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Future extensions may provide further simulation
algorithms for Gaussian and non-Gaussian random
fields, and a basic toolbox for the analysis of geosta-
tistical and spatial extreme value data.

Use help(RandomFields) to obtain the main man
page. To start with, the examples in help(GaussRF)
are recommended.
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mgcv: GAMs and Generalized Ridge
Regression for R
by Simon N. Wood

Generalized Additive Models (GAMs) have become
quite popular as a result of the work of Wahba
(1990) and co-workers and Hastie & Tibshirani
(1990). Package mgcv provides tools for GAMs and
other generalized ridge regression. This article de-
scribes how GAMs are implemented in mgcv: in
particular the innovative features intended to im-
prove the GAM approach. The package aims to
provide the convenience of GAM modelling in S-
PLUS, combined with much improved model se-
lection methodology. Specifically, the degrees of
freedom for each smooth term in the model are
chosen simultaneously as part of model fitting by
minimizing the Generalized Cross Validation (GCV)
score of the whole model (not just component wise
scores). At present mgcv only provides one dimen-
sional smooths, but multi-dimensional smooths will
be available from version 0.6, and future releases will
include anisotropic smooths. GAMs as implemented
in mgcv can be viewed as low rank approximations
to (some of) the generalized spline models imple-
mented in gss — the idea is to preserve most of the
practical advantages with which elegant underlying
theory endows the generalized smoothing spline ap-
proach, but without the formidable computational
burden that accompanies full gss models of moder-
ately large data sets.

GAMs in mgcv

GAMs are represented in mgcv as penalized gen-
eralized linear models (GLMs), where each smooth
term of a GAM is represented using an appropriate

set of basis functions and has an associated penalty
measuring its wiggliness: the weight given to each
penalty in the penalized likelihood is determined by
its “smoothing parameter”. Models are fitted by the
usual iteratively re-weighted least squares scheme
for GLMs, except that the least squares problem at
each iterate is replaced by a penalized least squares
problem, in which the set of smoothing parameters
must be estimated alongside the other model param-
eters: the smoothing parameters are chosen by GCV.
This section will sketch how this is done in a little
more detail.

A GLM relating a univariate response variable y
to a set of explanatory variables x1, x2, . . ., has the
general form:

g(µi) = β0 +β1x1i +β2x2i + · · · (9.1)

where E(yi) ≡ µi and the yi are independent ob-
servations on r.v.s all from the same member of the
exponential family. g is a smooth monotonic “link-
function” that allows a useful degree of non-linearity
into the model structure. The βi are model parame-
ters: likelihood theory provides the means for esti-
mation and inference about them. The r.h.s. of (9.1)
is the “linear predictor” of the GLM, and much of the
statistician’s modelling effort goes into finding an ap-
propriate form for this.

The wide applicability of GLMs in part relates to
the generality of the form of the of the linear pre-
dictor: the modeller is not restricted to including ex-
planatory variables in their original form, but can in-
clude transformations of explanatory variables and
dummy variables in whatever combinations are ap-
propriate. Hence the class of models is very rich, in-
cluding, for example, polynomial regression models
and models for designed experiments. However the
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standard methods for generalized linear modelling
can become unwieldy as models become more com-
plex. In particular, it is sometimes the case that prior
beliefs about appropriate model structure might best
be summarized as something like:

g(µi) = β0 + s1(x1i) + s2(x2i) + · · · (9.2)

i.e., the linear predictor should be given by a constant
plus a smooth function of x1 plus another smooth
function of x2 and so on (with some side condi-
tions on the si to ensure identifiability). It is pos-
sible to build this sort of model structure directly
within the GLM framework using, e.g. polynomials
or more stable bases to represent the smooth terms:
but such an approach becomes troublesome as the
number of smooths and their complexity increases.
The two main problems are that model selection be-
comes rather cumbersome (many models may need
to be compared, and it is not always easy to keep
them nested), and that the basis selected can have a
rather strong influence on the fitted model (e.g. re-
gression splines tend to be rather dependent on knot
placement, while polynomials can be very unstable).

An alternative approach for working with mod-
els like (9.2) represents the smooth functions using
linear smoothers, and performs estimation by back-
fitting (Hastie & Tibshirani, 1990) — this has the ad-
vantage that a very wide range of smoothers can
be used, but the disadvantage that model selection
(choosing the amount of smoothing to perform) is
still difficult.

