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CvmortalityMult: Cross-Validation for
Multi-Population Mortality Models
by David Atance, and Ana Debón

Abstract This article presents the CvmortalityMult R package, a novel tool designed
for modelling, forecasting and evaluating mortality models for several populations. The
package facilitates the fitting and forecasting of multipopulation mortality models, providing
accurate projections in an increasingly interconnected world characterized by minimal or no
borders between countries. By incorporating different cross-validation (CV) techniques, the
package allows for the assessment of the forecasting accuracy of multipopulation mortality
models for specific countries or regions within a country. Through an empirical application
to Spanish regions, we demonstrate the efficacy and simplicity of the CvmortalityMult
R package in selecting and evaluating multipopulation mortality models. By providing
accessible tools for mortality modelling, forecasting and testing, this package stands out as
a valuable resource for advancing the understanding and forecasting of mortality trends
across diverse populations. Its contributions extend to enhancing decision-making in critical
fields such as life insurance, public health, and pension plan sustainability.

1 Introduction

Currently, the loss of clear and defined borders between states/countries is leading pop-
ulations worldwide to experience a similar dynamic of mortality. Indeed, mortality im-
provements or reductions can rapidly spread to other countries, causing correlated mortality
dynamics, as observed with the COVID-19 pandemic. Thus, multipopulation mortality
models provide a valuable approach for considering mortality membership in a group
rather than individually (Li and Lee, 2005). These models enable the joint fitting of multiple
populations, regions in the same country, or both sexes simultaneously.

On the basis of the original Lee and Carter (1992) model, many researchers have de-
veloped models to fit the mortality of related populations or countries with similar socioe-
conomic statutes or even both sexes in the same population (Brouhns et al., 2002; Debón
et al., 2011; Dowd et al., 2011; Jarner and Kryger, 2011; Li and Hardy, 2011; Russolillo
et al., 2011; Villegas and Haberman, 2014; Danesi et al., 2015; Chen and Millossovich, 2018;
Bégin et al., 2023). The application of these multipopulation mortality models is relevant
in diverse contexts, facilitating the concurrent modelling of multiple populations. This is
particularly true within the field of life insurance, where companies operate worldwide and
make assumptions about future mortality trends. Therefore, using such models ensures
the consistency and reliability of the products across different countries. Notably, in the
European Union, where gender-neutral pricing is enforced, it is necessary to model both
sexes simultaneously (Ahmadi and Li, 2014). Moreover, multipopulation mortality models
can include the correlation structure among populations when projecting future trends
(Antonio et al., 2017; Bozikas and Pitselis, 2020).

The rise of “big data” has shifted the focus of many problems, and its methods have
become a new field complementary to statistics. Within this domain, “resampling methods”
are fundamental tools; these techniques are based on repeatedly drawing samples from a
dataset and refitting models to obtain additional information. Advances in computational
power have increased researchers’ interest in these methods, which were developed in 1990.
The two most common types of “resampling methods” are bootstrap and “cross-validation”
(CV) methods (James et al., 2013a).

Bootstrap is a fundamental tool in the actuarial field that has had multiple applications
throughout the literature. This method has been employed for various purposes, such as
prediction errors in claim insurance (England and Verrall, 1999), establishing confidence
bounds for discounted reserves (Hoedemakers et al., 2003), and estimating confidence
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intervals in mortality through different bootstrap versions (Brouhns et al., 2005; Koissi et al.,
2006; Debón et al., 2008b; Liu and Braun, 2010; D’Amato et al., 2012). The CV method
divides sample data into k folds, where k − 1 subsets are typically employed to train
the model(s), and the remaining set is used to test the forecasting accuracy (Hastie et al.,
2009). The process is iterated k times. For time series data, preserving the chronological
order of the sets is necessary. This technique has been employed in other fields, such as
finance, biology, and marketing. When applying CV methods to mortality modelling, these
techniques must be adapted to time series analysis to use all available data for both testing
and training (Tashman, 2000; Bergmeir and Benítez, 2012), which are also known as time
series CVs (Hastie et al., 2009). Specifically, in each iteration, the training set must consist of
observations that chronologically occurred before the test set observations corresponding to
the end of each series (Hyndman and Athanasopoulos, 2021). Furthermore, in our analysis,
each observation corresponds to a three-way array involving three categories: age, period
and region or country. As a result, these methods have been adapted to assess the forecasting
ability of multipopulation mortality models appropriately.

In the context of mortality modelling it should be noted that only recently researchers
have applied CV techniques. However, most applications have focused on single-population
models, see, for instance, Villegas et al. (2017); Hyndman et al. (2019); Atance et al. (2020b);
Kessy et al. (2022); SriDaran et al. (2022); Lindholm and Palmborg (2022), and Barigou
et al. (2023). To the best of our knowledge, the existing literature on the use of resampling
methods in mortality modelling has focused on single-population mortality models, and
among these studies, only one SriDaran et al. (2022) introduced a CV function designed for
fitting, forecasting, and testing out-of-sample age-specific probabilities of death, with the
selection of the testing period based on the mean squared error (MSE) measure.

This paper introduces the CvmortalityMult R package, which allows us to fit and forecast
five multipopulation mortality models. Moreover, this package enables the application of
CV methods to select the “best” multipopulation mortality model in forecasting among
different scenarios. The idea is to determine which model produces the best forecasting
outcomes for the period and the selected countries or regions. To achieve this goal, we
implement several CV techniques following the terminology established by Tashman (2000)
and Bergmeir and Benítez (2012) for evaluating time-series forecasts. Additionally, we
adapt the methodology proposed by Atance et al. (2020b), which is primarily designed for
single-population mortality models, to evaluate the forecasting ability of multipopulation
mortality models over short, medium and long term horizons. The package incorporates
multiple CV techniques to facilitate this evaluation.

Moreover, the package includes five variations of the classical Lee and Carter (1992)
model to fit and forecast mortality in regions/populations that form part of a group rather
than considering them individually. First, Russolillo et al. (2011) proposed adding a new
multiplicative effect to represent different countries/regions within a multiplicative mortal-
ity model. Second, Debón et al. (2011) integrated the region/country effect as an additive
index through an additive model. Third, Carter and Lee (1992) and Li and Lee (2005) first
modelled the entire group and then incorporated a specific term for each region/country
using the common-factor model. Fourth, Carter and Lee (1992) and Wilmoth and Valkonen
(2001) proposed the joint-K model, which includes two specific country/region terms along
with a common trend. Finally, Li and Lee (2005) and Hyndman and Ullah (2007) extended
the common-factor model by incorporating two additional region/country terms with
the augmented common-factor model. These five multipopulation mortality models were
chosen because of their promising results compared with those of other mortality models
(Debón et al., 2011; Dong et al., 2020), and their frequent usage in multipopulation modelling
literature (Villegas et al., 2017). We introduce into the CvmortalityMult R package several
functions that allow us to fit, forecast and evaluate those five multipopulation mortality
models. However, if the functions detect only one population, they can fit the well-known
Lee and Carter (1992) model.

