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Random Forests for Time-Fixed and
Time-Dependent Predictors: The
DynForest R Package
by Anthony Devaux, Cécile Proust-Lima, and Robin Genuer

Abstract The R package DynForest implements random forests for predicting a continuous,
a categorical, or a (multiple causes) time-to-event outcome based on time-fixed and time-
dependent predictors. The main originality of DynForest is that it handles time-dependent
predictors that can be endogenous (i.e., impacted by the outcome process), measured with
error, and measured at subject-specific times. At each recursive step of the tree building
process, the time-dependent predictors are internally summarized into individual features
on which the split can be done. This is achieved using flexible linear mixed models (thanks to
the R package lcmm), whose specification is pre-specified by the user. DynForest returns the
mean for a continuous outcome, the category with a majority vote for a categorical outcome,
or the cumulative incidence function over time for a survival outcome. DynForest also
computes variable importance and minimal depth to inform on the most predictive variables
or groups of variables. This paper aims to guide the user with step-by-step examples for
fitting random forests using DynForest.

1 Introduction

Random forests are a non-parametric, powerful method for prediction purposes. Introduced
by Breiman (Breiman, 2001) for classification (categorical outcome) and regression (contin-
uous outcome) frameworks, random forests are particularly designed to tackle modeling
issues in high-dimensional contexts (n << p). They can also easily take into account com-
plex associations between the outcome and the predictors without any pre-specification,
where regression models are rapidly limited.

Recently, this methodology was extended to survival data (Ishwaran et al., 2008) and
competing events (Ishwaran et al., 2014). Random forests were implemented in several R (R
Core Team, 2019) packages such as randomForestSRC (Ishwaran and Kogalur, 2022), ranger
(Wright and Ziegler, 2017) or xgboost (Chen and Guestrin, 2016), among others. However,
these packages are all limited to time-fixed predictors. Yet, in many applications, it may be
relevant to include predictors that are repeatedly measured at multiple occasions (regular or
irregular times) with measurement errors to more accurately predict the outcome. This is the
case, in particular, in health research where a health outcome is to be predicted according to
the history of individual information.

We developed an original random forests methodology to tackle this issue and incorpo-
rate longitudinal predictors that may be prone to error and possibly intermittently measured
(Devaux et al., 2023). The present paper aims to describe the DynForest R package associated
with this methodology, allowing the prediction of a continuous, categorical, or survival
outcome using multivariate time-dependent predictors.

In section 2, we briefly present DynForest methodology through its algorithm. In section
3, we present the different functions of DynForest, and we illustrate them in section 4 for a
survival outcome and in section 5 for a categorical outcome. An illustration for a continuous
outcome can be found in the DynForest vignette. To conclude, we discuss in section 6 the
limitations and future improvements.

2 DynForest principle

DynForest is a random forest methodology which can include both time-fixed predictors
of any nature and time-dependent predictors possibly measured at irregular times. The
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Figure 1: Overall scheme of the tree building in DynForest with (A) the tree structure, (B) the node-
specific treatment of time-dependent predictors to obtain time-fixed features, (C) the dichotomization
of the time-fixed features, (D) the splitting rule.

purpose of DynForest is to predict an outcome which can be categorical, continuous or
survival (with possibly competing events).

The random forest should first be built on a learning dataset of N subjects including:
Y the outcome; Mx an ensemble of P time-fixed predictors; Mz an ensemble of Q time-
dependent predictors. The random forest consists of an ensemble of B trees which are grown
as detailed below.

2.1 The tree building

The tree building process, summarized in figure 1, aims to recursively partition the subjects
into groups/nodes that are the most homogeneous regarding the outcome Y.

For each tree b (b = 1, ..., B), we first draw a bootstrap sample from the original dataset
of N subjects (N draws among the N subjects with replacement). The subjects excluded by
the bootstrap constitute the out-of-bag (OOB) sample, noted OOBb for tree b. At each node
d ∈ Db of the tree, we recursively repeat the following steps using the N(d) subjects located
at node d:

1. An ensemble of M(d) = {M(d)
x ,M(d)

z } candidate predictors is randomly selected
among {Mx,Mz} (see figure 1B). The size of M(d) is defined by the hyperparameter
mtry.

2. For each time-dependent predictor in M(d)
z :

a. We independently model the trajectory of the predictor using a flexible linear
mixed model (Laird and Ware, 1982) according to time (the specification of the
model is defined by the user). It is defined as: Zij = X1ij(tij)β + X2ij(tij)bi + ϵij
where Zij is the value of predictor Z for subject i at occasion j, X1ij and X2ij are
vectors of time functions and covariates to be specified by the user and tij is the
time at occasion j for subject i. β are population effects, and bi individual random
effects which follow a multivariate normal distribution. ϵij are the zero-mean
independent Gaussian errors of measurement.

b. We predict the vector of random-effects b̂i using the available information of
individual i = 1, ..., N(d). Predictions b̂i constitute time-independent features
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summarizing each time-dependent predictor. We thus derive the ensemble M(d)
z⋆

for all the variables in M(d)
z .

3. We define M(d)
⋆ = {M(d)

x ,M(d)
z⋆ } as our new ensemble of time-independent candidate

features.

4. For each candidate feature W ∈ M(d)
⋆ :

a. We build a series of splits c(d)W according to the feature values if continuous, or
subsets of categories otherwise (see figure 1C), leading each time to two groups.

b. We quantify the distance between the two groups according to the nature of Y:

• If Y continuous: we compute the weighted within-group variance with the
proportion of subjects in each group as weights

• If Y categorical: we compute the weighted within-group Shannon entropy
(Shannon, 1948) (i.e., the amount of uncertainty) with the proportion of
subjects in each group as weights

• If Y survival without competing events: we compute the log-rank statistic
test (Peto and Peto, 1972)

• If Y survival with competing events: we compute the Fine & Gray statistic
test (Gray, 1988)

5. We split the subjects into the two groups that minimize (for continuous and categorical
outcome) or maximize (for survival outcome) the quantity defined previously. We
denote {Wd

0 , cd
0} as the optimal couple used to split the subjects and assign them to

the left and right daughter nodes 2d and 2d + 1, respectively (see figure 1D and A).

