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SIHR: Statistical Inference in
High-Dimensional Linear and Logistic
Regression Models
by Prabrisha Rakshit, Zhenyu Wang, Tony Cai, and Zijian Guo

Abstract We introduce the R package SIHR for statistical inference in high-dimensional generalized
linear models with continuous and binary outcomes. The package provides functionalities for con-
structing confidence intervals and performing hypothesis tests for low-dimensional objectives in
both one-sample and two-sample regression settings. We illustrate the usage of SIHR through sim-
ulated examples and present real data applications to demonstrate the package’s performance and
practicality.

1 Introduction

In many applications, it is common to encounter regression problems where the number of covariates
p exceeds the sample size n. Much progress has been made in point estimation and support recovery
in high-dimensional generalized linear models (GLMs), as evidenced by works such as Bühlmann
and van de Geer (2011); Negahban et al. (2009); Huang and Zhang (2012); Tibshirani (1996); Fan and
Li (2011); Zhang (2010); Sun and Zhang (2012); Belloni et al. (2011); Meinshausen and Yu (2009). In
addition to estimation, van de Geer et al. (2014); Javanmard and Montanari (2014); Zhang and Zhang
(2014) have proposed methods to correct the bias of penalized regression estimators and construct
confidence intervals (CIs) for individual regression coefficients of the high-dimensional linear model.
This debiased approach has sparked a rapidly growing research area focused on CI construction and
hypothesis testing for low-dimensional objectives in high-dimensional GLMs.

The current paper presents the R package SIHR, which constructs confidence intervals and
conducts hypothesis testing for various transformations of high-dimensional regression parameters
for both continuous and binary outcomes. We consider the high-dimensional GLMs: for 1 ≤ i ≤ n,

E(yi | Xi·) = f (Xᵀ
i·β), with f (z) =

{
z for linear model;
exp (z)/ [1 + exp (z)] for logistic model;

(1)

where yi ∈ R and Xi· ∈ Rp denote respectively the outcome and the measured covariates of the i-th
observation and β ∈ Rp denotes the high-dimensional regression vector. Throughout the paper, define
Σ = EXi·X

ᵀ
i· and assume β to be a sparse vector with its sparsity level denoted as ‖β‖0. In addition to

the one-sample setting, we examine the statistical inference methods for the following two-sample
regression models,

E(y(k)i | X(k)
i· ) = f (X(k)ᵀ

i· β(k)) with k = 1, 2 and 1 ≤ i ≤ nk, (2)

where y(k)i ∈ R and X(k)
i· ∈ Rp denote respectively the outcome and the measured covariates in

the k-th sample, f (·) is the pre-specified link function defined as in (1), and β(k) ∈ Rp denotes the
high-dimensional regression vector in k-th sample.

The R package SIHR consists of five main functions LF(), QF(), CATE(), InnProd(), and Dist()
implementing the statistical inferences for five different quantities correspondingly.

1. LF(), abbreviated for linear functional, implements the inference approach for xᵀnewβ in Cai
et al. (2021a,b), with xnew ∈ Rp denoting a loading vector. With xnew = ej as a special case, LF()
infers about the regression coefficient β j (van de Geer et al., 2014; Javanmard and Montanari,
2014; Zhang and Zhang, 2014, e.g.). When xnew denotes a future observation’s covariates, LF()
makes inference for the conditional mean of the outcome for the individual. See the usage of
LF() in the section Linear functional.

2. QF(), abbreviated for quadratic functional, makes inference for βᵀG AβG, following the proposal
in Guo et al. (2019, 2021b); Cai and Guo (2020). βG is the subvector of β with indices restricted
to the pre-specified index set G ∈ {1, . . . , p} and A ∈ R|G|×|G|, with |G| denoting cardinality of
G, is either a pre-specified submatrix or the unknown ΣG,G. βᵀG AβG can be viewed as a total
measure of effects of all the variables in the group G. See the section Quadratic functional for
the usage.
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3. CATE(), abbreviated for conditional average treatment effect, is to make inference for f (xᵀnewβ(2))−
f (xᵀnewβ(1)), see Cai et al. (2021a) for detailed discussion. This difference measures the discrep-
ancy between conditional means, closely related to the conditional average treatment effect for
the new observation with covariates xnew. We demonstrate its usage in the section Conditional
average treatment effect.

4. InnProd(), abbreviated for inner product, implements the statistical inference for β
(1)ᵀ
G Aβ

(2)
G

with A ∈ R|G|×|G|, which was proposed in Guo et al. (2019); Ma et al. (2022). The inner product
measures the similarity between the high-dimensional vectors β(1) and β(2), which is useful in
capturing the genetic relatedness in the GWAS applications (Guo et al., 2019; Ma et al., 2022).
The usage is detailed in the section Inner product.

5. Dist(), short-handed for distance, makes inference for the weighted distance γᵀ
G AγG with

γ = β(2) − β(1). The distance measure is useful in comparing different high-dimensional
regression vectors and constructing a generalizable model in the multisource learning problem
Guo et al. (2023). See the section Distance for its usage.

There are a few other R packages for high-dimensional inference. The packages hdi and SSLasso
(available at http://web.stanford.edu/~montanar/sslasso/code.html) implement the coordinate
debiased Lasso estimators proposed in van de Geer et al. (2014) and Javanmard and Montanari
(2014), respectively. These functions provide debiased estimators of β along with their standard error
estimators. These existing packages enable confidence interval construction and hypothesis testing
for linear transformations of β, but not the quadratic form or inner products implemented in QF(),
InnProd(), and Dist(). Even for the linear transformation, their implementation requires debiasing p
regression parameters. In contrast, our R package SIHR is computationally more efficient as it directly
performs a single debiasing for the pre-specified linear transformation.

The DoubleML package focuses on estimating low-dimensional parameters of interest, such as
causal or treatment effect parameters, in the presence of high-dimensional nuisance parameters that
can be estimated using machine learning methods, while our package aims to estimate arbitrary linear
and weighted quadratic combinations of the coefficient vector in high-dimensional regression. The
selective inference is implemented by the R package selectiveInference. They focus on parameters
based on the selected model, while we focus on fixed parameters independent of the selected models.

In the remainder of this paper, we review the inference methods in Section Methodological back-
ground and introduce the main functions of the package in Section Usage of the package, accompanied
by illustrative examples. Then, a comparative analysis is conducted in Section Comparative analysis.
Finally, we demonstrate the application of our proposed methods to real data in Section Real data
applications.

2 Methodological background

We briefly review the penalized maximum likelihood estimator of β in the high-dimensional GLM (1),
defined as:

β̂ = arg min
β∈Rp

`(β) + λ
p

∑
j=2

‖X·j‖2√
n
|β j|, (3)

with X·j denoting the j-th column of X, and

`(β) =


1
n ∑i=1

(
yi − Xᵀ

i·β
)2 for linear model

− 1
n ∑n

i=1 yi log
[

f (Xᵀ
i·β)

1− f (Xᵀ
i·β)

]
− 1

n ∑n
i=1 log

(
1− f (Xᵀ

i·β)
)

for GLM with binary outcome.
.

(4)
To facilitate the methodological discussion, we take the first column of X set as the constant 1 and
hence does not include a penalty on β1 in the above equation (3). In the penalized regression (3), we
do not penalize the intercept coefficient β1 and the tuning parameter λ �

√
log p/n is chosen by

cross-validation. The penalized estimators have been shown to achieve the optimal convergence rates
and satisfy desirable variable selection properties (Meinshausen and Bühlmann, 2006; Bickel et al.,
2009; Zhao and Yu, 2006; Wainwright, 2009). However, these estimators are not ready for statistical
inference due to the non-negligible estimation bias induced by the penalty term (van de Geer et al.,
2014; Javanmard and Montanari, 2014; Zhang and Zhang, 2014).

