
CONTRIBUTED RESEARCH ARTICLE 150

PubChemR: An R Package for Accessing
Chemical Data from PubChem
by Selcuk Korkmaz, Bilge Eren Yamasan, and Dincer Goksuluk

Abstract Chemical data is a cornerstone in the fields of chemistry, pharmacology, bioinformatics,
and environmental science. The PubChemR package provides a comprehensive R interface to the
PubChem database, which is one of the largest and most complete repositories of chemical data. This
package simplifies the process of querying and retrieving chemical information, including compound
structures, properties, biological activities, and more, directly from within R. By leveraging PubChemR,
users can programmatically access a wealth of chemical data, which is essential for research and
analysis in the chemical sciences. The package supports various functionalities such as searching by
chemical identifiers, downloading chemical structures, and retrieving bioassay results, among others.
PubChemR is designed to be user-friendly, providing a intuitive experience for R users ranging from
academic researchers to practitioners across various scientific disciplines. This paper presents the
capabilities of PubChemR, demonstrates its use through practical examples, and discusses its potential
impact on chemical data analysis.

1 Introduction

Chemical data serves as a foundational element in a wide spectrum of scientific research fields, from
pharmacology and medicinal chemistry to materials science and environmental studies. The ability
to access, query, and manipulate chemical information efficiently is essential for researchers and
practitioners who rely on data-driven methodologies to advance their work. PubChem, hosted by
the National Center for Biotechnology Information (NCBI), stands as one of the largest publicly
available repositories of chemical data, offering free access to an abundance of information on chemical
substances, compounds, and biological activities (Wang et al., 2009; Chen et al., 2009; Li et al., 2010;
Wang et al., 2012; Kim et al., 2016).

The PubChemR package for R provides a comprehensive interface to the PubChem database,
allowing users to programmatically retrieve and utilize chemical data within the R environment
(Korkmaz et al., 2024). This integration facilitates a more streamlined workflow for scientists who use
R for statistical analysis, data visualization, and computational modeling. By utilizing the PubChemR
package, users can perform a variety of tasks such as searching for chemical substances, fetching
compound properties, and obtaining assay data for bioactivity analysis.

Among the extensive range of R packages used in scientific research, webchem (Szöcs et al., 2020)
and ChemmineR (Cao et al., 2008) have been important for accessing chemical databases. Chem-
mineR provides tools for cheminformatics in R, enabling detailed handling and analysis of chemical
data. webchem supports access to multiple chemical databases. Additionally, other notable pack-
ages like rcdk, ChemmineOB, BridgeDbR, RMassBank, and rgoslin offer robust functionalities for
chemical data manipulation and analysis. The rcdk package interfaces with the Chemistry Devel-
opment Kit (CDK), providing molecular structure parsing and descriptor calculation (Guha, 2007).
ChemmineOB interfaces with OpenBabel for chemical format conversions and molecular property
calculations (Horan and Girke, 2024). BridgeDbR facilitates identifier mapping across biological
databases, enhancing data integration (Leemans et al., 2024). RMassBank supports the creation and
handling of mass spectrometry databases, crucial for compound identification (Stravs et al., 2013).
rgoslin ensures accurate lipid nomenclature in lipidomics studies (Kopczynski et al., 2020).

However, when it comes to direct interaction with the PubChem database, these packages have
limitations, often requiring users to work through complex API documentation or use additional tools.
To address these issues, PubChemR, designed specifically for the PubChem database, complements
the functionalities of these packages. It simplifies accessing chemical data from PubChem, using
functions that make API interactions more straightforward. Users can retrieve data easily by calling
these functions with the right parameters. Unlike webchem, which works with various databases,
and ChemmineR, which covers a wide range of cheminformatics tasks, PubChemR is focused solely
on PubChem, allowing for more efficient and targeted data interactions.

Here, we introduce PubChemR, detailing its functionality, design principles, and potential use
cases. We will demonstrate how PubChemR can be utilized to enhance research workflows and
provide examples of its application in real-world scenarios. By the end of this paper, readers will be
equipped with the knowledge to integrate PubChemR into their data analysis toolkit, unlocking the
potential to drive forward chemical and biological research with the power of R.

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=PubChemR
https://CRAN.R-project.org/package=PubChemR
https://CRAN.R-project.org/package=webchem
https://www.bioconductor.org/packages/release/bioc/html/ChemmineR.html
https://www.bioconductor.org/packages/release/bioc/html/ChemmineR.html
https://www.bioconductor.org/packages/release/bioc/html/ChemmineR.html
https://CRAN.R-project.org/package=webchem
https://CRAN.R-project.org/package=rcdk
https://www.bioconductor.org/packages/release/bioc/html/ChemmineOB.html
https://www.bioconductor.org/packages/release/bioc/html/BridgeDbR.html
https://www.bioconductor.org/packages/release/bioc/html/RMassBank.html
https://www.bioconductor.org/packages/release/bioc/html/rgoslin.html
https://CRAN.R-project.org/package=rcdk
https://www.bioconductor.org/packages/release/bioc/html/ChemmineOB.html
https://www.bioconductor.org/packages/release/bioc/html/BridgeDbR.html
https://www.bioconductor.org/packages/release/bioc/html/RMassBank.html
https://www.bioconductor.org/packages/release/bioc/html/rgoslin.html
https://CRAN.R-project.org/package=PubChemR
https://CRAN.R-project.org/package=webchem
https://www.bioconductor.org/packages/release/bioc/html/ChemmineR.html
https://CRAN.R-project.org/package=PubChemR
https://CRAN.R-project.org/package=PubChemR
https://CRAN.R-project.org/package=PubChemR
https://CRAN.R-project.org/package=PubChemR

CONTRIBUTED RESEARCH ARTICLE 151

Figure 1: Interfacing the PubChem’s PUG-REST database with the PubChemR package through URL
syntax: utilizing queries as function arguments

2 Design

The design of PubChemR is driven by the need for a seamless and intuitive interface for R users to
access the vast chemical data available in the PubChem database. Our design principles focus on
simplicity, efficiency, and robustness:

• Simplicity: The package is designed to minimize the complexity of interacting with the Pub-
Chem API. Functions are named and structured to be self-explanatory, allowing users to
intuitively understand their purposes.

• Efficiency: Considering the extensive size of the PubChem database, we optimized PubChemR
for speed and minimal resource consumption. Our design includes efficient handling of API
calls and data processing.

• Robustness: The package is designed to handle a wide range of user queries, from simple
compound searches to complex data extractions. Exception handling and error reporting are
integral, ensuring users are informed of issues in their queries or data processing.

3 Implementation

The implementation of PubChemR involved several key steps:

• API Integration: We integrated the PubChem API using R’s HTTP client capabilities. This
involved mapping the PubChem’s RESTful services into R functions.

• Data Processing: The raw data from PubChem API calls are processed and transformed into
user-friendly R data structures such as data frames and lists.

• Function Development: Each function in PubChemR corresponds to a specific type of query or
data retrieval from the PubChem database, with parameters allowing for flexible and targeted
searches.

• Testing and Validation: We performed rigorous testing to ensure accuracy and efficiency using
the testthat package for unit testing each function. This approach helps us define and verify
expected behavior, catch errors, and integrate well with our workflow, thereby maintaining
high code quality and reliability.

4 Use cases

The PubChemR package interfaces with the PubChem database through URL syntax, with each query
within this syntax serving as an argument in the designated function (Figure 1).

The functions in PubChemR are designed with flexibility in mind, allowing users to specify the
type of information they need and the format in which they wish to receive it. For instance, data can
be returned as R objects like data frames or lists, ready for analysis.

PubChemR pacakage can be installed from CRAN (The Comprehensive R Archive Network) and
loaded as follow:

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=PubChemR
https://CRAN.R-project.org/package=PubChemR
https://CRAN.R-project.org/package=PubChemR
https://CRAN.R-project.org/package=PubChemR
https://CRAN.R-project.org/package=PubChemR
https://CRAN.R-project.org/package=PubChemR
https://CRAN.R-project.org/package=PubChemR

CONTRIBUTED RESEARCH ARTICLE 152

install.packages("PubChemR", repos = "http://cran.us.r-project.org")
library("PubChemR")

The package is currently in a state of active development. The latest version in development can
be accessed via GitHub (https://github.com/selcukorkmaz/PubChemR). This paper was composed
utilizing PubChemR version 2.1.

Most functions in the package require three main arguments; domain, namespace, and identifier.

1. Domain: This represents the primary classification within the PubChem system that dictates the
type of data being accessed. Examples of domains include “substance,” “compound,” “assay,” “gene,”
and others. Each domain encapsulates specific types of scientific data, such as chemical compounds or
genetic information.

2. Namespace: Within each domain, the namespace further specifies the method or criteria for
querying the data. It acts as a sub-category within the domain that allows for more refined searches.
For instance, in the compound domain, namespaces can be specific identifiers like “cid” for compound
ID, or “name” for the compound’s common name, among others.

3. Identifier: These are the actual data values used to perform the query. Identifiers can be vector
of positive integers (e.g. cid, sid, aid) or strings (e.g. name, smiles, source, inchikey, formula). They are
the key pieces of information that pinpoint the exact record or set of records to be retrieved from the
database.

Additionally, the optional arguments “operation” and “searchtype” play crucial roles in refining
the scope and focus of data queries. The “operation” argument specifies the type of data processing or
retrieval task that should be performed on the identified records. For instance, operations can range
from fetching complete data records to retrieving specific properties or summaries of compounds,
genes, or assays. This flexibility allows users to access both broad overviews and detailed attributes of
database entries according to their research needs. Meanwhile, the “searchtype” argument defines the
method of search being employed. It could be a structured search, such as substructure or similarity
search, which is essential for identifying compounds with particular chemical structures or features.
These optional arguments enhance the API’s versatility, enabling researchers to tailor queries more
precisely and retrieve data that best fits their experimental and analytical requirements. For more
detailed information, please refer to the official documentation at https://pubchem.ncbi.nlm.nih.
gov/docs/pug-rest.

Table 1 provides detailed information about four key arguments: “domain,” “searchtype,” “names-
pace,” and “operation.” This table is designed to help users understand how to effectively utilize these
components to customize queries within the PubChemR package.

domain searchtype namespace operation

substance - sid, sourceid/<source
id>, sourceall/<source
name>, name, <xref>,
listkey

record, synonyms, sids,
cids, aids,
assaysummary,
classification, <xrefs>,
description

compound <structure search> =
{substructure,
superstructure,
similarity,
identity}/{smiles,
inchi, sdf, cid} <fast
search> = {fastidentity,
fastsimilarity_2d,
fastsimilarity_3d,
fastsubstructure,
fastsuperstruc-
ture}/{smiles, smarts,
inchi, sdf, cid},
fastformula

cid, name, smiles,
inchi, sdf, inchikey,
formula, <structure
search>, <xref>, listkey,
<fast search>

record, <compound
property>, synonyms,
sids, cids, aids,
assaysummary,
classification, <xrefs>,
description,
conformers

assay - aid, listkey,
type/<assay type>,
sourceall/<source
name>, target/<assay
target>,
activity/<activity
column name>

record, concise, aids,
sids, cids, description,
targets/<target type>,
<doseresponse>,
summary,
classification

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://github.com/selcukorkmaz/PubChemR
https://CRAN.R-project.org/package=PubChemR
https://pubchem.ncbi.nlm.nih.gov/docs/pug-rest
https://pubchem.ncbi.nlm.nih.gov/docs/pug-rest

CONTRIBUTED RESEARCH ARTICLE 153

domain searchtype namespace operation

gene - geneid, genesymbol,
synonym

summary, aids,
concise, pwaccs

protein - accession, gi, synonym summary, aids,
concise, pwaccs

pathway - pwacc summary, cids,
geneids, accessions

taxonomy - taxid, synonym summary, aids
cell - cellacc, synonym summary, aids

Table 1: Overview of key arguments in the PubChemR package

In the following sections, we will explore each function in detail, examining the parameters they
accept, the type of data they return, and providing examples to illustrate their use. These examples
will serve as a guide for users to understand how to effectively utilize the PubChemR package to
access and manipulate chemical and biological data for their specific needs.

First, we will concentrate on three primary functions, each focusing on a specific domain: get_compounds
to retrieve compound data, get_substances to extract substance data, and get_assays to fetch assay
data. These functions are capable of handling multiple queries simultaneously and return a Pub-
ChemInstanceList class. This is a specialized class specifically created for these functions to manage
the complex PubChem data efficiently. After utilizing each of these functions, we will employ the
instance function. This function is designed to retrieve detailed information about a compound from
a PubChemInstanceList. It provides comprehensive details about the specific compound, including
its instance details (i.e., slots). Finally, we will implement the retrieve function with the relevant
slots to extract specific data elements from the compound data. This approach ensures that we can
precisely access the required information from the vast amount of data available, thereby enhancing
the efficiency and effectiveness of our data analysis process.

Next, we will fetch a variety of compound properties, such as molecular weight, chemical formula,
isomeric SMILES, and more, using the get_properties function. Additionally, we will focus on two
functions for downloading data from the PubChem database: get_sdf and download. The get_sdf
function is specifically designed to download chemical structure data in the widely recognized
Structure Data File (SDF) format. The download function streamlines the process of accessing and
downloading content from the PubChem database.

Finally, we will introduce two new functions: get_pug_rest and get_pug_view. The get_pug_rest
function provides a direct and efficient method for accessing a wide range of chemical data. In contrast,
the get_pug_view function is designed to offer access to detailed summary reports and additional
information that is not usually included in the primary PubChem Substance, Compound, or BioAssay
records.