6. Step 1 to 5 are iterated on the daughter nodes until stopping criteria are met.

We define two stopping criteria: nodesize, the minimal number of subjects in a node
required to reiterate the split, and minsplit, the minimal number of events required to split
the node. minsplit is only defined with a survival outcome. In the following, we call leaves
the terminal nodes.

In each leaf h ∈ Hb of tree b, a summary πhb
is computed using the individuals belonging

to the leaf. The leaf summary is defined according to the outcome:

• the mean, for Y continuous
• the category with the highest probability, for Y categorical
• the cumulative incidence function over time computed using the Nelson-Aalen cu-

mulative hazard function estimator (Nelson, 1969; Aalen, 1976), for Y single cause
time-to-event

• the cumulative incidence function over time computed using the non-parametric
Aalen-Johansen estimator (Aalen and Johansen, 1978), for Y time-to-event with multi-
ple causes

NOTE: Step 2 involves the estimation of a parametric mixed model for each time-
dependent predictor. The specification of this model should be carefully determined in
preliminary analyses by the user, keeping in mind that there should be a trade-off between
goodness-of-fit and parameter parsimony. The critical point is to adequately specify the
trajectory shape over time at the population and individual levels. Different bases of time
functions can be considered (e.g., fractional polynomials, splines, adhoc) and compared in
terms of fit.
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2.2 Individual prediction of the outcome

Out-Of-Bag individual prediction

The overall OOB prediction π̂⋆ for a subject ⋆ can be computed by averaging the tree-based
predictions of ⋆ over the random forest as follows:

π̂⋆ =
1

|O⋆| ∑
b∈O⋆

π̂hb
⋆ (1)

where O⋆ is the ensemble of trees where ⋆ is OOB and |O⋆| denotes its cardinality. The
prediction π̂hb

⋆ is obtained by dropping down subject ⋆ along tree b. At each node d ∈ Db, the
subject ⋆ is assigned to the left or right node according to his/her data and the optimal couple
{Wd

0 , cd
0}. Wd

0 is a random-effect feature, its value for ⋆ is predicted from the individual
repeated measures using the estimated parameters from the linear mixed model.

Individual dynamic prediction from a landmark time

With a survival outcome, the OOB prediction described in the previous paragraph can
be extended to compute the individual probability of event from a landmark time s by
exploiting the repeated measures of subject ⋆ only until s. For a new subject ⋆, we thus define
the individual probability of event, noted π̂⋆(s, s + t), as the probability of experiencing the
event by time s + t given the information prior to landmark time s:

π̂⋆(s, s + t) =
1
B

B

∑
b=1

π̂hb
⋆(s, s + t) (2)

where π̂hb
⋆(s, s + t) is the tree-based probability of event at time s + t computed by dropping

down ⋆ along the tree by considering longitudinal predictors collected until s and time-fixed
predictors. Note that any horizon t can be considered provided s + t remains in the time
window on which the random forest was trained. In the DynForest package, by default, the
probability is computed at all the observed event times after the landmark time.

2.3 Out-Of-Bag prediction error

Using the OOB individual predictions, an OOB prediction error can be internally assessed.
The OOB prediction error quantifies the difference between the observed and the predicted
values. It is defined according to the nature of Y as:

• for Y continuous, the mean square error (MSE) defined by:

errOOB =
1
N

N

∑
i=1

(π̂i − π0
i )

2 (3)

• for Y categorical, the misclassification error defined by:

errOOB =
1
N

N

∑
i=1

1(π̂i ̸=π0
i )

(4)

• for Y survival, the Integrated Brier Score (IBS) (Sène et al., 2016) between τ1 and τ2
defined by:

errOOB =
∫ τ2

τ1

1
N

N

∑
i=1

ω̂i(t)
{

I(Ti ≤ t, δi = k)− π̂ik(t)
)}2

dt (5)
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with T the time-to-event, k the cause of interest and ω̂(t) the estimated weights using Inverse
Probability of Censoring Weights (IPCW) technique that accounts for censoring (Gerds and
Schumacher, 2006).

The OOB error of prediction is used, in particular, to tune the random forest by determin-
ing the hyperparameters (i.e., mtry, nodesize and minsplit) which give the smallest OOB
prediction error.

2.4 Explore the most predictive variables

Variable importance

The variable importance (VIMP) measures the loss of predictive performance (Ishwaran
et al., 2008) when removing the link between a predictor and the outcome. The link is
removed by permuting the predictor values at the subject level for time-fixed predictors or
at the observation level for time-dependent predictors. A large VIMP value indicates a good
predictive ability for the predictor.

However, in the case of correlated predictors, the VIMP may not properly quantify the
variable importance (Gregorutti et al., 2017) as the information of the predictor may still be
present. To better handle situations with highly correlated predictors, the grouped variable
importance (gVIMP) can be computed indirectly. It consists of simultaneously evaluating
the importance of a group of predictors defined by the user. The computation is the same
as for the VIMP except the permutation is performed simultaneously on all the predictors
of the group. A large gVIMP value indicates a good predictive ability for the group of
predictors.

Minimal depth

The minimal depth is another statistic to quantify the importance of a variable. It assesses
the distance between the root node and the first node for which the predictor is used to split
the subjects (1 for first level, 2 for second level, 3 for third level, . . . ). This statistic can be
computed at the predictor level or at the feature level, allowing us to fully understand the
tree building process.

We strongly advise computing the minimal depth with the mtry hyperparameter chosen
at its maximum to ensure that all predictors are systematically among candidate predictors
for splitting the subjects.

3 The DynForest R package

DynForest methodology was implemented in the R package DynForest (Devaux, 2024)
freely available on The Comprehensive R Archive Network (CRAN) to users.

The package includes two main functions: dynforest() and predict() for the learning
and the prediction steps. These functions are fully described in section 3.1 and 3.2. Other
functions available are briefly described in the table below. These functions are illustrated in
examples, one for a survival outcome and one for a categorical outcome.