The paper is structured as follows. Section 2 focuses on describing multipopulation
mortality models. Section 3 discusses the CV methods in multipopulation mortality models.
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Section 4 presents the CvmortalityMult R package, installation and the main functions.
Section 5 presents a case study detailing the use of the package. Finally, Section 6 draws
conclusions from the results in the previous section.

2 Models

In this section, we introduce five of the most important multipopulation mortality models,
which serve as benchmarks to test the forecasting accuracy using CV methods. Indeed,
the CvmortalityMult R package requires a set of crude age-specific probabilities of death
for age x, period t and, in each region i, q̇x,t,i. These crude rates are directly obtained as
q̇x,t,i = dx,t,i/E0

x,t,i, where dx,t,i represents the number of recorded deaths and E0
x,t,i denotes

the initial population exposed to risk for an age x, period t and, region i. Crude mortality
rates, along with other life table indicators, can be obtained using the LifeTable function
from the MortalityLaws R package (Pascariu, 2022). This set of crude probabilities is
then used to generate smoothed and forecasted estimates, q̂x,t,i, of the true but unknown
mortality probabilities qx,t,i. Therefore, in the context of multipopulation mortality data,
“one observation ahead” corresponds to a set of data containing the probabilities of death
for all ages and populations considered for the following year.

2.1 Multiplicative mortality model

Russolillo et al. (2011) proposed incorporating a multiplicative index term into the Lee and
Carter (1992) model to shift the mortality for each region in the population group. That is:

logit (qx,t,i) = log
(

qx,t,i

1 − qx,t,i

)
= ax + bx · kt · Ii + εx,t,i; (1)

where ax captures the general age shape of the mortality curve, kt describes the general
trend of the group of populations over time, bx represents how each age-specific probability
of death reacts to changes in the general level of mortality, and Ii represents a multiplicative
index associated with mortality for each member of the group of populations considered.
Both ax and bx are the common age-dependent and time-independent parameters for all
the regions considered respectively, whereas kt is the same for all considered regions and
corresponds with the time-dependent parameter, as in the initial version of Lee and Carter
(1992), Ii is a different index for each population considered.

Notably, the logit link function is employed to fit the age-specific probabilities of death.
The logit transformation ensures that values of qx,t,i between 0 and 1 (Lee, 2000) are obtained.
This transformation also maintains the historical ties to the early actuarial work of Perks
(1932), as noted by Haberman and Renshaw (2011).

2.2 Additive mortality model

Debón et al. (2011) propose incorporating an additive index term into the Lee-Carter struc-
ture to modify the mortality of each region in the multipopulation model. Its expression is
as follows:

logit (qx,t,i) = log
(

qx,t,i

1 − qx,t,i

)
= ax + bx · kt + Ii + εx,t,i. (2)

As in the previous model, the same components ax, bx and kt are shared across all the studied
regions (populations). This fact is a necessary and sufficient condition to avoid divergence
in the forecasting of age-specific probabilities of death of subpopulations; see Debón et al.
(2011) and Ahcan et al. (2014). The number of parameters is the same as that in the model of
Russolillo et al. (2011), with similar interpretations except for Ii; more details are given in
Debón et al. (2011). However, the additive formulation provides a more straightforward
structure than the multiplicative formulation does because it incorporates regional effects
through an additive index term.
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2.3 Common-factor mortality model

Carter and Lee (1992) and Li and Lee (2005) proposed modelling the mortality of different
populations through a common long-term component for the whole group combined with
an age-dependent specific term for each population i. This model is represented as:

logit (qx,t,i) = log
(

qx,t,i

1 − qx,t,i

)
= ax,i + Bx · Kt + εx,t,i, (3)

where ax,i represents the baseline shape of the mortality curve for each ith specific population,
while the long-term change over time across the whole mortality group is captured by Bx ·Kt.
These parameters serve the same function as bx and kt do in previous mortality models but
apply to the whole group of populations.

2.4 Joint-k mortality model

Carter and Lee (1992) and Wilmoth and Valkonen (2001) introduced a model that assumes
two specific population age-dependent terms, and a common trend among the group of
populations, is given by:

logit (qx,t,i) = log
(

qx,t,i

1 − qx,t,i

)
= ax,i + bx,i · kt + εx,t,i. (4)

where kt represents a common mortality trend among the different considered populations
while axi and bxi are specific for each population i. Indeed, the axi parameter retains the
same meaning as in the common factor mortality model, and bxi captures the effect of a
time-varying mortality index kt at age x for each population i.

2.5 Augmented common-factor mortality model

Li and Lee (2005) and Hyndman et al. (2013) introduced two population-specific terms to
the common factor model. This model is expressed as:

logit (qx,t,i) = log
(

qx,t,i

1 − qx,t,i

)
= ax,i + Bx · Kt + bx,i · kt,i + εx,t,i. (5)

The first three terms correspond to the components of the common-factor mortality model
(3), whereas bxi · kti captures deviations in the short to medium-term changes in the age-
specific probability of death for each population i to the common trend. Importantly,
including the population-specific terms bxi and kti may imply significant divergences in the
mortality forecasts across different populations. Our choice of capital letters in Equations (3)
and (5) follows the notation introduced by Li and Lee (2005), who use upper-case symbols
to denote the common (or “group-wide”) Lee–Carter factor and lower-case symbols for the
population-specific effects.

All the models discussed are implemented using the software R Core Team (2022) via the
gnm library (Turner and Firth, 2023). Details on the calibration approach can be found in
Debón et al. (2011). The parameters are obtained by maximizing the model’s log-likelihood,
assuming a quasi-Binomial distribution of deaths in all considered models:

L (qx,t,i; q̂x,t,i) = ∑
x

∑
t

∑
i

wx,t,i {qx,t,i · log (q̂x,t,i) + (1 − qx,t,i) · log (1 − q̂x,t,i) + cte} , (6)

where wx,t,i corresponds to weights assigned to each age, period, and population considered,
q̂x,t,i is derived by rearranging the terms in Equation (1):

q̂x,t,i =
eax+bx ·kt ·Ii

1 + eax+bx ·kt ·Ii
, (7)

The R Journal Vol. 17/2, June 2025 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 5

in the case of the multiplicative model. For the other models, the corresponding inverse
transformations apply for (2) – (5). We maximize the log-likelihood function because it is an
effective estimation method in the actuarial and demography literature for the parameter
estimation process (Brouhns et al., 2002; Renshaw and Haberman, 2006; Cairns et al., 2009).

2.6 Forecasting multipopulation mortality models

To project the age-specific probabilities of death, qx,t,i, it is essential to forecast the value of
the trend parameters ktn , ktn ,i, and Ktn for all the multipopulation mortality models. These
models are formulated as follows:

Multiplicative → logit (qx,tn+s,i) = ax + bx · ktn+s · Ii,

Additive → logit (qx,tn+s,i) = ax + bx · ktn+s + Ii,

Common-factor → logit (qx,tn+s,i) = ax,i + Bx · Ktn+s,

Joint-k → logit (qx,tn+s,i) = ax,i + bx,i · ktn+s,

Augmented common-factor → logit (qx,tn+s,i) = ax,i + Bx · Ktn+s + bx,i · kt(n+s),i,

(8)

where qx,tn+s,i corresponds to the forecasted age-specific probability of death for age x,
period tn + s and population i, and ktn+s, kt(n+s),i, Ktn+s are the projections of the trend
parameters ktn , ktn ,i, and Ktn considering that tn is the last in-sample period.