In section Linear functional for GLM, we propose a unified inference method for xᵀnewβ under
linear and logistic outcome models. We also discuss inferences for quadratic functionals βᵀG AβG and
βᵀGΣG,GβG in section Quadratic functional for GLM. In the case of the two-sample high-dimensional
regression model (2), we develop the inference method for conditional treatment effect ∆(xnew) =
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f (xᵀnewβ(2))− f (xᵀnewβ(1)) in section Conditional average treatment effects; we consider inference for

β
(1)ᵀ
G Aβ

(2)
G and β

(1)ᵀ
G ΣG,Gβ

(2)
G in section Inner product of regression vectors and γᵀ

G AγG and γᵀ
GΣG,GγG

with γ = β(2) − β(1) in section Distance of regression vectors.

2.1 Linear functional for linear model

To illustrate the main idea, we start with the linear functional for the linear model, which will be
extended to a unified version in the section Linear functional for GLM. For the linear model in (1), we
define εi = yi − Xᵀ

i·β and rewrite the model as yi = Xᵀ
i·β + εi for 1 ≤ i ≤ n.

Given the vector xnew ∈ Rp, a natural idea for the point estimator is to use the plug-in estimator
xᵀnew β̂ with the initial estimator β̂ defined in (3). However, the bias xᵀnew(β̂− β) is not negligible. The
work Cai et al. (2021a) proposed the bias-corrected estimator as,

x̂ᵀnewβ = xᵀnew β̂ + ûᵀ
1
n

n

∑
i=1

Xi·
(

yi − Xᵀ
i· β̂
)

, (5)

where the second term on the right hand side in (5) is the estimate of negative bias −xᵀnew(β̂− β), and
the projection direction û is defined as

û = arg min
u∈Rp

uᵀΣ̂u subject to: ‖Σ̂u− xnew‖∞ ≤ ‖xnew‖2µ0 (6)∣∣∣xᵀnewΣ̂u− ‖xnew‖2
2

∣∣∣ ≤ ‖xnew‖2
2µ0, (7)

where Σ̂ = 1
n ∑n

i=1 Xi·X
ᵀ
i· and µ0 �

√
log p/n. The bias-corrected estimator x̂ᵀnewβ satisfies the

following error decomposition,

x̂ᵀnewβ− xᵀnewβ = ûᵀ
1
n

n

∑
i=1

Xᵀ
i·εi︸ ︷︷ ︸

asymp. normal

+
(

Σ̂û− xnew

)ᵀ
(β− β̂)︸ ︷︷ ︸

remaining bias

. (8)

The constrained optimization problem in (6) and (7) is designed to minimize the error on the right-
hand side of the above equation: the first constraint in (6) controls the "remaining bias" term in the
above equation while the objective function in (6) is used to minimize the variance of the "asymp.
normal" term. Importantly, the second constraint in (7) ensures the standard error of the "asymp.
normal" term always dominates the "remaining bias" term. Based on the asymptotic normality, we
construct the CI for xᵀnewβ as

CI =
(

x̂ᵀnewβ− zα/2

√
V̂, x̂ᵀnewβ + zα/2

√
V̂
)

with V̂ =
σ̂2

n
ûᵀΣ̂û,

where σ̂2 = 1
n ∑n

i=1(yi − Xᵀ
i· β̂)

2, and zα/2 denotes the upper α/2 quantile for the standard normal
distribution.

Remark 1 It has been shown in Cai et al. (2021a) that the remaining bias term in (8) becomes negligible in
comparison to the variance of the asymptotic normal term when the sample size is relatively large. However, for
applications with a given sample size, we may also enlarge the standard error by a certain factor (e.g., 1.1) to
accommodate the bias component in (8).

2.2 Linear functional for GLM

In this subsection, we generalize the inference method specifically for the linear model in Linear
functional for linear model to GLM in (1). Given the initial estimator β̂ defined in (3), the key step is to
estimate the bias xᵀnew(β̂− β). We can propose a generalized version of the bias-corrected estimator
for xᵀnewβ as

x̂ᵀnewβ = xᵀnew β̂ + ûᵀ
1
n

n

∑
i=1

ω(Xᵀ
i· β̂)

(
yi − f (Xᵀ

i· β̂)
)

Xi·, (9)

where the projection direction û is defined in the following (10) and ω : R → R denotes a weight
function specified in the following Table 1 associated with different link functions.

In Table 1, we consider different GLM models and present the link function f (·), its derivative
f ′(·), and the corresponding weight function ω(·). Note that there are two ways of specifying the
weights w(z) for logistic regression, where the linearization weighting was proposed in Guo et al.
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Model Outcome Type f (z) f ′(z) ω(z) Weighting

linear Continuous z 1 1

logistic Binary ez

1+ez
ez

(1+ez)2
(1+ez)2

ez Linearization

logistic_alter Binary ez

1+ez
ez

(1+ez)2 1 Link-specific

Table 1: Definitions of the functions ω and f for different GLMs.

(2021b) for logistic regression while the link-specific weighting function was proposed in Cai et al.
(2021b) for general link function f (·). The projection direction û ∈ Rp in (9) is constructed as follows:

û = arg min
u∈Rp

uᵀ
[

1
n

n

∑
i=1

ω(Xᵀ
i· β̂) f ′(Xᵀ

i· β̂)Xi·X
ᵀ
i·

]
u subject to:∥∥∥∥∥ 1

n

n

∑
i=1

ω(Xᵀ
i· β̂) f ′(Xᵀ

i· β̂)Xi·X
ᵀ
i·u− xnew

∥∥∥∥∥
∞

≤ ‖xnew‖2µ0∣∣∣∣∣xᵀnew
1
n

n

∑
i=1

ω(Xᵀ
i· β̂) f ′(Xᵀ

i· β̂)Xi·X
ᵀ
i·u− ‖xnew‖2

2

∣∣∣∣∣ ≤ ‖xnew‖2
2µ0.

(10)

It has been established that x̂ᵀnewβ in (9) is asymptotically unbiased and normal for the linear model

(Cai et al., 2021a), the logistic model (Guo et al., 2021a; Cai et al., 2021b). The variance of x̂ᵀnewβ can be
estimated by V̂, defined as

V̂ = ûᵀ
[

1
n2

n

∑
i=1

(
ω(Xᵀ

i· β̂)
)2

σ̂2
i Xi·X

ᵀ
i·

]
û with : (11)

σ̂2
i =


1
n ∑n

j=1

(
yj − Xᵀ

j· β̂
)2

, for linear model

f (Xᵀ
i· β̂)(1− f (Xᵀ

i· β̂)), for logistic regression with f (z) = exp(z)/[1 + exp(z)]
. (12)

Based on the asymptotic normality, the CI for xᵀnewβ is:

CI =
(

x̂ᵀnewβ− zα/2

√
V̂, x̂ᵀnewβ + zα/2

√
V̂
)

.

Subsequently, for the binary outcome case, we estimate the case probability P(yi = 1 | Xi· = xnew) by

f (x̂ᵀnewβ) and construct the CI for f (xᵀnewβ), with f (z) = exp(z)/[1 + exp(z)], as:

CI =
(

f
(

x̂ᵀnewβ− zα/2

√
V̂
)

, f
(

x̂ᵀnewβ + zα/2

√
V̂
))

.

2.3 Quadratic functional for GLM

We now move our focus to inference for the quadratic functional QA = βᵀG AβG, where G ⊂ {1, . . . , p}
and A ∈ R|G|×|G| denotes a pre-specified matrix of interest. Without loss of generality, we set
G = {1, 2, · · · , |G|}. With the initial estimator β̂ defined in (3), the plug-in estimator β̂ᵀG Aβ̂G has the
following estimation error,

β̂ᵀG Aβ̂G − βᵀG AβG = 2β̂ᵀG A(β̂G − βG)− (β̂G − βG)
ᵀA(β̂G − βG).

