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Space-Time Smoothing of Survey
Outcomes using the R Package SUMMER
by Zehang Richard Li, Bryan D Martin, Tracy Qi Dong, Geir-Arne Fuglstad, Jessica Godwin, John
Paige, Andrea Riebler, Samuel J Clark, and Jon Wakefield

Abstract The increasing availability of complex survey data, and the continued need for
estimates of demographic and health indicators at a fine spatial and temporal scale, has
led to the need for spatio-temporal smoothing methods that acknowledge the manner in
which the data were collected. The open source R package SUMMER implements a variety
of methods for spatial or spatio-temporal smoothing of survey outcomes. In this paper, we
focus primarily on demographic and health indicators. Our methods are particularly useful
for data from Demographic Health Surveys (DHS) and Multiple Indicator Cluster Surveys
(MICS). We build upon functions within the survey package, and use INLA for fast Bayesian
computation. This paper includes a brief overview of these methods and illustrates the
workflow of processing surveys, fitting space-time smoothing models for both binary and
composite indicators, and visualizing results with both simulated data and DHS surveys.

1 Introduction

A wealth of health and demographic indicators are now collected across the world, and
interest often focuses on patterns in space and time. Spatial patterns indicate potential
disparities, while temporal trends are important for determining the impact of interventions
and to assess whether targets, such as the sustainable development goals (SDGs), are being
met (MacFeely, 2020). In low- and middle-income countries (LMIC), the most reliable
data with sufficient spatial resolution are often collected under complex sampling designs.
Common sources of data include the Demographic Health Surveys (DHS) and Multiple
Indicator Cluster Surveys (MICS), both of which use multi-stage cluster sampling. A two-
stage cluster design is most common for these surveys. A sampling frame of clusters (for
example, enumeration areas) is constructed, often from a census, and then strata are formed.
The strata consist of some administrative geographical partition crossed with urban/rural
(with countries having their own definitions of this dichotomy). Then a pre-specified number
of clusters are sampled from these strata under some probabilistic scheme, for example,
with probability proportional to size (PPS). Different surveys are powered to different
geographical levels. Then, within the selected clusters, households are randomly sampled
and individuals are sampled within these households, and asked questions on a range of
health and demographic variables. This data collection process must be acknowledged
in the analysis to reduce bias and obtain proper uncertainty measures in the prevalence
estimates.

Various packages are available within R for small area estimation (SAE) of prevalence,
including the sae package (Molina and Marhuenda, 2015) that supports the popular book of
Rao and Molina (2015) and includes the famous Fay and Herriot (1979) model and spatial
smoothing options. Other packages include rsae (Schoch, 2014), hbsae (Boonstra, 2012),
BayesSAE (Shi, 2018) and msae (Permatasari and Ubaidillah, 2021). A more comprehensive
list of related packages is described at OfficialStatistics. Most of the existing packages focus
on classical SAE models and provide very limited options for fitting spatial and space-time
smoothing models.

In this paper we introduce the R package, SUMMER1. This package and its details
are available on CRAN. SUMMER provides a computational framework and a collection
of tools for smoothing and mapping the prevalence of indicators with complex survey
data over space and time, with a special focus on estimating mortality rates. Smoothing
is important to avoid unstable estimates and combine information from multiple surveys

1The name originally arises from ‘Spatio-temporal Under-five Mortality Methods for Estimation in R’. As the
package becomes a more general toolkit, it now stands for ‘Sae Unit/area Models and Methods for Estimation in R’
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over time. Originally developed for small area estimation of the under-5 child mortality rate
(U5MR), the SUMMER package has been extended to broader mortality rate estimation
and more general tasks in SAE. The implemented methods have already been successfully
applied to a range of data, e.g., subnational estimates of mortality rates (Mercer et al., 2015; Li
et al., 2019; Schlüter and Masquelier, 2021; Fuglstad et al., 2021), HIV prevalence (Wakefield
et al., 2020) and vaccination coverage (Dong and Wakefield, 2021). Recently, the SUMMER
package was used to obtain the official United Nations Inter-Agency Group for Mortality
Estimation (UN IGME) yearly estimates (1990–2021) of U5MR at administrative level 2
below the national level (admin-2 estimates) for 31 countries in Africa and Asia (United
Nations Inter-agency Group for Child Mortality Estimation, 2023). Previously, the UN IGME
only produced national estimates using the B3 model (Alkema and New, 2014). The results
of these endeavors are available online at https://childmortality.org.

The main focus of this paper is to provide an overview of the different prevalence models
using survey data and how they can be implemented in SUMMER. The rest of the paper
is organized as follows. We first briefly describe different methods to estimate prevalence
using survey data. We start with a generic binary indicator and proceed with estimating
mortality rates. We then provide an overview of the SUMMER package and the workflows
of using SUMMER for prevalence mapping. We then discuss three examples for spatial
and space-time smoothing of binary and composite indicators with increasing complexity.
The first two examples use simulated data that are included in the SUMMER package. The
last example uses the most recent DHS survey from Malawi. Then we illustrate various
visualization and model checking tools in the SUMMER package. Finally, we conclude with
future work.

2 Space-time smoothing using complex survey data

In this section we review different methods to estimate the prevalence of a health outcome
from complex survey data. We begin by discussing design-based, direct estimates (Rao and
Molina, 2015) which are based on response data from that area only. Next, we describe space-
time smoothing of the direct estimates using a Fay-Herriot model (Fay and Herriot, 1979).
We discuss both estimating the prevalence of a single binary indicator and the composite
indicators such as U5MR. We then describe a cluster-level model to estimate prevalence at
finer spatial and temporal resolutions.