In the CvmortalityMult R package, three alternative approaches are considered to project
the time series kt, Kt and kti , assuming they follow ARIMA (autoregressive integrated mov-
ing average model) independent processes. First, a random walk with drift (ARIMA (0,1,0)
with drift) is assumed, which is a common assumption in the actuarial literature (Cairns
et al., 2006; Haberman and Renshaw, 2011; Villegas et al., 2018). Second, the Cvmortality-
Mult R package allows the user to assume the best ARIMA (p,d,q) model according to the
auto.arima function in the forecast R- package (Hyndman and Khandakar, 2008; Hyndman
et al., 2023) for each trend parameter kt, Kt and/or kti , as described by Debón et al. (2008b),
Villegas et al. (2018) and Hunt and Blake (2020). The auto.arima function determines the
best ARIMA (p,d,q) model on the basis of the outcomes according to the corrected Akaike
information criterion (AICc). Third, users can specify the (p, d, q) order for each ARIMA
model by setting the corresponding parameters. Across the three approaches, the user can
decide whether to include different ARIMA configurations by changing the arguments in
the auto.arima or Arima functions as in the forecast R package.

3 Cross-validation methods

CV is a tool that focuses on assessing the predictive power of models. Identifying the best
model benefits insurance companies in actuarial and financial applications, such as pricing
and reserving, where forecasting is arguably more relevant than explanation (SriDaran et al.,
2022). Thus, this methodology is valuable for identifying which model is the most accurate
forecaster for single-population mortality models (Atance et al., 2020b) and can be used for
a set of related populations. This section describes the CV methods (Burman, 1989; Bergmeir
and Benítez, 2012) applied to evaluate the out-of-sample accuracy of multipopulation
models.

The performance of a model varies between in-sample and out-of-sample evaluations
(Bartolomei and Sweet, 1989; Pant and Starbuck, 1990). Therefore, partitioning data into
training and test sets is fundamental for accurately assessing the forecasting ability of
models. Various possibilities exist for evaluating time series forecasts, also referred to as
the CV in time series (Hastie et al., 2009). These methods differ on the basis of the forecast
horizon and the method of forecasting the out-of-sample validation, also known as “last
block evaluation” in individual time series analysis (Tashman, 2000; Bergmeir and Benítez,
2012). Among the different available methods, we have adapted several approaches in
CvmortalityMult R package to assess the forecasting ability of multipopulation mortality
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models from different perspectives. Specifically, we follow the terminology established by
Tashman (2000) and Bergmeir and Benítez (2012) to evaluate time series forecasting but
adapt it for multipopulation mortality models.

3.1 Fixed-origin evaluation

Fixed-origin evaluation, also known as the out-of-sample test or hold-out method (Lachen-
bruch and Mickey, 1968; Tashman, 2000), is one of the most commonly used methods for
assessing the forecasting accuracy of mortality models (Ahcan et al., 2014; Atance et al.,
2020a). In this approach, adapted for time series analysis, the dataset is chronologically
divided only once into training and test sets. The model is fitted using the training set,
with its final point as the fixed origin for forecasting, as shown Figure 1 for a three-way
array that incorporates three dimensions: ages in rows, periods in columns, and regions
in the third dimension. This fixed-origin method generates a single forecast to predict all
or specific periods in the test set. The forecasting accuracy is then evaluated for different
forecast horizons.

This CV approach has also been employed for assessing the forecasting ability of multi-
population mortality models; see, for instance, Danesi et al. (2015), Antonio et al. (2017) and
Bozikas and Pitselis (2020).

Figure 1: A schematic representation of the three-way array utilizing the fixed-origin cross-validation
(CV) technique. The training and test sets are shown in blue and orange, respectively. In our package,
the initial training set size is specified by the argument trainset1, whereas the forecast horizon
is defined by nahead. To ensure the proper application of the fixed-origin evaluation, the sum of
trainset1 and nahead must equal the total number of provided periods.

3.2 Rolling-origin-recalibration evaluation

In rolling-origin-recalibration (RO-recalibration) evaluation for time series, we initiate the
procedure by partitioning the sample into “k” subsets of data, while maintaining the chrono-
logical order. The first subset corresponds to the training set, and forecasts are generated
with a fixed horizon to assess the model’s performance. In each iteration, the model is
recalibrated by incorporating all preceding information in the training set (Armstrong and
Grohman, 1972; Tashman, 2000; Bergmeir and Benítez, 2012; Hyndman and Athanasopoulos,
2021). The test set periods are sequentially added to the training set to forecast the next
set of periods, as shown in Figure 2. Consequently, the beginning of the evaluation shifts
forward at each iteration. The model’s accuracy is assessed using the average forecasting
performance across the k iterations:

RO-recalibrationk =
1
k

k

∑
i=1

Goodness of fit measurei. (9)

In this type of time series CV, the specific variant of rolling-origin (RO) recalibration applied
depends on the size of the initial training set and the forecast horizon of each test set. For
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instance, k-fold CV (Hastie et al., 2009; James et al., 2013b; Bergmeir et al., 2018) requires the
training set size and forecast horizon for each test set to be equal. Notably, to our knowledge,
the application of the k-fold CV for analysing the forecasting proficiency of multipopulation
mortality models has yet to be documented. We recommend that the initial training set
contain more periods than the forecast horizon does to ensure reliable results. If the training
and test set sizes differ, the common version RO-recalibration should be applied.

Notably, the “leave-one-out CV” (LOOCV) (Burman, 1989; Shao, 1993) is a special case
of RO-recalibration, where the forecast horizon is equal to one, regardless of the initial
training set size. Unlike approaches that generate two subsets of comparable size, LOOCV
is a distinct approach that involves selecting and forecasting a single observation as the test
set, whereas the preceding available observations constitute the training set. To implement
this approach, the procedure is repeated (n - trainset1) times, where n denotes the total
number of observations in the dataset and (trainset1) is the size of the initial training set.

Among the different resampling methods, this technique is widely acknowledged for
assessing the predictive performance of single mortality models, as evidenced in various
studies, such as those in Li and O’Hare (2019), Atance et al. (2020b), Barigou et al. (2023), and
Atance and Navarro (2024). Additionally, only one preliminary work Atance and Debón
(2022) applied RO-recalibration LOOCV, i.e., the prediction of multipopulation mortality
models moving forward by one year for each iteration.

Figure 2: Schematic representation of the cross-validation method for a three-way array using the
rolling-origin (RO) recalibration technique. The training, test, and omitted sets are depicted in blue,
orange, and white, respectively. The initial training set size is denoted as trainset1, whereas nahead
specifies both the forecast horizon and the size of each test set.