4.1 Retrieve Compund Information

The get_compounds function allows R users to retrieve compound information from the PubChem
database. This function specifically targets retrieving compound-related information. This specialized
focus is crucial for users who require direct and efficient access to detailed compound data, a common
need in various fields of chemical research and analysis. Below, we will demonstrate how to retrieve
compound data using different namespaces:

a. Retrieving Compound Information by Name: The get_compounds function simplifies the
process of retrieving detailed compound information by using common compound names. This
feature is particularly beneficial in scenarios where the specific CIDs of compounds are unknown or
in educational contexts where common names are more frequently used. It simplifies the process of
data retrieval for users who may not be familiar with the technical identifiers of compounds but are
well-versed with their common or commercial names.

Consider the following example where the get_compounds function is employed to fetch data for
compounds using their common names:

compounds <- get_compounds(identifier = c("aspirin", "caffeine", "glucose"), namespace = "name")
compounds

#>
#> An object of class 'PubChemInstanceList'
#>

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=PubChemR

CONTRIBUTED RESEARCH ARTICLE 154

#> Number of instances: 3
#> - Domain: Compound
#> - Namespace: Name
#> - Identifier(s): aspirin, caffeine, ... and 1 more.
#>
#> * Run 'instance(...)' function to extract specific instances from the complete list, and
#> 'request_args(...)' to see all the requested instance identifiers.
#> * See ?instance and ?request_args for details.

The request_args function can be executed to view all the requested instance identifiers:

request_args(object = compounds)

#> $namespace
#> [1] "name"
#>
#> $identifier
#> [1] "aspirin" "caffeine" "glucose"
#>
#> $domain
#> [1] "compound"
#>
#> $operation
#> NULL
#>
#> $options
#> NULL
#>
#> $searchtype
#> NULL

To retrieve detailed information about a specific compound (e.g. aspirin), we can use the instance
function on the result:

compound_aspirin <- instance(object = compounds, .which = "aspirin")
compound_aspirin

#>
#> An object of class 'PubChemInstance'
#>
#> Request Details:
#> - Domain: Compound
#> - Namespace: Name
#> - Identifier: aspirin
#>
#> Instance Details:
#> - id (1): [<named list>] id
#> - atoms (2): [<named list>] aid, element
#> - bonds (3): [<named list>] aid1, aid2, order
#> - coords (1): [<unnamed list>]
#> - charge (1): [<unnamed numeric>]
#> - props (23): [<unnamed list>]
#> - count (10): [<named numeric>] heavy_atom, atom_chiral, atom_chiral_def, atom_chiral_undef, ...
#>
#> NOTE: Run getter function 'retrieve()' with element name above to extract data from corresponding list.
#> See ?retrieve for details.

The instance function retrieves detailed information about the specific compound, including
its various components (known as slots). In this example, the compound has seven slots: id, atoms,
bonds, coords, charge, props, and count. To extract specific data elements from the compound data,
we can use the retrieve function with the relevant slots. For example, using the props slot extracts
detailed properties of the compound, including information such as label, name, data type, release,
value, implementation, version, software, and source. This comprehensive information covers various
physical, chemical, and structural properties of the compound.

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 155

retrieve(object = compound_aspirin, .slot = "props", .to.data.frame = TRUE)

#> # A tibble: 23 x 11
#> Identifier label name datatype release value implementation version software
#> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 aspirin Comp~ Cano~ 5 2025.0~ 1 <NA> <NA> <NA>
#> 2 aspirin Comp~ <NA> 7 2025.0~ 212 E_COMPLEXITY 3.4.8.~ Cactvs
#> 3 aspirin Count Hydr~ 5 2025.0~ 4 E_NHACCEPTORS 3.4.8.~ Cactvs
#> 4 aspirin Count Hydr~ 5 2025.0~ 1 E_NHDONORS 3.4.8.~ Cactvs
#> 5 aspirin Count Rota~ 5 2025.0~ 3 E_NROTBONDS 3.4.8.~ Cactvs
#> 6 aspirin Fing~ SubS~ 16 2025.0~ 0000~ E_SCREEN 3.4.8.~ Cactvs
#> 7 aspirin IUPA~ Allo~ 1 2025.0~ 2-ac~ <NA> 2.7.0 Lexiche~
#> 8 aspirin IUPA~ CAS-~ 1 2025.0~ 2-ac~ <NA> 2.7.0 Lexiche~
#> 9 aspirin IUPA~ Mark~ 1 2025.0~ 2-ac~ <NA> 2.7.0 Lexiche~
#> 10 aspirin IUPA~ Pref~ 1 2025.0~ 2-ac~ <NA> 2.7.0 Lexiche~
#> # i 13 more rows
#> # i 2 more variables: source <chr>, parameters <chr>

b. Retrieving Compound Information by CID: The get_compounds function can be used to ex-
tract detailed compound data utilizing CIDs. This feature is particularly advantageous for researchers
who require precise and comprehensive data on specific compounds. By inputting a vector of CIDs,
users can quickly access a vast amount of information for their research needs.

Here’s an illustrative example demonstrating the use of get_compounds to obtain data for a set of
compounds using their CIDs:

compounds <- get_compounds(identifier = c(2244, 305), namespace = "cid")
compounds

#>
#> An object of class 'PubChemInstanceList'
#>
#> Number of instances: 2
#> - Domain: Compound
#> - Namespace: CID
#> - Identifier(s): 2244, 305
#>
#> * Run 'instance(...)' function to extract specific instances from the complete list, and
#> 'request_args(...)' to see all the requested instance identifiers.
#> * See ?instance and ?request_args for details.

Similarly, we can use the instance function on the result to retrieve detailed information about
CID 2244:

compound_2244 <- instance(object = compounds, .which = 2244)
compound_2244

#>
#> An object of class 'PubChemInstance'
#>
#> Request Details:
#> - Domain: Compound
#> - Namespace: CID
#> - Identifier: 2244
#>
#> Instance Details:
#> - id (1): [<named list>] id
#> - atoms (2): [<named list>] aid, element
#> - bonds (3): [<named list>] aid1, aid2, order
#> - coords (1): [<unnamed list>]
#> - charge (1): [<unnamed numeric>]
#> - props (23): [<unnamed list>]
#> - count (10): [<named numeric>] heavy_atom, atom_chiral, atom_chiral_def, atom_chiral_undef, ...
#>
#> NOTE: Run getter function 'retrieve()' with element name above to extract data from corresponding list.
#> See ?retrieve for details.

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 156

Similar to the previous section, we can use the retrieve function with the element names (i.e. slots)
mentioned above to extract specific data sections.

c. Advanced Search with SMILES: In cheminformatics, the Simplified Molecular Input Line Entry
System (SMILES) is a widely-used method for representing chemical structures. The get_compounds
function package adeptly handles queries based on SMILES strings, enabling users to search for
compounds by their structural characteristics. The main advantage of using SMILES is their precise
representation of molecular structures, unlike CIDs or chemical names that can be ambiguous or
inapplicable.

Consider the following example where the get_compounds function is used to search for com-
pounds using their SMILES strings:

compounds_by_smiles <- get_compounds(identifier = c("CC(=O)OC1=CC=CC=C1C(=O)O",
"CN1C=NC2=C1C(=O)N(C(=O)N2C)C"),

namespace = "smiles")
compounds_by_smiles

#>
#> An object of class 'PubChemInstanceList'
#>
#> Number of instances: 2
#> - Domain: Compound
#> - Namespace: SMILES
#> - Identifier(s): CC(=O)OC1=CC=CC=C1C(=O)O, CN1C=NC2=C1C(=O)N(C(=O)N2C)C
#>
#> * Run 'instance(...)' function to extract specific instances from the complete list, and
#> 'request_args(...)' to see all the requested instance identifiers.
#> * See ?instance and ?request_args for details.

In this example, compounds_by_smiles object is a PubChemInstanceList containing data for com-
pounds that correspond to the provided SMILES strings. The strings “CC(=O)OC1=CC=CC=C1C(=O)O”
and “CN1C=NC2=C1C(=O)N(C(=O)N2C)C” represent the molecular structures of aspirin and caffeine,
respectively. The function returns a PubChemInstanceList where each element contains comprehensive
information about these compounds.

Let’s only access data for CC(=O)OC1=CC=CC=C1C(=O)O using the instance function.

compound_smiles <- instance(object = compounds_by_smiles, .which = "CC(=O)OC1=CC=CC=C1C(=O)O")
compound_smiles

#>
#> An object of class 'PubChemInstance'
#>
#> Request Details:
#> - Domain: Compound
#> - Namespace: SMILES
#> - Identifier: CC(=O)OC1=CC=CC=C1C(=O)O
#>
#> Instance Details:
#> - id (1): [<named list>] id
#> - atoms (2): [<named list>] aid, element
#> - bonds (3): [<named list>] aid1, aid2, order
#> - coords (1): [<unnamed list>]
#> - charge (1): [<unnamed numeric>]
#> - props (23): [<unnamed list>]
#> - count (10): [<named numeric>] heavy_atom, atom_chiral, atom_chiral_def, atom_chiral_undef, ...
#>
#> NOTE: Run getter function 'retrieve()' with element name above to extract data from corresponding list.
#> See ?retrieve for details.

Finally, we can utilize the retrieve function to access data in each slot of the compound_smiles
object, as demonstrated earlier.

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 157

4.2 Retrieve Substance Information

The get_substances function is for researchers looking to explore the extensive substance records
in the PubChem database. PubChem’s definition of substances encompasses a broad spectrum
of chemical entities, ranging from unique samples of individual chemical compounds to complex
mixtures. These substances often manifest in diverse forms, including but not limited to different salts,
isotopes, complexes, or combinations of various compounds.

The get_substances function is designed to meet the specific requirements of accessing a wide
range of substance records. It uses unique substance identifiers (SIDs) for each substance in PubChem,
allowing users to easily and accurately retrieve detailed information. This feature is especially
important in situations where understanding the differences between various forms or versions of a
compound is critical, such as in drug research, managing chemical databases, or meeting regulatory
standards.

In the following example, we will retrieve substance data for three substances using their SIDs:

• Aspirin (SID: 103164874): Aspirin, also known as acetylsalicylic acid, is widely used as an
analgesic to relieve pain, reduce fever, and act as an anti-inflammatory medication. As a
substance, it encompasses various forms and preparations of aspirin available from different
sources.

• Caffeine (SID: 403385742): Caffeine is a central nervous system stimulant commonly found
in coffee, tea, and various energy drinks. As a substance, it includes different sources and
formulations of caffeine beyond its pure chemical structure.

• Glucose (SID: 403435554): Glucose is a simple sugar that serves as a primary energy source for
living organisms. As a substance, it includes various forms and sources of glucose, providing
detailed information beyond the pure compound.

Using the get_substances function, we can access detailed records for these substances in the
PubChem database by providing their SIDs.

substances <- get_substances(identifier = c(103164874, 403385742, 403435554),
namespace = "sid")

substances

#>
#> An object of class 'PubChemInstanceList'
#>
#> Number of instances: 3
#> - Domain: Substance
#> - Namespace: SID
#> - Identifier(s): 103164874, 403385742, ... and 1 more.
#>
#> * Run 'instance(...)' function to extract specific instances from the complete list, and
#> 'request_args(...)' to see all the requested instance identifiers.
#> * See ?instance and ?request_args for details.

Next, let’s fetch detailed substance information for glucose (SID: 403435554). First, we need to run
the instance function to see the slots that contain substance data:

instance(object = substances, .which = 403435554)

#>
#> Substance Data from PubChem Database
#>
#> Request Details:
#> - Domain: Substance
#> - Namespace: SID
#> - Identifier: 403435554
#>
#> Number of substances retrieved: 1
#>
#> Substances contain data within following slots;
#> - sid (2): [<named numeric>] id, version
#> - source (1): [<named list>] db

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 158

#> - xref (3): [<unnamed list>]
#> - compound (2): [<unnamed list>]
#>
#> NOTE: Run getter function 'retrieve()' with element name above to extract data from corresponding list.
#> See ?retrieve for details.

The output shows four slots that contain substance data for glucose. We can retrieve data from
each slot using the retrieve function. For example, we can extract detailed compound information,
such as the compound ID, atom IDs and elements, charges, bond details, and coordinates for molecular
structure visualization:

retrieve(object = substances, .which = 403435554, .slot = "compound", .to.data.frame = FALSE)

#> $Identifier
#> [1] 403435554
#>
#> [[2]]
#> [[2]]$id
#> type
#> 0
#>
#> [[2]]$atoms
#> [[2]]$atoms$aid
#> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#>
#> [[2]]$atoms$element
#> [1] 8 8 8 8 8 6 6 8 6 6 6 6 1 1 1 1
#>
#>
#> [[2]]$bonds
#> [[2]]$bonds$aid1
#> [1] 6 7 7 8 9 9 10 10 10 11 11 11 12 12 12 12
#>
#> [[2]]$bonds$aid2
#> [1] 5 6 13 7 4 8 3 9 16 2 10 15 1 7 11 14
#>
#> [[2]]$bonds$order
#> [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#>
#>
#> [[2]]$coords
#> [[2]]$coords[[1]]
#> [[2]]$coords[[1]]$type
#> [1] 1 3
#>
#> [[2]]$coords[[1]]$aid
#> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#>
#> [[2]]$coords[[1]]$conformers
#> [[2]]$coords[[1]]$conformers[[1]]
#> [[2]]$coords[[1]]$conformers[[1]]$x
#> [1] -1.1936 0.3873 2.0000 2.0000 -2.0000 -1.1936 -0.3873 0.3873 1.1936
#> [10] 1.1936 0.3873 -0.3873 -0.9849 -0.9129 -0.1439 1.7192
#>
#> [[2]]$coords[[1]]$conformers[[1]]$y
#> [1] -0.4492 -1.3794 -0.4492 1.3794 0.9143 1.3794 0.9143 1.3794 0.9143
#> [10] 0.0144 -0.4492 0.0144 0.8106 0.3182 -0.7429 0.3168
#>
#> [[2]]$coords[[1]]$conformers[[1]]$style
#> [[2]]$coords[[1]]$conformers[[1]]$style$annotation
#> [1] 6 5 6 5
#>
#> [[2]]$coords[[1]]$conformers[[1]]$style$aid1
#> [1] 7 10 11 12

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 159

#>
#> [[2]]$coords[[1]]$conformers[[1]]$style$aid2
#> [1] 13 16 15 14
#>
#>
#>
#>
#>
#>
#> [[2]]$charge
#> [1] 0
#>
#>
#> [[3]]
#> [[3]]$id
#> [[3]]idtype
#> [1] 1
#>
#> [[3]]idid
#> cid
#> 5793

Besides SIDs, the function supports additional namespaces such as sourceid, sourceall, name, xref,
and listkey. This flexibility enables researchers to access substance records from a range of perspectives,
depending on their available data or specific requirements.