2.1 Estimating the prevalence of a generic binary indicator

Consider a study region that is partitioned into n areas, with interest focusing on estimating
the prevalence of a binary indicator in each area, possibly over time. The data are collected
via some complex survey design. For each individual j, let yj denote the individual’s
outcome, and wj denote the design weight associated with this individual. Further, let sit
represent the indexes of individuals sampled in area i and in time period t. The design-based
estimator (Horvitz and Thompson, 1952; Hájek, 1971) is

p̂HTit =
∑j∈sit

wjyj

∑j∈sit
wj

. (1)

This is an example of a direct estimate. The variance of p̂HTit can be calculated using standard
methods (Wolter, 2007) and can be easily computed using the survey package. Let VHT

it
denote the design-based variance of logit(pHTit ), obtained from the design-based variance of
pHTit via linearization (the delta method). We take the logit transformed direct estimates as
input data and estimate the true prevalence with the random effects model,

logit( p̂HTit )|λit ∼ Normal(λit, VHT
it ), (2)

λit = x⊺itβ + αt + ϵt + Si + ei + δit. (3)
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In this model, which is a space-time smoothing extension of the Fay and Herriot (1979)
model, expit(λit) is the true prevalence we aim to estimate, and xit are area-level covariates.
The rest of the terms are normally distributed random effects including structured time
trends αt, unstructured, independent and identically distributed (iid), temporal terms ϵt,
structured spatial trends Si, unstructured spatial terms ei, and space-time interaction terms
δit. The terms ei + Si are implemented via the BYM2 parameterization (Riebler et al., 2016),
a reparameterization of the classical BYM model (Besag et al., 1991) that combines iid error
terms with intrinsic conditional autoregressive (ICAR) random effects. Several different
temporal models are implemented in SUMMER for the structured temporal trends and
space-time interaction effects, including random walks of order 1 and 2, and autoregressive
models (Rue and Held, 2005) with additional linear trends. The interaction term δit can
be one of the type I to IV interactions of the chosen temporal model and the ICAR model
in space, as described in Knorr-Held (2000). In order for the model to be identifiable, we
impose sum-to-zero constraints on each group of random effects. More details on the prior
choices are provided in the supplementary materials.

2.2 Estimating mortality rates using area-level models

For composite indicators such as mortality rates, the direct estimates require additional
modeling. Here we focus on the estimation of the U5MR, one of the most critical and widely
available population health indicators. The methodology and the functions in SUMMER are
readily applicable to mortality rates of other age groups as well, but we note that modeling
mortality beyond age 5 is usually more challenging in practice because death becomes rarer,
and survey data alone are not sufficient for reliable inference.

The SUMMER package implements the discrete hazards model described in Mercer et al.
(2015). We use discrete time survival analysis to estimate age-specific monthly probabilities
of dying in user-defined age groups. We assume constant hazards within the age bands.
The default choice uses the monthly age bands

[0, 1), [1, 12), [12, 24), [24, 36), [36, 48), [48, 60)

for U5MR and they can be easily specified by the user. The U5MR for area i and time t can
be calculated as,

p̂HTit = 60q̂it
0 = 1 −

6

∏
a=1

(
1 − na q̂it

xa

)
, (4)

where xa and na are the start and end of the a-th age group, and na qit
xa is the probability

of death in age group [xa, xa + na) in area i and time t, with na q̂it
xa the estimate of this

quantity. This calculation follows the synthetic cohort life table approach in which mortality
probabilities for each age segment based on real cohort mortality experience are combined.
This allows the full use of the most recent data, which is especially useful when survey data
are sparse and is the default approach that The DHS Program (2020) uses.

The constant one-month hazards in each age band can be estimated by a weighted
logistic regression model (Binder, 1983):

logit
(

1qit
m

)
= βit

a[m], (5)

where a[m] is the age band indicator for the m-th month, i.e.

a[m] =



1 if m = 0,
2 if m = 1, . . . , 11,
3 if m = 12, . . . , 23,
4 if m = 24, . . . , 35,
5 if m = 36, . . . , 47,
6 if m = 48, . . . , 59.

(6)
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The design-based variance of logit( p̂HTit ) may then be estimated using the delta method or
resampling methods such as the jackknife (Pedersen and Liu, 2012). The smoothing of the
direct estimates can then proceed using the model described in equations (2) – (3). When
multiple surveys exist, one may choose to either model the survey-specific effects as fixed or
random (Mercer et al., 2015) or first aggregate the direct estimates from multiple surveys
to obtain a “meta-analysis” estimate in each area and time period (Li et al., 2019), i.e., at
each time t, we combine the Kt available direct estimates from multiple surveys to form the
estimate

p̂metait = expit
( Kt

∑
k=1

(V̂HT
it,k)

−1

∑Kt
k′=1(V̂

HT
it,k′)

−1
logit( p̂HTit )

)
,

and the associated design-based variance on the logit scale is
(

∑Kt
k′=1(V̂

HT
it,k′)

−1
)−1

. To
mitigate the sparsity of available data in each year, Li et al. (2019) also considers a temporal
model defined at the yearly level while the direct estimates are calculated at multi-year
periods. All these variations can be fit using the SUMMER package.