3.3 Rolling-window evaluation

“Rolling-window evaluation” is similar to RO-recalibration but maintains a constant training
set size across each forecast iteration (Armstrong and Grohman, 1972; Tashman, 2000). It is
also referred to as “time series CV” (TSCV) (Hart, 1994; Bergmeir and Benítez, 2012), “fixed-
size rolling-window” (Swanson and White, 1997), or “fixed-size rolling sample” (Callen
et al., 1996). Data are partitioned into training and test sets as in previous techniques.
In each iteration, the training set incorporates the forecasted periods from the test set
while discarding the earliest observations and preserving chronological order, as shown in
Figure 3. The model and the forecast origin are also recalibrated at each window/iteration.
The forecasting accuracy of the model is assessed using the same procedure as that in
RO-recalibration, as expressed in Eq. (9).

Similar to the RO-recalibration technique, there are different variants of rolling-window
evaluation. Indeed, the common CV, k-fold CV and LOOCV approaches are also variants.
However, in these approaches, the training set size is constant throughout the iterations.

To our knowledge, the CvmortalityMult R package provides the first function for
analysing the forecasting ability of multipopulation mortality models using CV techniques.
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Figure 3: Schematic representation of the cross-validation method for a three-way array using the
rolling-window evaluation technique. The training, test, and omitted sets are depicted in blue,
orange, and white, respectively. The training set size, denoted as trainset1, remains consistent across
iterations, starting with an initial training set. The argument nahead specifies both the forecast horizon
and the size of each test set.

Notably, RO recalibration and rolling-window evaluation have not previously been imple-
mented in any R package for assessing the forecasting accuracy of multipopulation mortality
models. The CvmortalityMult R package addresses this gap by enabling the application of
various time series CV methods.

4 The CvmortalityMult R-package

Table 1 introduces the main functions incorporated in the CvmortalityMult R package,
along with a brief description of every function. Furthermore, these functions have been
categorized into four groups: fitting, forecasting, plotting, and CV. In the following sections,
we explain with several examples the procedural details and parameter structure essential
for using the primary functions of the package.

Initially, the procedure involves the use of five mortality multipopulation functions to
calibrate age-specific probabilities of death across various regions (populations). Notably,
the CvmortalityMult R package allows for the fitting of a single-mortality model when the
user provides data for only one population.

During the forecasting stage, the package subsequently facilitates age-specific probabili-
ties of death projections under various ARIMA(p, d, q) specifications, employing the object
obtained in the preceding step. During the plotting stage, users have the opportunity to
visualize the parameters obtained in the initial fitting stage, forecasts of the age-specific prob-
ability of death, and displays specific values across the Spanish regions in a geographical
map. This procedure allows for a comprehensive understanding of the behaviour exhibited
by each population under consideration.

Finally, during the CV stage, we introduce the function for applying different resampling
methods to assess the forecasting accuracy of multipopulation mortality models. This func-
tion enables the modification of the fitting and forecasting periods, uses the functions of the
preceding steps, and allows for the evaluation of the model forecasting performance using
various goodness-of-fit measures. Notably, the structure of the multipopulation mortality
data was aligned with a three-way array (age × time × region/population). For each
probability of death, data are available for different ages, periods and regions/populations.
Consequently, the applications of CV techniques need to be adapted to evaluate the project-
ing ability of these models effectively.

Notably, this paper does not include an example of every function argument. However,
the reader is referred to the function documentation and the package vignette for a complete
description of the CvmortalityMult R package.

Two datasets are included in the package: SpainRegions and SpainNat. These datasets
originate from the Spanish National Institute (Instituto Nacional de Estadística, INE). Life
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Function name Brief description
Fitting fitLCmulti() Fitting the multiplicative, additive,

common-factor, joint-k or
augmented common-factor multipopulation
mortality models, and the single version
of the Lee-Carter model.

Forecasting forecast.fitLCmulti() Forecasting the multiplicative, additive,
or S3 method forecast() common-factor, joint-k or

augmented common-factor multipopulation
mortality models, and the single version
of the Lee-Carter model.

Plotting plot.fitLCmulti() Plot the parameters for
the S3 method plot() the multipopulation or single-population

mortality models.
plot.forLCmulti() Plot the forecasting parameters for
the S3 method plot() the multipopulation or single-population

mortality models.
SpainMap() Plot the regions of

Spain with the percentiles of the
variable chosen by the users.

CV multipopulation_cv() CV techniques using the
methods described in Section 2.3.

Measures of accuracy MeasureAccuracy() Measure for testing the accuracy
of the single-population or multipopulation
mortality models.

Table 1: Summary of the main functions in the CvmortalityMult R package.

tables and abridged lifetables were obtained with the methodology proposed by Muriel
et al. (2010) on the basis of the work in Elandt-Johnson and Johnson (1980). On the one hand,
the SpainRegions dataset comprises 10800 observations, encompassing 20 age groups, 30
periods (1990 - 2020), and 18 regions for both males and females in Spain, including national
data (the regions in Spain are referred to as autonomous communities). On the other hand,
the SpainNat dataset contains 600 observations, corresponding to national data for males
and females in Spain covering 20 age groups, 30 periods (this dataset was created for the
application of a single-population mortality model, and it can be obtained as a subgroup of
the SpainRegions database). These datasets are structured as a data frame and include the
following variables:

• ccaa: A vector of the 17 different regions of Spain, including national data. Figure 4
shows the identification of each region on the Spanish map.

• years: A vector of the period range, spanning from 1990 - 2020 for both datasets.

• ages: A vector of the age groups (children under 1 year, between 1 year and 5 years,
and then by groups of 5 years, with the last group being between 90 and 94 years).

• qx_male: A vector of the age-specific probabilities of death for the male population.

• qx_female: A vector of the age-specific probabilities of death for the female population.

• lx_male: A vector of the estimated number of individual males living in each age
group during each period in a specific region/population, based on an initial group of
l0 = 100, 000 individuals aged 0 (Pitacco et al., 2009).

• lx_female: A vector of the estimated number of individual females alive in each age
group during each period in a specific region/population.

• series: The sex included in both datasets “male and female population”.
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• label: A tag indicating the dataset type, either “Spain regions” or “Spain National
population”.

Figure 4: Administrative structure of Spain (regions are referred to as autonomous communities).

Furthermore, we have included the dataset regions, which contains the geographical
values of the Spanish regions. The SpainMap function facilitates the creation of a map
displaying the Spanish regions along with the variables incorporated in this dataset.

5 Application of the CvmortalityMult R- package

5.1 Fitting

Model fitting of the age-specific probabilities of death, qx,t,i (at age x, period t, and i re-
gion/population), under a quasi-Binomial distribution of deaths and a logit link is per-
formed using the gnm package developed by Turner and Firth (2023).

The proposed multipopulation mortality models present challenges related to parameter
identifiability. The parameter solution for the considered multipopulation mortality models
(ax, axi , bx, Bx, bxi , kt, Kt, kti , Ii) are not unique, as any transformation of these parameters
that preserves the model structure is also a solution, highlighting inherent identifiability
problems in mortality models (Enchev et al., 2017; Villegas et al., 2018). This identifiability
problem is addressed as follows: by setting kt0 = 0, b0 = 1 and I1 = 1 for the multiplicative
model; by setting kt0 = 0, b0 = 1 and I1 = 0 for the additive model (Debón et al., 2011), by
setting B0 = 1, and Kt0 = 0 for the common-factor model (Carter and Lee, 1992), by setting
b0,1 = 1, and kt0 = 0 for the joint-K model (Carter and Lee, 1992), and by setting B0 = 1,
b0,1 = 1, Kt0 = 0, and kt0,1 = 0 for the augmented-common-factor model (Li and Lee, 2005).