4.3 Retrieve Assay Information

The get_assays function is another key function for researchers needing detailed biological assay
information from the PubChem database. These assays, essential for drug discovery, toxicology, and
pharmacology, measure biological activities of substances. The function simplifies accessing this data,
crucial for bioinformatics and cheminformatics (Korkmaz, 2020; Yamasan and Korkmaz, 2024). It
enables customized queries in the PubChem database, allowing users to explore a wide range of assay
data, including drug efficacy and toxicity. Its versatility in handling different parameters facilitates a
specific data retrieval approach.

The utility of the get_assays function extends across multiple research scenarios. In drug dis-
covery, It enables researchers to explore assays related to potential drug compounds, aiding in the
comprehension of their efficacy and safety profiles. In toxicological studies, the function is key in
acquiring insights into the toxic effects of diverse substances.

In the field of scientific research, particularly in areas such as pharmacology, toxicology, and
biochemistry, researchers frequently encounter specific assays that are of interest to their studies.
These assays are often identified by their Assay IDs (AIDs), which are referenced in scientific literature
or various databases. The get_assays function provides a direct and efficient means for researchers to
access comprehensive information about these particular assays.

Utilizing the get_assays function, researchers can input a vector of AIDs to retrieve detailed data
about each corresponding assay. This functionality is especially beneficial for those who need to
analyze and interpret assay data as part of their research projects or for educational purposes.

Consider the following practical example where we retrieve assay data from PubChem using their
AIDs.

First, we use the get_assays function to retrieve data for the specified assays. The identifier
parameter is a vector of AIDs (485314, 485341, 504466, 624202, and 651820), and the namespace
parameter specifies that the identifiers are AIDs.

assays <- get_assays(identifier = c(485314, 485341, 504466, 624202, 651820),
namespace = "aid")

assays

#>
#> An object of class 'PubChemInstanceList'
#>
#> Number of instances: 5
#> - Domain: Assay

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 160

#> - Namespace: AID
#> - Identifier(s): 485314, 485341, ... and 3 more.
#>
#> * Run 'instance(...)' function to extract specific instances from the complete list, and
#> 'request_args(...)' to see all the requested instance identifiers.
#> * See ?instance and ?request_args for details.

The output shows that the assays object is of class ‘PubChemInstanceList’ and contains data for 5
assays identified by their AIDs. It includes information about the number of instances (5 in this case),
the domain (Assay), the namespace (AID), and the specific identifiers. The output also provides hints
on how to proceed further.

Now, we can use the instance function to extract specific instances from the complete list. For
example, the following code extracts the detailed data for the assay with identifier 485314 from the list
of assays:

assay_485314 <- instance(object = assays, .which = 485314)
assay_485314

#>
#> An object of class 'PubChemInstance'
#>
#> Request Details:
#> - Domain: Assay
#> - Namespace: AID
#> - Identifier: 485314
#>
#> Instance Details:
#> - aid (2): [<named numeric>] id, version
#> - aid_source (1): [<named list>] db
#> - name (1): [<unnamed character>]
#> - description (3): [<unnamed character>]
#> - protocol (1): [<unnamed character>]
#> - comment (4): [<unnamed character>]
#> - xref (4): [<unnamed list>]
#> - results (23): [<unnamed list>]
#> - revision (1): [<unnamed numeric>]
#> - target (1): [<unnamed list>]
#> - activity_outcome_method (1): [<unnamed numeric>]
#> - dr (1): [<unnamed list>]
#> - grant_number (1): [<unnamed character>]
#> - project_category (1): [<unnamed numeric>]
#>
#> NOTE: Run getter function 'retrieve()' with element name above to extract data from corresponding list.
#> See ?retrieve for details.

The output provides a detailed view of the assay_485314 object, which is of class ‘PubChemInstance’.
It includes both request details and instance details

The output also notes that we can use the retrieve function with the element names above
to extract data from the corresponding list. For example, we can retrieve the results of the assay,
providing detailed data on the outcomes observed during the assay:

retrieve(object = assays, .which = 485314, .slot = "results")

#> # A tibble: 41 x 8
#> Identifier tid name description type unit ac tc
#> <dbl> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 485314 1 Phenotype Indicates type~ 4 254 <NA> <NA>
#> 2 485314 2 Potency Concentration ~ 1 5 TRUE <NA>
#> 3 485314 3 Efficacy Maximal effica~ 1 15 <NA> <NA>
#> 4 485314 4 Analysis Comment Annotation/not~ 4 254 <NA> <NA>
#> 5 485314 5 Curve_Description A description ~ 4 254 <NA> <NA>
#> 6 485314 6 Fit_LogAC50 The logarithm ~ 1 254 <NA> <NA>
#> 7 485314 7 Fit_HillSlope The Hill slope~ 1 254 <NA> <NA>

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 161

#> 8 485314 8 Fit_R2 R^2 fit value ~ 1 254 <NA> <NA>
#> 9 485314 9 Fit_InfiniteActivity The asymptotic~ 1 15 <NA> <NA>
#> 10 485314 10 Fit_ZeroActivity Efficacy at ze~ 1 15 <NA> <NA>
#> # i 31 more rows

By following these steps and using the retrieve function, we can access detailed and specific data
from the assay records in PubChem. This comprehensive approach allows researchers to gather all
necessary information about assays, aiding in their analysis and research activities.

4.4 Retrieve Property Information

The get_properties is another important function for researchers who require access to specific
chemical property data from the PubChem database. This function is designed with the aim of
simplifying the process of querying PubChem for a variety of compound properties, such as molecular
weight, chemical formula, isomeric SMILES, and more. It is particularly useful for those in need of
detailed chemical information across a range of compounds.

The get_properties function allows users to specify a set of properties and the identifiers of the
compounds for which these properties are required. The function then queries the PubChem database
and retrieves the requested data.

Consider the following practical application of the get_properties function:

First, we use the get_properties function to retrieve specific properties for several compounds
identified by their names:

props <- get_properties(
properties = c("MolecularWeight", "MolecularFormula", "InChI"),
identifier = c("aspirin", "caffeine", "glucose"),
namespace = "name"

)

In this example, the properties parameter specifies that we want to retrieve the molecular weight,
molecular formula, and InChI for each compound. The identifier parameter lists the common names
of the compounds (aspirin, caffeine, and glucose), and the namespace parameter indicates that these
identifiers are compound names. The function fetches the specified properties from the PubChem
database.

To extract the properties for a specific compound, such as aspirin, we can use the retrieve
function:

retrieve(instance(props, "aspirin"), .slot = NULL)

#> # A tibble: 1 x 6
#> Identifier CID MolecularFormula MolecularWeight InChI InChIKey
#> <chr> <dbl> <chr> <chr> <chr> <chr>
#> 1 aspirin 2244 C9H8O4 180.16 InChI=1S/C9H8O4/c1~ BSYNRYM~

This tibble shows the identifier (aspirin), CID (2244), molecular formula (C9H8O4), molecular
weight (180.16), InChI, and InChIKey.

To combine the properties of all compounds into a single data frame, we set .combine.all as TRUE:

retrieve(props, .combine.all = TRUE)

#> # A tibble: 3 x 6
#> Identifier CID MolecularFormula MolecularWeight InChI InChIKey
#> <chr> <dbl> <chr> <chr> <chr> <chr>
#> 1 aspirin 2244 C9H8O4 180.16 InChI=1S/C9H8O4/c1~ BSYNRYM~
#> 2 caffeine 2519 C8H10N4O2 194.19 InChI=1S/C8H10N4O2~ RYYVLZV~
#> 3 glucose 5793 C6H12O6 180.16 InChI=1S/C6H12O6/c~ WQZGKKK~

This tibble shows the identifier, CID, molecular formula, molecular weight, InChI, and InChIKey
for aspirin, caffeine, and glucose.

To return only the selected properties for all compounds, we can specify the properties using the
.slot argument. The output will be a tibble with only the molecular weight and molecular formula
for each compound:

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 162

retrieve(props, .combine.all = TRUE,
.slot = c("MolecularWeight", "MolecularFormula"))

#> Identifier MolecularWeight MolecularFormula
#> 1 aspirin 180.16 C9H8O4
#> 2 caffeine 194.19 C8H10N4O2
#> 3 glucose 180.16 C6H12O6

There are 40 compound properties that we can fetch from the PubChem:

property_map(type = "all")

#> [1] "MolecularFormula" "MolecularWeight"
#> [3] "CanonicalSMILES" "IsomericSMILES"
#> [5] "InChI" "InChIKey"
#> [7] "IUPACName" "XLogP"
#> [9] "ExactMass" "MonoisotopicMass"
#> [11] "TPSA" "Complexity"
#> [13] "Charge" "HBondDonorCount"
#> [15] "HBondAcceptorCount" "RotatableBondCount"
#> [17] "HeavyAtomCount" "IsotopeAtomCount"
#> [19] "AtomStereoCount" "DefinedAtomStereoCount"
#> [21] "UndefinedAtomStereoCount" "BondStereoCount"
#> [23] "DefinedBondStereoCount" "UndefinedBondStereoCount"
#> [25] "CovalentUnitCount" "Volume3D"
#> [27] "ConformerModelRMSD3D" "ConformerModelRMSD3D"
#> [29] "XStericQuadrupole3D" "YStericQuadrupole3D"
#> [31] "ZStericQuadrupole3D" "FeatureCount3D"
#> [33] "FeatureAcceptorCount3D" "FeatureDonorCount3D"
#> [35] "FeatureAnionCount3D" "FeatureCationCount3D"
#> [37] "FeatureRingCount3D" "FeatureHydrophobeCount3D"
#> [39] "EffectiveRotorCount3D" "ConformerCount3D"

The type argument in the property_map function determines the method of searching within the
available properties. Setting type = "contain" will retrieve all properties that include the strings
specified in the properties argument. In the following example, we fetch properties for a range of CIDs
from 2244 to 2260. The properties argument includes the keywords “mass” and “molecular”, and the
propertyMatch argument is set to type = "contain". This setup ensures that the function retrieves
any properties containing the specified keywords.

props <- get_properties(
properties = c("mass", "molecular"),
identifier = 2244:2260,
namespace = "cid",
propertyMatch = list(
type = "contain"

)
)
retrieve(props, .combine.all = TRUE, .to.data.frame = TRUE)

#> # A tibble: 17 x 6
#> Identifier CID MolecularFormula MolecularWeight ExactMass MonoisotopicMass
#> <int> <dbl> <chr> <chr> <chr> <chr>
#> 1 2244 2244 C9H8O4 180.16 180.04225~ 180.04225873
#> 2 2245 2245 C21H27N5O7S 493.5 493.16311~ 493.16311939
#> 3 2246 2246 C40H52O4 596.8 596.38656~ 596.38656014
#> 4 2247 2247 C28H31FN4O 458.6 458.24818~ 458.24818979
#> 5 2248 2248 C17H35N5O6 405.5 405.25873~ 405.25873385
#> 6 2249 2249 C14H22N2O3 266.34 266.16304~ 266.16304257
#> 7 2250 2250 C33H35FN2O5 558.6 558.25300~ 558.25300038
#> 8 2251 2251 C10H13N5O13P3-3 504.16 503.97227~ 503.97227148
#> 9 2252 2252 C10H16N2O4 228.24 228.11100~ 228.11100700
#> 10 2253 2253 C10H16N2O4 228.24 228.11100~ 228.11100700

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 163

#> 11 2254 2254 C30H44O16S2-2 724.8 724.20707~ 724.20707766
#> 12 2255 2255 C30H46O16S2 726.8 726.22272~ 726.22272772
#> 13 2256 2256 C8H14ClN5 215.68 215.09377~ 215.0937732
#> 14 2257 2257 C22H20N3O9+3 470.4 470.11995~ 470.11995422
#> 15 2258 2258 C22H17N3O9 467.4 467.09647~ 467.09647913
#> 16 2259 2259 C22H14O9 422.3 422.06378~ 422.06378202
#> 17 2260 2260 C44H62N2O12 811.0 810.43027~ 810.43027542

Moreover, we can extract properties that start or end with specific strings. In the following example,
we fetch properties that start with the word “molecular.” Here, the type parameter is set to "start",
and the .ignore.case parameter is set to TRUE to make the search case-insensitive.

props <- get_properties(
properties = "molecular",
identifier = 2244:2260,
namespace = "cid",
propertyMatch = list(
type = "start",
.ignore.case = TRUE

)
)
retrieve(props, .combine.all = TRUE, .to.data.frame = TRUE)

#> # A tibble: 17 x 4
#> Identifier CID MolecularFormula MolecularWeight
#> <int> <dbl> <chr> <chr>
#> 1 2244 2244 C9H8O4 180.16
#> 2 2245 2245 C21H27N5O7S 493.5
#> 3 2246 2246 C40H52O4 596.8
#> 4 2247 2247 C28H31FN4O 458.6
#> 5 2248 2248 C17H35N5O6 405.5
#> 6 2249 2249 C14H22N2O3 266.34
#> 7 2250 2250 C33H35FN2O5 558.6
#> 8 2251 2251 C10H13N5O13P3-3 504.16
#> 9 2252 2252 C10H16N2O4 228.24
#> 10 2253 2253 C10H16N2O4 228.24
#> 11 2254 2254 C30H44O16S2-2 724.8
#> 12 2255 2255 C30H46O16S2 726.8
#> 13 2256 2256 C8H14ClN5 215.68
#> 14 2257 2257 C22H20N3O9+3 470.4
#> 15 2258 2258 C22H17N3O9 467.4
#> 16 2259 2259 C22H14O9 422.3
#> 17 2260 2260 C44H62N2O12 811.0

This output indicates that “MolecularFormula” and “MolecularWeight” are the properties available
in PubChem that start with the word “molecular.”