The last term in the above decomposition (β̂G − βG)
ᵀA(β̂G − βG) is the higher-order approximation

error under regular conditions; thus the bias of β̂ᵀG Aβ̂G mainly comes from the term 2β̂ᵀG A(β̂G − βG),
which can be expressed as 2 xᵀnew(β̂− β) with xnew = (β̂ᵀG A, 0)ᵀ. Hence the term can be estimated
directly by applying the linear functional approach in section Linear functional for GLM. Utilizing this
idea, Guo et al. (2021b, 2019) proposed the following estimator of QA,

Q̂A = β̂ᵀG Aβ̂G + 2 ûᵀA

[
1
n

n

∑
i=1

ω(Xᵀ
i· β̂)

(
yi − f (Xᵀ

i· β̂)
)

Xi·

]
, (13)

where ûA is the projection direction defined in (10) with xnew = (β̂ᵀG A, 0ᵀ)ᵀ. Since QA is non-negative

if A is positive semi-definite, we truncate Q̂A at 0 and define Q̂A = max
(

Q̂A, 0
)

. We further estimate
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the variance of the Q̂A by

V̂A(τ) = 4ûᵀA

[
1

n2

n

∑
i=1

ω2(Xᵀ
i· β̂)σ̂

2
i Xi·X

ᵀ
i·

]
ûA +

τ

n
, (14)

where σ̂2
i is defined in (12) and the term τ/n with τ > 0 (default value τ = 1) is introduced as an

upper bound for the term (β̂G − βG)
ᵀA(β̂G − βG). Then given a fixed value of τ, we construct the CI

for QA as CI(τ) =
(

max
(

Q̂A − zα/2

√
V̂A(τ), 0

)
, Q̂A + zα/2

√
V̂A(τ)

)
.

Now we turn to the estimation of QΣ = βᵀGΣG,GβG where the matrix ΣG,G is unknown and
estimated by Σ̂G,G = 1

n ∑n
i=1 XiGXᵀ

iG. Decompose the error of the plug-in estimator β̂ᵀGΣ̂G,G β̂:

β̂ᵀGΣ̂G,G β̂− βGΣG,GβG = 2 β̂ᵀGΣ̂G,G(β̂G − βG) + βᵀG(Σ̂G,G − ΣG,G)βG − (β̂G − βG)
ᵀΣ̂G,G(β̂G − βG).

The first term β̂ᵀGΣ̂G,G(β̂G − βG) is estimated by applying linear functional approach in Linear func-
tional for GLM with xnew = (β̂ᵀGΣ̂G,G, 0)ᵀ; the second term βᵀG(Σ̂G,G − ΣG,G)βG can be controlled
asymptotically by central limit theorem; and the last term (β̂G − βG)

ᵀΣ̂G,G(β̂G − βG) is negligible due
to high-order bias. Guo et al. (2021b) proposed the following estimator of QΣ

Q̂Σ = β̂ᵀGΣ̂G,G β̂G + 2 ûᵀΣ

[
1
n

n

∑
i=1

ω(Xᵀ
i· β̂)

(
yi − f (Xᵀ

i· β̂)
)

Xi·

]
,

where ûΣ is the projection direction constructed in (10) with xnew = (β̂ᵀGΣ̂G,G, 0)ᵀ. We introduce the
estimator Q̂Σ = max(Q̂Σ, 0) and estimate its variance as

V̂Σ(τ) = 4ûᵀΣ

[
1

n2

n

∑
i=1

ω2(Xᵀ
i· β̂)σ̂

2
i Xi·X

ᵀ
i·

]
ûΣ +

1
n2

n

∑
i=1

(
β̂ᵀGXi,GXᵀ

i,G β̂G − β̂ᵀGΣ̂G,G β̂G

)2
+

τ

n
, (15)

where σ̂2
i is defined in (12) and the term τ/n with τ > 0 is introduced as an upper bound for the term

(β̂G − βG)
ᵀΣ̂G,G(β̂G − βG). Then, for a fixed value of τ, we can construct the CI for QΣ as

CI(τ) =
(

max
(

Q̂Σ − zα/2

√
V̂Σ(τ), 0

)
, Q̂Σ + zα/2

√
V̂Σ(τ)

)
. (16)

2.4 Conditional average treatment effects

The inference methods developed for one sample can be generalized to make inferences for conditional
average treatment effects (CATE). From a causality viewpoint, we consider the data set {(Xi·, yi, Di)}
for i = 1, . . . , n, where Di ∈ {1, 2} indicates the treatment assigned to the i-th observation. For a
new observation with covariates Xi· = xnew, we define CATE as ∆(xnew) = E(yi|Xi·, Di = 2) −
E(yi|Xi·, Di = 1).

We group observations {i : Di = k} into the k-th data sample {(X(k)
i· , y(k)i } for k = 1, 2, where

1 ≤ i ≤ nk and n1 + n2 = n. Subsequently, we rewrite E(yi|Xi·, Di = k) as E[y(k)i |X
(k)
i = xnew] for

k = 1, 2. Using the GLM model outlined in (2), the CATE can be formulated as

∆(xnew) = E[y(2)i |X
(2)
i = xnew]−E[y(1)i |X

(1)
i = xnew] = f (xᵀnewβ(2))− f (xᵀnewβ(1)).

Following (9), we construct the bias-corrected point estimators of ̂xᵀnewβ(1) and ̂xᵀnewβ(2), together

with their corresponding variances V̂(1) and V̂(2) as (11). For the first sample (X(1)
i , y(1)i ), where

1 ≤ i ≤ n1, we use the methods described in equations (9) and (11) to compute the bias-corrected

point estimator ̂xᵀnewβ(1) and the variance estimator V̂(1), respectively. Similarly, for the second sample

(X(2)
i , y(2)i ), where 1 ≤ i ≤ n2, we apply the same procedures to derive the point estimator ̂xᵀnewβ(2)

and the variance estimator V̂(2).

The paper Cai et al. (2021a) proposed to estimate ∆(xnew) by ∆̂(xnew) as follows,

∆̂(xnew) = f ( ̂xᵀnewβ(2))− f ( ̂xᵀnewβ(1)).
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Its variance can be estimated with delta method by:

V̂∆ =

(
f ′( ̂xᵀnewβ(1))

)2
V̂(1) +

(
f ′( ̂xᵀnewβ(2))

)2
V̂(2).

Then we construct the CI for ∆(xnew) as

CI =
(

∆̂(xnew)− zα/2

√
V̂∆, ∆̂(xnew) + zα/2

√
V̂∆

)
.

2.5 Inner product of regression vectors

The paper Guo et al. (2019); Ma et al. (2022) have investigated the CI construction for β
(1)ᵀ
G Aβ

(2)
G ,

provided with a pre-specified submatrix A ∈ R|G|×|G| and the set of indices G ⊂ {1, . . . , p}. With β̂(1)

and β̂(2) denoting the initial estimators fitted on first and second data sample via (3), respectively, the

plug-in estimator β̂
(1)ᵀ
G Aβ̂

(2)
G admits the following bias,

β̂
(1)ᵀ
G Aβ̂

(2)
G − β

(1)ᵀ
G Aβ

(2)
G = β̂

(2)ᵀ
G A

(
β̂
(1)
G − β

(1)
G

)
+ β̂

(1)ᵀ
G A

(
β̂
(2)
G − β

(2)
G

)
−
(

β̂
(1)
G − β

(1)
G

)ᵀ
A
(

β̂
(2)
G − β

(2)
G

)
.

The key step is to estimate the components β̂
(2)ᵀ
G A

(
β̂
(1)
G − β

(1)
G

)
and β̂

(1)ᵀ
G A

(
β̂
(2)
G − β

(2)
G

)
, since the

last term (β̂
(1)
G − β

(1)
G )ᵀA(β̂

(2)
G − β

(2)
G ) is negligible due to high-order bias. We propose the following

bias-corrected estimator for β
(1)ᵀ
G Aβ

(2)
G

̂
β
(1)ᵀ
G Aβ

(2)
G = β̂

(1)ᵀ
G Aβ̂

(2)
G +ûᵀ1

1
n1

n1

∑
i=1

ω(X(1)ᵀ
i· β̂(1))

(
y(1)i − f (X(1)ᵀ

i· β̂(1))
)

X(1)
i·

+ ûᵀ2
1

n2

n2

∑
i=1

ω(X(2)ᵀ
i· β̂(2))

(
y(2)i − f (X(2)ᵀ

i· β̂(2))
)

X(2)
i· .