The fitLCmulti() facilitates the fitting of multipopulation mortality models, includ-
ing the multiplicative model (Russolillo et al., 2011), additive model (Debón et al., 2011),
common-factor model (CFM) (Carter and Lee, 1992), joint-K model (Carter and Lee, 1992)
and augmented common-factor model (ACFM) (Li and Lee, 2005). It also supports fitting
a single version of the Lee-Carter model (Lee and Carter, 1992) in the CvmortalityMult R
package. The synopsis of this function is outlined below:
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fitLCmulti(model, qxt, periods, ages, nPop, lxt = NULL)

The fitting function requires the following information as input:

• The model refers to the multipopulation mortality model cho-
sen to fit the mortality rates. The available options include
c('additive','multiplicative','CFM','joint-K','ACFM'). Users must select
one model to fit.

• qxt is a vector or matrix containing the crude age-specific probabilities of death for
every age, period, and region. The function automatically identifies the data structure
(vector or matrix) that users provide.

• lxt is a vector or matrix with the estimated number of individual males alive in each
age group during each period in a specific region. The function automatically identifies
the data structure (vector or matrix) that users provide. If this argument is not included
(NULL), the function internally estimates this value to obtain the parameters for fitting
the multipopulation mortality model.

• The periods, and ages vectors reflect the period range and age range, respectively,
from the dataset.

• nPop is a numeric value that indicates the number of populations/regions considered
in the dataset.

Importantly, for the effective utilization of the fitting functions, the array or matrix containing
the qxt and lxt (if it is included) should be organized chronologically with the primary
or general population placed first. This fact is essential for the ACFM, which needs to fit
first the mortality of the whole group. In the dataset labelled SpainRegions, the principal
population pertains to the mortality data encompassing the entire nation of Spain and is
positioned as the first entry in the dataset.

We demonstrate the application of this function by fitting the additive and multiplicative
multipopulation mortality models to the SpainRegions dataset for both male and female
cases. However, the other multipopulation mortality models can be applied only by mod-
ifying the model input. Indeed, in the explanation of the function fitLCmulti() in the
CvmortalityMult R package, users can find examples of how other multipopulation mortal-
ity models (common-factor, joint-k and augmented common-factor) are fitted and forecasted
for male Spain regions. Additionally, we generate a vector containing the lower age in each
age group considered in the paper.

> SpainRegions
Mortality Data
Spain Regions for males and females
Years 1991 : 2020
Abridged Ages 0 : 90
> ages <- c(0, 1, 5, 10, 15, 20, 25, 30, 35, 40,
+ 45, 50, 55, 60, 65, 70, 75, 80, 85, 90)

In fact, multiplicative and additive multipopulation mortality models can be fitted using the
following code:

> additive_Spainmales <- fitLCmulti(model= 'additive', qxt = SpainRegions$qx_male,
+ periods = c(1991:2020), ages = c(ages), nPop = 18, lxt = SpainRegions$lx_male)
> additive_Spainfemales <- fitLCmulti(model= 'additive', qxt = SpainRegions$qx_female,
+ periods = c(1991:2020), ages = c(ages), nPop = 18, lxt = SpainRegions$lx_female)
> multi_Spainmales <- fitLCmulti(model= 'multiplicative', qxt = SpainRegions$qx_male,
+ periods = c(1991:2020), ages = c(ages), nPop = 18, lxt = SpainRegions$lx_male)
> multi_Spainfemales <- fitLCmulti(model = 'multiplicative', qxt = SpainRegions$qx_female,
+ periods = c(1991:2020), ages = c(ages), nPop = 18, lxt = SpainRegions$lx_female)
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The output from the fitting functions is an object of the class fitLCmulti, which provides a
brief summary of the fitting process, including among other things, the following informa-
tion:

• ax, bx, kt, and Ii are the estimated parameters for the multipopulation mortality
models.

• formula, and model refer to the gnm formula and the fitted multipopulation mortality
model, respectively.

• data.used includes mortality rates to fit the mortality data.

• qxt.crude refers to the crude values of the probabilities of death for every age, period,
and region. These values are provided by the user for fitting the selected mortality
model.

• qxt.fitted, and logit.qxt.fitted are the fitted values of the probabilities of death
for every age, period, and region using the multipopulation mortality model on a
probability or logit scale

(
qx,t

1−qx,t

)
.

Once we have adjusted the crude age-specific probabilities of death for different groups
of ages, periods, and regions, the plot.fitLCmulti() function allows us to show the parame-
ters obtained. Figures 5 and 6 provide the fitted parameters of the additive and multiplicative
multipopulation mortality models, respectively, for male populations in Spain. The plots
are generated using the following code:

> plot(additive_Spainmales)
> plot(multiplicative_Spainmales)

Notably, the plot.fitLCmulti() function generates different plots depending on the se-
lected model. For example, if the augmented common-factor model is chosen by setting
model = 'ACFM', the plot function will display the estimated parameters, axi , Bx, Kt, bxi , and
kti , for the provided populations.

Our example is the dataset of Spanish regions. We have included the SpainMap function
in the package. This function facilitates the plotting of the Ii parameters of the regions of
Spain in Figure 7. We recommend reviewing the regions dataset to identify the order of
the regions before using the SpainMap function. In the context of multipopulation mortality
models, the multiplicative and additive indices for the regions of Spain (with the reminder
that the first population is the national dataset and will not be shown) can be obtained with
the following code:

> SpainMap(multiplicative_Spainmales$Ii[2:18],
+ main = c("Multiplicative for males"),
+ name = c("Ii"))
> SpainMap(regionvalue = additive_Spainmales$Ii[2:18],
+ main = c("Additive for males"),
+ name = c("Ii"), bigred = FALSE)

Additionally, the fitting function applies to a single population. Specifically, we design
this function to fit cases where mortality data are provided for only one population, and the
Lee-Carter mortality model for a single population is fitted. Users can implement this by
using the following R code:

> LC_SpainNatmales <- fitLCmulti(model = 'additive', qxt = SpainNat$qx_male,
+ periods = c(1991:2020), ages = c(ages), nPop = 1, lxt = SpainNat$lx_male)
> LC_SpainNatfemales <- fitLCmulti(model = 'multiplicative', qxt = SpainNat$qx_female,
+ periods = c(1991:2020), ages = c(ages), nPop = 1, lxt = SpainNat$lx_female)
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Figure 5: Parameters for the multiplicative mortality model fitted to the male population of Spain for
ages 0 – 90 and the period 1991 – 2020.

We use two of the five multipopulation models to demonstrate the operation of the function
for one-single population independently of the model provided. However, there is no need
to specify this argument in the fitLCmulti function, as it inherently fits the Lee-Carter
version for a single population.

Similarly, the parameters of the Lee-Carter model for single-population mortality can be
plotted using the plot.fitLCmulti() function. Therefore, Figure 8 can be obtained using
the following code:

plot(LC_SpainNatmales)

Figure 6: Parameters for the additive mortality model fitted to the male population in Spain regions
for ages 0 – 90 and the period 1991 – 2020.