Next, we extract properties that end with the word “mass.” Here, the type parameter is set to
"end", and the .ignore.case parameter is set to TRUE to make the search case-insensitive.

props <- get_properties(
properties = "mass",
identifier = 2244:2260,
namespace = "cid",
propertyMatch = list(
type = "end",
.ignore.case = TRUE

)
)
retrieve(props, .combine.all = TRUE, .to.data.frame = TRUE)

#> # A tibble: 17 x 4
#> Identifier CID ExactMass MonoisotopicMass
#> <int> <dbl> <chr> <chr>

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 164

#> 1 2244 2244 180.04225873 180.04225873
#> 2 2245 2245 493.16311939 493.16311939
#> 3 2246 2246 596.38656014 596.38656014
#> 4 2247 2247 458.24818979 458.24818979
#> 5 2248 2248 405.25873385 405.25873385
#> 6 2249 2249 266.16304257 266.16304257
#> 7 2250 2250 558.25300038 558.25300038
#> 8 2251 2251 503.97227148 503.97227148
#> 9 2252 2252 228.11100700 228.11100700
#> 10 2253 2253 228.11100700 228.11100700
#> 11 2254 2254 724.20707766 724.20707766
#> 12 2255 2255 726.22272772 726.22272772
#> 13 2256 2256 215.0937732 215.0937732
#> 14 2257 2257 470.11995422 470.11995422
#> 15 2258 2258 467.09647913 467.09647913
#> 16 2259 2259 422.06378202 422.06378202
#> 17 2260 2260 810.43027542 810.43027542

This output indicates that “ExactMass” and “MonoisotopicMass” are the properties available in
PubChem that end with the word “mass.”

Finally, to return all available properties of the requested compounds, set properties = NULL and
the propertyMatch argument to type = “all”.

props <- get_properties(
properties = NULL,
identifier = 2244:2260,
namespace = "cid",
propertyMatch = list(
type = "all"

)
)
retrieve(props, .combine.all = TRUE)

#> # A tibble: 17 x 41
#> Identifier CID MolecularFormula MolecularWeight CanonicalSMILES
#> <int> <dbl> <chr> <chr> <chr>
#> 1 2244 2244 C9H8O4 180.16 CC(=O)OC1=CC=CC=C1C(=O)O
#> 2 2245 2245 C21H27N5O7S 493.5 CC1(C(N2C(S1)C(C2=O)NC(=O)~
#> 3 2246 2246 C40H52O4 596.8 CC1=C(C(CC(C1=O)O)(C)C)C=C~
#> 4 2247 2247 C28H31FN4O 458.6 COC1=CC=C(C=C1)CCN2CCC(CC2~
#> 5 2248 2248 C17H35N5O6 405.5 CC(C1CCC(C(O1)OC2C(C(C(C(C~
#> 6 2249 2249 C14H22N2O3 266.34 CC(C)NCC(COC1=CC=C(C=C1)CC~
#> 7 2250 2250 C33H35FN2O5 558.6 CC(C)C1=C(C(=C(N1CCC(CC(CC~
#> 8 2251 2251 C10H13N5O13P3-3 504.16 C1=NC(=C2C(=N1)N(C=N2)C3C(~
#> 9 2252 2252 C10H16N2O4 228.24 CC(C)(C)C1=C(C(=O)NO1)CC(C~
#> 10 2253 2253 C10H16N2O4 228.24 CC(C)(C)C1=C(C(=O)NO1)CC(C~
#> 11 2254 2254 C30H44O16S2-2 724.8 CC(C)CC(=O)OC1C(C(C(OC1OC2~
#> 12 2255 2255 C30H46O16S2 726.8 CC(C)CC(=O)OC1C(C(C(OC1OC2~
#> 13 2256 2256 C8H14ClN5 215.68 CCNC1=NC(=NC(=N1)Cl)NC(C)C
#> 14 2257 2257 C22H20N3O9+3 470.4 C1=CC(=C(C=C1C(=C2C=CC(=O)~
#> 15 2258 2258 C22H17N3O9 467.4 C1=CC(=C(C=C1C(=C2C=CC(=O)~
#> 16 2259 2259 C22H14O9 422.3 C1=CC(=C(C=C1C(=C2C=CC(=O)~
#> 17 2260 2260 C44H62N2O12 811.0 CCC(C(=O)NCC=CC=C(C)C(C(C)~
#> # i 36 more variables: IsomericSMILES <chr>, InChI <chr>, InChIKey <chr>,
#> # IUPACName <chr>, XLogP <dbl>, ExactMass <chr>, MonoisotopicMass <chr>,
#> # TPSA <dbl>, Complexity <dbl>, Charge <dbl>, HBondDonorCount <dbl>,
#> # HBondAcceptorCount <dbl>, RotatableBondCount <dbl>, HeavyAtomCount <dbl>,
#> # IsotopeAtomCount <dbl>, AtomStereoCount <dbl>,
#> # DefinedAtomStereoCount <dbl>, UndefinedAtomStereoCount <dbl>,
#> # BondStereoCount <dbl>, DefinedBondStereoCount <dbl>, ...

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 165

4.5 Download SDF Data

The get_sdf function is designed specifically for downloading chemical structure data in the widely
recognized Structure Data File (SDF) format. This format is essential in the exchange of chemical
structure information, encompassing comprehensive details such as molecular structure, associated
properties, and extended chemical data. The primary function of get_sdf is to facilitate the retrieval
of SDF files for specific compounds using their unique CID from the PubChem database.

To obtain an SDF file for a particular compound, users can execute the get_sdf function with the
compound’s CID as the identifier. For instance, to download the SDF file for a compound with CID
2244, the following code is used:

get_sdf(identifier = 2244, namespace = "cid")

This code triggers the download of the SDF file for the specified compound, saving it in a temporary
folder with a unique, time-stamped file name. Furthermore, users can define the path and file_name
arguments to customize the download.

4.6 Download Data with Different Formats

The download function simplifies the process of accessing and downloading content from the PubChem
database. This function is especially significant for researchers who need to retrieve various types of
chemical data in different formats for their work. At its core, the download function serves to fetch data
from the PubChem database using a specified identifier, and then save this data in a chosen format to
a user-defined location on the local file system. The function supports a wide range of output formats,
including JSON, XML, SDF and PNG.

For example, to download a JSON file for the compound “aspirin” and save it to a folder named
“Compound” in the current directory, one would use the following code:

download(filename = "Aspirin", outformat = "json", path = tempdir(),
identifier = "aspirin", namespace = "name", domain = "compound", overwrite = TRUE)

This flexibility in specifying parameters makes the download function particularly useful for
diverse research requirements, from simple data retrievals to complex queries.

4.7 Accessing and Exploring Chemical Data with PUG REST Service

The get_pug_rest function is designed to provide easy and efficient access to the extensive chemical
data in PubChem. This function highlights the advanced capabilities of the Power User Gateway
(PUG) REST service provided by PubChem (Kim et al., 2015, 2018). It stands out for users who require
programmatic interaction with PubChem’s extensive database, simplifying the otherwise complex
process of data retrieval and analysis. By leveraging the PUG REST service, get_pug_rest provides
a direct and efficient pathway for accessing a vast array of chemical data, making it an important
resource for researchers in various fields who rely on accurate and extensive chemical information for
their work. This function is essential for modern computational chemistry, providing access to big
data and efficient data processing, which are crucial for advancing research and development in the
chemical sciences.

PUG REST is a simple way to access PubChem’s data and services, designed for use in scripts,
web page JavaScript, and third-party applications. This interface is a simpler and more user-friendly
alternative to the complex XML and SOAP envelopes used by other PUG versions. Its design is based
on the PubChem identifier system, which includes SID for substances, CID for compounds, and AID
for assays, making targeted data retrieval easier. The request architecture in PUG REST is logically
segmented into three core components: input (identifiers), operation (actions on identifiers), and
output (the format on the PubChem API side).

Overall, the get_pug_rest function meets various user needs with different input methods, opera-
tions, and outputs, allowing users to customize their queries to the PubChem database in numerous
ways.

1. Retrieving Chemical Structure Information: Users can request detailed information about
chemical structures using different identifiers like SIDs, CIDs, or common names. The get_pug_rest
function provides a way to access this information efficiently through PubChem’s PUG REST service.
For instance, the following R code demonstrates how to retrieve chemical structure information using
an SID:

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 166

chemical_structure <- get_pug_rest(identifier = "10000",
namespace = "sid",
domain = "substance",
output = "JSON")

chemical_structure

#>
#> An object of class 'PugRestInstance'
#>
#> Request Details:
#> - Domain: Substance
#> - Namespace: SID
#> - Operation: <NULL>
#> - Identifier: 10000
#>
#> NOTE: Run getter function 'pubChemData(...)' to extract raw data retrieved from PubChem Database.
#> See ?pubChemData for details.

This code requests detailed information about the chemical structure associated with the SID
“10000”, which corresponds to the compound dihydroergotamine. The get_pug_rest function sends a
query to the PubChem database, specifying the identifier type (namespace), the domain of interest, and
the output format for the response from the PubChem API. The result, stored in the chemical_structure
object, contains comprehensive data about the substance, including its structural details, which can
then be utilized for further analysis or research.

Upon execution, the chemical_structure_result object contains detailed information about the
substance with SID 10000. Now, we use pubChemData function to access the chemical structure data.

chemical_structure_result <- pubChemData(chemical_structure)

The output is a nested list structure, and here is a breakdown of the key components:

SID and Version: The identifier (SID) and its version are provided:

chemical_structure_result$PC_Substances[[1]]$sid

#> id version
#> 10000 7

This indicates that the substance has SID 10000 and is on version 7.

Source Database: Information about the source database is included:

chemical_structure_result$PC_Substances[[1]]$sourcedbname

#> [1] "KEGG"

The substance is sourced from the KEGG database, and its KEGG ID is “C07798”:

chemical_structure_result$PC_Substances[[1]]$sourcedbsource_id

#> str
#> "C07798"

Synonyms: Various synonyms for the substance are listed:

chemical_structure_result$PC_Substances[[1]]$synonyms

#> [1] "511-12-6" "C07798" "Dihydroergotamine"

These include its CAS (Chemical Abstracts Service) number “511-12-6”, its KEGG ID “C07798”,
and its common name “Dihydroergotamine”.

Comments: Additional comments provide links to related substances:

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 167

chemical_structure_result$PC_Substances[[1]]$comment

#> [1] "Same as: D07837"

This indicates that SID 10000 is the same as another substance with SID 96024534.

Cross-references (Xrefs): Cross-references to other identifiers and databases:

chemical_structure_result$PC_Substances[[1]]$xref

#> [[1]]
#> regid
#> "C07798"
#>
#> [[2]]
#> rn
#> "511-12-6"
#>
#> [[3]]
#> dburl
#> "http://www.genome.jp/kegg/"
#>
#> [[4]]
#> sburl
#> "http://www.genome.jp/dbget-bin/www_bget?cpd:C07798"

This includes references to the KEGG and its associated URLs.

Compound Information: The compound section details atomic and bonding information. The
atoms and their elements:

chemical_structure_result$PC_Substances[[1]]$compound[[1]]$atoms$aid

#> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
#> [26] 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

chemical_structure_result$PC_Substances[[1]]$compound[[1]]$atoms$element

#> [1] 8 8 8 8 8 7 7 7 7 7 6
#> [39] 6 6 6 6 6 1 1 1

Atoms are identified by their atomic number, indicating elements like oxygen (8), nitrogen (7),
carbon (6), and hydrogen (1).