2.3 Estimating mortality rates with cluster-level models

The space-time Fay-Herriot estimates are useful when there are enough observations at the
spatial and temporal unit of the analysis. When the target of inference is at finer resolution,
e.g., on a yearly time scale with admin-2 areas and surveys stratified at admin-1 levels,
the direct estimates may contain many 0s or 1s and the design-based variance cannot be
calculated reliably. In this case, we can consider unit-level models where the individual
survey responses are modeled. In the rest of this section, we describe a model for the
cluster-level risk, where we account for the additional within-cluster variation by allowing
overdispersion in the likelihood. More detailed comparisons of this modeling choice were
examined in (Dong and Wakefield, 2021). In a two-stage cluster design, the clusters are
referred to as primary sampling units (PSUs) and the households are referred to as secondary
sampling units (SSUs). Thus we refer to such models as cluster-level model to avoid
confusion. We describe the model for the mortality estimation problem below, while the
same formulation applies to the case of any generic binary indicators as well.

In the most general setting, we consider multiple surveys over time, indexed by k. The
sampling frame that was used for survey k, will be denoted by r[k]. We assume a discrete
hazards model as before. We consider a beta-binomial model for the probability (hazard)
of death from month m to m + 1 in survey k and at cluster c in year t. This model allows
for overdispersion relative to the binomial model. Assuming constant hazards within age
bands, we assume the number of deaths occurring within age band a[m], in cluster c, time t,
and survey k follow the beta-binomial distribution,

Ya[m],k,c,t | pa[m],k,c,t ∼ BetaBinomial
(

na[m],k,c,t , pm,k,c,t , d
)

, (7)

where pm,k,c,t is the monthly hazard at m-th month of age, in cluster c, time t, and survey k
and d is the overdispersion parameter. The latent logistic model we use is,

pm,k,c,t =expit(αm,c,k,t + ϵt + bk), (8)

αm,k,c,t =βa[m],r[k],t I(sc ∈ rural ) + γa[m],r[k],t I(sc ∈ urban )

+ Si[sc ] + ei[sc ] + δi[sc ],t + BIASk,t. (9)

This form consists of a collection of terms that are used for prediction and a number
that are not, as we now describe. We include a survey fixed effect bk with the constraint
∑k bk1r[k]=r = 0 for each sampling frame r, so that the main temporal trends are identifiable
for each sampling frame. The bk terms are not included in the prediction, i.e., they are set to
zero. The ϵt are unstructured temporal effects that allow for perturbations over time. It is
a contextual choice whether they are used in predictions. We include terms in (9) that are
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analogous to those in equations (2)–(3), in particular the spatial main effects Si and ei and
the space-time interactions δit.

For the temporal main effects βa[m],r[k],t and γa[m],r[k],t, we have stratum-specific distinct
trends for each age group a[m] in surveys from each sampling frame. We include separate
urban and rural temporal terms to acknowledge the sampling design; often urban clusters
are oversampled and have different risk from rural clusters, and so it is important to
acknowledge this aspect in the model (Paige et al., 2020). The urban-rural stratification
effects may also be parameterized as time-invariant fixed effects, i.e., restricting βa[m],r[k],t =
γa[m],r[k],t +∆a[m],r[k]. For a detailed discussion of the parameterization of stratification effects,
we refer readers to Wu et al. (2021). In addition, it is usually reasonable to assume shared
temporal trends up to a constant shift across some age groups. For example, we may let

βa[m],r[k],t = βa[m],r[k],0 + β⋆
a⋆ [m],r[k],t

where β⋆
a⋆ [m],r[k],t is a collection of temporal random effects with sum-to-zero constraint

∑t β⋆
a⋆ [m],r[k],t = 0, and a⋆[m] is a reduced set of age bands. The default choice for U5MR in

the package is

a⋆[m] =


1 if m = 0,
2 if m = 1, . . . , 11,
3 if m = 12, . . . , 59.

(10)

That is, we assume the temporal trends for logit hazards in the last four age groups are
parallel and only differ by the intercept term βa[m],r[k],0.

In situations where biases are known for particular surveys and/or years, we can
adjust for bias following Wakefield et al. (2019) by including the bias ratio term, BIASk,t =

U5MR⋆
t /Û5MRk,t, where U5MR⋆

t is the expected U5MR in year t and Û5MRk,t is the biased
version. This approach has been used to adjust for mothers who have died from AIDS
(Walker et al., 2012); such mothers cannot be surveyed, and their children are more likely to
have died, so the missingness is informative.

The predicted U5MRs in urban and rural regions of area i and at time t according to
sampling frame r are,

U5MRi,t,U,r = 1 −
6

∏
a=1

[
1

1 + exp(βa,r,t + Si + ei + δi,t)

]z[a]
(11)

U5MRi,t,R,r = 1 −
6

∏
a=1

[
1

1 + exp(γa,r,t + Si + ei + δi,t)

]z[a]
, (12)

where z[a] = 1, 11, 12, 12, 12, 12, for the default choice of age bands. The aggregate risk in
area i and in year t according to sampling frame r is

pitr = qitr × U5MRi,t,U,r + (1 − qitr)× U5MRi,t,R,r, (13)

where qitr and 1 − qitr are the proportions of the under-5 population in area i that are urban
and rural in year t according to the classification of sampling frame r. The final aggregation
over different sampling frames can be done using meta-analysis combination, so that,

Û5MRit = expit

(
∑

r
witr × logit(pitr)

)
,

where witr = U−1
itr / ∑r′ U−1

itr′ is the scaled inverse of Uitr, which is the posterior variance

of logit(Û5MR
(r)
it ). Beyond point estimates, we obtain the full posterior of U5MRit, and

various summaries can be reported or mapped. The estimate constructed for U5MR is not
relevant to any child, because that child would have to experience the hazards for each
age group simultaneously in time period t, rather than moving through age groups over
multiple time periods. Nevertheless, the resultant U5MR is a useful summary and the
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conventional measure that is used to inform on child mortality.