(17)

Here û1 represents the projection direction computed in (10), using the first sample data and xnew =

(β̂
(2)ᵀ
G A, 0)ᵀ. Similarly, û2 is the projection direction derived from the second sample data, using

xnew = (β̂
(2)ᵀ
G A, 0)ᵀ. The corresponding variance of

̂
β
(1)ᵀ
G Aβ

(2)
G , when A is a known positive definite

matrix, is estimated as
V̂A(τ) = V̂(1) + V̂(2) +

τ

min(n1, n2)
,

where V̂(k) is computed as in (11) for the k-th regression model (k = 1, 2) and the term τ/ min(n1, n2)

with τ > 0 is introduced as an upper bound for the term (β̂
(1)
G − β

(1)
G )ᵀA(β̂

(2)
G − β

(2)
G ).

We also consider the case of unknown A = ΣG,G. As a natural generalization, the quan-

tity β
(1)ᵀ
G ΣG,Gβ

(2)
G is well defined if the two regression models in (2) share the design covariance

matrix Σ = EX(1)
i· X(1)ᵀ

i· = EX(2)
i· X(2)ᵀ

i· . We follow the above procedures by replacing A with
Σ̂G,G = 1

n1+n2
∑n1+n2

i=1 Xi,GXᵀ
i,G where X is the row-combined matrix of X(1) and X(2). The variance of

̂
β
(1)ᵀ
G ΣG,Gβ

(2)
G is now estimated as

V̂Σ(τ) = V̂(1) + V̂(2) +
1

(n1 + n2)2

n1+n2

∑
i=1

(
β̂
(1)ᵀ
G Xi,GXᵀ

i,G β̂
(2)
G − β̂

(1)ᵀ
G Σ̂G,G β̂

(2)
G

)2
+

τ

min(n1, n2)
.

We then construct the CI for β
(1)ᵀ
G Aβ

(2)
G as

CI(τ) =


(

̂
β
(1)ᵀ
G Aβ

(2)
G − zα/2V̂A(τ),

̂
β
(1)ᵀ
G Aβ

(2)
G + zα/2V̂A(τ)

)
if A is specified(

̂
β
(1)ᵀ
G ΣG,Gβ

(2)
G − zα/2V̂Σ(τ),

̂
β
(1)ᵀ
G ΣG,Gβ

(2)
G + zα/2V̂Σ(τ)

)
A = ΣG,G is unknown.
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2.6 Distance of regression vectors

We denote γ = β(2) − β(1) and its initial estimator γ̂ = β̂(2) − β̂(1). The quantity of interest is the
distance between two regression vectors γᵀ

G AγG, given a pre-specified submatrix A ∈ R|G|×|G| and
the set of indices G ∈ {1, . . . , p}. The bias of the plug-in estimator γ̂ᵀ

G Aγ̂G is:

γ̂ᵀ
G Aγ̂G − γᵀ

G AγG = 2 γ̂ᵀ
G A

(
β̂
(2)
G − β

(2)
G

)
− 2 γ̂ᵀ

G A
(

β̂
(1)
G − β

(1)
G

)
− (γ̂G − γG)

ᵀ A (γ̂G − γG) .

The key step is to estimate the error components γ̂ᵀ
G A

(
β̂
(1)
G − β

(1)
G

)
and γ̂ᵀ

G A
(

β̂
(2)
G − β

(2)
G

)
in the

above decomposition. We apply linear functional techniques twice here, and propose the bias-corrected
estimator:

γ̂ᵀ
G AγG = γ̂ᵀ

G Aγ̂G − 2 ûᵀ1
1

n1

n1

∑
i=1

ω(X(1)ᵀ
i· β̂(1))

(
y(1)i − f (X(1)ᵀ

i· β̂(1))
)

X(1)
i·

+ 2 ûᵀ2
1

n2

n2

∑
i=1

ω(X(2)ᵀ
i· β̂(2))

(
y(2)i − f (X(2)ᵀ

i· β̂(2))
)

X(2)
i· ,

(18)

where û1 and û2 are the projection directions defined in (10) with xnew =
(
γ̂ᵀ

G A, 0
)ᵀ but on two differ-

ent sample data respectively. The second term on right-hand-side of (18) is to estimate −2 xᵀnew(β̂
(1)
G −

β
(1)
G ) and the third term on right-hand-side of (18) is to estimate −2 xᵀnew(β̂

(2)
G − β

(2)
G ).

To maintain non-negativity of distance, we define γ̂ᵀ
G AγG = max

{
γ̂ᵀ

G AγG, 0
}

and estimate its
corresponding asymptotic variance as

V̂A(τ) = 4 V̂(1) + 4 V̂(2) +
τ

min(n1, n2)
,

where V̂(k) is computed as in (11) for the k-th regression model (k = 1, 2) and the term τ/ min(n1, n2)
with τ > 0 is introduced as an upper bound for the term (γ̂G − γG)

ᵀA(γ̂G − γG). With asymptotic
normality, we construct the CI for γᵀ

G AγG as

CI(τ) =
(

max
(

γ̂ᵀ
G AγG − zα/2

√
V̂A(τ), 0

)
, γ̂ᵀ

G AγG + zα/2

√
V̂A(τ)

)
.

We further consider the unknown matrix A = ΣG,G and construct the point estimator ̂γ>G ΣG,GγG

in a similar way as outlined in (18). In this case, the submatrix A is substituted with Σ̂G,G, where
Σ̂G,G = 1

n1+n2
∑n1+n2

i=1 Xi,GXᵀ
i,G with X as the row-combined matrix of X(1) and X(2). Its corresponding

asymptotic variance is

V̂Σ(τ) = 4 V̂(1) + 4 V̂(2) +
1

(n1 + n2)2

n1+n2

∑
i=1

(
γ̂ᵀ

GXi,GXᵀ
i,Gγ̂G − γ̂ᵀ

GΣ̂G,Gγ̂G

)2
+

τ

min(n1, n2)
.

Next we present the CI for γᵀ
GΣG,GγG.

CI(τ) =
(

max
(

̂γᵀ
GΣG,GγG − zα/2

√
V̂Σ(τ), 0

)
, ̂γᵀ

GΣG,GγG + zα/2

√
V̂Σ(τ)

)
.

3 Usage of the package

The SIHR package contains a set of functions for conducting inference for various transformations
of high-dimensional regression vectors, such as linear and quadratic functions. We summarize the
functions and their corresponding objectives in the following Table 2.

3.1 Linear functional

The function LF(), shorthanded for Linear Functional, performs inference for xᵀnewβ, under the high-
dimensional model (1), where xnew is a given vector. A typical LF() code snippet looks like:
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Function Inference Objective Description

LF() xᵀnewβ

Generates a LF object which includes the bias-corrected estima-
tor of xᵀnewβ in high-dimensional GLM and the corresponding
standard error, which are further used to construct CI and
conduct hypothesis testing related to xᵀnewβ.

QF() βᵀG AβG

Generates a QF object which includes the bias-corrected esti-
mator of βᵀG AβG in high-dimensional GLM, for A ∈ R|G|×|G|

and index set G ∈ {1, . . . , p}, and computes the correspond-
ing standard error, which are further used to construct CI and
conduct hypothesis testing related to βᵀG AβG.

CATE() f (xᵀnewβ(2))− f (xᵀnewβ(1))

Generates a CATE object which includes the bias-corrected
estimator of f (xᵀnewβ(2))− f (xᵀnewβ(1)) in high-dimensional
GLMs and the corresponding standard error, which are further
used to construct CI and conduct hypothesis testing related to
f (xᵀnewβ(2))− f (xᵀnewβ(1)).

InnProd() β
(1)ᵀ
G Aβ

(2)
G

Generates an InnProd object which includes the bias-corrected

estimator of β
(1)ᵀ
G Aβ

(2)
G in high-dimensional GLMs, for A ∈

R|G|×|G| and index set G ∈ {1, . . . , p}, and computes the cor-
responding standard error, which are further used to construct

CI and conduct hypothesis testing related to β
(1)ᵀ
G Aβ

(2)
G .