Function Description

Learning and prediction steps
dynforest() Function that builds the random forest
predict() Function for S3 class dynforest predicting

the outcome on new subjects using the
individual-specific information

Assessment function
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Function Description

compute_ooberror() Function that computes the Out-Of-Bag
error to be minimized to tune the random
forest

Exploring functions
compute_vimp() Function that computes the importance of

variables
compute_gvimp() Function that computes the importance of a

group of variables
compute_vardepth() Function that extracts information about the

tree building process
plot() functions for S3 class:
dynforest Plot the estimated CIF for given tree nodes

or subjects
dynforestpred Plot the predicted CIF for the cause of

interest for given subjects
dynforestvimp Plot the importance of variables by value or

percentage
dynforestgvimp Plot the importance of a group of variables

by value or percentage
dynforestvardepth Plot the minimal depth by predictors or

features
Other functions
summary() Function for class S3 dynforest or

dynforestoob displaying information about
the type of random forest, predictors
included, parameters used, Out-Of-Bag
error (only for dynforestoob class) and brief
summaries about the leaves

print() Function to print object of class dynforest,
dynforestoob, dynforestvimp,
dynforestgvimp, dynforestvardepth and
dynforestpred

get_tree() Function that extracts the tree structure for a
given tree

get_treenode() Function that extracts the terminal node
identifiers for a given tree

3.1 dynforest() function

dynforest() is the function to build the random forest. The call of this function is:

dynforest(
timeData = NULL, fixedData = NULL, idVar = NULL,
timeVar = NULL, timeVarModel = NULL, Y = NULL,
ntree = 200, mtry = NULL, nodesize = 1, minsplit = 2, cause = 1,
nsplit_option = "quantile", ncores = NULL,
seed = 1234, verbose = TRUE

)

Arguments

timeData is an optional argument that contains the dataframe in longitudinal format (i.e., one
observation per row) for the time-dependent predictors. In addition to time-dependent pre-
dictors, this dataframe should include a unique identifier and the measurement times. This
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argument is set to NULL if no time-dependent predictor is included. Argument fixedData
contains the dataframe in wide format (i.e., one subject per row) for the time-fixed predictors.
In addition to time-fixed predictors, this dataframe should also include the same identifier
as used in timeData. This argument is set to NULL if no time-fixed predictor is included.
Argument idVar provides the name of the identifier variable included in timeData and
fixedData dataframes. Argument timeVar provides the name of the time variable included
in timeData dataframe. Argument timeVarModel contains as many lists as time-dependent
predictors defined in timeData to specify the structure of the mixed models assumed for
each predictor. For each time-dependent predictor, the list should contain a fixed and
a random argument to define the formula of a mixed model to be estimated with lcmm
R package (Proust-Lima et al., 2017). fixed defines the formula for the fixed-effects and
random for the random-effects (e.g., list(Y1 = list(fixed = Y1 ~ time, random = ~
time)). Argument Y contains a list of two elements type and Y. Element type defines the
nature of the outcome (surv for survival outcome with possibly competing causes, numeric
for continuous outcome and factor for categorical outcome) and element Y defines the
dataframe which includes the identifier (same as in timeData and fixedData dataframes)
and outcome variables.

Arguments ntree, mtry, nodesize and minsplit are the hyperparameters of the random
forest. Argument ntree controls the number of trees in the random forest (200 by default).
Argument mtry indicates the number of variables randomly drawn at each node (square
root of the total number of predictors by default). Argument nodesize indicates the minimal
number of subjects allowed in the leaves (1 by default). Argument minsplit controls the
minimal number of events required to split the node (2 by default).

For a survival outcome, argument cause indicates the event of interest. Argument
nsplit_option indicates the method to build the two groups of individuals at each node.
By default, we build the groups according to deciles (quantile option) but they could be
built according to random values (sample option).

Argument ncores indicates the number of cores used to grow the trees in parallel mode.
By default, we set the number of cores of the computer minus 1. Argument seed specifies
the random seed. It can be fixed to replicate the results. Argument verbose allows to display
a progression bar during the execution of the function.

Values

dynforest() function returns an object of class dynforest containing several elements:

• data a list with longitudinal predictors (Longitudinal element), continuous predictors
(Numeric element) and categorical predictors (Factor element)

• rf is a dataframe with one column per tree containing a list with several elements,
which includes:

– leaves the leaf identifier for each subject used to grow the tree
– idY the identifiers for each subject used to grow the tree
– V_split the split summary (more detailed below)
– Y_pred the estimated outcome in each leaf
– model_param the estimated parameters of the mixed model for the longitudinal

predictors used to split the subjects at each node
– Ytype, hist_nodes, Y, boot and Ylevels internal information used in other func-

tions

• type the nature of the outcome
• times the event times (only for survival outcome)
• cause the cause of interest (only for survival outcome)
• causes the unique causes (only for survival outcome)
• Inputs the list of predictors names for Longitudinal (longitudinal predictor),

Continuous (continuous predictor) and Factor (categorical predictor)
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• Longitudinal.model the mixed model specification for each longitudinal predictor
• param a list of hyperparameters used to grow the random forest
• comput.time the computation time

The main information returned by rf is the V_split element which can also be extracted
using the get_tree() function. This element contains a table sorted by the node/leaf
identifier (id_node column) with each row representing a node/leaf. Each column provides
information about the splits:

• type: the nature of the predictor (Longitudinal for longitudinal predictor, Numeric for
continuous predictor or Factor for categorical predictor) if the node was split, Leaf
otherwise;

• var_split: the predictor used for the split defined by its order in timeData and
fixedData;

• feature: the feature used for the split defined by its position in random statistic;
• threshold: the threshold used for the split (only with Longitudinal and Numeric). No

information is returned for Factor;
• N: the number of subjects in the node/leaf;
• Nevent: the number of events of interest in the node/leaf (only with survival outcome);
• depth: the depth level of the node/leaf.