3 Overview of SUMMER

The SUMMER package provides a collection of functions for SAE with complex survey
data. The package can be installed in R directly by

install.packages("SUMMER")

The SUMMER package requires the INLA package (Rue et al., 2009) to be installed. All
analyses in this package are conducted with SUMMER package version 1.4.0 and INLA
version 24.03.09. INLA can be installed with

install.packages("INLA", repos=c(getOption("repos"),
INLA="https://inla.r-inla-download.org/R/stable"), dep=TRUE)

The SUMMER package implements a variety of space-time smoothing models using
survey data. There are three main functions to implement these models, discussed below
and in the three examples in the following sections.

• smoothSurvey() produces direct and Fay-Herriot estimates for a generic binary indi-
cator from raw survey data.

• smoothDirect() takes direct estimates as input and produces the Fay-Herriot estimates
for mortality estimation discussed in Li et al. (2019).

• smoothCluster() performs cluster-level smoothing using the Beta-Binomial model
discussed in the previous section, and with more details discussed in Wu et al. (2021)
and Fuglstad et al. (2021).

We note that smoothDirect() and smoothCluster() include many more features in
modeling composite indicators such as child mortality. In comparison, smoothSurvey() can
only model generic binary indicators, but it has a simpler interface and workflow, which is
appealing for broader communities of practitioners.

The main sources of data required for these methods are the survey data and the cor-
responding spatial adjacency matrix, which can be derived from spatial polygons data
describing region boundaries. For cluster-level modeling, we also need to know which
region each cluster belongs to. In the context of modeling DHS data, the survey data and
cluster locations are usually recorded in separate files. Figure 1 shows schematically the
workflow of data processing and smoothing for generic binary indicators and mortality
estimates using the SUMMER package. In this paper, our workflow starts with the birth
records and GPS files in .dta files as an example. Such files can be directly downloaded from
the DHS data portal. It is also straightforward to load data in other formats and supply the R
objects into the functions. The entire pipeline of analysis can be carried out using functions
in SUMMER. The analysis of the main paper can be reproduced without registering for data
access. We include a more extensive analysis of DHS data in the supplementary materials,
which requires registration with DHS program for data access.

Before demonstrating the utilities of these functions in the following examples, we first
load the packages for the analysis, data processing and visualization. For the analysis
presented in this paper, we use the ggplot2 package (Wickham, 2016) and patchwork
package (Pedersen, 2019) to make further customizations to the visualization produced by
SUMMER.

library(SUMMER)
library(ggplot2)
library(patchwork)
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Figure 1: Workflow of the SUMMER package. Rounded blocks represent data types and rectangular
blocks represent functions in the SUMMER package. Output estimates are highlighted in the boxes
with red borders. The dotted yellow arrows represent the workflow using smoothSurvey() to estimate
the prevalence of a generic binary indicator. The black solid arrows represent the workflow using
smoothDirect() to perform area-level smoothing of mortality rates. The blue solid arrows represent
the workflow using smoothCluster() to perform cluster-level smoothing of mortality rates.

4 Example 1: prevalence estimation for a binary indicator

We start by considering the simplest scenario of estimating the prevalence of a binary
indicator using a dataset from the Behavioral Risk Factor Surveillance System (BRFSS)
survey. BRFSS is an annual telephone health survey conducted by the Centers for Disease
Control and Prevention (CDC) that tracks health conditions and risk behaviors in the United
States and its territories since 1984. The BRFSS sampling scheme is complex, with high
variability in the sampling weights. In this example, we estimate the prevalence of Type II
diabetes in health reporting areas (HRAs) in the King County of Washington using BRFSS
data. We will compare the direct estimates and the Fay-Herriot estimates.

The BRFSS dataset in SUMMER contains the full BRFSS dataset with 16, 283 observations.
The diab2 variable is the binary indicator of Type II diabetes, strata is the strata indicator,
and rwt_llcp is the final design weight. For the purpose of this analysis, we first remove
records with missing HRA codes or diabetes status from this dataset.

data(BRFSS)
data <- subset(BRFSS, !is.na(diab2) & !is.na(hracode))

The KingCounty dataset in SUMMER contains the map of the HRAs in the King County.
We first extract the spatial adjacency matrix for the HRAs using the getAmat() function.

data(KingCounty)
KingGraph <- getAmat(KingCounty, KingCounty$HRA2010v2_)
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We then use the smoothSurvey() function to obtain both the direct and Fay-Herriot
estimates by HRA. The function requires specifications of the variables that determine the
survey design, including sampling weights (weightVar), strata indicator (strataVar), and
cluster identifiers (clusterVar). In this dataset, there are no clusters so we use the formula
~1 in this situation (Lumley, 2004). We also need to specify region indicators (regionVar) in
the data frame that match the column and row names of the spatial adjacency matrix.

fit.BRFSS <- smoothSurvey(data = data, Amat = KingGraph,
response.type = "binary", responseVar = "diab2",
strataVar="strata", weightVar="rwt_llcp",
regionVar="hracode", clusterVar = "~1")

head(fit.BRFSS$direct, n = 3)

#> region direct.est direct.var direct.logit.est direct.logit.var direct.logit.prec
#> 1 Auburn-North 0.10 0.00046 -2.2 0.053 18.8
#> 2 Auburn-South 0.23 0.00240 -1.2 0.075 13.3
#> 3 Ballard 0.07 0.00050 -2.6 0.115 8.7

head(fit.BRFSS$smooth, n = 3)