Dist() γᵀ
G AγG with γ = β(2) − β(1)

Generates a Dist object which includes the bias-corrected esti-
mator of γᵀ

G AγG in high-dimensional GLMs, for A ∈ R|G|×|G|

and index set G ∈ {1, . . . , p}, and the corresponding stan-
dard error, which are further used to construct CI and conduct
hypothesis testing related to γᵀ

G AγG.

ci() —- Input object (LF/ QF/ CATE/ InnProd/ Dist), returns CI.

summary() —-

Input object (LF/ QF/ CATE/ InnProd/ Dist), computes and
returns a list of summary statistics, including plug-in estima-
tor, bias-corrected estimator together with associated standard
error and p-value.

Table 2: Functions of SIHR, which perform statistical inference for low-dimensional objectives in
high-dimensional GLM for continuous and binary outcomes.

LF(X, y, loading.mat, model = c("linear", "logistic", "logistic_alter"),
intercept = TRUE, intercept.loading = FALSE, beta.init = NULL, lambda = NULL,
mu = NULL, prob.filter = 0.05, rescale = 1.1, verbose = FALSE)

In the following we provide descriptions of the various arguments of the LF function :

• X is the design matrix of dimension n× p and y is the response vector of length n.

• loading.mat is the matrix of loading vectors where each column corresponds to a new future
observation xnew. It is designed to allow for taking multiple xnew’s as input, thereby saving the
computational time of constructing the initial estimator multiple times.

• model (default = "linear") specifies which high-dimensional regression model to be fitted, the
choices being c("linear", "logistic", "logistic_alter"), where "linear" corresponds to
the linear model and "logistic" and "logistic_alter" correspond to the logistic regression; see
Table 1.

• intercept (default = TRUE) is a logical argument that specifies whether an intercept term should
be fitted while computing the initial estimator in (3).

• intercept.loading (default = FALSE) is a logical argument that specifies whether the intercept
term should be included for defining the objective xᵀnewβ. Specifically, setting intercept.loading
= TRUE prepend a column of 1’s to the matrix loading.mat.

• beta.init (default = NULL) allows the user to supply the initial estimator β̂ of the regression
vector. If beta.init is left as NULL, the initial estimator β̂ in (3) is computed using function
cv.glmnet in glmnet.

• lambda (default = NULL) denotes the scaled tuning parameter λ used for computing the initial
estimator β̂ in (3) which can either be pre-specified or can be set to NULL whence LF uses the
function cv.glmnet in glmnet to compute the tuning parameter.
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• mu (default = NULL) denotes the tuning parameter µ0 in (10). When mu is set as NULL, it is
computed as the smallest µ0 such that (10) has a finite solution.

• prob.filter (default = 0.05) is specific to model = "logistic". From Table 1, observe that
model = "logistic" sets the weight for i-th individual as 1

P(yi=1|Xi·)·(1−P(yi=1|Xi·))
which can

blow up if the estimated probabilities P(yi | Xi·) are very close to 0 or 1. We discard those
samples for which the estimated probability lies outside [prob.filter, 1− prob.filter] before
proceeding with the algorithm.

• rescale (default = 1.1) denotes the factor used to enlarge the standard error to account for the
finite sample bias, as pointed out in Remark 1.

• verbose (default = FALSE) is a logical argument that specifies whether intermediate message(s)
should be printed, the projection direction be returned.

Remark 2 The structure of the loading.mat is designed so that each column corresponds to a future obser-
vation xnew. This matrix structure optimizes computational efficiency by allowing the debiasing algorithm to
process multiple linear functionals simultaneously; that is, when loading.mat contains multiple columns, the
LF() function only requires computing the initial estimator β̂ in (3) once. Specifically, when loading.mat
is set as the identity matrix of dimension p, where p represents the number of covariates, the LF() function
conducts inference for all p individual regression coefficients concurrently.

Next, we provide an example to illustrate the usage of LF() in the linear regression model.

Example 1. For 1 ≤ i ≤ n with n = 100, the covariates Xi· are independently generated from the
multivariate normal distribution with mean µ = 0p and covariance Σ = Ip with p = 120, where Ip
is an identity matrix of dimension p. The regression vector β ∈ Rp is generated as β1 = 0.5, β2 = 1
and β j = 0 if 3 ≤ j ≤ p. The outcome is generated as yi = Xᵀ

i·β + εi with independently generated
standard normal εi.

n <- 100; p <- 120
mu <- rep(0,p); Cov <- diag(p)
beta <- rep(0,p); beta[c(1,2)] <- c(0.5, 1)
X <- MASS::mvrnorm(n, mu, Cov)
y <- X %*% beta + rnorm(n)

We now generate two observations x(1)new, x(2)new and apply the LF() function to construct the point

estimators of x(1)ᵀnew β and x(2)ᵀnew β, together with their standard error estimates.

loading1 <- c(1, 1, rep(0, p-2))
loading2 <- c(-0.5, -1, rep(0, p-2))
loading.mat <- cbind(loading1, loading2)
Est <- LF(X, y, loading.mat, model = 'linear')

Having fitted the model, we have two following functions ci() and summary(). We first report the

95% CIs for x(1)ᵀnew β and x(2)ᵀnew β, where the true values x(1)ᵀnew β = 1.5 and x(2)ᵀnew β = −1.25 are contained in
the corresponding CIs.

ci(Est)
#> loading lower upper
#>1 1 1.167873 1.8753934
#>2 2 -1.544138 -0.7995375

Then, we apply the summary() function to return a list of the summary statistics, including the plugin
estimator, bias-corrected estimator, the standard error for the bias-corrected estimator and the p-value
corresponding to the hypothesis testing H0 : xᵀnewβ = 0 vs H1 : xᵀnewβ 6= 0. It is observed that the
bias-corrected estimators are closer to the true values compared to the plug-in estimators.

summary(Est)
#>Call:
#>Inference for Linear Functional
#>
#>Estimators:
#> loading est.plugin est.debias Std. Error z value Pr(>|z|)
#> 1 1.268 1.522 0.1805 8.430 0.000e+00 ***
#> 2 -1.033 -1.172 0.1900 -6.169 6.868e-10 ***
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3.2 Quadratic functional

For a given index set G ⊂ {1, . . . , p}, the function QF(), abbreviated for Quadratic Functional, con-
ducts inference for βᵀG AβG if A ∈ R|G|×|G| is the submatrix pre-specified or βᵀGΣG,GβG under the
high-dimensional regression model (1). The function QF() can be called with the following arguments.

QF(X, y, G, A = NULL, model = c("linear", "logistic", "logistic_alter"),
intercept = TRUE, beta.init = NULL, split = TRUE, lambda = NULL, mu = NULL,
prob.filter = 0.05, rescale = 1.1, tau = c(0.25, 0.5, 1), verbose = FALSE)

In the function QF(), the parameters X, y, model, intercept, beta.init, lambda, mu, prob.filter,
rescale maintain the same definitions as in the LF() function. In the following, we primarily focus on
elaborating the additional arguments introduced for the QF() function.

• G ⊂ {1, . . . , p} is the set of indices of interest.

• A is the matrix in the quadratic form, of dimension |G| × |G|. If A is specified, it will conduct
inference for βᵀG AβG; otherwise, if left NULL, it will turn to βᵀGΣG,GβG.

• split (default = TRUE) indicates whether we conduct sample splitting. When split=FALSE, the
initial estimator of regression coefficients in (3) is computed using one half of the sample while
the remaining half is used for bias correction in (13). When split=TRUE, the full data is used for
computing both the initial estimator and conducting the bias correction.

• tau.vec (default = c(0.25,0.5,1)) allows the user to supply a vector of possible values for τ
used in (14) and (15).

In the following, we illustrate the usage of QF() in the linear regression model.