Additional information about the dependencies

dynforest() function internally calls other functions from related packages to build the
random forest:

• hlme() function (from lcmm package (Proust-Lima et al., 2017)) to fit the mixed models
for the time-dependent predictors defined in timeData and timeVarModel arguments

• Entropy() function (from base package) to compute the Shannon entropy
• survdiff() function (from survival package (Therneau, 2022)) to compute the log-rank

statistic test
• crr() function (from cmprsk package (Gray, 2020)) to compute the Fine & Gray

statistic test

3.2 predict() function

predict() is the S3 function for class dynforest to predict the outcome on new subjects.
Landmark time can be specified to consider only longitudinal data collected up to this time
to compute the prediction. The call of this function is:

predict(object, timeData = NULL, fixedData = NULL, idVar, timeVar, t0 = NULL)

Arguments

Argument object contains a dynforest object resulting from the dynforest() function.
Argument timeData contains the dataframe in longitudinal format (i.e., one observation
per row) for the time-dependent predictors of new subjects. In addition to time-dependent
predictors, this dataframe should also include a unique identifier and the time measurements.
This argument can be set to NULL if no time-dependent predictor is included. Argument
fixedData contains the dataframe in wide format (i.e., one subject per row) for the time-fixed
predictors of new subjects. In addition to time-fixed predictors, this dataframe should also
include a unique identifier. This argument can be set to NULL if no time-fixed predictor is
included. Argument idVar provides the name of the identifier variable included in timeData
and fixedData dataframes. Argument timeVar provides the name of the time-measurement
variable included in timeData dataframe. Argument t0 defines the landmark time; only the
longitudinal data collected up to this time are to be considered. This argument should be set
to NULL to include all longitudinal data.
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Values

predict() function returns several elements:

• t0 the landmark time defined in the argument (NULL by default)
• times times used to compute the individual predictions (only with survival outcome).

The times are defined according to the time-to-event subjects used to build the random
forest.

• pred_indiv the predicted outcome for the new subject. With survival outcome, predic-
tions are provided for each time defined in the times element.

• pred_leaf a table giving for each tree (in column) the leaf in which each subject is
assigned (in row)

• pred_indiv_proba the proportion of the trees leading to the category prediction for
each subject (only with categorical outcome)

4 How to use DynForest R package with a survival outcome?

4.1 Illustrative dataset: pbc2 dataset

The pbc2 dataset (Murtaugh et al., 1994) is loaded with the package DynForest to illustrate
its functionalities. pbc2 data come from a clinical trial conducted by the Mayo Clinic between
1974 and 1984 to treat primary biliary cholangitis (PBC), a chronic liver disease. A total of
312 patients were enrolled in a clinical trial to evaluate the effectiveness of D-penicillamine
compared to a placebo to treat PBC and were followed until the clinical trial ended, leading
to a total of 1945 observations. During the follow-up, several clinical continuous markers
were collected over time such as: the level of serum bilirubin (serBilir), the level of serum
cholesterol (serChol), the level of albumin (albumin), the level of alkaline (alkaline), the
level of aspartate aminotransferase (SGOT), platelets count (platelets), and the prothrombin
time (prothrombin). Four non-continuous time-dependent predictors were also collected:
the presence of ascites (ascites), the presence of hepatomegaly (hepatomegaly), the presence
of blood vessel malformations in the skin (spiders), and the edema levels (edema). These
time-dependent predictors were recorded according to the time variable. In addition to
these time-dependent predictors, a few predictors were collected at enrollment: sex (sex),
age (age), and the drug treatment (drug). During the follow-up, 140 patients died before
transplantation, 29 patients were transplanted, and 143 patients were censored alive (event).
The time of the first event (censored alive or any event) was considered as the event time
(years)

library("DynForest")
data(pbc2)
pbc2[1:5, c(

"id", "time", "serBilir", "SGOT", "albumin", "alkaline",
"age", "drug", "sex", "years", "event"

)]

#> id time serBilir SGOT albumin alkaline age drug sex
#> 1 1 0.0000000 14.5 138.0 2.60 1718 58.76684 D-penicil female
#> 2 1 0.5256817 21.3 6.2 2.94 1612 58.76684 D-penicil female
#> 3 10 0.0000000 12.6 147.3 2.74 918 70.56182 placebo female
#> 4 100 0.0000000 2.3 178.3 3.00 746 51.47027 placebo male
#> 5 100 0.4681853 2.5 189.1 2.94 836 51.47027 placebo male
#> years event
#> 1 1.0951703 2
#> 2 1.0951703 2
#> 3 0.1396342 2
#> 4 1.5113350 2
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#> 5 1.5113350 2

For the illustration, 4 time-dependent predictors (serBilir, SGOT, albumin and alkaline)
and 3 predictors measured at enrollment (sex, age and drug) were considered. We aim to
predict death without transplantation in patients suffering from primary biliary cholangitis
(PBC) using clinical and socio-demographic predictors, considering transplantation as a
competing event.

4.2 Data management

To begin, we split the subjects into two datasets: (i) one dataset to train the random forest
using 2/3 of patients; (ii) one dataset to predict on the other 1/3 of patients. The random
seed is set to 1234 for replication purposes.

set.seed(1234)
id <- unique(pbc2$id)
id_sample <- sample(id, length(id) * 2 / 3)
id_row <- which(pbc2$id %in% id_sample)
pbc2_train <- pbc2[id_row, ]
pbc2_pred <- pbc2[-id_row, ]

Then, we build the dataframe timeData_train in the longitudinal format (i.e., one obser-
vation per row) for the longitudinal predictors including: id the unique patient identifier;
time the observed time measurements; serBilir, SGOT, albumin and alkaline the longitudi-
nal predictors. We also build the dataframe fixedData_train with the time-fixed predictors
including: id the unique patient identifier; age, drug and sex predictors measured at en-
rollment. The nature of each predictor needs to be properly defined with the as.factor()
function for categorical predictors (e.g., drug and sex).

timeData_train <- pbc2_train[,
c("id", "time", "serBilir", "SGOT", "albumin", "alkaline")

]
fixedData_train <- unique(pbc2_train[, c("id", "age", "drug", "sex")])