#> region mean var median lower upper logit.mean logit.var logit.median
#> 1 Auburn-North 0.102 0.00026 0.101 0.074 0.137 -2.2 0.031 -2.2
#> 2 Auburn-South 0.160 0.00092 0.157 0.108 0.226 -1.7 0.051 -1.7
#> 3 Ballard 0.059 0.00018 0.057 0.037 0.089 -2.8 0.057 -2.8
#> logit.lower logit.upper
#> 1 -2.5 -2.5
#> 2 -2.1 -2.1
#> 3 -3.3 -3.3

The fitted object is of class SUMMERmodel.svy, and the direct ($direct) and Fay-Herriot
estimates ($smooth) are saved as data frames in the fitted objects. Notice that since the
analysis is performed on the logit of the prevalence, estimates on both the logit and the
probability scales are returned in the output. We use the mapPlot() function in SUMMER
to show the estimates on a map. In essence, the mapPlot() function takes a data frame,
a SpatialPolygonsDataFrame object, the column names indexing regions in both the data
frame and the polygons, and returns a ggplot object. Additional function arguments are
available to more easily customize the visualizations. Figure 2 compares the point estimates
on the map and the effect of spatial smoothing can be easily seen.

g1 <- mapPlot(fit.BRFSS$direct, geo = KingCounty,
by.data = "region", by.geo = "HRA2010v2_",
variables = "direct.est", label = "Direct Estimates",
legend.label = "Prevalence", ylim = c(0, 0.24))

g2 <- mapPlot(fit.BRFSS$smooth, geo = KingCounty,
by.data = "region", by.geo = "HRA2010v2_",
variables = "median", label = "Fay Herriot Estimates",
legend.label = "Prevalence", ylim = c(0, 0.24))

g1 + g2

Similar analysis can be implemented for Gaussian observations, and can include tempo-
ral smoothing or covariates in the smoothing model. The hyperpriors can also be further
customized. For more details and examples, we refer the readers to the package documenta-
tion under the smoothSurvey() section.

5 Example 2: area-level model of NMR and U5MR using simulated data

In the second example, we consider estimating mortality rates using multiple surveys. We
use the NMR and U5MR as two examples, but the implementation in the SUMMER package
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Figure 2: Direct and Fay-Herriot estimates of the prevalence of Type II diabetes in King county HRAs.

allows straightforward extensions to other age groups. We use a simulated survey dataset
in this example. A more detailed case study using cluster-level models is provided in the
supplementary materials.

We load the DemoData dataset from the SUMMER package. The DemoData is a list that
contains full birth history data from simulated surveys with stratified cluster sampling
design, similar to most of the DHS surveys. It has been pre-processed into the person-month
format, where for each list entry, each row represents one person-month record. Each
record contains columns for the cluster ID (clustid), household ID (id), strata membership
(strata) and survey weights (weights). The region and time period associated with each
person-month record has also been pre-computed. The age variable in this data frame is
in the form of a1-a2, i.e., 1-11 corresponds to age group with 1 to 11 completed months,
whereas age groups with only one month are stored using a single number representation,
e.g., age group 0. This is also the data structure in the output of the getBirths function
in the SUMMER package. In all the analyses of this paper, we use the default age bands
as described before. If a different set of age bands is desired, they can be specified by the
month.cut argument in the getBirths function.

data(DemoData)
head(DemoData[[1]])

#> clustid id region time age weights strata died
#> 1 1 1 eastern 00-04 0 1.1 eastern.rural 0
#> 2 1 1 eastern 00-04 1-11 1.1 eastern.rural 0
#> 3 1 1 eastern 00-04 1-11 1.1 eastern.rural 0
#> 4 1 1 eastern 00-04 1-11 1.1 eastern.rural 0
#> 5 1 1 eastern 00-04 1-11 1.1 eastern.rural 0
#> 6 1 1 eastern 00-04 1-11 1.1 eastern.rural 0

In order to compute NMR, we create a new list of surveys with only deaths within age
group 0.

DemoDataNMR <- DemoData
for(i in 1:length(DemoData)){

DemoDataNMR[[i]] <- subset(DemoData[[i]], age == "0")
}

We now turn to the estimation of NMR and U5MR using four simulated surveys in
DemoData. For multiple surveys, we combine the person-month records into a list and use
the getDirectList() function to obtain the survey-specific direct estimates. When there are
no deaths in a given area and time period, or when more than half of the age groups do
not exist in the person-month data, the direct estimates cannot be reliably computed and
are set to NA. When only a small fraction of the age groups are not observed, they will be
combined with the previous age groups when fitting the discrete hazard model.
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periods <- c("85-89", "90-94", "95-99", "00-04", "05-09", "10-14")
directNMR <- getDirectList(births = DemoDataNMR, years = periods,

regionVar = "region", timeVar = "time",
clusterVar = "~clustid + id", ageVar = "age",
weightsVar = "weights")

directU5 <- getDirectList(births = DemoData, years = periods,
regionVar = "region", timeVar = "time",
clusterVar = "~clustid + id", ageVar = "age",
weightsVar = "weights")

The direct estimates from multiple surveys can be combined to produce a “meta-analysis”
estimator using the aggregateSurvey() function.

directNMR.comb <- aggregateSurvey(directNMR)
directU5.comb <- aggregateSurvey(directU5)