Bonding information includes atom pairs and bond order:

chemical_structure_result$PC_Substances[[1]]$compound[[1]]$bonds$aid1

#> [1] 1 1 2 3 4 5 6 6 6 7 7 7 8 8 9 9 9 10 10 11 12 12 13 13 15
#> [26] 15 17 17 17 17 18 18 19 20 20 21 22 22 23 23 23 26 28 28 31 33 35 35 36 39
#> [51] 40 41 42

chemical_structure_result$PC_Substances[[1]]$compound[[1]]$bonds$aid2

#> [1] 11 13 11 14 16 27 11 14 15 12 16 21 13 27 18 32 38 31 34 12 19 44 14 30 16
#> [26] 26 18 20 25 45 29 46 24 22 33 24 28 31 25 27 32 35 29 34 36 37 39 40 37 41
#> [51] 42 43 43

chemical_structure_result$PC_Substances[[1]]$compound[[1]]$bonds$order

#> [1] 1 1 1 2 2 2 1 2 1 1 2
#> [39] 1 1 1 1 1 2 1 1 2 1 2 1 2 2 1

Coordinates: The coordinates of the atoms provide spatial information about the structure:

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 168

chemical_structure_result$PC_Substances[[1]]$compound[[1]]$coords[[1]]$conformers

#> [[1]]
#> [[1]]$x
#> [1] 27.2047 28.3501 25.1187 31.8384 21.7294 28.4024 30.6466 24.3766 24.0201
#> [10] 19.4272 28.3618 29.5069 26.0652 26.0652 29.5419 30.6873 21.7236 22.8806
#> [19] 29.5069 20.5784 31.7917 20.5784 22.8806 31.7977 21.7236 29.5361 22.8806
#> [28] 21.7178 22.8689 26.0595 19.4272 24.0201 19.4330 21.7178 30.6699 18.2878
#> [37] 18.2878 25.1712 30.6582 31.8150 31.7975 32.9487 32.9428 29.4778 20.5667
#> [46] 24.1194
#>
#> [[1]]$y
#> [1] -12.4990 -11.8386 -15.4207 -15.1577 -12.4814 -14.4798 -13.1652 -12.4230
#> [9] -16.4548 -20.4226 -13.1593 -12.4990 -13.1593 -14.4857 -15.1460 -14.4915
#> [17] -16.4548 -17.1210 -11.1785 -17.1095 -12.5107 -18.4418 -14.4740 -11.1843
#> [25] -15.1285 -16.4665 -13.1418 -19.1019 -18.4535 -11.7451 -19.1019 -15.1285
#> [33] -16.4492 -20.4226 -17.1327 -18.4418 -17.1095 -17.1210 -18.4535 -16.4782
#> [41] -19.1196 -17.1444 -18.4649 -13.8253 -15.7888 -17.9275
#>
#> [[1]]$style
#> [[1]]$style$annotation
#> [1] 6 5 5 6 6 5 5
#>
#> [[1]]$style$aid1
#> [1] 11 12 13 15 17 18 23
#>
#> [[1]]$style$aid2
#> [1] 2 44 30 26 45 46 27

These coordinates allow for visualization and further spatial analysis of the chemical structure.

2. Performing Structure Searches: The function facilitates searches like substructure or similarity
searches and faster synchronous searches for identity, similarity, substructure, and superstructure.
These faster searches typically return results in a single call, significantly improving efficiency for
users who require quick access to chemical structure data.

For example, to perform a fast identity search, the following R code is used:

structure_search <- get_pug_rest(identifier = "5793",
namespace = "cid",
domain = "compound",
operation = "cids",
searchtype = "fastidentity",
options = list(identity_type = "same_connectivity"),
output = "JSON")

structure_search

#>
#> An object of class 'PugRestInstance'
#>
#> Request Details:
#> - Domain: Compound
#> - Namespace: CID
#> - Operation: cids
#> - Identifier: 5793
#>
#> NOTE: Run getter function 'pubChemData(...)' to extract raw data retrieved from PubChem Database.
#> See ?pubChemData for details.

This code initiates a search using the CID “5793” to find all compounds with the same connectivity.
The search results are returned in list object.

The output from this search provides a list of CIDs that match the criteria:

structure_search_result <- pubChemData(structure_search)
length(structure_search_result$IdentifierList$CID)

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 169

#> [1] 348

head(structure_search_result$IdentifierList$CID)

#> [1] 5793 206 6036 18950 64689 66371

The output contains a comprehensive list of CIDs that have the same connectivity as the original
compound with CID 5793, referring to acetaminophen, a commonly used analgesic and antipyretic
agent. This indicates that all these compounds have the same atomic connectivity but might differ in
other aspects such as stereochemistry or charge states. This fast identity search is particularly useful
for researchers looking to quickly find all compounds with the same basic structure, which can then
be further analyzed for properties, activities, or potential as drug candidates.

3. Accessing BioAssay Data: The function provides a gateway to comprehensive BioAssay records,
including detailed descriptions, datasets, concise readouts, and target information. This is particularly
useful for researchers who need to analyze biological activities of compounds.

For example, to retrieve concise data such as the active concentration readout, the following R
code can be used:

bioassay_data <- get_pug_rest(identifier = "504526",
namespace = "aid",
domain = "assay",
operation = "concise",
output = "CSV")

bioassay_data

#>
#> An object of class 'PugRestInstance'
#>
#> Request Details:
#> - Domain: Assay
#> - Namespace: AID
#> - Operation: concise
#> - Identifier: 504526
#>
#> NOTE: Run getter function 'pubChemData(...)' to extract raw data retrieved from PubChem Database.
#> See ?pubChemData for details.

The output provides a detailed dataset which includes the Activity Outcome, Target Accession,
and other relevant information for each assay result.

bioassay_data_result <- pubChemData(bioassay_data)
head(bioassay_data_result)

#> AID SID CID Activity.Outcome Target.Accession Target.GeneID
#> 1 504526 103061373 6619281 Active NA NA
#> 2 504526 103904139 2971528 Active NA NA
#> 3 504526 103904144 4969604 Inactive NA NA
#> 4 504526 104169543 49842897 Active NA NA
#> 5 504526 104169544 49842896 Active NA NA
#> 6 504526 104169545 1077725 Inactive NA NA
#> Activity.Value..uM. Activity.Name
#> 1 3.6 IC50
#> 2 31.4 IC50
#> 3 50.0 IC50
#> 4 5.1 IC50
#> 5 34.6 IC50
#> 6 50.0 IC50
#> Assay.Name
#> 1 A Cell Based HTS Approach for the Discovery of New Inhibitors of Respiratory syncytial virus (RSV) using synthesized compounds (6)
#> 2 A Cell Based HTS Approach for the Discovery of New Inhibitors of Respiratory syncytial virus (RSV) using synthesized compounds (6)
#> 3 A Cell Based HTS Approach for the Discovery of New Inhibitors of Respiratory syncytial virus (RSV) using synthesized compounds (6)
#> 4 A Cell Based HTS Approach for the Discovery of New Inhibitors of Respiratory syncytial virus (RSV) using synthesized compounds (6)
#> 5 A Cell Based HTS Approach for the Discovery of New Inhibitors of Respiratory syncytial virus (RSV) using synthesized compounds (6)

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 170

#> 6 A Cell Based HTS Approach for the Discovery of New Inhibitors of Respiratory syncytial virus (RSV) using synthesized compounds (6)
#> Assay.Type PubMed.ID RNAi
#> 1 Confirmatory NA NA
#> 2 Confirmatory NA NA
#> 3 Confirmatory NA NA
#> 4 Confirmatory NA NA
#> 5 Confirmatory NA NA
#> 6 Confirmatory NA NA

The bioassay_data dataframe contains several columns, each providing specific information about
the assay results. For example:

• AID (Assay Identifier): This column contains the unique identifier for the assay, which in this
case is “504526” for all rows, indicating that all data pertains to the same assay.

• SID (Substance Identifier) and CID (Compound Identifier): These columns list the identifiers for the
substances and compounds tested in the assay.

• Activity.Outcome: This column indicates whether the substance or compound was found to be
“Active” or “Inactive” in the assay.

• Target.Accession: This column would typically contain the accession numbers for the protein
targets involved in the assay. An accession number is a unique identifier assigned to a protein
sequence record. In the given dataset, all entries show “NA”, indicating that specific target
accession numbers are not provided for these assay results.

• Target.GeneID: This column would contain the GeneID, a unique identifier for genes provided
by the NCBI Gene database. Similar to the Target.Accession column, all entries in this dataset
show “NA”, suggesting that no specific gene identifiers are associated with these assay results.

• Activity.Value..uM.: This column shows the concentration at which the activity was measured,
usually given in micromolar (uM). For example, values range from 0.22 uM to 50.00 uM, with
“IC50” indicating the concentration at which 50% inhibition is observed.

• Activity.Name: This column typically indicates the type of activity measured, in this case, “IC50”
for inhibitory concentration.

• Assay.Name: This column provides a detailed description of the assay. For example, all entries
describe a cell-based high-throughput screening (HTS) approach for discovering new inhibitors
of Respiratory Syncytial Virus (RSV) using synthesized compounds.

• Assay.Type: This column indicates the type of assay, with all entries marked as “Confirmatory,”
suggesting these are follow-up tests to initial screenings.

• PubMed.ID and RNAi: These columns are included but contain “NA,” indicating no specific
PubMed reference or RNA interference information is provided for these entries.

The concise format of this dataset allows researchers to quickly assess the activity outcomes of
various substances and compounds tested in the assay. For instance, the dataset shows that compounds
with SIDs 103061373, 103904139, and others are active against RSV at specific concentrations, while
others are inactive, providing valuable insights into potential therapeutic candidates.

4. Gene and Protein Data Retrieval: To retrieve gene and protein data, the get_pug_rest function
can be employed to access detailed information about genes and proteins, which is crucial for genetic
and molecular biology research. This can be done by retrieving concise bioactivity data for a specific
gene or protein, using gene IDs or protein accession numbers.

Here is an example of how to retrieve concise bioactivity data for a specific gene:

geneData <- get_pug_rest(identifier = "13649",
namespace = "geneid",
domain = "gene",
operation = "concise",
output = "CSV")

geneData

#>
#> An object of class 'PugRestInstance'
#>
#> Request Details:
#> - Domain: Gene
#> - Namespace: DomainSpecific

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 171

#> - Operation: concise
#> - Identifier: 13649
#>
#> NOTE: Run getter function 'pubChemData(...)' to extract raw data retrieved from PubChem Database.
#> See ?pubChemData for details.

The output for this function provides a dataframe with information on bioactivity data related
to the gene ID “13649”. This gene ID corresponds to the epidermal growth factor receptor (EGFR)
gene in mice. This gene encodes a transmembrane glycoprotein that is a member of the protein kinase
superfamily. The encoded protein is a receptor for members of the epidermal growth factor family.
Mutations, amplifications, or misregulations of EGFR or family members are implicated in various
cancers. (ATIF)

geneData_result <- pubChemData(geneData)
head(geneData_result)

#> AID SID CID Activity.Outcome Target.Accession
#> 1 66438 103250953 25017867 Active Q01279
#> 2 66438 103432098 454217 Active Q01279
#> 3 69721 103358917 135512509 Unspecified Q01279
#> 4 69721 103358918 135434086 Unspecified Q01279
#> 5 69721 103358919 135455949 Unspecified Q01279
#> 6 69722 103253186 5328592 Unspecified Q01279
#> Activity.Value..uM. Activity.Name
#> 1 0.01 Effective concentration
#> 2 0.22 Effective concentration
#> 3 22.70 IC50
#> 4 36.90 IC50
#> 5 11.30 IC50
#> 6 100.00 IC50
#> Assay.Name
#> 1 Inhibition of epidermal growth factor binding in C3H10T1/2 cells
#> 2 Inhibition of epidermal growth factor binding in C3H10T1/2 cells
#> 3 Inhibition of Epidermal growth factor receptor mediated mitogenesis of NIH3T3 cells
#> 4 Inhibition of Epidermal growth factor receptor mediated mitogenesis of NIH3T3 cells
#> 5 Inhibition of Epidermal growth factor receptor mediated mitogenesis of NIH3T3 cells
#> 6 Inhibition of epidermal growth factor receptor (EGFR-mediated tyrosine autophosphorylation in mouse fibroblasts.
#> Assay.Type PubMed.ID RNAi
#> 1 Confirmatory 1597853 NA
#> 2 Confirmatory 1597853 NA
#> 3 Confirmatory 9748366 NA
#> 4 Confirmatory 9748366 NA
#> 5 Confirmatory 9748366 NA
#> 6 Confirmatory 8027985 NA

This data provides researchers with detailed insights into the bioactivity of different substances
tested in relation to a specific gene. The availability of target accession numbers and detailed assay
descriptions makes it easier to understand the context and significance of each entry in the dataset.
This information is crucial for advancing genetic and molecular biology research by understanding
the effects of various substances on specific genes and proteins.

To retrieve concise bioactivity data for the specified protein with the accession number “Q01279”
(which corresponds to the EGFR in mice), use the following R code:

protein_data <- get_pug_rest(identifier = "Q01279",
namespace = "accession",
domain = "protein",
operation = "concise",
output = "CSV")

protein_data

#>
#> An object of class 'PugRestInstance'
#>

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 172

#> Request Details:
#> - Domain: Protein
#> - Namespace: DomainSpecific
#> - Operation: concise
#> - Identifier: Q01279
#>
#> NOTE: Run getter function 'pubChemData(...)' to extract raw data retrieved from PubChem Database.
#> See ?pubChemData for details.

protein_data_result <- pubChemData(protein_data)
head(protein_data_result)

#> AID SID CID Activity.Outcome Target.GeneID
#> 1 415759 103294831 5289418 Active 13649
#> 2 1527521 312367127 71496458 Active 13649
#> 3 1527521 440227038 139593668 Inconclusive 13649
#> 4 69724 103399893 11349700 Active 13649
#> 5 69730 103379682 10500718 Active 13649
#> 6 106697 103166416 689033 Unspecified 13649
#> Activity.Value..uM. Activity.Name
#> 1 NA
#> 2 0.081 IC50
#> 3 NA IC50
#> 4 0.110 IC50
#> 5 1.000 IC50
#> 6 46.200 IC50
#> Assay.Name
#> 1 Inhibition of EGFR in mouse HER14 cells assessed as inhibition of EGF-stimulated ERK2 activation by immunoblotting
#> 2 Inhibition of wild type EGFR in mouse BAF3 cells assessed as reduction in cell proliferation incubated for 72 hrs by Celltiter-Glo luminescent cell viability assay
#> 3 Inhibition of wild type EGFR in mouse BAF3 cells assessed as reduction in cell proliferation incubated for 72 hrs by Celltiter-Glo luminescent cell viability assay
#> 4 Inhibition of epidermal growth factor receptor tyrosine kinase (EGFR TK)
#> 5 Inhibition of epidermal growth factor receptor phosphorylation in BaF3 mouse lymphoid cells.
#> 6 Inhibition of EGF-dependent mouse keratinocyte MK cell proliferation
#> Assay.Type PubMed.ID
#> 1 Other 9139660
#> 2 Confirmatory 31689114
#> 3 Confirmatory 31689114
#> 4 Confirmatory 14640561
#> 5 Confirmatory 11462983
#> 6 Confirmatory 10090785

This data provides researchers with detailed insights into the bioactivity of different substances
tested in relation to a specific protein. The availability of target gene IDs and assay information makes
it easier to understand the context and significance of each entry in the dataset.