Figure 7: Geographical index, Ii, for multiplicative (left) and additive (right) multipopulation mortality
models for the male populations in Spain regions for ages 0 – 90 and the period 1991 – 2020.
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Figure 8: Parameters for the LC single-population mortality model fitted to the Spain male population
for ages 0 – 90 and the period 1991 – 2020.

From Figures 5-8, several interesting results emerge:

• All the left panels, ax, correspond to the average behaviour of age-specific probabilities
of death across all studied periods and regions.

• The second panels, bx, demonstrate how age-specific probabilities of death for each
age group (considering all regions) respond to changes in mortality trend, as captured
by kt. Large values of bx are observed among Spanish males between 20 and 40 years
of age; therefore, there is a substantial reduction in the age-specific probabilities of
death in this age group (1991 - 2020). This phenomenon is attributed to the impact
of AIDS and drugs on Spanish males during the 1980s and 1990s, which led to an
initial increase in age-specific probabilities of death and total deaths in these age
groups, followed by a significant decline in age-specific probabilities of death due to
the introduction of new therapies and medications during the 1990s and 2000s (Felipe
et al., 2002; Debón et al., 2008a; Atance et al., 2020a), as can be observed in bx for the
additive and multiplicative models.

• The third panels reveal the impact of the COVID-19 pandemic on the trend parameter
kt for all considered models among males in Spain. Similar trends can be observed
for females, although these trends are not shown. However, they can be generated by
modifying the fitting object in the plot function. The incorporation of 2020 into the
model fitting process induces an upturn in age-specific probabilities of death in the
final observed period, disrupting the declining trend observed in the preceding years
(1990 - 2019).

• Finally, the right panels, Ii, in the multipopulation approach depict the geographical
distribution of the indices corresponding to each region. These panels allow us to
discern distinct regional behaviours on the basis of the chosen multipopulation ap-
proach. To complement this presentation, we have included Figure 7, which displays
the values of Ii for Spanish males in each region using the additive and multiplicative
models with the regions with the highest mortality highlighted in red. Notably, the pa-
rameter Ii leads to a different interpretation in each model. In the multiplicative model,
higher values indicate lower age-specific probabilities of death as the region value
is multiplied by the trend parameter. Therefore, with a decreasing trend parameter,
as observed in the case of Spain, higher values of Ii correspond to lower age-specific
probabilities of death. Conversely, the additive model incorporates the region index to
the general trend among the regions (ax + bx · kt). Consequently, lower values or the
most negative index regions present lower age-specific probabilities of death.

5.2 Forecasting

The CvmortalityMult R package enables the projection of future age-specific probabilities
of death using the ARIMA (p,d,q) processes. This projection applies to the trend param-
eters, kt, Kt, and kt,i in multipopulation mortality models. Two common assumptions for
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the trend parameters kt, Kt, and kt,i in the actuarial and demography literature are often
considered: first, a multivariate random walk with drift (ARIMA(0,1,0)) (Cairns et al.,
2006, 2009; Haberman and Renshaw, 2011; Villegas et al., 2017), and second, the selection
of the best ARIMA (p,d,q) process (Renshaw and Haberman, 2006; Debón et al., 2008b;
Villegas et al., 2017; Atance et al., 2020a) for estimating the future values of kt, Kt, and
kti . To estimate the future values of the trend parameters kt, Kt, and kti , we employ the
forecast function from the forecast R package (Hyndman and Khandakar, 2008), allowing
the projection of the future values for various types of ARIMA processes considered in our
package. In the CvmortalityMult R package, users can choose different ARIMA processes,
ktmethod=c('arima010','arimapdq','arimauser'). The selection process is applied for
single or all trend parameters considered in each multipopulation or single-population
mortality model. The ellipsis argument (...) provides users with the flexibility to include
different ARIMA configurations, changing the arguments in the auto.arima or Arima func-
tions, depending on the ktmethod provided. This functionality mirrors the behavior of
the forecast R package for time series (Hyndman and Khandakar, 2008). Additionally,
users must provide nahead, indicating the number of periods to forecast the future value of
age-specific probabilities of death for each considered region. For example, the code below
provides future age-specific probabilities of death for Spanish male and female regions for
the next ten years (nahead = 10), using different ARIMA options in the package:

> fut_additive_Spainmales <- forecast(object = additive_Spainmales,
+ nahead = 10, ktmethod = 'arimapdq')
> fut_multiplicative_Spainmales <- forecast(object = multiplicative_Spainmales,
+ nahead = 10, ktmethod = 'arima010')
> fut_additive_Spainfemales <- forecast(object = additive_Spainfemales,
+ nahead = 10, ktmethod = 'arimapdq')
> fut_multiplicative_Spainfemales <- forecast(object = multiplicative_Spainfemales,
+ nahead = 10, ktmethod = 'arima010')

The outputs from these forecast functions are objects of the class forLCmulti, which
provides a brief summary of the forecasting process, with the following information:

• ax, bx, kt, and Ii provide the estimated parameters for the multipopulation mortality
models.

• arimakt provides the ARIMA (p,d,q) process considered to adjust the time series kt,
Kt, or kti and the obtained coefficients.

• kt.fut provides the future values of kt, Kt, or kt,i using the selected ARIMA (p,d,q)
configurations for the nahead periods.

• kt.futintervals provides estimates of the future values of kt, Kt, or kt,i for the point
forecast (kt.fut). Additionally, it includes the lower and upper 80% and 95% confi-
dence intervals, utilizing the chosen ARIMA (p,d,q) process for the specified nahead
periods.

• formula and model define the gnm formula and the forecasted multipopulation mortal-
ity model, respectively.

• qxt.crude represents the crude values of the probabilities of death for every age,
period, and region. These values are provided by the user for fitting the selected
mortality models.

• qxt.future, and logit.qxt.future represent the future values of the probabilities of
death for every, age, period and region using the chosen multipopulation mortality
model in the probability or logit scale.

Once we have projected the age-specific probabilities of death from different ages,
periods, and regions, the plot.forLCmulti() function allows us to show the projected values
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of trend parameters kt, Kt, and kti . The logit death probabilities for the mean in-sample
age and the out-of-sample forecast are shown for all the populations considered. Figures 9
and 10 provide these interesting results for the additive and multiplicative multipopulation
mortality models, respectively, for males in Spain. The visualizations are generated with the
following code:

> plot(fut_additive_Spainmales)
> plot(fut_multiplicative_Spainmales)

Figure 9: The left panel represents to the in-sample trend parameter kt and its projected value. The right
panel displays the actual and projected logit mortality rates using the multiplicative multipopulation
mortality model for the 18 populations considered for age 40 (mean age in the populations considered)
in terms of the in-sample period from 1991 – 2020 and the out-of-sample period extending, 10 years
ahead.