Example 2. For 1 ≤ i ≤ n, with n = 200, the covariates Xi· are generated from multivariate normal
distribution with mean µ = 0p and covariance Σ ∈ Rp×p, with p = 150, where Σj,k = 0.5|j−k| for
1 ≤ j, k ≤ p. The regression coefficients β is constructed as β j = 0.2 for 25 ≤ j ≤ 50 and β j = 0
otherwise. We generate the outcome following the model yi = Xᵀ

i·β + εi with εi generated as the
standard normal.

n <- 200; p <- 150
mu <- rep(0,p)
Cov <- matrix(0, p, p)
for(j in 1:p) for(k in 1:p) Cov[j,k] <- 0.5^(abs(j-k))
beta <- rep(0, p); beta[25:50] <- 0.2
X <- MASS::mvrnorm(n, mu, Cov)
y <- X%*%beta + rnorm(n)

We apply the QF() function to obtain the point estimator of βᵀGΣG,GβG with G = {40, . . . , 60} along
with the standard error estimator.

test.set <- c(40:60)
Est <- QF(X, y, G = test.set, A = NULL, model = "linear", split = FALSE)

We run the function ci() that outputs the CIs for QΣ corresponding to different values of τ. With
the default τ = c(0.25, 0.5, 1), we obtain three different CIs for βᵀGΣG,GβG; see (16). Note that the true
value βᵀGΣG,GβG = 1.16 belongs to all of these constructed CIs.

ci(Est)
#> tau lower upper
#>1 0.25 0.8118792 1.466422
#>2 0.50 0.8046235 1.473677
#>3 1.00 0.7905648 1.487736

Subsequently, we employ the summary() function to yield the bias-corrected and plug-in estimators,
alongside the standard errors for the debiased estimator across different values of τ. Additionally, it
provides the p-values for the hypothesis testing H0 : QΣ = 0 versus H1 : QΣ > 0.

summary(Est)
#> Call:
#> Inference for Quadratic Functional
#>
#> tau est.plugin est.debias Std. Error z value Pr(>|z|)
#> 0.25 0.904 1.139 0.1670 6.822 8.969e-12 ***
#> 0.50 0.904 1.139 0.1707 6.674 2.486e-11 ***
#> 1.00 0.904 1.139 0.1779 6.405 1.504e-10 ***

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 37

Similarly to the LF() case, our proposed bias-corrected estimator effectively corrects the plugin
estimator’s bias, where the true value is 1.16.

3.3 Conditional average treatment effect

The function CATE(), shorthanded for Conditional Average Treatment Effect, conducts inference for
∆(xnew) = f (xᵀnewβ(2))− f (xᵀnewβ(1)) under the high-dimensional regression model (2). This function
can be implemented as follows:

CATE(X1, y1, X2, y2, loading.mat, model = c("linear", "logistic", "logistic_alter"),
intercept = TRUE, intercept.loading = FALSE, beta.init1 = NULL, beta.init2 = NULL,
lambda = NULL, mu = NULL, prob.filter = 0.05, rescale = 1.1, verbose = FALSE)

The majority of the arguments remain consistent with those of the LF() function. We will highlight the
new parameters specific to the CATE() function.

• X1 and y1 respectively denote the design matrix and the response vector for the first sample of
data, while X2 and y2 denote those for the second sample of data.

• beta.init1 (default = NULL) is the initial estimator in (3) for the first sample, while beta.init2
(default = NULL) is for the second sample. If left as NULL, they are computed using cv.glmnet in
glmnet.

• lambda (default = NULL) represents the common tuning parameter λ for computing the initial
estimators beta.init1 and beta.init2. If left as NULL, cv.glmnet in glmnet is employed for its
computation, done separately for each sample.

• mu (default = NULL) represents the common tuning parameter µ0 in (10) for computing the
projection directions for the two samples. When unspecified and left as NULL, it is computed as
the smallest µ0 such that (10) has a finite solution, done separately for each sample.

We consider the logistic regression case to illustrate CATE() with the argument model = "logistic_alter".

Example 3. In the first group of data, the covariates X(1)
i· , for 1 ≤ i ≤ n1 with n1 = 100, follow

multivariate normal distribution with µ = 0p and covariance Σ(2) = Ip; in the second group of data,

the covariates X(2)
i· , for 1 ≤ i ≤ n2 with n2 = 180, follow multivariate normal distribution with µ = 0p

and covariance Σ(2) ∈ Rp×p with p = 120 and Σ(2)
j,k = 0.5|j−k| for 1 ≤ j, k ≤ p. We generate the binary

outcomes following the model y(k)i ∼ Bernoulli( f (X(k)ᵀ
i· β(k))) with f (z) = exp(z)/[1 + exp(z)] for

k = 1, 2. See the following code for details of β(1) and β(2).

n1 <- 100; n2 <- 180; p <- 120
mu1 <- mu2 <- rep(0,p)
Cov1 <- diag(p)
Cov2 <- matrix(0, p, p)
for(j in 1:p) for(k in 1:p) Cov2[j,k] <- 0.5^(abs(j-k))
beta1 <- rep(0, p); beta1[c(1,2)] <- c(0.5, 0.5)
beta2 <- rep(0, p); beta2[c(1,2)] <- c(1.8, 1.8)
X1 <- MASS::mvrnorm(n1, mu1, Cov1); val1 <- X1%*%beta1
X2 <- MASS::mvrnorm(n2, mu2, Cov2); val2 <- X2%*%beta2
y1 <- rbinom(n1, 1, exp(val1)/(1+exp(val1)))
y2 <- rbinom(n2, 1, exp(val2)/(1+exp(val2)))

We then employ the function CATE() to obtain point estimator of ∆(xnew) and the associated standard
error estimator. By setting model = "logistic_alter", we set the weight w(.) = 1 in (9). See Table 1.

loading.mat <- c(1, 1, rep(0, p-2))
Est <- CATE(X1, y1, X2, y2,loading.mat, model = "logistic_alter")

Having fitted the model, it allows for method ci() and summary() as LF() does. We mainly demon-
strate the ci() function and first construct confidence interval for xᵀnew(β(2) − β(1)) and observe that
95% CI covers the true value 2.6.

ci(Est)
#> loading lower upper
#>1 1 1.614269 4.514703

If we further specify the argument probability as TRUE for the logistic regression, ci() yields the CI
for f (xᵀnewβ(2))− f (xᵀnewβ(1)) whose true value is 0.2423.
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ci(Est, probability = TRUE)
#> loading lower upper
#>1 1 0.1531872 0.5086421

3.4 Inner product

The function InnProd(), shorthanded for Inner Product, conducts inference for β
(1)ᵀ
G Aβ

(2)
G with

A ∈ R|G|×|G| where G denotes the prespecified index set. When the matrix A is not specified, the

default inference target becomes β
(1)ᵀ
G ΣG,Gβ

(2)
G .

InnProd(X1, y1, X2, y2, G, A = NULL, model = c("linear", "logistic", "logistic_alter"),
intercept = TRUE, beta.init1 = NULL, beta.init2 = NULL, split = TRUE, lambda = NULL,
mu = NULL, prob.filter = 0.05, rescale = 1.1, tau = c(0.25,0.5,1), verbose = FALSE)

The arguments of InnProd() are similarly defined as for the function CATE(), and we mainly highlight
the new arguments in the following.

• G is the pre-specified index set, a subset of {1, · · · , p}.
• A is the matrix in the inner product form. If the matrix A is specified, it will conduct inference for

β
(1)ᵀ
G Aβ

(2)
G ; otherwise, it will turn to β

(1)ᵀ
G ΣG,Gβ

(2)
G where Σ is the common design covariance

matrix corresponding to the two samples.

In the following code, we demonstrate the use of InnProd() in the linear regression.