5. Pathway Information: The function offers access to detailed pathway information, essential
for bioinformatics and molecular biology research. It provides a list of pathways involving a specific
protein. For example, P00533 is the accession number for the human EGFR, which is a protein involved
in the regulation of cell growth, survival, proliferation, and differentiation.

To retrieve pathway information for protein accession P00533:

pathway_data <- get_pug_rest(identifier = "P00533",
namespace = "accession",
domain = "protein",
operation = "pwaccs",
output = "JSON")

pathway_data

#>
#> An object of class 'PugRestInstance'
#>
#> Request Details:
#> - Domain: Protein
#> - Namespace: DomainSpecific

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 173

#> - Operation: pwaccs
#> - Identifier: P00533
#>
#> NOTE: Run getter function 'pubChemData(...)' to extract raw data retrieved from PubChem Database.
#> See ?pubChemData for details.

The output provides a list of pathways:

pathway_data_result <- pubChemData(pathway_data)
head(pathway_data_result$InformationList$Information[[1]]$PathwayAccession)

#> [1] "PathBank:SMP0000472" "PathBank:SMP0000473" "PathBank:SMP0000474"
#> [4] "PathBank:SMP0000475" "PathBank:SMP0000476" "PathBank:SMP0063810"

This information provides a comprehensive list of pathways involving the specified protein, which
is essential for understanding its biological roles and interactions. Each pathway entry includes the
database source and the specific pathway identifier.

6. Taxonomy Data: The function enables researchers to access detailed taxonomy information,
aiding in biological and environmental research. It provides summaries of taxonomy data for given
taxonomic identifiers. For example, Taxonomy ID 2697049 corresponds to Severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2):

taxonomy_data <- get_pug_rest(identifier = c("2697049"),
namespace = "taxid",
domain = "taxonomy",
operation = "summary",
output = "JSON")

taxonomy_data

#>
#> An object of class 'PugRestInstance'
#>
#> Request Details:
#> - Domain: Taxonomy
#> - Namespace: DomainSpecific
#> - Operation: summary
#> - Identifier: 2697049
#>
#> NOTE: Run getter function 'pubChemData(...)' to extract raw data retrieved from PubChem Database.
#> See ?pubChemData for details.

The output provides detailed taxonomy summaries:

taxonomy_data_result <- pubChemData(taxonomy_data)
taxonomy_data_result$TaxonomySummaries$TaxonomySummary

#> [[1]]
#> [[1]]$TaxonomyID
#> [1] 2697049
#>
#> [[1]]$ScientificName
#> [1] "Severe acute respiratory syndrome coronavirus 2"
#>
#> [[1]]$CommonName
#> [1] ""
#>
#> [[1]]$Rank
#> [1] "no rank"
#>
#> [[1]]$RankedLineage
#> Species
#> "Severe acute respiratory syndrome-related coronavirus"
#> Genus

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 174

#> "Betacoronavirus"
#> Family
#> "Coronaviridae"
#> Order
#> "Nidovirales"
#> Class
#> "Pisoniviricetes"
#> Phylum
#> "Pisuviricota"
#> Kingdom
#> "Orthornavirae"
#> Superkingdom
#> "Viruses"
#>
#> [[1]]$Synonym
#> [1] "2019-nCoV"
#> [2] "COVID-19 virus"
#> [3] "HCoV-19"
#> [4] "Human coronavirus 2019"
#> [5] "SARS-2"
#> [6] "SARS2"
#> [7] "SARS-CoV2"
#> [8] "Severe acute respiratory syndrome coronavirus 2"

This information includes taxonomy ID, scientific name, common name, ranks, ranked lineages,
and synonyms for the specified taxa. This detailed taxonomy data is essential for various research
applications, including evolutionary studies and disease research.

7. Cell Line Information: The function is also useful in accessing detailed information about
various cell lines, vital for cellular biology and pharmacology research. For example, CHEMBL3308376
corresponds to the HeLa cell line:

cell_line_data <- get_pug_rest(identifier = c("CHEMBL3308376"),
namespace = "cellacc",
domain = "cell",
operation = "summary",
output = "JSON")

cell_line_data

#>
#> An object of class 'PugRestInstance'
#>
#> Request Details:
#> - Domain: Cell
#> - Namespace: DomainSpecific
#> - Operation: summary
#> - Identifier: CHEMBL3308376
#>
#> NOTE: Run getter function 'pubChemData(...)' to extract raw data retrieved from PubChem Database.
#> See ?pubChemData for details.

The output provides detailed cell line summaries:

cell_line_data_result <- pubChemData(cell_line_data)
cell_line_data_result$CellSummaries$CellSummary

#> [[1]]
#> [[1]]$CellAccession
#> [1] "CVCL_0030"
#>
#> [[1]]$Name
#> [1] "HeLa"
#>
#> [[1]]$Sex

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 175

#> [1] "Female"
#>
#> [[1]]$Category
#> [1] "Cancer cell line"
#>
#> [[1]]$SourceTissue
#> [1] "uterine cervix"
#>
#> [[1]]$SourceTaxonomyID
#> [1] 9606
#>
#> [[1]]$SourceOrganism
#> [1] "Homo sapiens (human)"
#>
#> [[1]]$Synonym
#> [1] "HELA" "Hela" "He La"
#> [4] "He-La" "HeLa-CCL2" "Henrietta Lacks cells"
#> [7] "Helacyton gartleri"

This information includes cell accession number, name, sex, category, source tissue, source taxon-
omy ID, source organism, and synonyms for the specified cell lines.

4.8 Enhancing Chemical Data Access with PUG View Service

The get_pug_view function is designed to provide access to detailed summary reports and additional
information not typically found in primary PubChem Substance, Compound, or BioAssay records. It
utilizes the PUG View service, a REST-style web service of PubChem (Kim et al., 2019), to generate
comprehensive reports for individual PubChem records (Figure 2). The primary aim of get_pug_view
is to offer a different approach from the PUG REST service, focusing on delivering complete summary
reports rather than smaller bits of information. This function supports various data formats and record
types, making it a versatile tool for users needing comprehensive information from the PubChem
database. Key aspects include:

Flexible Data Retrieval: Users can choose between obtaining an index (summary or table of
contents) or full data retrieval, catering to both overview and detailed information requirements. This
flexibility allows users to access just the right amount of data they need for their specific research
purposes.

Diverse Record Types: The function is capable of accessing a wide range of records, including
compounds, substances, bioassays, patents, genes, proteins, pathways, taxonomies, and cell lines. This
broad capability ensures that users can retrieve comprehensive data across various scientific domains
using their respective identifiers or names.

Annotations and Detailed Information: The get_pug_view function can retrieve specific types
of information, such as experimental properties, safety and hazard labeling, and more. This feature
is particularly valuable for users needing in-depth annotations and detailed descriptions across
PubChem’s extensive databases.

Comprehensive Reports: It provides detailed summaries that encompass chemical properties,
biological activities, safety information, patents, and literature references. This comprehensive report-
ing is crucial for researchers who require a holistic view of PubChem records for their studies and
analyses.

In summary, the get_pug_view function offers in-depth and comprehensive reports that facilitate
advanced research and development activities. By leveraging the PUG View service, it enables efficient
access to detailed and annotated data, enhancing the user’s ability to make informed decisions based
on extensive PubChem records.

The get_pug_view function finds its application in various scenarios, making it a crucial resource
in chemical data analysis:

1. Full Data Record: For researchers requiring comprehensive data of compounds, substances, or
bioassays, get_pug_view provides detailed reports including experimental properties, safety informa-
tion, and more.

We will initialize the retrieval of comprehensive data for the compound with ID 2244 (Aspirin)
from PubChem using the following code chunk:

full_record_2244 <- get_pug_view(annotation = "data",

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 176

Figure 2: Using the PubChemR package to access PubChem’s PUG-View database, with queries in
URL syntax serving as function arguments

identifier = "2244",
domain = "compound",
output = "JSON")

full_record_2244

#>
#> PUG View Data from PubChem Database
#>
#> Request Details:
#> - Domain: Compound
#> - Annotation: data
#> - Identifier: 2244
#>
#> Pug View Details:
#> - RecordType (1): [<unnamed character>]
#> - RecordNumber (1): [<unnamed numeric>]
#> - RecordTitle (1): [<unnamed character>]
#> - Section (20): [<unnamed list>] Structures, Chemical Safety, ... and 18 more.
#> - Reference (246): [<unnamed list>]
#>
#> NOTE: Run getter function 'retrieve()' with element name above to extract data from corresponding list.
#> See ?retrieve for details.

The resulting object contains extensive information about the compound, including various
sections and references.

We can extract the record type, record number, and record title to confirm that the record pertains
to a chemical compound, to identify the specific compound ID for Aspirin, and to verify that Aspirin is
the common name for the compound with ID 2244. Moreoveer, retrieve function can be used to show
detailed information about the references, including reference number, source name, source ID, name,
description, URL, and license URL. Each reference provides insights into various aspects related to
the compound Aspirin, sourced from databases like the Australian Industrial Chemicals Introduction
Scheme (AICIS), CAMEO Chemicals, CAS Common Chemistry, and others. These references include
descriptions of the chemical properties, regulatory information, safety data, and links to the original
sources for further details.

To access the specific sections within the retrieved data, we use the following code:

sections <- retrieve(object = full_record_2244, .slot = "Section")
sections

#>
#> PUG View Data Sections
#>
#> Request Details:
#> - Record Type: CID
#> - Record Number: 2244
#> - Record Title: Aspirin

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 177

#>
#> Section Details:
#> - Number of available sections: 20
#> - Section headings: Structures, Chemical Safety, ... and 18 more.
#>
#> NOTE: Run getter function 'section()' to extract section data. To list available sections, run 'sectionList()'.
#> See ?section and ?sectionList for details.

This code retrieves the sections available within the full record of Aspirin. The output indicates
that there are 20 sections available, with headings such as Structures, Chemical Safety, and others.

Now, we can employ the sectionList function to display all sections available in the “sections”
object:

sectionList(object = sections)

#> # A tibble: 20 x 2
#> SectionID Headings
#> <chr> <chr>
#> 1 S1 Structures
#> 2 S2 Chemical Safety
#> 3 S3 Names and Identifiers
#> 4 S4 Chemical and Physical Properties
#> 5 S5 Spectral Information
#> 6 S6 Related Records
#> 7 S7 Chemical Vendors
#> 8 S8 Drug and Medication Information
#> 9 S9 Pharmacology and Biochemistry
#> 10 S10 Use and Manufacturing
#> 11 S11 Identification
#> 12 S12 Safety and Hazards
#> 13 S13 Toxicity
#> 14 S14 Associated Disorders and Diseases
#> 15 S15 Literature
#> 16 S16 Patents
#> 17 S17 Interactions and Pathways
#> 18 S18 Biological Test Results
#> 19 S19 Taxonomy
#> 20 S20 Classification

The “SectionID” column contains unique identifiers for each section, labeled S1 through S20. The
“Headings” column provides descriptive titles for these sections, indicating the type of information
contained within each.

The sections listed are:

1. Structures: Details on the structural information of Aspirin.

2. Chemical Safety: Information related to the safety measures and regulations for handling
Aspirin.

3. Names and Identifiers: Various names and identifiers associated with Aspirin.

4. Chemical and Physical Properties: Data on the chemical and physical properties of Aspirin.

5. Spectral Information: Spectral data related to Aspirin.

6. Related Records: Records related to Aspirin.

7. Chemical Vendors: Information about vendors that supply Aspirin.

8. Drug and Medication Information: Details on the use of Aspirin as a drug or medication.

9. Pharmacology and Biochemistry: Information on the pharmacological and biochemical prop-
erties of Aspirin.

10. Use and Manufacturing: Data on the use and manufacturing processes of Aspirin.

11. Identification: Identification information for Aspirin.

12. Safety and Hazards: Safety hazards associated with Aspirin.

13. Toxicity: Toxicological information about Aspirin.

14. Associated Disorders and Diseases: Disorders and diseases associated with Aspirin.

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 178

15. Literature: References to literature involving Aspirin.

16. Patents: Patent information related to Aspirin.

17. Interactions and Pathways: Biological interactions and pathways involving Aspirin.

18. Biological Test Results: Results from biological tests conducted on Aspirin.

19. Taxonomy: Taxonomic information related to Aspirin.

20. Classification: Classification information for Aspirin.

These sections provide a comprehensive overview of various aspects of Aspirin. Now, we will
focus on detailed data from the first section, “Structures,” with the section ID “S1”.