In mgcv, smooth terms in models like (9.2) are
represented using penalized regression splines. That
is, the smooth functions are re-written using a suit-
ably chosen set of basis functions, and each has an as-
sociated penalty which enables its effective degrees
of freedom to be controlled through a single smooth-
ing parameter. How this works is best seen through
an example, so consider a model with one linear term
and a couple of smooth terms:

g(µi) = β0 +β1x1i + s1(x2i) + s2(x3i) (9.3)

The si can be re-written in terms of basis functions
thus:

s1(x) =
k1

∑
j=1
β j+1b1 j(x) s2(x) =

k2

∑
j=1
β j+1+k1 b2 j(x)

where ki is the number of basis functions used for si,
the β j are parameters to be estimated and the b ji are
basis functions. For example, a suitable set of spline-
like basis functions might be:

b j1(x) = x and b ji(x) = |x− x∗ji|3 for i > 1

where the x∗ji are a set of “knots” spread “nicely”
throughout the relevant range of explanatory vari-
able values. So (9.3) now becomes:

g(µi) = β0 +β1x1i +β2x2i +β3|x2i − x∗22|3 + · · ·

. . . a GLM. If we write the vector of values of g(µi)
as η then it’s pretty clear that the previous equa-
tion written out for all i can be written as η = Xβ,
where the model matrix X follows in an obvious way
from the above equation. (Note that mgcv actually
uses a different (but equivalent) regression spline ba-
sis based on cubic Hermite polynomials: its parame-
ters are usefully interpretable and it is computation-
ally convenient, but rather long winded to write out.)
So far the degrees of freedom associated with each
smooth term are determined entirely by the ki so that
model selection will have all the difficulties alluded
to above and the fitted model will tend to show char-
acteristics dependent on knot locations. To avoid
these difficulties mgcv uses a relatively high value
for each ki and controls the smoothness (and hence
degrees of freedom) for each term through a set of
penalties applied to the likelihood of the GLM. The
penalties measure the wiggliness of each si as:∫

[s′′i (x)]2dx

Since s′′1 (x) = ∑k1
j=1 β j+1b′′1 j(x), it’s not hard to see that

it is possible to write:∫
[s′′1 (x)]2dx = βTS1β

where β is the parameter vector, and S1 is a posi-
tive semi-definite matrix depending only on the ba-
sis functions. A similar result applies to s2. So the
model βi’s can be estimated by minimizing:

−l(β) +
2

∑
i=1
λiβ

TSiβ

where l is the log-likelihood for β, and the λi’s con-
trol the relative weight given to the conflicting goals
of good fit and model smoothness. Given λi it is
straightforward to solve this problem by (penalized)
IRLS, but the λi need to be estimated, and this is not
so straightforward.

Recall that the IRLS method for a GLM consists
of iterating the following steps to convergence:

1. The current estimate of β, β[k], yields estimates
of µ and the variance of each yi: Vi. Hence us-
ing the current estimates, calculate the follow-
ing: (i) the diagonal weight matrix W where:

Wii = [g′(µi)2Vi]−1

and (ii) the vector of pseudodata:

z = Xβ+ Γ(y−µ)

where Γ is a diagonal matrix and Γii =
[g′(µi)]−1.
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2. Minimize:

‖W1/2(z− Xβ)‖2

w.r.t. β to get β[k+1].

mgcv fits GAMs by replacing step 2. with the fol-
lowing:

2. Find the λi minimizing:

‖W1/2(z− Xβ)‖2

[tr(I−A)]2 (9.4)

where β is the solution to the problem of mini-
mizing:

‖W1/2(z− Xβ)‖2 + ∑ λ jβ
TS jβ

w.r.t. β, and A is the “influence” or “hat”
matrix: X(XTWX + ∑ λ jβ

TS jβ)−1XTW, whose
trace gives the estimated degrees of freedom
for the model.

(9.4) is the GCV score for the model and its effi-
cient minimization is the key to the approach used in
mgcv: the method for doing this is based on a gen-
eralization of the method developed by Gu & Wahba
(1991) for generalized smoothing spline models, and
is described in Wood (2000). The computational bur-
den is cubic in the dimension of β — which is usu-
ally much less than the computational burden of us-
ing Gu and Wahba’s method for gss models, which
is necessarily cubic in the number of data.

Note that direct minimization of (9.4) is not the
same as minimizing separate GCV scores as part of
each back-fitting iteration — the latter approach is
very difficult to justify on other than ad hoc grounds.

A simple Bayesian argument yields a covariance
matrix estimate for β̂ and hence estimated Bayesian
confidence intervals for the components of the GAM
(Wood, 2000; Hastie & Tibshirani, 1990). These are
similar in spirit to the intervals for smoothing splines
in Wahba (1983).

Note then, that the key point about mgcv is that
the selection of degrees of freedom for the compo-
nents of a fitted GAM is an integral part of model
fitting. Furthermore the manner in which it is in-
tegrated is designed to make inclusion of multi-
dimensional and anisotropic smooths quite straight-
forward. In addition it should be clear that in
principle any smooth constructed using a basis and
quadratic penalty could be incorporated into mgcv’s
GAM modelling tools.

