.
5

2.
0

MC results

Figure 1: Burkitt’s lymphoma — stdiagn() output.

R News ISSN 1609-3631

mailto:tlumley@u.washington.edu