Similarly, during the forecasting process, users can employ the same function to project
future values of age-specific probabilities of death when providing data for a single pop-
ulation. Specifically, the function forecasts age-specific probabilities of death using the
Lee-Carter model for a single population, as demonstrated below:

> fut_LC_Spainmales <- forecast(object = LC_SpainNatmales,
+ nahead = 10, ktmethod = 'arimapdq')
> fut_LC_Spainfemales <- forecast(object = LC_SpainNatfemales,
+ nahead = 10, ktmethod = 'arima010')

Equally, for the single-population mortality model, users can plot two remarkable results.
For example, Figure 11 can be obtained using the following code:

> plot(fut_LC_Spainmales)

5.3 Cross-Validation

In this section, we present the CV function developed in the CvmortalityMult R package
to evaluate the forecasting ability of multipopulation mortality models with different CV
methods. Thus, the CV time series function uses the next synopsis:

multipopulation_cv(qxt, model = c('multiplicative', 'additive', 'CFM', 'joint-K', 'ACFM'),
+ periods, ages, nPop, lxt = NULL,

The R Journal Vol. 17/2, June 2025 ISSN 2073-4859

https://cran.r-project.org/web/packages/CvmortalityMult/index.html


CONTRIBUTED RESEARCH ARTICLE 17

Figure 10: The left panel represents the in-sample trend parameter kt and its projected value. The
right panel displays the actual and projected logit mortality rates using the additive multipopulation
mortality model for the 18 populations considered for age 40 (mean age in the populations considered)
in terms of the in-sample period from 1991 – 2020 and the out-of-sample period extending, 10 years
ahead.

Figure 11: The left panel represents the in-sample trend parameter kt and its projected value. The right
panel displays the actual and projected logit mortality rates using the Lee-Carter model for a single
population for the only population considered for age 40 (mean age in the populations considered)
in terms of the in-sample period from 1991 – 2020 and the out-of-sample period extending, 10 years
ahead.

+ nahead, trainset1, fixed_train_origin = TRUE,
+ ktmethod = c('arimapdq', 'arima010', 'arimauser'), order = NULL,
+ measures = c('SSE', 'MSE', 'MAE', 'MAPE', 'All'))

This CV function requires the following information as input:

• qxt, lxt, periods, ages, nPop, ktmethod and order should match the corresponding
values used as in the fitting and forecasting functions for the multipopulation and
single mortality models as inputs.
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• model = c('multiplicative','additive','CFM','joint-K','ACFM') specifies the
multipopulation mortality model that users wish to assess for forecasting ability
using the specific resampling technique. Users can apply the multiplicative, additive,
common-factor, joint-K, and augmented common-factor multipopulation models and
the single version of the Lee-Carter model presented in this paper separately.

• measures = c('SSE','MSE','MAE','MAPE','All') denotes the adjustment measure
that users wish to employ for testing the forecasting ability of the model using the
specific resampling technique. If measures = c('All'), all the measures will be
provided by the function. Additionally, each accuracy measure has a dedicated help
function to clarify the underlying equations. Users can access this help function in
the CvmortalityMult R package using the following code: ?MeasureAccuracy, where
users can select the specific measure of accuracy for testing the age-specific mortality
rates (SSE, MSE, MAE or MAPE).

• trainset1 specifies the number of chronological periods to consider as the initial
training set. This value must be greater than 2 to meet the minimum time series size
(Hyndman and Khandakar, 2008). Additionally, we recommend that this value be
greater than nahead to maintain consistency among the forecasts in every iteration
(Tashman, 2000).

• nahead is the number of periods to project ahead in each iteration and the size of each
test set among the selected CV techniques. Moreover, it should be noted that the
multipopulation_cv() function aims to maintain a uniform length for all the testing
sets (iterations). However, the last test set may have fewer periods to align with the
total number of periods provided by the user as (periods).

• fixed_train_origin = c(TRUE,FALSE,'add_remove1') is a logical variable that spec-
ifies whether the starting point of the initial training set remains fixed throughout the
CV process. This option allows users to maintain a constant starting point where
the model will be fitted in every iteration or allow it to shift, thereby determin-
ing whether a rolling window evaluation is applied. By default, the package sets
fixed_train_origin = TRUE, meaning that the first period in the training set re-
mains fixed across all iterations and the model recalibrations of the CV method.
However, users can opt to allow the training set starting point to shift by setting
fixed_train_origin = FALSE or fixed_train_origin = 'add_remove1', thereby im-
plementing a rolling-window evaluation while keeping the training set size constant
in each iteration, defined by the user by nahead argument. When fixed_train_origin
= FALSE, in every iteration, the user-defined nahead periods are removed from the
beginning of the training set, while the next nahead periods are added to the training
set from the previous test set. Consequently, the number of projected periods (nahead)
also determines how many periods are added or deleted in every iteration. In contrast,
when fixed_train_origin = 'add_remove1', the training set size is also fixed across
iterations. However, only one new period is added and one period is removed in each
forecast. This process allows users to evaluate the forecasting accuracy of nahead-step-
ahead projections using more test samples. Users may specify fixed_train_origin
= 'add_remove1', and any value of nahead greater than or equal to one, provided
it is consistent with the number of periods available in the dataset. Notably, when
nahead = 1, the configuration fixed_train_origin = 'add_remove1' yields results
equivalent to those obtained using fixed_train_origin = FALSE, which means in a
LOOCV method keeping the same size of the training set (trainset1) across iterations.

The sizes of nahead and trainset1 can be determined by the temporal correlation within
the values of the analysed series by using “blocks” of data rather than choosing data
randomly (Racine, 2000; Bergmeir and Benítez, 2012).

With this function, the user can apply different CV methods for multipopulation
models depending on three main inputs that must be provided: nahead, trainset1, and
fixed_train_origin. Indeed, the following CV techniques can be applied:
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1. Fixed-origin evaluation is implemented by setting the arguments so that nahead +
trainset1 = periods while keeping the default value of fixed_train_origin = TRUE.

2. RO-recalibration evaluation requires that trainset1 > 2 and that
fixed_train_origin = TRUE remain at its default value, regardless of the value
assigned to nahead. Specifically, when nahead = 1, leave-one-out CV (LOOCV) is
applied. When nahead = trainset1, k-fold CV (CV) is performed. For all other
values, a standard time series CV approach is used while keeping the origin of the
first training set fixed in all possible options.

3. Rolling-window evaluation requires setting fixed_train_origin = FALSE or
fixed_train_origin = 'add_remove1', independently of the values assigned to
nahead and trainset1. As in the previous CV technique, if nahead = 1, a LOOCV ap-
proach with a rolling window of 1 is applied, which remains equivalent whether
fixed_train_origin is set to FALSE or 'add_remove1'. When nahead > 1 and
fixed_train_origin = FALSE, the training set is updated by incorporating and dis-
carding nahead periods in each iteration. Conversely, when fixed_train_origin =
'add_remove1', the training set updates by adding and removing only one observation
per iteration while forecasting nahead periods.