4.3 Specification of the models for the time-dependent predictors

The first step of the random forest building consists of specifying the mixed model of
each longitudinal predictor through a list containing the fixed and random formula for
the fixed effect and random effects of the mixed models, respectively. Here, we assume a
linear trajectory for serBilir, albumin and alkaline, and a quadratic trajectory for SGOT.
Although we restricted this example to linear and quadratic functions of time, we note that
any function can be considered, including splines.

timeVarModel <- list(
serBilir = list(fixed = serBilir ~ time, random = ~time),
SGOT = list(fixed = SGOT ~ time + I(time^2), random = ~ time + I(time^2)),
albumin = list(fixed = albumin ~ time, random = ~time),
alkaline = list(fixed = alkaline ~ time, random = ~time)

)

For this illustration, the outcome object contains a list with type set to surv (for survival
data) and Y contains a dataframe in wide format (one subject per row) with: id the unique
patient identifier; years the time-to-event data; event the event indicator.

Y <- list(type = "surv", Y = unique(pbc2_train[, c("id", "years", "event")]))
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4.4 Random forest building

We build the random forest using dynforest() function with the following code:

res_dyn <- dynforest(
timeData = timeData_train,
fixedData = fixedData_train,
timeVar = "time", idVar = "id",
timeVarModel = timeVarModel, Y = Y,
ntree = 200, mtry = 3, nodesize = 2, minsplit = 3,
cause = 2, ncores = 7, seed = 1234

)

In a survival context with multiple events, it is necessary to specify the event of interest
with the argument cause. We thus fix cause = 2 to specify the event of interest (i.e., the
death event). For the hyperparameters, we arbitrarily chose mtry = 3, nodesize = 2, and
minsplit = 3, and we will discuss this point in section 4.8.

Overall information about the random forest can be output with the summary() function
as displayed below for our example:

summary(res_dyn)

#> dynforest executed for survival (competing risk) outcome
#> Splitting rule: Fine & Gray statistic test
#> Out-of-bag error type: Integrated Brier Score
#> Leaf statistic: Cumulative incidence function
#> ----------------
#> Input
#> Number of subjects: 208
#> Longitudinal: 4 predictor(s)
#> Numeric: 1 predictor(s)
#> Factor: 2 predictor(s)
#> ----------------
#> Tuning parameters
#> mtry: 3
#> nodesize: 2
#> minsplit: 3
#> ntree: 200
#> ----------------
#> ----------------
#> dynforest summary
#> Average depth per tree: 6.62
#> Average number of leaves per tree: 27.68
#> Average number of subjects per leaf: 4.78
#> Average number of events of interest per leaf: 1.95
#> ----------------
#> Computation time
#> Number of cores used: 7
#> Time difference of 3.18191 mins
#> ----------------

We executed the dynforest() function for a survival outcome with competing events.
In this mode, we use the Fine & Gray statistic test as the splitting rule and the cumulative
incidence function (CIF) as the leaf statistic. To build the random forest, we included
208 subjects with 4 longitudinal (Longitudinal), 1 continuous (Numeric) and 2 categorical
(Factor) predictors. The summary() function returns some statistics about the trees. For
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instance, we have on average 4.8 subjects and 1.9 death events per leaf. The number of
subjects per leaf should always be higher than the nodesize hyperparameter. OOB error
should first be computed using the compute_ooberror() function (see section 4.5) to be
displayed on summary output.

To further investigate the tree structure, the split details can be output using the
get_tree() function with the following code (for tree 1):

head(get_tree(dynforest_obj = res_dyn, tree = 1))

#> type id_node var_split feature threshold N Nevent depth
#> 1 Longitudinal 1 3 1 -1.272629e-01 129 51 1
#> 2 Numeric 2 1 NA 4.138210e+01 39 27 2
#> 3 Longitudinal 3 4 1 1.459346e+02 90 24 2
#> 4 Longitudinal 4 3 1 3.608271e-11 8 3 3
#> 5 Longitudinal 5 2 1 5.924123e+01 31 24 3
#> 6 Longitudinal 6 1 1 2.786575e-01 63 12 3

tail(get_tree(dynforest_obj = res_dyn, tree = 1))

#> type id_node var_split feature threshold N Nevent depth
#> 50 Leaf 174 NA NA NA 2 2 8
#> 51 Longitudinal 175 2 1 -1.850322e-10 4 4 8
#> 52 Leaf 250 NA NA NA 5 1 8
#> 53 Leaf 251 NA NA NA 4 2 8
#> 54 Leaf 350 NA NA NA 2 2 9
#> 55 Leaf 351 NA NA NA 2 2 9

Looking at the head of the get_tree() function output, we see that subjects were split
at node 1 (id_node) using the first random-effect (feature = 1) of the third Longitudinal
predictor (var_split = 3) with threshold = -0.1273. var_split = 3 corresponds to albumin,
so subjects at node 1 with albumin values below -0.1273 are assigned to node 2, otherwise to
node 3. The last rows of the random forest given by the tail of get_tree() function output
provide the leaves descriptions. For instance, in row 53, 4 subjects are included in leaf 251,
and 2 subjects have the event of interest.

Estimated cumulative incidence function (CIF) within each leaf of a tree can be displayed
using the plot() function. For instance, the CIF of the cause of interest for leaf 251 in tree 1
can be displayed using the following code:

CIF of a single tree is not meant to be interpreted alone. The CIF should be averaged
over all trees of the random forest. For a subject, the estimated CIF over the random forest is
obtained by averaging all the tree-specific CIFs of the tree-leaf where the subject belongs.
This can be done with the plot() function such as:

plot(res_dyn, id = 104, max_tree = 9)

In this example, we display in figure 2 for subject 104 the tree-specific CIFs for the first 9
trees where this subject is used to grow the trees. This figure shows how the estimated CIF
can differ across the trees and requires to be averaged as each is calculated from information
of the few subjects belonging to a leaf.