Once the direct estimates are calculated, we fit the space-time Fay-Herriot model in the
same fashion as in the previous example. The argument year.label specifies the order of
the years column in the direct estimates, so that it does not have to be integer valued, and
can easily allow extensions to future and past time periods not in the data. We can also
fit the temporal model at the yearly level even though the direct estimates are in five year
periods (Li et al., 2019). In this case, we need to specify the proper range of the time periods
(year_range) encoded by the time periods in year.label, and the number of years in each
period (m). Unequal periods are not supported at this time. The smoothDirect() function
returns a fitted object of class SUMMERmodel.

fhNMR <- smoothDirect(data = directNMR.comb, Amat = DemoMap$Amat,
year.label = c(periods, "15-19"), year.range = c(1985, 2019),

time.model = "rw2", type.st = 4, is.yearly = TRUE, m = 5)
fhU5 <- smoothDirect(data = directU5.comb, Amat = DemoMap$Amat,

year.label = c(periods, "15-19"), year.range = c(1985, 2019),
time.model = "rw2", type.st = 4, is.yearly = TRUE, m = 5)

The Fay-Herriot estimates can be summarized by the getSmoothed() function. The
desired posterior credible intervals are specified by the CI argument. It organizes the
estimates into a data frame of class SUMMERproj, which can be directly viewed or plotted
using the plot method. Additional customization can be added using the syntax of ggplot2,
as shown in Figure 3.

est.NMR <- getSmoothed(fhNMR, CI = 0.95)
est.U5 <- getSmoothed(fhU5, CI = 0.95)
g3 <- plot(est.NMR, per1000 = TRUE) + ggtitle("NMR")
g4 <- plot(est.NMR, per1000 = TRUE, plot.CI=TRUE) + facet_wrap(~region)
g5 <- plot(est.U5, per1000 = TRUE) + ggtitle("U5MR")
g6 <- plot(est.U5, per1000 = TRUE, plot.CI=TRUE) + facet_wrap(~region)
(g3 + g4) / (g5 + g6)

6 Example 3: cluster-level model of U5MR using Malawi DHS data

We now consider a more realistic example of estimating U5MR at the admin-2 level using
the 2015–2016 Malawi DHS survey. The full dataset is available on the DHS website
at https://dhsprogram.com/data/available-datasets.cfm?ctryid=24. Access to the full
micro-level data requires registration with the DHS. Once access is approved, the rdhs
(Watson and Eaton, 2019) package can be used to load data directly from the DHS API in
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Figure 3: Smoothed direct estimates of NMR (top row) and U5MR (bottom row) on the yearly scale
(dots) and 5-year period scale (triangles) in the simulated dataset. The vertical error bars correspond
to 95% credible interval of the 5-year estimates. The plots on the left are from the default plot function.
The plots on the right show simple customization of the default plots.

R. We document the process to read the raw DHS files and process the birth records in the
supplementary materials.

For reproducibility of the examples in this paper, we start with the aggregated count data
from the 2015 Malawi DHS. The pre-processed count data is available in the supplementary
materials. This aggregated dataset consists of the counts of deaths occurring within each
age band and the total number of person-months by cluster and year. This aggregated
dataset and the full data acquisition and cleaning steps to obtain this dataset are described
in the supplementary materials. The processing steps involve primarily the getBirths()
and getCounts() functions and some data cleaning in region names. The supplementary
materials also include workflows and results on fitting several other smoothing models on
the Malawi DHS data.

Subnational spatial polygon files can usually be found on the DHS spatial data repository
(The DHS Program, 2020) or the GADM database of global administrative areas (Global
Administrative Areas, 2012). The admin-2 region polygon of Malawi is included in the
SUMMER package already and can be directly loaded.

data(MalawiMap)
MalawiGraph = getAmat(MalawiMap, names=MalawiMap$ADM2_EN)
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We then load the pre-processed count data and fit the cluster-level model using the
smoothCluster() function. We consider the observations from 2007 to 2015 and project the
mortality rates to 2019. To simplify results, we fit the unstratified model in this example by
removing the strata variable from the data frame or setting it to NA. The supplementary
materials contain additional details to fit stratified cluster-level models.

load("Data/DHS_counts.rda")
agg.counts$strata <- NA
head(agg.counts)

#> v001 v025 admin2 time age v005 died total survey cluster strata region years Y
#> 55427 696 urban Likoma 2000 0 12778 0 3 DHS2015 696 NA Likoma 2000 0
#> 55428 696 urban Likoma 2001 0 12778 0 4 DHS2015 696 NA Likoma 2001 0
#> 55429 696 urban Likoma 2002 0 12778 0 2 DHS2015 696 NA Likoma 2002 0
#> 55430 696 urban Likoma 2003 0 12778 0 4 DHS2015 696 NA Likoma 2003 0
#> 55431 696 urban Likoma 2004 0 12778 0 3 DHS2015 696 NA Likoma 2004 0
#> 55432 696 urban Likoma 2005 0 12778 0 2 DHS2015 696 NA Likoma 2005 0

Sometimes, additional information is available to adjust the estimates from the surveys.
For example, in countries with high prevalence of HIV, estimates of U5MR can be biased,
particularly before ART treatment became widely available. Pre-treatment, HIV positive
women had a high risk of dying, and such women who had given birth were therefore less
likely to appear in surveys. The children of HIV positive women are also more likely to have
a higher probability of dying compared to those born to HIV negative women. Hence, we
expect that the U5MR is underestimated if we do not adjust for the missing women. For the
two surveys in Malawi, the calculated HIV adjustment ratios as described in Walker et al.
(2012) are stored in the SUMMER as MalawiData$HIV.yearly. The unstratified cluster-level
model can be fitted using the smoothCluster() function.