Example 4. In the first group of data, the covariates X(1)
i· , for 1 ≤ i ≤ n1 with n1 = 200, follow

multivariate normal distribution with µ = 0p and covariance Σ(1) = Ip; in the second group of data,

the covariates X(2)
i· , for 1 ≤ i ≤ n2 with n2 = 260, follow multivariate normal distribution with µ = 0p

and covariance Σ(2) ∈ Rp×p with p = 120 and Σ(2)
j,k = 0.5|j−k| for 1 ≤ j, k ≤ p. We generate following

the model y(k)i = X(k)ᵀ
i· β(k) + ε

(k)
i with standard normal error ε

(k)
i for k = 1, 2.

n1 <- 200; n2 <- 260; p <- 120
mu1 <- mu2 <- rep(0,p)
Cov1 <- diag(p)
Cov2 <- matrix(0, p, p)
for(j in 1:p) for(k in 1:p) Cov2[j,k] <- 0.5^(abs(j-k))
beta1 <- rep(0, p); beta1[1:10] <- 0.5
beta2 <- rep(0, p); beta2[3:12] <- 0.4
X1 <- MASS::mvrnorm(n1, mu1, Cov1)
X2 <- MASS::mvrnorm(n2, mu2, Cov2)
y1 <- X1%*%beta1 + rnorm(n1)
y2 <- X2%*%beta2 + rnorm(n2)

After preparing the data, we utilize the InnProd function to build a debiased estimator and its

associated standard error for β
(1)ᵀ
G β

(2)
G with A = I|G| and G = {1, 2, . . . , 20}.

test.set <- c(1:20)
A <- diag(length(test.set))
Est <- InnProd(X1, y1, X2, y2, G = test.set, A, model = "linear")

Having fitted the model, it allows for method ci() and summary() as QF() does. Note that the true

value β
(1)ᵀ
G β

(2)
G = 1.6 is included in the following CIs with default values τ ∈ {0.25, 0.5, 1}.

ci(Est)
#> tau lower upper
#> 1 0.25 0.7432061 2.490451
#> 2 0.50 0.7128181 2.520839
#> 3 1.00 0.6520422 2.581615

3.5 Distance

The function Dist(), shorthanded for Distance, is designed to perform inference for the quadratic
form γᵀ

G AγG, where γ = β(2)− β(1) and the index set G ⊂ {1, . . . , p}. The matrix A can either be a pre-
specified submatrix in R|G|×|G| or the covariance matrix ΣG,G within the context of high-dimensional
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regression models.

Dist(X1, y1, X2, y2, G, A = NULL, model = c("linear", "logistic", "logistic_alter"),
intercept = TRUE, beta.init1 = NULL, beta.init2 = NULL, split = TRUE, lambda = NULL,
mu = NULL, prob.filter = 0.05, rescale = 1.1, tau = c(0.25,0.50,1), verbose = FALSE)

The arguments of Dist() are similarly defined as for the function CATE(), and we mainly highlight the
new arguments in the following.

• G is the pre-specified index set, a subset of {1, · · · , p}.
• A is the matrix in the inner product form. If the matrix A is specified, it will conduct inference for

γᵀ
G AγG; otherwise, it will turn to γᵀ

GΣG,GγG where Σ is the common design covariance matrix
corresponding to the two samples.

In the following example, we demonstrate the application of the Dist() function within a linear
regression context.

Example 5. For the first group of data, the covariates X(1)
i· , for each 1 ≤ i ≤ n1 where n1 = 220,

are drawn from a multivariate normal distribution with mean µ = 0p and covariance Σ(1) = Ip.

In the second group of data, the covariates X(2)
i· , for each 1 ≤ i ≤ n2 with n2 = 180, also follow

multivariate normal distribution with mean µ = 0p and covariance Σ(2) ∈ Rp×p with p = 100 and

Σ(2)
j,k = 0.5|j−k| for 1 ≤ j, k ≤ p. The regression coefficients β(1) and β(2) are generated in the following

code. Outcomes for both groups are then generated according to the model y(k)i = X(k)ᵀ
i· β(k) + ε

(k)
i

where ε
(k)
i is a standard normal error for k = 1, 2.

n1 <- 220; n2 <- 180; p <- 100
mu <- rep(0,p); Cov <- diag(p)
beta1 <- rep(0, p); beta1[1:2] <- c(0.5, 1)
beta2 <- rep(0, p); beta2[1:10] <- c(0.3, 1.5, rep(0.08, 8))
X1 <- MASS::mvrnorm(n1, mu, Cov)
X2 <- MASS::mvrnorm(n2, mu, Cov)
y1 <- X1%*%beta1 + rnorm(n1)
y2 <- X2%*%beta2 + rnorm(n2)

Next we employ the Dist() function to construct a debiased estimator for γᵀ
GΣG,GγG with G =

{1, . . . , 10}, alongside the corresponding estimated standard error.

test.set <- c(1:10)
Est <- Dist(X1, y1, X2, y2, G = test.set, A = NULL, model = "linear", split = FALSE)

Having fitted the model, it allows for methods ci() and summary() as QF() does. Here, the true value
is γᵀ

GΣG,GγG = 0.3412. Similar to the previous instances, we note that the bias-corrected estimator
effectively corrects the bias of the plugin estimator. Depending on the τ values, we obtain various
CIs, all of which encompass the true value. It is important to mention that in case of negative lower
boundaries, they will be truncated at 0 for τ = 0.5 and τ = 1.

ci(Est)
#> tau lower upper
#>1 0.25 0.028202 0.6831165
#>2 0.50 0.000000 0.7196383
#>3 1.00 0.000000 0.7926819

summary(Est)
#> Call:
#> Inference for Distance
#>
#> tau est.plugin est.debias Std. Error z value Pr(>|z|)
#> 0.25 0.4265 0.3557 0.1671 2.129 0.03327 *
#> 0.50 0.4265 0.3557 0.1857 1.915 0.05547 .
#> 1.00 0.4265 0.3557 0.2230 1.595 0.11070

4 Comparative analysis

In this section, we perform a comparative analysis of SIHR compared to existing methods in numerical
simulations. Initially, we compare our approach to traditional plug-in Lasso estimators, implemented
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by glmnet, to demonstrate the effectiveness of bias correction. Subsequently, we will compare our
method against other inference techniques implemented by hdi and SSLasso (available at http:
//web.stanford.edu/~montanar/sslasso/code.html). We aim to demonstrate that our proposed
method ensures a unified guarantee of coverage across a wider range of settings while also significantly
enhancing computational efficiency.

Throughout this section, we evaluate the performance of our LF() estimator using synthetic data,
generated as follows. For 1 ≤ i ≤ n,

Xi·
iid∼ N (0p, Ip), yi ∼

{
N (Xᵀ

i·β, 1), for linear model;
Bernoulli(Xᵀ

i·β), for logistic model
, where β = (0.5, 0.75, 0.25, 0p−3).

The sample size n varies across {200, 400} with the number of covariates fixed as p = 300. The
loading is set as xnew = (1, 0.75, 0.5, 0p−3)

ᵀ, making our inference target xᵀnewβ = 1.1875. All results
summarized here are based on 500 simulation rounds.

4.1 Effectiveness of bias correction

We compare the bias-corrected estimator x̂ᵀnewβ, as defined in (9), against the plug-in Lasso estimator
xᵀnew β̂, where β̂ represents the Lasso estimator in (3) implemented by glmnet with a tuning parameter
selected through the package’s built-in cross-validation.

Figure 1 reports the performance for logistic regression with n = 400 and displays histograms of
500 point estimates for the plug-in Lasso and the debiased estimates outputted by SIHR. The target
xᵀnewβ = 1.1875 is highlighted with red vertical lines. It is evident that the plug-in Lasso estimators
exhibit significant bias and are not suitable for inference, whereas our bias-corrected estimators
effectively correct this bias.
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Figure 1: Comparison of the debiased estimates output by SIHR and plug-in Lasso estimates for
xᵀnewβ in the logistic model with n = 400. The upper panel shows the bias-corrected point estimates
derived using our package SIHR, while the lower panel features the plug-in point estimates from
the glmnet package. Red vertical lines indicate the target value xᵀnewβ = 1.1875. Biases between this
target and the empirical means of the estimates are highlighted for each method.

4.2 Comparison with other inference methods

We compare the performance of the SIHR package with existing softwares, including R packages hdi
and SSLasso. The performance metrics include the empirical coverage, averaged length of confidence
intervals, and averaged computational time (in seconds). All metrics are reported as the average of
500 simulation rounds. The confidence intervals based on hdi and SSLasso are defined as follows:

CIα(xnew) =
(

xᵀnew β̃− zα/2(xᵀnewṼxnew)1/2, xᵀnew β̃ + zα/2(xᵀnewṼxnew)1/2
)

,
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where β̃ denotes the debiased estimator and Ṽ denotes the estimated covariate matrix of β̃, outputted
by hdi and SSLasso. Note that SSLasso only provides inference for linear regression models.

Coverage and Length As shown in Table 3, the CIs based on SIHR achieve desired coverage across
various scenarios, and the lengths decrease with larger sample sizes. In contrast, the coverage of CIs
from hdi and SSLasso may be slightly undercovered, especially when n = 200.