4.5 Out-Of-Bag error

The Out-Of-Bag error (OOB) aims at assessing the predictive abilities of the random forest.
With a survival outcome, the OOB error is evaluated using the Integrated Brier Score (IBS)
(Gerds and Schumacher, 2006). It is computed using the compute_ooberror() function with
an object of class dynforest as the main argument, such as:
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Figure 2: Estimated cumulative incidence functions for subject 104 over 9 trees.

res_dyn_OOB <- compute_ooberror(dynforest_obj = res_dyn)

compute_ooberror() returns the OOB errors by individual. The overall OOB error for
the random forest is obtained by averaging the individual specific OOB errors, and can be
displayed using print() or directly by calling the object.

res_dyn_OOB

#> [1] 0.1265053

We obtain an IBS of 0.127 computed from time 0 to the maximum event time. The
time range can be modified using IBS.min and IBS.max arguments to define the minimum
and maximum, respectively. To maximize the predictive ability of the random forest, the
hyperparameters can be tuned, that is, chosen as those that minimize the OOB error (see
section 4.8).

4.6 Individual prediction of the outcome

The predict() function allows prediction of the outcome for a new subject using the trained
random forest. The function requires the individual data: time-dependent predictors
in timeData and time-fixed predictors in fixedData. For a survival outcome, dynamic
predictions can be computed by fixing a prediction time (called landmark time, argument
t0) from which the prediction is made. In this case, only the history of the individual up to
this landmark time (including the longitudinal and time-fixed predictors) will be used. In
particular, if the landmark time is fixed to 0, only the information at time 0 will be considered
for predicting the outcome.

For the illustration, we only select the subjects still at risk at the landmark time of 4 years.
We build the dataframe for those subjects and we predict the individual-specific CIF using
the predict() function as follows:

id_pred <- unique(pbc2_pred$id[which(pbc2_pred$years > 4)])
pbc2_pred_tLM <- pbc2_pred[which(pbc2_pred$id %in% id_pred), ]
timeData_pred <- pbc2_pred_tLM[,

c("id", "time", "serBilir", "SGOT", "albumin", "alkaline")
]
fixedData_pred <- unique(pbc2_pred_tLM[, c("id", "age", "drug", "sex")])
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Figure 3: Predicted cumulative incidence function for subjects 102 and 260 from landmark time of 4
years (represented by the dashed vertical line)

pred_dyn <- predict(
object = res_dyn,
timeData = timeData_pred,
fixedData = fixedData_pred,
idVar = "id",
timeVar = "time",
t0 = 4

)

The predict() function provides several elements as described in section 3.2. In addition,
the plot() function can be used to display the CIF of the outcome (here death before
transplantation) for subjects indicated with argument id. For instance, we compute the CIF
for subjects 102 and 260 with the following code and display them in figure 3.

In the first year after the landmark time (at 4 years), we observe a rapid increase in the
risk of death for subject 260 compared to subject 102. We also notice that after 10 years from
the landmark time, subject 260 has a probability of death almost three times higher than that
of subject 102.

4.7 Predictiveness of the variables

Variable importance

The main objective of the random forest is to predict an outcome. But usually, we are
interested in identifying which predictors are the most predictive. The VIMP statistic
(Ishwaran et al., 2008) can be computed using the compute_vimp() function. This function
returns the VIMP statistic for each predictor with the $Importance element. These results
can also be displayed using the plot() function, either in absolute value by default or in
percentage with the PCT argument set to TRUE.

res_dyn_VIMP <- compute_vimp(dynforest_obj = res_dyn, seed = 123)

p1 <- plot(res_dyn_VIMP, PCT = TRUE)

The VIMP results are displayed in figure 4A. The most predictive variables are serBilir,
albumin and age with the largest VIMP percentage. By removing the association between
serBilir and the event, the OOB error was increased by 30%.
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Figure 4: (A) VIMP statistic and (B) grouped-VIMP statistic displayed as a percentage of loss in OOB
error of prediction. group1 includes serBilir and SGOT; group2 includes albumin and alkaline.

In the case of correlated predictors, the predictors can be regrouped into dimensions
and the VIMP can be computed at the dimension group level with the gVIMP statistic.
Permutation is done for each variable of the group simultaneously. The gVIMP is computed
with the compute_gvimp() function in which the group argument defines the group of
predictors as a list. For instance, with two groups of predictors (named group1 and group2),
the gVIMP statistic is computed using the following code:

group <- list(
group1 = c("serBilir", "SGOT"),
group2 = c("albumin", "alkaline")

)
res_dyn_gVIMP <- compute_gvimp(dynforest_obj = res_dyn, group = group, seed = 123)

p2 <- plot(res_dyn_gVIMP, PCT = TRUE)

Similar to the VIMP statistic, the gVIMP results can be displayed using the plot()
function. The figure 4B shows that group1 has the highest gVIMP percentage with 34%.

plot_grid(p1, p2, labels = c("A", "B"))

To compute the gVIMP statistic, the groups can be defined regardless of the number of
predictors. However, the comparison between the groups may be harder when group sizes
are very different.

Minimal depth

To go further into the understanding of the tree building process, the compute_vardepth()
function extracts information about the average minimal depth by feature ($min_depth), the
minimal depth for each feature and each tree ($var_node_depth), and the number of times
that the feature is used for splitting for each feature and each tree ($var_count).

Using an object from the compute_vardepth() function, the plot() function allows us
to plot the distribution of the average minimal depth across the trees. The plot_level
argument defines how the average minimal depth is plotted, by predictor or feature.