fit.bb <- smoothCluster(data = agg.counts, Amat = MalawiGraph,
family = "betabinomial", year.label = 2000:2019,
time.model = "rw2", st.time.model = "ar1",

age.group = c("0", "1-11", "12-23", "24-35", "36-47", "48-59"),
age.n = c(1, 11, 12, 12, 12, 12),
age.time.group = c(1, 2, 3, 3, 3, 3),
pc.st.slope.u = 2, pc.st.slope.alpha = 0.1,
bias.adj = MalawiData$HIV.yearly,
bias.adj.by = c("years", "survey"),
survey.effect = FALSE)

When not specified explicitly, the space-time interaction term inherits the same tem-
poral dependency structure defined by time.model. We can use different models for the
interaction term by specifying the st.time.model argument. For example, in the model
above, we can model the main temporal trends using random walks of order 2, and model
the space-time interaction using the interaction of a temporal AR(1) process and an ICAR
process in space. To allow each region to have more flexible temporal trends, we add region-
specific random slopes to the interaction terms by specifying the priors pc.st.slope.u and
pc.st.slope.alpha. These arguments specify that the probability of the absolute temporal
change from the shared temporal trend (on the logit scale) over the entire time period ex-
ceeding pc.st.slope.u is pc.st.slope.alpha. The age.group, age.n and age.time.group
specify the age groups, their corresponding length (in months), and how they are grouped
when modeling the temporal trends, i.e., the α⋆[m] term defined before.

After we fit the model, we use the getSmoothed() function to obtain the posterior
summaries of the prevalence by taking nsim draws from the posterior distribution. Since
for the cluster-level models, the estimates may not be a linear combination of the random
effect terms in the case of a composite indicator, the posterior summaries are obtained via
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posterior samples. For the cluster-level model, the getSmoothed() function returns an object
of class SUMMERprojlist, which includes potentially multiple projections for each stratum
($stratified), sampling frame ($overall), and aggregated over different sampling frames
($final) if applicable. In this example, since we fit an unstratified model with only one
sampling frame, the estimates stored in est.bb$stratified and est.bb$overall are the
same. In addition, by specifying save.draws = TRUE, the full posterior draws are stored,
which can be re-used to speed up other functions that require access to posterior samples of
internal model parameters.

est.bb <- getSmoothed(fit.bb, nsim = 1000, save.draws = TRUE)

7 Visualization and model checking

In addition to the plots shown in the previous sections, the SUMMER package provides
a collection of visualization tools to assess model fit and uncertainty in the estimates.
Assessment of uncertainty is a key step in analysis as maps of point estimates can be
intoxicating, but often hide huge uncertainty, which should temper initial enthusiasm. Most
of the visualization options return a ggplot2 object, which can be further customized. In this
section, we use the fitted models for Malawi 2015 – 2016 DHS as an example.

The first set of visualizations are the line plots that we have shown before. Figure 4
shows subnational posterior median U5MR estimates over time for the five northern regions.
We also scale the estimates to be deaths per 1, 000 live births using the per1000 argument.

select <- c("Chitipa", "Karonga", "Rumphi", "Mzimba")
plot(subset(est.bb$overall, region %in% select), per1000 = TRUE, year.proj = 2016)

Figure 4: Subnational temporal trends of U5MR using the 2015–2016 DHS in Malawi in four regions.

By default, subnational estimates do not show the intervals to avoid many overlapping
vertical bars, but they can be added back with the plot.CI option as illustrated in previous
examples. We also compare the smoothed estimates with the pre-computed direct estimates
in Figure 5, where the shrinkage in point estimates and the reduction in uncertainty intervals
can be easily seen. The direct estimate computation is detailed in the supplementary
materials.

load("Data/DHS_direct_hiv_adj.rda")
plot(subset(est.bb$overall, region %in% select), per1000 = TRUE,

year.proj = 2016, plot.CI = TRUE,
data.add = direct.2015.hiv, label.add = "Direct Estimates",
option.add = list(point = "mean", lower = "lower", upper = "upper")) +

facet_wrap(~region, ncol = 4)

The mapPlot() function visualizes the estimates on a map. The estimates, est.bb$overall,
are in the long format where estimates of each year and period are stacked. This is specified
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Figure 5: Comparing subnational temporal trends of U5MR under cluster-level model and direct
estimates, using the 2015–2016 DHS in Malawi in four regions.

with the is.long argument. Figure 6 maps the changes over time. The drops in U5MR in all
regions are apparent, though there is great spatial heterogeneity.

year.plot <- c("2007", "2010", "2013", "2016", "2019")
mapPlot(subset(est.bb$overall, years %in% year.plot),

geo = MalawiMap, by.data = "region", by.geo = "ADM2_EN",
is.long = TRUE, variables = "years", values = "median",
ncol = 5, direction = -1, per1000 = TRUE, legend.label = "U5MR")

Figure 6: Spatial distribution of U5MR using the 2015–2016 DHS in Malawi over selected years.

The hatchPlot() function plots additional hatching lines on the map indicating the
width of the uncertainty intervals. Denser hatching lines represent higher uncertainty.
Usually, estimates of the early years have higher uncertainty, as shown in Figure 7. It also
clearly shows the increase in uncertainty in the projections. We also note that both mapPlot()
and hatchPlot() functions can be used in broader cases as they provide a general tool to
visualize rectangular data on a map.

hatchPlot(subset(est.bb$overall, years %in% year.plot),
geo = MalawiMap, by.data = "region", by.geo = "ADM2_EN",
is.long = TRUE, variables = "years", values = "median",
lower = "lower", upper = "upper", hatch = "red",
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ncol = 5, direction = -1, per1000 = TRUE, legend.label = "U5MR")

Figure 7: Subnational estimates of U5MR using the 2015–2016 DHS in Malawi over selected years,
with hatching lines indicating the width of the 95% credible intervals of the estimates. Denser hatching
correspond to higher uncertainty. Estimates for 2019 in the last column are from the model projection
and thus have higher uncertainty.