Practical GAMs

Because of the way in which estimation of degrees of
freedom is integrated into model fitting, the gam()
function provided by mgcv is not an exact clone
of what is described in the white book and imple-
mented in S-PLUS. This section describes what is im-
plemented and how to use it.

gam()

mgcv’s gam() function fits a GAM specified by a
model formula and family, to univariate response
data. A simple example of its use is:

> gam(y ~ s(x))

which will cause the model:

yi ∼ f (xi) +εi , εi i.i.d. N(0,σ2)

to be estimated, where f is a smooth function.
A more complicated example, illustrating a few

more features is:

> gam(y^0.5 ~ -1 + x + s(z,5|f) + s(w) + s(v,20),

data = mydata, family = gamma(link=I))

In this case the response is
√

y, and the linear pre-
dictor is made up of a linear term in x plus smooth
functions of z, w and v, with no intercept term. The
data are assumed to follow a gamma distribution,
and the link is the identity function. The 3 differ-
ent forms of s() each relate to a different represen-
tation of the smooth concerned. s(z,5|f) indicates
that the smooth function of z is to be represented as
a pure un-penalized regression spline, with 5 knots
— under the representation used by mgcv this cor-
responds to exactly 4 degrees of freedom (‘|f’ indi-
cates f ixed degrees of freedom). s(w) indicates that
the smooth function of w is to be represented using
a default 10 knot penalized regression spline: corre-
sponding to maximum degrees of freedom of 9 for
this term. Finally s(v,20) indicates that the smooth
of v is to be represented by a 20 knot penalized re-
gression spline: this term is being allowed a maxi-
mum of 19 degrees of freedom — presumably the re-
lationship between

√
y and v is expected to be fairly

complicated.
The choice of the number of knots is not very crit-

ical, but should be somewhat larger than the esti-
mated degrees of freedom plus 1, otherwise: (i) the
choice of knot locations will begin to have a visible
effect on the shape of the estimated function, and
(ii) it is possible that if the GCV function is a strange
shape then the optimization path to the GCV mini-
mum may pass beyond the upper boundary on de-
grees of freedom, so that the smoothing parameter
estimates become incorrectly stuck at that boundary.
In practice I usually start with the default 10 knot
splines, but increase the number of knots for any
terms that are then estimated to have close to the cor-
responding maximum 9 degrees of freedom.

Other arguments to gam() will be familiar to
users of lm() and glm(). The exception is the ar-
gument scale. If the scale parameter for the model
distribution is known then there is an argument
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for replacing GCV with the unbiased risk estimator
(UBRE) given e.g. in Wahba (1990). Hence if scale
is a positive number it is assumed to be the scale
parameter and UBRE is used. If scale is zero (the
default) then UBRE is used for the Poisson and bi-
nomial distributions (scale parameter 1), but GCV is
used otherwise. A negative value for the scale pa-
rameter forces use of GCV in all cases. Note that
GCV is appropriate if over-dispersion is suspected.

Other GAM functions

Package mgcv provides versions of print.gam(),
predict.gam() and plot.gam(). plot.gam() differs
most from what is available in S-PLUS — interactive
use is missing, for example. Here is an example of
its use to plot the results of fitting a simple 4 term
model:

> gam.model <- gam(y ~ s(x0)+s(x1)+s(x2)+s(x3))

> plot(gam.model, pages = 1)
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By default the same y axis range is used for all the
plots, while the pages=1 option provides automatic
layout on a single page. The rug plots at the foot of
each plot show the observed values of each explana-
tory variable. Each y-axis label indicates what the
smooth is a function of and how many degrees of
freedom the term has. The solid line in each plot
is the estimate of the smooth function, while the
dashed lines are at 2 standard errors above and be-
low the estimate — roughly 95% confidence limits.
This example used simulated data and x3 is in fact
unrelated to the response: notice how the smooth for
x3 is estimated to have just one degree of freedom,
and how its “confidence band” comfortably includes
zero everywhere.

It’s also of some interest to print the gam.model:

> gam.model

Family: gaussian

Link function: identity

Formula:

y ~ s(x0) + s(x1) + s(x2) + s(x3)

Estimated degrees of freedom:

2.982494 2.096610 7.219753 1.000005

total = 14.29886

GCV score: 4.326104

The estimated degrees of freedom for each smooth
term are given in the order in which the smooth
terms are specified in the model formula — note that
the total degrees of freedom includes those associ-
ated with purely parametric model components. The
GCV score is useful for comparing models with and
without particular terms included.