The distribution of the minimal depth level is displayed in figure 5 by predictor and
feature. Note that the minimal depth level should always be interpreted with the number of
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Figure 5: Average minimal depth level by predictor (A) and feature (B).

trees where the predictor/feature is found. Indeed, to accurately appreciate the importance
of a variable’s minimal depth, the variable has to be systematically part of the candidates
at each node. This is why we strongly advise computing the minimal depth on a random
forest with the mtry hyperparameter chosen at its maximum (as done below).

res_dyn_max <- dynforest(
timeData = timeData_train,
fixedData = fixedData_train,
timeVar = "time", idVar = "id",
timeVarModel = timeVarModel, Y = Y,
ntree = 200, mtry = 7, nodesize = 2, minsplit = 3,
cause = 2, ncores = 7, seed = 1234

)

depth_dyn <- compute_vardepth(dynforest_obj = res_dyn_max)
p1 <- plot(depth_dyn, plot_level = "predictor")

p2 <- plot(depth_dyn, plot_level = "feature")

plot_grid(p1, p2, labels = c("A", "B"))

In our example, we ran a random forest with the mtry hyperparameter set to its maxi-
mum (i.e., mtry = 7) and we computed the minimal depth on this random forest. We observe
that serBilir, albumin and age have the lowest minimal depth, indicating these predictors
are used to split the subjects at early stages in 200 out of 200 trees, i.e., 100% for serBilir,
age and in 199 out of 200 for albumin (figure 5A). The minimal depth level by feature (figure
5B) provides more advanced details about the tree building process. For instance, we can see
that the random effects of serBilir (indicated by bi0 and bi1 in the graph) are the earliest
features used on 199 and 197 out of 200 trees, respectively.

4.8 Guidelines to tune the hyperparameters

The predictive performance of the random forest strongly depends on the hyperparameters
mtry, nodesize and minsplit. They should therefore be chosen carefully. The nodesize
and minsplit hyperparameters control the tree depth. The trees need to be deep enough
to ensure that the predictions are accurate. By default, we fixed nodesize and minsplit at
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Figure 6: OOB error according to mtry hyperparameter. The optimal value was found for the maximum
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the minimum, that is nodesize = 1 and minsplit = 2. However, with a large number of
individuals, the tree depth could be slightly decreased by increasing these hyperparameters
in order to reduce the computation time.

The mtry hyperparameter defines the number of predictors randomly drawn at each
node. By default, we chose mtry equal to the square root of the number of predictors as
usually recommended (Bernard et al., 2009). However, this hyperparameter should be
carefully tuned with possible values between 1 and the number of predictors. Indeed, the
predictive performance of the random forest is highly related to this hyperparameter.

In the illustration, we tuned mtry for every possible value (1 to 7). Figure 6 displays the
OOB error according to the mtry hyperparameter.

We can see in this figure large OOB error differences according to the mtry hyperpa-
rameter. In particular, we observe the worst predictive performance for mtry = 1. The
minimum OOB error value is obtained for mtry = 7 although differences from mtry = 3 to
mtry = 7 seem relatively minimal. Moreover, a larger mtry value has a significant impact
on the computation time. Using 7 cores in this example, the dynforest() function has been
executed in 1.7, 2.8, 3.8, 4.7, 5.4, 6.2 and 7.2 minutes, for mtry values ranging from 1 to 7,
respectively. The number of subjects, time measurements, trees, and their depths may also
contribute to longer computation time.

5 How to use DynForest R package with a categorical outcome?

In this section, we use DynForest in a classification perspective using pbc2 data. For
illustration purposes, we want to predict death between 4 and 10 years on subjects still at
risk at 4 years from the repeated data up to 4 years. Note that this is only for illustrative
purposes as this technique does not handle the censoring of death times correctly.

5.1 Data management

For the illustration, we select patients still at risk at 4 years and we recode the event variable
with event = 1 for subjects who died between 4 years and 10 years, whereas subjects with
transplantation were recoded event = 0, as were the subjects still alive. We split the subjects
into two datasets: (i) one dataset to train the random forest using 2/3 of patients; (ii) one
dataset to predict on the other 1/3 of patients.
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pbc2 <- pbc2[which(pbc2$years > 4 & pbc2$time <= 4), ]
pbc2$event <- ifelse(pbc2$event == 2, 1, 0)
pbc2$event[which(pbc2$years > 10)] <- 0
set.seed(1234)
id <- unique(pbc2$id)
id_sample <- sample(id, length(id) * 2 / 3)
id_row <- which(pbc2$id %in% id_sample)
pbc2_train <- pbc2[id_row, ]
pbc2_pred <- pbc2[-id_row, ]

We use the same strategy as in the survival context (section 4) to build the random forest,
with the same predictors and the same association for time-dependent predictors.

timeData_train <- pbc2_train[,
c("id", "time", "serBilir", "SGOT", "albumin", "alkaline")

]
timeVarModel <- list(

serBilir = list(fixed = serBilir ~ time, random = ~time),
SGOT = list(fixed = SGOT ~ time + I(time^2), random = ~ time + I(time^2)),
albumin = list(fixed = albumin ~ time, random = ~time),
alkaline = list(fixed = alkaline ~ time, random = ~time)

)
fixedData_train <- unique(pbc2_train[, c("id", "age", "drug", "sex")])

With a categorical outcome, the definition of the output object is slightly different. We
should specify type=“factor” to define the outcome as categorical, and the dataframe in Y
should contain only 2 columns, the variable identifier id and the outcome event.

Y <- list(
type = "factor",
Y = unique(pbc2_train[, c("id", "event")])

)

5.2 The random forest building

We executed the dynforest() function to build the random forest with hyperparameters
mtry = 7 and nodesize = 2 as follows:

res_dyn <- dynforest(
timeData = timeData_train,
fixedData = fixedData_train,
timeVar = "time", idVar = "id",
timeVarModel = timeVarModel,
mtry = 7, nodesize = 2,
Y = Y, ncores = 7, seed = 1234

)

5.3 Out-Of-Bag error

With a categorical outcome, the OOB prediction error is evaluated using a misclassification
criterion. This criterion can be computed with the compute_ooberror() function and the
results of the random forest can be displayed using summary():

res_dyn_OOB <- compute_ooberror(dynforest_obj = res_dyn)

summary(res_dyn_OOB)
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#> dynforest executed for categorical outcome
#> Splitting rule: Minimize weighted within-group Shannon entropy
#> Out-of-bag error type: Missclassification
#> Leaf statistic: Majority vote
#> ----------------
#> Input
#> Number of subjects: 150
#> Longitudinal: 4 predictor(s)
#> Numeric: 1 predictor(s)
#> Factor: 2 predictor(s)
#> ----------------
#> Tuning parameters
#> mtry: 7
#> nodesize: 2
#> ntree: 200
#> ----------------
#> ----------------
#> dynforest summary
#> Average depth per tree: 5.89
#> Average number of leaves per tree: 16.81
#> Average number of subjects per leaf: 5.72
#> ----------------
#> Out-of-bag error based on Missclassification
#> Out-of-bag error: 0.2333
#> ----------------
#> Computation time
#> Number of cores used: 7
#> Time difference of 2.87888 mins
#> ----------------