The ridgePlot() function provides another visual comparison of the estimates and their
associated uncertainty. Figure 8 shows one such example where the marginal posterior
densities of the estimates in the selected years are plotted with regions sorted by their
posterior medians in the last plotted period. The posterior densities can also be grouped
with all estimates in each region plotted in the same panel using the by.year = FALSE
argument in the ridgePlot() function. These plots are particularly useful to quickly identify
regions with high and low estimates, while also showing the uncertainties associated with
the rankings as well. The ranking of areas is often an important endeavor, since it can inform
interventions in areas that are performing poorly or, more optimistically, allow areas with
better outcomes to be examined to see if covariates (for example) are explaining their more
positive performance.

ridgePlot(draws = est.bb, Amat = MalawiGraph, year.plot = year.plot,
ncol = 5, per1000 = TRUE, order = -1, direction = -1) + xlim(c(0, 200))

Figure 8: Posterior densities of the subnational estimates of U5MR using the 2015–2016 DHS in Malawi
over selected years. Admin-2 regions are ordered by their median estimates in 2019. Estimates for
2019 in the last column are from the model projection and thus have higher uncertainty.

Finally, as models get more complicated, it becomes increasingly important to examine
the estimated random effects for idiosyncratic behavior that may be evidence of model
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misspecification. The SUMMER package provides tools to easily extract and plot posterior
marginal distributions for each of the random effect components. We can use the getDiag()
function to extract the posterior marginal distributions of the spatial, temporal, and space-
time interaction terms from the fitted models, which can then be plotted in a similar fashion
as the estimates. The space-time interaction term in the fitted model contains a sum of a
region-specific linear trend and an AR(1) random effect. Thus, we need posterior samples
to compute their marginal distributions. We can feed the saved posterior draws from the
est.bb here to speed up the computation.

r.time <- getDiag(fit.bb, field = "time")
r.space <- getDiag(fit.bb, field = "space")
r.interact <- getDiag(fit.bb, field = "spacetime", draws = est.bb$draws)

The extracted posterior summaries of the random effects can then be examined and
visualized. Figure 9 shows the posterior summaries of the temporal, spatial, and interaction
terms in the model.

g.time <- ggplot(r.time, aes(x = years, y = median, ymin=lower, ymax=upper)) +
geom_line() +
geom_ribbon(color=NA, aes(fill = label), alpha = 0.3) +
facet_wrap(~group, ncol = 3) +
theme_bw() +
ggtitle("Age-specific Temporal effects")

g.space <- mapPlot(subset(r.space, label = "Total"),
geo=MalawiMap, by.data="region", by.geo = "ADM2_EN",
direction = -1, variables="median",
removetab=TRUE, legend.label = "Effect") +

ggtitle("Spatial effects")
g.interact <- ggplot(r.interact, aes(x = years, y = median, group=region)) +

geom_line() + ggtitle("Interaction effects")
g.time + g.space + g.interact + plot_layout(widths = c(3, 2, 3))

Figure 9: Posterior medians for the random effect terms in the cluster-level model using Malawi
2015–2016 DHS. Left: posterior medians and 95% credible intervals of the age-specific temporal effects
and the IID temporal shocks. Middle: posterior medians of the spatial effects. Right: posterior medians
of the space-time interaction effects.

8 Discussion

The present paper aims to provide a general overview of the R package SUMMER for
space-time smoothing of demographic and health indicators. The particular focus of this
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paper is on mortality estimation and the demonstration of the workflow for practitioners to
fit flexible Bayesian smoothing models with DHS data. The implementation using INLA
allows fast computation of these smoothing models. The Fay-Herriot estimates can usually
be fit within seconds to minutes depending on the number of regions and time period. The
cluster-level model may require longer computation time, especially with surveys containing
many samples. We leave the fitting of more time-consuming models in the supplementary
materials.

The SUMMER package is in constant development. This paper introduces the core
functionalities of the package. There are many more functionalities to tackle application-
specific issues, such as different age-time interactions, aggregation over urban/rural strata,
benchmarking to external national estimates, etc. We are also expanding the package to
include more options for the traditional SAE models with fast implementations built on our
current computational framework. Recent extensions built on SUMMER functionalities
include the recent addition of SAE methods in the survey package (Lumley, 2024) and the
surveyPrev package (Dong et al., 2024) which provides a general pipeline to download,
process, and map a broad variety of DHS indicators.

In the future, we have several plans to improve the functionality of SUMMER. In the
cluster-level model, we would like to allow different overdispersion parameters for different
age groups. We plan to incorporate methods for child mortality estimation using summary
birth history data (Hill et al., 2015; Wilson and Wakefield, 2021) in which women provide
only information on the number of children born, and number died, without the dates of
these events. We also expect to extend the core functionalities to model other demographic
and health indicators such as fertility. In our examples in this paper, we did not include
covariates. In both the area-level and the cluster-level models, covariates can be included;
see Wakefield et al. (2020) for an example in the context of HIV prevalence mapping in
Malawi. Finally, in the long term, we would like to incorporate continuous spatial models
as well.
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