Computation Efficiency We examine the computational efficiency of these methods and report the
average computation time in the "Time" column, measured in seconds. The SIHR package demon-
strates notable computational efficiency, with an average processing time of under 10 seconds. In
comparison, using the algorithm in hdi with parameters n = 400 and p = 300 requires approximately
8 minutes. This significant difference stems from the fact that the hdi algorithm is not tailored for in-
ferring linear functionals and separately implementing p bias correction steps, one for each regression
coefficient, while SIHR only implements a single bias correction step.

Linear Logistic

n Method Cov Len Time Cov Len Time

200

SIHR 0.94 0.47 3 0.94 0.94 3

hdi 0.90 0.38 211 0.91 0.80 213

SSLasso 0.83 0.34 17 - - -

400

SIHR 0.96 0.34 12 0.96 0.74 14

hdi 0.94 0.27 475 0.89 0.56 489

SSLasso 0.94 0.29 38 - - -

Table 3: Comparison of methods implemented by packages SIHR, hdi, SSLasso in both linear and
logistic models with n ∈ {200, 400}. The columns labeled "Cov" and "Len" denote the empirical
coverage and the length of the confidence intervals over 500 simulation runs, respectively; "Time"
indicates the average computation time in seconds. The columns titled "Linear" and "Logistic" refer to
the regression model applied. According to the experimental design, a valid inference method should
achieve a coverage rate of approximately 0.95.

5 Real data applications

5.1 Motif regression

We showcase the application of the LF() function in motif regression analysis, which investigates
the impact of motif matching scores on gene expression levels, as discussed in the literature (Beer
and Tavazoie, 2004; Conlon et al., 2003; Das et al., 2004; Yuan et al., 2007). Motifs are specific DNA
sequences bound to transcription factors, playing crucial roles in controlling transcription activities,
such as gene expressions (Yuan et al., 2007). The matching score of a motif measures its prevalence,
reflecting how prominently a motif appears in the upstream regions of genes. These matching scores
are recognized for their effectiveness in predicting gene expression levels. Our goal is to quantitatively
assess the association between these matching scores and gene expression, elucidating the underlying
biological mechanisms. In this analysis, we work with a dataset that includes the expression levels of
n = 2587 genes, where matching scores of p = 666 motifs are observed on each gene. The structure of
the data is organized as follows: for 1 ≤ i ≤ 2587,

• yi : the expression level of gene i;
• Xi,j : the matching score of the j-th motif on gene i, for 1 ≤ j ≤ 666.

Below, we display several observations of the response variable along with the first four covariates
out of a total of 666.

colnames(X) <- paste0("X",1:ncol(X))
head(cbind(y, X[,1:4]))
#> y X1 X2 X3 X4
#> YAL002W 0.51 1.1595129 1.573024 1.239862 1.144537
#> YAL003W -3.06 1.9581497 1.928997 1.228753 1.118513
#> YAL007C -1.86 1.3047351 1.617691 1.299527 1.126370
#> YAL025C -1.54 0.8057353 1.487356 1.395147 1.003005
#> YAL034C 1.00 0.8886961 1.860788 1.569881 1.316531
#> YAL035W -2.05 1.3377646 1.152577 1.532653 1.012072
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We seek to investigate the relationships between the matching scores of individual motifs (X·,j for
1 ≤ j ≤ 666) and gene expression levels (y). Our objective is to access the significance of these
associations. For this purpose, the LF() function from the package SIHR is utilized to compute 95%
confidence intervals for the 666 regression coefficients.

p <- ncol(X)
loading.mat <- diag(p)
Est <- LF(X, y, loading.mat, model='linear')
ci(Est)

We then summarize and visualize the resulting 666 confidence intervals in Figure 2. The results reveal
that 25 of these intervals, highlighted in blue, lie entirely above zero, indicating a positive association
between the matching scores of these specific motifs and gene expression levels. Conversely, 23
intervals, marked in green, fall completely below zero, suggesting a negative influence of these motifs
on gene expression levels. Overall, these results demonstrate that 48 motifs out of the total have a
statistically significant influence on gene expression, offering valuable insights into the regulatory
mechanisms involved.
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Figure 2: Motif: Constructed CIs for the 666 regression coefficients. Motifs represented by blue CIs
indicate a significant positive association with gene expression levels, whereas those with green CIs
demonstrate significant negative associations.

5.2 Fasting glucose level data

We have illustrated the application of the LF() function in a linear regression context. We now
demonstrate its use on another real application in a logistic regression setting. In this study, we
examine the impact of polymorphic genetic markers on glucose levels in a stock mice population.
The data, accessible at https://wp.cs.ucl.ac.uk/outbredmice/heterogeneous-stock-mice/, uses
fasting glucose levels, dichotomized at 11.1 mmol/L, as the response variable —an important indicator
for type-2 diabetes. Specifically, glucose levels below 11.1 mmol/L are considered normal and labeled
as yi = 0, while levels above 11.1 mmol/L are classified as high, indicating pre-diabetic or diabetic
conditions, and labeled as yi = 1.

The dataset initially comprises 10, 346 polymorphic genetic markers for a sample size n = 1, 269.
Given the large number of markers and the significant correlation among some of them, we implement
a selection criterion to ensure the maximum absolute correlation among the markers does not exceed
0.75. After filtering, we narrow down to a subset of 2, 341 genetic markers. Additionally, we include
"gender" and "age" as baseline covariates. To prepare for the analysis, both the genetic markers and
baseline covariates are standardized. To sum up, the data structure is organized as follows: for
i = 1, . . . , 1269:

• yi : binary indicator of whether the fasting glucose level is above 11.1 mmol/L

• Xi,j : genetic marker j for mouse i with j = 1, . . . , 2341

• Xi,2342 : gender of mouse i

• Xi,2343 : age of mouse i

Below, we display several observations of the response variable along with the first four covariates out
of a total of 2343.
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head(cbind(y, X[,1:4]))
#> y rs3674785_G rs13475705_A rs13475706_G rs3684358_C
#> A048005080 1 0.184158 -0.5697056 0.6063887 -0.3444252
#> A048006555 0 -1.258413 -0.5697056 -0.9113771 1.1272098
#> A048007096 0 0.184158 1.5137423 -0.9113771 -0.3444252
#> A048010273 1 -1.258413 -0.5697056 -0.9113771 1.1272098
#> A048010371 0 0.184158 -0.5697056 0.6063887 -0.3444252
#> A048011287 0 0.184158 1.5137423 -0.9113771 -0.3444252

Given the real dataset, we aim to investigate the association of each polymorphic marker (X·,j for
1 ≤ j ≤ 2341) with fasting glucose levels (y) and determine the statistical significance of each
association. We employ the function LF() configured with model = "logistic" to compute confidence
intervals for the initial 2341 regression coefficients, which correspond to all polymorphic markers, as
demonstrated in the following code:

p <- ncol(X)
loading.mat <- diag(p)[,-c(2342,2343)]
Est <- LF(X, y, loading.mat, model='logistic')
ci(Est)

We then visualize the obtained 2341 confidence intervals in Figure 3. It reveals that 13 genetic markers
display CIs exclusively above 0 (marked in blue), signifying a significant positive correlation with
fasting glucose levels. Conversely, 16 markers exhibit CIs entirely below 0 (marked in green), denoting
a significant negative correlation with fasting glucose levels. These results showcase that 29 genetic
markers out of the total have a statistically significant impact on glucose levels.
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Figure 3: Glucose: Constructed CIs for the first 2341 regression coefficients. Genetic markers repre-
sented by blue CIs indicate a significant positive association with the fasting glucose level, whereas
those with green CIs demonstrate significant negative associations.

6 Conclusion

There has been significant recent progress in debiasing inference methods for high-dimensional GLMs.
This paper highlights the application of advanced debiasing techniques in high-dimensional GLMs
using the R package SIHR. The package provides tools for estimating bias-corrected point estimators
and constructing CIs for various low-dimensional objectives in both one- and two-sample regression
settings. Through extensive simulations and real-data analyses, we demonstrate the practicality and
versatility of the package across diverse fields of study, making it an essential addition to the literature.
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