In this illustration, we built the random forest using 150 subjects because we only kept
the subjects still at risk at the landmark time at 4 years and split the dataset in 2/3 for
training and 1/3 for testing. We have on average 5.7 subjects per leaf, and the average
depth level per tree is 5.9. This random forest predicted the wrong outcome for 23% of
the subjects. The random forest performance can be optimized by choosing the mtry and
nodesize hyperparameters that minimize the OOB misclassification.

5.4 Prediction of the outcome

We can predict the probability of death between 4 and 10 years for subjects still at risk at the
landmark time at 4 years. In classification mode, the predictions are performed using the
majority vote. The prediction over the trees is thus a category of the outcome along with
the proportion of the trees that lead to this category. Predictions are computed using the
predict() function, then a dataframe can be easily built from the returning object to get the
prediction and probability of the outcome for each subject:

timeData_pred <- pbc2_pred[,
c("id", "time", "serBilir", "SGOT", "albumin", "alkaline")

]
fixedData_pred <- unique(pbc2_pred[, c("id", "age", "drug", "sex")])
pred_dyn <- predict(

object = res_dyn,
timeData = timeData_pred,
fixedData = fixedData_pred,
idVar = "id", timeVar = "time",
t0 = 4
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)

head(data.frame(
pred = pred_dyn$pred_indiv,
proba = pred_dyn$pred_indiv_proba

))

#> pred proba
#> 101 0 0.945
#> 104 0 0.790
#> 106 1 0.600
#> 108 0 0.945
#> 112 1 0.575
#> 114 0 0.650

As shown in this example, some predictions are made with varying confidence from
57.5% for subject 112 to 94.5% for subject 101. We predict, for instance, no event for subject
101 with a probability of 94.5% and an event for subject 106 with a probability of 60.0%.

5.5 Predictiveness variables

Variable importance

The most predictive variables can be identified using the compute_vimp() function and
displayed using the plot() function as follows:

res_dyn_VIMP <- compute_vimp(dynforest_obj = res_dyn_OOB, seed = 123)
plot(res_dyn_VIMP, PCT = TRUE)

Again, we found that the most predictive variable is serBilir. When perturbing
serBilir, the OOB prediction error was increased by 15%.

Minimal depth

The minimal depth is computed using the compute_vardepth() function and is displayed at
predictor and feature levels using the plot() function. The results are displayed in figure
7 using the random forest with maximal mtry hyperparameter value (i.e., mtry = 7) for a
better understanding.

depth_dyn <- compute_vardepth(dynforest_obj = res_dyn_OOB)
p1 <- plot(depth_dyn, plot_level = "predictor")

p2 <- plot(depth_dyn, plot_level = "feature")

plot_grid(p1, p2, labels = c("A", "B"))

We observe that serBilir and albumin have the lowest minimal depth and are used to
split the subjects in almost all the trees (199 and 196 out of 200 trees, respectively) (figure
7A). Figure 7B provides further results. In particular, this graph shows that the random
intercept (indicated by bi0) of serBilir and albumin are the earliest predictors used to split
the subjects and are present in 192 and 191 out of 200 trees, respectively.

6 Discussion

The DynForest R package provides an easy-to-use random forests methodology for predic-
tors that may contain longitudinal variables possibly measured irregularly with error. Note

The R Journal Vol. 17/1, March 2025 ISSN 2073-4859

https://CRAN.R-project.org/package=DynForest


CONTRIBUTED RESEARCH ARTICLE 44

185

196

185

136

199

21

194SGOT

sex

serBilir

drug

alkaline

albumin

age

2.5 5.0 7.5 10.0

Minimal depth

P
re

di
ct

or
s

A
185

191

78

183

86

136

192

138

21

176

117

52SGOT.bi2

SGOT.bi1

SGOT.bi0

sex

serBilir.bi1

serBilir.bi0

drug

alkaline.bi1

alkaline.bi0

albumin.bi1

albumin.bi0

age

2.5 5.0 7.5 10.0

Minimal depth

Fe
at

ur
es

B

Figure 7: Average minimal depth by predictor (A) and feature (B).

that the method can also be used without any longitudinal predictors, as in other random
forests packages.

We implemented several statistics to identify the predictive ability of each variable with
the VIMP, gVIMP and average minimal depth. For the survival outcome, compared to the
randomForestSRC R package, we considered two different stopping criteria nodesize and
minsplit to favor the deepest forests possible and avoid suboptimal splits. We designed
DynForest to be as user-friendly as possible. To achieve that, we implemented various
functions to summarize and display the results, and provided a step-by-step analysis in
survival and categorical modes. As DynForest involves mixed models to be updated
within each tree building, the program can be numerically demanding despite efforts to
speed up computations (parallel computing, history of previous estimations). A substantial
computational burden is especially expected when the sample is very large and/or a very
large set of time-dependent predictors is considered.

Several improvements could be considered in the future. We used linear mixed models
for longitudinal continuous outcomes, but alternative strategies could be considered such
as the PACE algorithm (Yao et al., 2005) based on functional data analysis. We could also
consider different natures of longitudinal predictors (e.g., binary) for which generalized
linear mixed models could be used. DynForest currently handles continuous, categorical
and survival (with possibly competing events) outcomes. But other outcomes could be
envisaged such as curves, recurrent events or interval-censored time-to-events. We leave
these perspectives for future releases.

Computational details

The results in this paper were obtained using R 4.4.1 with the DynForest 1.2.0 package on
a virtualized Windows Server 2016 Remote Desktop Server with 48GB RAM. R itself and
all packages used are available from the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/.
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