First, we assign the section to an object using the section function and then examine its contents:

s1 <- section(object = sections, .id = "S1")

The output provides an overview of the “Structures” section:

s1

#>
#> PUG View Data Sections (Structures)
#>
#> Request Details:
#> - Record Type: CID
#> - Record Number: 2244
#> - Record Title: Aspirin
#>
#> Section Details:
#> - TOCHeading (1): [<unnamed character>]
#> - Description (1): [<unnamed character>]
#> - Section (3): [<unnamed list>] 2D Structure, 3D Conformer, ... and 1 more.
#>
#> NOTE: Run getter function 'retrieve()' with element name above to extract data from corresponding list.
#> See ?retrieve for details.
#>
#> NOTE: Run getter function 'section()' to extract section data. To list available sections, run 'sectionList()'.
#> See ?section and ?sectionList for details.

Next, we list the sub-sections within the “Structures” section. The output shows the available
sub-sections:

sectionList(object = s1)

#> # A tibble: 3 x 2
#> SectionID Headings
#> <chr> <chr>
#> 1 S1 2D Structure
#> 2 S2 3D Conformer
#> 3 S3 Crystal Structures

This breakdown allows us to see that the “Structures” section contains detailed depictions of
Aspirin, including 2D structures, 3D conformers, and crystal structures. Each sub-section can be
further explored to gain more specific information about the molecular structure of Aspirin.

2. Accessing Specific Headings: Users can retrieve data under specific headings for targeted
information, such as boiling points or viscosity measurements.

First, we initiate the retrieval of data for a specific heading using the get_pug_view function,
focusing on the “Boiling Point” heading within the “heading” domain.

specific_headings <- get_pug_view(annotation = "annotations",
identifier = "Boiling Point",
domain = "heading",
output = "JSON",
headingType = "Compound")

specific_headings

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 179

#>
#> PUG View Data from PubChem Database
#>
#> Request Details:
#> - Domain: DomainSpecific (heading)
#> - Annotation: annotations
#> - Identifier: Boiling%20Point
#>
#> Pug View Details:
#> - Annotation (1000): [<unnamed list>]
#> - Page (1): [<unnamed numeric>]
#> - TotalPages (1): [<unnamed numeric>]
#>
#> NOTE: Run getter function 'retrieve()' with element name above to extract data from corresponding list.
#> See ?retrieve for details.

The function call returns data from the PubChem database, specifying details about the request, in-
cluding the domain, annotation type, identifier, and the number of annotations retrieved. It highlights
that 1000 annotations were fetched, spread across multiple pages.

Next, we utilize the retrieve function to extract the “Annotation” slot from the specific_headings
object. By displaying the annotations, we gain insight into the structure and content of the data. Each
annotation includes the source name, source ID, compound name, description, URLs, and detailed
data related to the boiling point, complete with references and specific values.

annotation <- retrieve(specific_headings, .slot = "Annotation", .to.data.frame = FALSE)
annotation[[1]]

#> $SourceName
#> [1] "Hazardous Substances Data Bank (HSDB)"
#>
#> $SourceID
#> [1] "30"
#>
#> $Name
#> [1] "NITROGLYCERIN"
#>
#> $Description
#> [1] "The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel."
#>
#> $URL
#> [1] "https://pubchem.ncbi.nlm.nih.gov/source/hsdb/30"
#>
#> $LicenseURL
#> [1] "https://www.nlm.nih.gov/web_policies.html"
#>
#> $Data
#> $Data[[1]]
#> $Data[[1]]$TOCHeading
#> type #TOCHeading
#> "Compound" "Boiling Point"
#>
#> $Data[[1]]$Description
#> [1] "PEER REVIEWED"
#>
#> $Data[[1]]$Reference
#> [1] "O'Neil, M.J. (ed.). The Merck Index - An Encyclopedia of Chemicals, Drugs, and Biologicals. 13th Edition, Whitehouse Station, NJ: Merck and Co., Inc., 2001., p. 1185"
#>
#> $Data[[1]]$ExtendedReference
#> $Data[[1]]$ExtendedReference[[1]]
#> $Data[[1]]$ExtendedReference[[1]]$Citation
#> [1] "O'Neil, M.J. (ed.). The Merck Index - An Encyclopedia of Chemicals, Drugs, and Biologicals. 13th Edition, Whitehouse Station, NJ: Merck and Co., Inc., 2001., p. 1185"
#>
#> $Data[[1]]$ExtendedReference[[1]]$Matched
#> PCLID

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 180

#> 900133450
#>
#>
#>
#> $Data[[1]]$Value
#> $Data[[1]]$Value$StringWithMarkup
#> $Data[[1]]$Value$StringWithMarkup[[1]]
#> String
#> "Explodes at 218 °C"
#>
#>
#>
#>
#> $Data[[2]]
#> $Data[[2]]$TOCHeading
#> type #TOCHeading
#> "Compound" "Boiling Point"
#>
#> $Data[[2]]$Description
#> [1] "PEER REVIEWED"
#>
#> $Data[[2]]$Reference
#> [1] "Weast, R.C. (ed.) Handbook of Chemistry and Physics. 69th ed. Boca Raton, FL: CRC Press Inc., 1988-1989., p. C-291"
#>
#> $Data[[2]]$ExtendedReference
#> $Data[[2]]$ExtendedReference[[1]]
#> $Data[[2]]$ExtendedReference[[1]]$Citation
#> [1] "Weast, R.C. (ed.) Handbook of Chemistry and Physics. 69th ed. Boca Raton, FL: CRC Press Inc., 1988-1989., p. C-291"
#>
#> $Data[[2]]$ExtendedReference[[1]]$Matched
#> PCLID
#> 900017161
#>
#>
#>
#> $Data[[2]]$Value
#> $Data[[2]]$Value$StringWithMarkup
#> $Data[[2]]$Value$StringWithMarkup[[1]]
#> String
#> "BOILING POINT: 125 °C @ 2 MM HG"
#>
#>
#>
#>
#>
#> $ANID
#> [1] 2
#>
#> $LinkedRecords
#> $LinkedRecords$CID
#> [1] 4510

This step reveals detailed information about various compounds, including their boiling points.
For instance, it might display data such as “NITROGLYCERIN” from the “Hazardous Substances Data
Bank (HSDB)” with specific boiling point details like “Explodes at 218 °C.”

3. Literature and Publication Data: The function can be used to retrieve literature associated with
a compound, aiding in academic research and publication review.

In the given example, we are querying the PubChem database for literature information related to
the compound with identifier “1234” in the compound domain. The identifier “1234” corresponds to
the compound Gallopamil. Gallopamil is a pharmaceutical compound used primarily as a calcium
channel blocker, which is useful in treating cardiovascular conditions such as angina pectoris and
hypertension.

By running the get_pug_view function with the identifier “1234”, we retrieve various details about

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 181

Gallopamil, including references to related literature.

literature <- get_pug_view(annotation = "literature",
identifier = "1234",
domain = "compound",
output = "JSON")

literature

#>
#> PUG View Data from PubChem Database
#>
#> Request Details:
#> - Domain: Compound
#> - Annotation: literature
#> - Identifier: 1234
#>
#> Pug View Details:
#> - RecordType (1): [<unnamed character>]
#> - RecordNumber (1): [<unnamed numeric>]
#> - AllURL (1): [<unnamed character>]
#> - Subheadings (15): [<unnamed list>]
#>
#> NOTE: Run getter function 'retrieve()' with element name above to extract data from corresponding list.
#> See ?retrieve for details.

The following code provides a URL, which directs to the PubMed search page for the specified
compound. This link is valuable for researchers seeking detailed literature information related to the
compound identified by CID 1234.

retrieve(literature, .slot = "AllURL")

#> # A tibble: 1 x 1
#> value
#> <chr>
#> 1 https://www.ncbi.nlm.nih.gov/sites/entrez?cmd=search&db=pubmed&term=%22Gallop~

4. 3D Protein Structures: The get_pug_view function allows access to detailed 3D protein structure
information associated with specific compounds. These 3D structures provide critical insights into the
molecular interactions, mechanisms of action, and potential binding sites of compounds, which are
essential for understanding their biological effects. Access to such detailed structural data aids in drug
design, understanding enzyme mechanisms, and studying protein-ligand interactions. The visual
representation of these structures, along with associated metadata like MMDB (Molecular Modeling
Database) and PDB (Protein Data Bank) IDs, URLs for accessing detailed pages, and descriptions of
the structures, further enhances the utility of this function in scientific research and development.

The following code retrieves a list of 3D protein structures associated with Aspirin (ID:2244):

list_3d_proteins <- get_pug_view(annotation = "structure",
identifier = "2244",
domain = "compound",
output = "JSON")

list_3d_proteins

#>
#> PUG View Data from PubChem Database
#>
#> Request Details:
#> - Domain: Compound
#> - Annotation: structure
#> - Identifier: 2244
#>
#> Pug View Details:
#> - RecordType (1): [<unnamed character>]
#> - RecordNumber (1): [<unnamed numeric>]

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 182

#> - URL (1): [<unnamed character>]
#> - NumberOfStructures (1): [<unnamed numeric>]
#> - Structures (8): [<unnamed list>]
#>
#> NOTE: Run getter function 'retrieve()' with element name above to extract data from corresponding list.
#> See ?retrieve for details.

This code fetches detailed information about the 3D protein structures related to Aspirin. The
output includes several components.

First, the URL for the data is retrieved:

retrieve(list_3d_proteins, .slot = "URL")

#> # A tibble: 1 x 1
#> value
#> <chr>
#> 1 https://www.ncbi.nlm.nih.gov/sites/entrez?LinkName=pccompound_structure&db=pc~

This output provides the URL to the PubChem page that contains detailed information about the
3D structures of Aspirin. This URL can be visited to explore further details visually and interactively.

Next, the number of 3D structures available is retrieved:

retrieve(list_3d_proteins, .slot = "NumberOfStructures")

#> # A tibble: 1 x 1
#> value
#> <dbl>
#> 1 8

The output indicates that there are 8 different 3D structures available for Aspirin.

Finally, details of each structure are retrieved:

list_3d_proteins_structures <- retrieve(list_3d_proteins, .slot = "Structures", .to.data.frame = FALSE)

This code outputs a list of details for each 3D structure, including the MMDB ID, PDB ID, URLs
for accessing and visualizing the structures, descriptions, and taxonomic information. For example,
one of the structures is described as “Cryo-EM structure of aspirin-bound ABCC4,” with the MMDB
ID 230639 and PDB ID “8J3W.” The structure is associated with Homo sapiens (human) as indicated
by the taxonomy information.

list_3d_proteins_structures[[1]]

#> $MMDB_ID
#> [1] 230639
#>
#> $PDB_ID
#> [1] "8J3W"
#>
#> $URL
#> [1] "https://www.ncbi.nlm.nih.gov/Structure/mmdb/mmdbsrv.cgi?uid=230639"
#>
#> $ImageURL
#> [1] "https://www.ncbi.nlm.nih.gov/Structure/mmdb/mmdbimage.fcgi?small=t&id=230639"
#>
#> $Description
#> [1] "Cryo-EM structure of aspirin-bound ABCC4"
#>
#> $Taxonomy
#> $Taxonomy$ID
#> [1] 9606
#>
#> $Taxonomy$Name
#> [1] "Homo sapiens"

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 183

5. NCBI LinkOut Records: The get_pug_view function is capable of listing all LinkOut records
for substances, compounds, or assays, which is beneficial for tracking external resources and databases
linked to specific chemical entities. This functionality is especially useful for researchers who need to
access a wide array of related data from different external sources.

Here is an example of how the LinkOut records can be retrieved for identifier “1234”:

ncbi_linkouts <- get_pug_view(annotation = "linkout",
identifier = "1234",
domain = "compound",
output = "JSON")

Next, the retrieved data can then be accessed as follows:

retrieve(ncbi_linkouts, .slot = "ObjUrl", .to.data.frame = FALSE)

#> $Url
#> [1] "http://partnersolution.ingenuity.com/?cid=97ae3f91eab87a&p1=EntrezPubChem&p2=GV&s=&ipaUri=%2Fpa%2Fapi%2Fv2%2Fgeneview%3Fapplicationname%3DEntrezPubChem%26geneId%3DING:qkb%26geneidtype%3Dingenuity"
#>
#> $SubjectType
#> [1] "molecular interactions"
#>
#> $Category
#> [1] "Chemical Information"
#>
#> $Attribute
#> [1] "subscription/membership/fee required"
#>
#> $Provider
#> Name NameAbbr
#> "Ingenuity Pathways Analysis" "Ingenuity"
#> Id Url
#> "5628" "http://www.ingenuity.com"

The extracted data includes information such as the URL of the external resource, the subject type,
the category of information, attributes indicating if a subscription or fee is required, and the provider’s
details. For instance, the URL “http://partnersolution.ingenuity.com/?cid=97ae3f91eab87a&p1=
EntrezPubChem&p2=GV&s=&ipaUri=%2Fpa%2Fapi%2Fv2%2Fgeneview%3Fapplicationname%3DEntrezPubChem%
26geneId%3DING:qkb%26geneidtype%3Dingenuity” points to a resource provided by Ingenuity Path-
ways Analysis, categorized under “Chemical Information” and related to “molecular interactions”.
This URL requires a subscription or membership for access.

Such detailed LinkOut records facilitate the exploration of interconnected data across various plat-
forms, enabling researchers to efficiently gather comprehensive information related to their chemical
entities of interest.

5 Discussion

5.1 Related Packages

Several R packages provide access to chemical data and tools for cheminformatics, each with its unique
focus and capabilities:

• ChemmineR: A comprehensive cheminformatics toolkit for R, offering functionalities for com-
pound data processing and analysis. It includes tools for compound classification, similarity
searching, and structure-activity relationship modeling.