Dropping model terms

While mgcv selects the degrees of freedom for each
term automatically, the nature of the estimation al-
gorithm means that it can not automatically decide
whether to drop a term altogether or not. The reason
for this is that a zero term and a straight line have the
same zero penalty — hence once a term has become a
straight line, increasing its smoothing parameter fur-
ther can have no effect on its degrees of freedom, and
certainly won’t force it to become zero. Hence the
modeller must remove unwanted terms “by hand”.
Deciding which terms to remove is straightforward,
and should be guided by the answers to 3 questions:

1. Is the estimated degrees of freedom for the
term close to 1?

2. Does the plotted confidence band for the term
include zero everywhere?

3. Does the GCV score drop when the term is
dropped?

If the answer to all three questions is “yes” then the
term should be dropped. If the e.d.f. is close to one
but the answer to the other 2 questions is “no” then
you might as well replace the smooth with a para-
metric linear term. Other cases will require judge-
ment: for example, very small increases in GCV score
shouldn’t prevent a term from being dropped. Be-
cause of correlations between explanatory variable,
terms should only be dropped one at a time: it makes
sense to start with the term for which the zero line is
most comfortably within the confidence band.

In the plot shown above it’s clear that x3 should
be dropped from the model: the example in the next
section provides a second illustration.
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A fisheries example

As an example of use of GAMs with mgcv, consider
a set of data originally analysed by Borchers et al.
(1997) as part of the stock assessment process for the
European mackerel fishery.
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The data are mackerel egg densities (per m2 of sea
surface) obtained from net hauls undertaken from
research boats in 1992 (Bowman & Azzalini, 1997,
analyse a subset of these data, with slightly differ-
ent pre-processing, using a loess model — their sub-
set is available in package sm). The plotted symbol
sizes are proportional to the egg density. Candidate
explanatory variables in this case are longitude, lat-
itude, sea bed depth, sea surface temperature and
distance from the 200 metre sea bed depth contour.
If a variance stabilizing transformation is employed
then a Gaussian error model is not too bad. So, a first
model attempt might be:

> mack.fit <-

+ gam(egg.dens^0.4 ~ s(lon) + s(lat) + s(b.depth)

+ + s(c.dist) + s(temp.surf),

+ data = mack)

(data frame mack contains the data for the 634 sam-
pling stations). Here are the first results (the fitting
took a few seconds on a Pentium II):

> mack.fit

Family: gaussian

Link function: identity

Formula:

egg.dens^0.4 ~ s(lon) + s(lat) +

s(b.depth) + s(c.dist) + s(temp.surf)

Estimated degrees of freedom:

5.55544 8.494712 4.536643 4.63995

1.000001 total = 25.22675

GCV score: 3.71533

clearly surface temperature is a candidate for re-
moval or replacement by a linear term: the next thing
to do is to plot the estimated terms:

> plot(mack.fit)
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So, surface temperature looks like a candidate for
removal (and at the same time it’s wise to increase
the number knots for the latitude term).

> mack.fit2 <-

+ gam(egg.dens^0.4 ~ s(lon) + s(lat, 20)

+ + s(b.depth) + s(c.dist),

+ data = mack)

> mack.fit2

Family: gaussian

Link function: identity

Formula:

egg.dens^0.4 ~ s(lon) + s(lat, 20) +

s(b.depth) + s(c.dist)

Estimated degrees of freedom:

5.276965 12.00392 4.323457 4.234603

total = 26.83895

GCV score: 3.709722

> plot(mack.fit2, pages = 1)
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The GCV score has decreased, supporting the de-
cision to remove the surface temperature term. There
being no further terms to delete, the model can be
used for prediction. Data frame mackp contained the
explanatory variables on a fine grid over the survey
area. To get a predicted (transformed) density for
each point on this grid I used predict.gam():
> mack.pred <- predict.gam(mack.fit2, mackp)

A certain amount of tedious manipulation was
needed to copy this into a matrix suitable for con-
touring and plotting, but an image plot of the final
predicted (transformed) densities looks like this:
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Summary and the future

mgcv offers GAM modelling tools with much (but
not all) of the functionality of their S-PLUS equiva-
lents, plus the substantial advantage of well founded
and efficient methods for selecting the degrees of
freedom for each smooth term (and for selecting
which terms to include at all). The package currently
offers a more limited range of models than the gss
package, but typically at much lower computational
cost, and with slightly greater ease of use for those fa-
miliar with GAMs in S-PLUS. Future developments
will provide further basic methods, and two further
substantial enhancements. Version 0.6 will include
multi-dimensional smooth terms, while in the longer
term anisotropic smooth terms will be included.
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