We present the results for RO-recalibration using the standard CV approach for male
Spanish regions. The main input parameters are set as follows: trainset1 = 8, nahead =
5 and fixed_train_origin = TRUE (default value). This procedure is applied to the five
multipopulation mortality models included in the package. To replicate these results, the
user can use the following code:

> SpainRegions
> ages <- c(0, 1, 5, 10, 15, 20, 25, 30, 35, 40,
+ 45, 50, 55, 60, 65, 70, 75, 80, 85, 90)

> cv_SM_multi <- multipopulation_cv(qxt = SpainRegions$qx_male,
+ model = c('multiplicative'), #see options below
+ periods = c(1991:2020), ages = c(ages), nPop = 18, lxt = SpainRegions$lx_male,
+ trainset1 = 8, nahead = 5, ktmethod = c('arimapdq'), measures = c("MSE"))

While we executed to female Spanish regions an RO-recalibration was performed using
trainset1 = 10, nahead = 1 and fixed_train_origin = TRUE (default value). This
configuration corresponds to a LOOCV approach, which fixes the origin in the first training,
using the following code:

> loocv_SF_multi <- multipopulation_cv(qxt = SpainRegions$qx_female,
+ model = c('multiplicative'), #see options below
+ periods = c(1991:2020), ages = c(ages), nPop = 18, lxt = SpainRegions$lx_female,
+ trainset1 = 10, nahead = 1, ktmethod = c('arimapdq'), measures = c("MSE"))

Available values for model = 'additive','multiplicative','CFM','joint-K', and
'ACFM'. Changing the string assigned to model is sufficient to switch to the corresponding
specification. The output from the CV function is an object of the MultiCv class, which
provides a brief summary of the CV method employed, including the following information:

• ax, bx, Ii, kt.fitted, kt.future, and kt.arima correspond to the same outputs as
those in the adjustment and forecast functions. However, since the adjustment process
has been repeated several times (depending on the process), each of these outputs
is a list of the iterations executed, denoted as follows: loop-h from period-1 to
period-2, where “h” denotes the corresponding iteration.

• meas_ages, meas_periodsfut, meas_pop, and meas_total represent the accuracy mea-
sures provided by the resampling technique, each emphasizing different aspects of
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the forecasting ability. Indeed, the objective of the CvmortalityMult R package is to
provide a tool for evaluating the forecasting accuracy of multipopulation models from
various ages, namely, across different age groups, future periods, regions considered,
or a global measure spanning all ages, future periods, and regions considered. This
function allows users the flexibility to choose the specific viewpoint they wish to
prioritize in the decision-making process regarding forecasting capabilities.

• model, and CV_method designate the multipopulation mortality model and the CV-
method that users wish to apply for testing the forecasting ability, respectively. Users
can apply both, the multiplicative and additive models presented in this paper sepa-
rately.

Figures 12-13 present the results of the CV techniques for the five multipopulation mor-
tality models applied across ages, periods and regions, respectively. Additionally, we have
included Figures 14 and 15 with the MSE measure throughout different regions of Spain only
for the multiplicative and additive multipopulation mortality models. The result of the other
models are available upon request to the authors and can be found in the reproduction file.
These plots can be reproduced using the R script entitled CvmortalityMult_reproduction.R.
From Figures 13-15, we note the following points:

• The ACFM and joint-K models present lower forecasting results when the MSE mea-
sure is used across the ages and future periods considered, using both CV time series
techniques.

• The five considered models yield similar results for the age range 0 - 60, whereas for
the last section of the mortality curve (60 - 90), the ACFM and joint-K model perform
better in terms of the forecasting results.

• Concerning the forecasting periods, the ACFM and joint-K models demonstrate better
forecasting results in the medium term, as captured by RO-recalibration CV. However,
while the five models exhibit comparable results when evaluating short-term forecast-
ing ability, RO-recalibration LOOCV with the multiplicative model yields the worst
result.

• The MSE measures for the different regions of Spain considered for each CV method are
shown in Figures 14 and 15. The multipopulation mortality model produces different
results depending on the region. Specifically, the multiplicative model yields the best
forecasting results for Galicia, Pais Vasco, Cataluña, and Comunidad Valencia. In
contrast, depending on the CV model and population considered, the additive model
produces superior outcomes for Galicia, Asturias, Pais Vasco, Cataluña, Comunidad
Valencia, and Andalucia.

Notably, the CV function allows the computation of global measures of forecasting ability
considering all ages, future periods, and regions, as shown in Table 2. The results indicate
that the ACFM and joint-K model for standard CV, whereas the CFM and ACFM for LOOCV
demonstrate better forecasting ability when all available forecasting information is used.
This finding is consistent with the observations mentioned above.

Therefore, the CvmortalityMult R package displays the forecasting ability of the mul-
tipopulation mortality models in various ways, allowing the user to determine the most
suitable model for their specific objectives. We present two alternatives to assess the forecast-
ing ability of the models but there are other additional CV time series techniques that can be
implemented with the multipopulation_cv() function modifying nahead, trainset1 and
fixed_train_origin.

6 Summary and discussion

Accurately forecasting age-specific probabilities of death is essential for dealing with life-
contingent risk, ensuring solvency within the European (re)insurance industry, and address-
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CV method Multipopulation mortality model
Common CV males Multiplicative Additive CFM joint-K ACFM
MSE 0.000160 0.000142 0.000142 0.000132 0.000124
LOOCV females Multiplicative Additive CFM joint-K ACFM
MSE 0.000089 0.000066 0.000061 0.000062 0.000059

Table 2: Summary of the MSE global measure of forecasting ability.

Figure 12: Plot visualizing the MSE over the group of ages considered in regions of Spain for males
and females, applying CV time series techniques for five

multipopulation mortality models.

Figure 13: Plot visualizing the MSE over the test sets of future periods considered in regions of Spain
for males and females, applying two CV time series techniques for five

multipopulation mortality models.

ing the sustainability of public pension system plans, among other purposes. Multipopu-
lation mortality models offer a valuable approach to forecasting age-specific probabilities
of death. These models allow the incorporation of data from regions in the same country
or group of countries with similar characteristics, transcending borders in a globalized
context, where national and international movements occur daily. Moreover, these models
are recommended to enrich mortality data with observations from different regions in the
same country or group of countries sharing similar characteristics. The CvmortalityMult R
package facilitates access to five of these multipopulation mortality models, providing an R
interface to the functions necessary for model fitting and forecasting simply.

Furthermore, comparing various models can be challenging when the most suitable
model is selected. Indeed, CV methods offer a valuable tool for evaluating the forecasting
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Figure 14: Plot visualizing the MSE in regions of Spain for males, applying RO-recalibration CV for
the multiplicative and additive

multipopulation mortality models.

Figure 15: Plot visualizing the MSE in regions of Spain for males, applying RO-recalibration LOOCV
for the multiplicative and additive multipopulation mortality models.

ability of models. The CvmortalityMult R package allows the application of several CV
time series techniques, for assessing the forecasting ability of multiple populations over
short, medium and long term horizon. To the best of our knowledge, the CvmortalityMult R
package is the first to apply these methods to multipopulation mortality models, especially
for three-way array data. Users only need to provide multipopulation mortality data, specify
the number of periods to be used as the training or testing set, and decide whether it remains
fixed at the origin of the first training set. Then, the CvmortalityMult R package computes
various measures highlighting different forecasting ability aspects. Consequently, users can
prioritize selecting the most appropriate multipopulation mortality model on the basis of
their specific requirements and perspectives.
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