• webchem: Designed for retrieving chemical information from various web sources, this package
facilitates automated queries and integrates data into R objects for further analysis, focusing on
structured data retrieval and usage.

• rcdk: An R interface to the CDK, allowing users to manipulate and analyze chemical data. This
package supports molecular structure parsing, descriptor calculation, and fingerprint generation,
making it invaluable for computational chemistry, drug discovery, and bioinformatics research.

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

http://partnersolution.ingenuity.com/?cid=97ae3f91eab87a&p1=EntrezPubChem&p2=GV&s=&ipaUri=%2Fpa%2Fapi%2Fv2%2Fgeneview%3Fapplicationname%3DEntrezPubChem%26geneId%3DING:qkb%26geneidtype%3Dingenuity
http://partnersolution.ingenuity.com/?cid=97ae3f91eab87a&p1=EntrezPubChem&p2=GV&s=&ipaUri=%2Fpa%2Fapi%2Fv2%2Fgeneview%3Fapplicationname%3DEntrezPubChem%26geneId%3DING:qkb%26geneidtype%3Dingenuity
http://partnersolution.ingenuity.com/?cid=97ae3f91eab87a&p1=EntrezPubChem&p2=GV&s=&ipaUri=%2Fpa%2Fapi%2Fv2%2Fgeneview%3Fapplicationname%3DEntrezPubChem%26geneId%3DING:qkb%26geneidtype%3Dingenuity
https://www.bioconductor.org/packages/release/bioc/html/ChemmineR.html
https://CRAN.R-project.org/package=webchem
https://CRAN.R-project.org/package=rcdk

CONTRIBUTED RESEARCH ARTICLE 184

• ChemmineOB: An interface with OpenBabel for chemical format conversions and molecu-
lar property calculations, enhancing cheminformatics workflows by offering easy access to
OpenBabel’s powerful functions directly from R.

• BridgeDbR: Provides access to the BridgeDb framework, facilitating identifier mapping across
different biological databases and supporting a wide range of identifier types, which is particu-
larly useful in systems biology, genomics, and metabolomics studies.

• RMassBank: Tailored for the creation and handling of mass spectrometry databases, provid-
ing tools for building, querying, and managing MassBank records essential for compound
identification and annotation in MS experiments.

• rgoslin: An R package for the systematic annotation of lipid species using the GOSlin format,
supporting the conversion of lipid names to a structured format and ensuring consistency and
accuracy in lipidomics studies.

PubChemR, in comparison, is designed specifically to interface with the PubChem database,
providing a focused approach for accessing chemical data within this database through R. While
ChemmineR and webchem offer broad functionalities and access to multiple sources, PubChemR
specializes in efficient and targeted data interactions with PubChem, making it particularly suitable
for users who predominantly rely on PubChem for their chemical data needs.

In the Python ecosystem, libraries such as PubChempy (Swain, 2017), ChemSpiPy (Swain, 2018),
and CIRpy (Swain, 2016) offer functionalities similar to those described here. PubChemPy, like
PubChemR, provides a direct interface with the PubChem database for accessing chemical molecules
and their properties, supporting various chemical searches, standardization, format conversions,
depiction, and property retrieval. ChemSpiPy offers easy access to the ChemSpider web service,
enabling chemical searches, downloads, and property retrieval. CIRpy interfaces with the Chemical
Identifier Resolver (CIR) by the Computer-Aided Drug Design (CADD) Group at the National Cancer
Institute (NCI), simplifying the conversion of chemical identifiers and calculation of properties, along
with supporting diverse file format downloads.

5.2 Usage Policy of PUG REST Service

Please note that PUG REST is not intended for handling very large volumes of requests, such as those
numbering in the millions. To prevent overloading the PubChem servers, it is requested that any script
or application limit the request rate to no more than five requests per second. This measure helps
ensure the stability and reliability of the service for all users. For more information on request volume
limitations and automated rate limiting (throttling), please refer to PubChem’s dynamic request throt-
tling documentation (https://pubchem.ncbi.nlm.nih.gov/docs/dynamic-request-throttling).

In some cases, a 503 HTTP status code may be returned when the server is temporarily unable to
service the request due to maintenance downtime or capacity issues. If this occurs, it is advisable to try
the request again later. This status code indicates that the server is currently overloaded or undergoing
maintenance, and retrying the request after some time should allow it to be processed successfully.

5.3 Furter Research

The primary contribution of PubChemR is its facilitation of direct access to PubChem’s chemical data
through the R programming environment. This functionality addresses a specific need for researchers
who rely on R for data analysis and representation, allowing for more straightforward integration of
chemical data into their workflows However, the effectiveness of PubChemR is closely tied to the
quality and comprehensiveness of the PubChem database. Inaccuracies or gaps in the PubChem data
directly impact the outputs of PubChemR, which is an important consideration for users relying on
this tool for research or data analysis. As PubChem’s database is dynamic and continually updated,
keeping PubChemR synchronized with these updates is critical for maintaining its accuracy and
relevance.

While PubChemR currently focuses on accessing PubChem data and does not include data
analysis functions, future enhancements could potentially explore these areas. For instance, more
sophisticated data analysis capabilities within the package itself could be developed, enabling users to
perform preliminary analysis within the same framework. Another possible direction could be the
integration with other chemical databases, expanding the range of accessible data. Additionally, im-
proving the user interface for greater ease of use and better data visualization capabilities could make
the tool more accessible to a wider range of users with varying levels of expertise in R programming.
These are potential directions for future research and development, although there are no immediate
plans to implement these features.

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://www.bioconductor.org/packages/release/bioc/html/ChemmineOB.html
https://www.bioconductor.org/packages/release/bioc/html/BridgeDbR.html
https://www.bioconductor.org/packages/release/bioc/html/RMassBank.html
https://www.bioconductor.org/packages/release/bioc/html/rgoslin.html
https://CRAN.R-project.org/package=PubChemR
https://www.bioconductor.org/packages/release/bioc/html/ChemmineR.html
https://CRAN.R-project.org/package=webchem
https://CRAN.R-project.org/package=PubChemR
https://CRAN.R-project.org/package=PubChemR
https://pubchem.ncbi.nlm.nih.gov/docs/dynamic-request-throttling
https://CRAN.R-project.org/package=PubChemR
https://CRAN.R-project.org/package=PubChemR
https://CRAN.R-project.org/package=PubChemR
https://CRAN.R-project.org/package=PubChemR
https://CRAN.R-project.org/package=PubChemR

CONTRIBUTED RESEARCH ARTICLE 185

6 Summary

PubChemR represents a significant advancement in accessing chemical data through the R program-
ming environment. It offers a straightforward, effective, and easy-to-use way to access information
from the PubChem database, improving how users can get chemical data. PubChemR combines
practical features with user-friendly design, making it a useful tool for researchers in various scientific
areas. As it continues to receive updates and enhancements, PubChemR will keep up with changes in
chemical data and computational technology.

References

Y. Cao, A. Charisi, L.-C. Cheng, T. Jiang, and T. Girke. Chemminer: a compound mining framework
for r. Bioinformatics, 24(15):1733–1734, 2008. [p150]

B. Chen, D. Wild, and R. Guha. Pubchem as a source of polypharmacology. Journal of chemical
information and modeling, 49(9):2044–2055, 2009. [p150]

R. Guha. Chemical informatics functionality in r. Journal of Statistical Software, 18:1–16, 2007. [p150]

K. Horan and T. Girke. ChemmineOB: R interface to a subset of OpenBabel functionalities, 2024. URL
https://www.bioconductor.org/packages/release/bioc/html/ChemmineOB.html. R package ver-
sion 1.42.0. [p150]

S. Kim, P. A. Thiessen, E. E. Bolton, and S. H. Bryant. Pug-soap and pug-rest: web services for
programmatic access to chemical information in pubchem. Nucleic acids research, 43(W1):W605–
W611, 2015. [p165]

S. Kim, P. A. Thiessen, E. E. Bolton, J. Chen, G. Fu, A. Gindulyte, L. Han, J. He, S. He, B. A. Shoemaker,
et al. Pubchem substance and compound databases. Nucleic acids research, 44(D1):D1202–D1213,
2016. [p150]

S. Kim, P. A. Thiessen, T. Cheng, B. Yu, and E. E. Bolton. An update on pug-rest: Restful interface for
programmatic access to pubchem. Nucleic Acids Research, 46(W1):W563–W570, 2018. [p165]

S. Kim, P. A. Thiessen, T. Cheng, J. Zhang, A. Gindulyte, and E. E. Bolton. Pug-view: programmatic
access to chemical annotations integrated in pubchem. Journal of cheminformatics, 11(1):1–11, 2019.
[p175]

D. Kopczynski, N. Hoffmann, B. Peng, and R. Ahrends. Goslin: a grammar of succinct lipid nomencla-
ture. Analytical Chemistry, 92(16):10957–10960, 2020. [p150]

S. Korkmaz. Deep learning-based imbalanced data classification for drug discovery. Journal of chemical
information and modeling, 60(9):4180–4190, 2020. [p159]

S. Korkmaz, B. E. Yamasan, and D. Goksuluk. PubChemR: Interface to the ’PubChem’ Database for Chemical
Data Retrieval, 2024. URL https://CRAN.R-project.org/package=PubChemR. R package version 2.0.
[p150]

C. Leemans, E. Willighagen, A. Bohler, and L. Eijssen. BridgeDbR: Code for Using BridgeDb Identifier
Mapping Framework From Within R, 2024. URL https://www.bioconductor.org/packages/release/
bioc/html/BridgeDbR.html. R package version 2.14.0. [p150]

Q. Li, T. Cheng, Y. Wang, and S. H. Bryant. Pubchem as a public resource for drug discovery. Drug
discovery today, 15(23-24):1052–1057, 2010. [p150]

M. A. Stravs, E. L. Schymanski, H. P. Singer, and J. Hollender. Automatic recalibration and processing
of tandem mass spectra using formula annotation. Journal of Mass Spectrometry, 48(1):89–99, 2013.
[p150]

M. Swain. CIRpy: Python wrapper for the NCI Chemical Identifier Resolver, 2016. URL https://github.
com/mcs07/CIRpy. [p184]

M. Swain. PubChemPy: Python wrapper for the PubChem PUG REST API, 2017. URL https://github.
com/mcs07/PubChemPy. [p184]

M. Swain. ChemSpiPy-A Python wrapper for the ChemSpider API, 2018. URL https://github.com/
mcs07/ChemSpiPy. [p184]

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=PubChemR
https://CRAN.R-project.org/package=PubChemR
https://CRAN.R-project.org/package=PubChemR
https://www.bioconductor.org/packages/release/bioc/html/ChemmineOB.html
https://CRAN.R-project.org/package=PubChemR
https://www.bioconductor.org/packages/release/bioc/html/BridgeDbR.html
https://www.bioconductor.org/packages/release/bioc/html/BridgeDbR.html
https://github.com/mcs07/CIRpy
https://github.com/mcs07/CIRpy
https://github.com/mcs07/PubChemPy
https://github.com/mcs07/PubChemPy
https://github.com/mcs07/ChemSpiPy
https://github.com/mcs07/ChemSpiPy

CONTRIBUTED RESEARCH ARTICLE 186

E. Szöcs, T. Stirling, E. R. Scott, A. Scharmüller, and R. B. Schäfer. webchem: an r package to retrieve
chemical information from the web. Journal of Statistical Software, 93:1–17, 2020. [p150]

Y. Wang, J. Xiao, T. O. Suzek, J. Zhang, J. Wang, and S. H. Bryant. Pubchem: a public information
system for analyzing bioactivities of small molecules. Nucleic acids research, 37(suppl_2):W623–W633,
2009. [p150]

Y. Wang, J. Xiao, T. O. Suzek, J. Zhang, J. Wang, Z. Zhou, L. Han, K. Karapetyan, S. Dracheva, B. A.
Shoemaker, et al. Pubchem’s bioassay database. Nucleic acids research, 40(D1):D400–D412, 2012.
[p150]

B. E. Yamasan and S. Korkmaz. Binding activity classification of anti-sars-cov-2 molecules using deep
learning across multiple assays. Balkan Medical Journal, 41(3):186, 2024. [p159]

Selcuk Korkmaz
Trakya University
Department Biostatistics
Edirne, Türkiye
ORCiD: 0000-0003-4632-6850
selcukkorkmaz@trakya.edu.tr

Bilge Eren Yamasan
Trakya University
Department Biophysics
Edirne, Türkiye
ORCiD: 0000-0002-6525-2503
berenyamasan@trakya.edu.tr

Dincer Goksuluk
Erciyes University
Department Biostatistics
Kayseri, Türkiye
ORCiD: 0000-0002-2752-7668
dincergoksuluk@erciyes.edu.tr

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://orcid.org/0000-0003-4632-6850
mailto:selcukkorkmaz@trakya.edu.tr
https://orcid.org/0000-0002-6525-2503
mailto:berenyamasan@trakya.edu.tr
https://orcid.org/0000-0002-2752-7668
mailto:dincergoksuluk@erciyes.edu.tr

	PubChemR: An R Package for Accessing Chemical Data from PubChem
	Introduction
	Design
	Implementation
	Use cases
	Retrieve Compund Information
	Retrieve Substance Information
	Retrieve Assay Information
	Retrieve Property Information
	Download SDF Data
	Download Data with Different Formats
	Accessing and Exploring Chemical Data with PUG REST Service
	Enhancing Chemical Data Access with PUG View Service

	Discussion
	Related Packages
	Usage Policy of PUG REST Service
	Furter Research

	Summary

