
CONTRIBUTED RESEARCH ARTICLE 191

Fast and Flexible Search for Homologous
Biological Sequences with DECIPHER v3
by Erik S. Wright

Abstract The rapid growth in available biological sequences makes large-scale analyses increasingly
challenging. The DECIPHER package was designed with the objective of helping to manage big
biological data, which is even more relevant today than when the package was first introduced. Here,
I present DECIPHER version 3 with improvements to sequence databases, as well as fast and flexible
sequence search. DECIPHER now allows users to find regions of local similarity between sets of DNA,
RNA, or amino acid sequences at high speed. I show the power of DECIPHER v3 by (a) comparing
against BLAST and MMseqs2 on a protein homology benchmark, (b) locating nucleotide sequences in
a genome, (c) finding the nearest sequences in a reference database, and (d) searching for orthologous
sequences common to human and zebrafish genomes. Search hits can be quickly aligned, which
enables a variety of downstream applications. These new features of DECIPHER v3 make it easier to
manage big biological sequence data.

1 Introduction

Searching is one of the most common operations in biological sequence analysis with a wide variety
of applications. The Biostrings package includes the Aho-Corasick, Boyer-Moore, and Shift-Or
algorithms that are frequently used for matching short sequences with relatively few differences, such
as oligonucleotide probes or primers. More difficult queries typically rely on calling programs outside
of R. For example, error-prone long reads can be rapidly mapped with programs that make use of
seed-and-extend approaches to identify matching regions between longer sequences (Sahlin et al.,
2023). More distantly related homologs can be found with BLAST (Altschul et al., 1997) or quicker
alternatives DIAMOND (Buchfink et al., 2021), LAST (Kielbasa et al., 2011), and MMseqs2 (Steinegger
and Soding, 2017). The ubiquity of these tools in sequence analyses attests to the importance of
searching through biological sequences.

BLAST is perhaps the most commonly used bioinformatics tool. With over 30 years since its first
release, BLAST still represents the gold standard of sensitivity and specificity for sequence search,
and competitors typically compare themselves to BLAST’s speed and accuracy. Both DIAMOND
version 2 and MMseqs2 offer modes with accuracy rivaling BLAST and several fold its speed for
practical search tasks. There is a clear trade-off between search sensitivity and speed, with different
programs specializing at opposite ends of the spectrum. Improved sensitivity can be obtained by
converting initial search hits into a profile and iteratively repeating the search, which is the basis of
programs such as HHblits (Remmert et al., 2011), PSI-BLAST (Altschul et al., 1997), and PHMMER
(Eddy, 2011). Greater speed is achievable when sensitivity is less of a concern, such as when mapping
nearly identical short reads to a genome. For example, the Rsubread package maps and quantifies
short reads from R using the fast subread aligner (Liao et al., 2019).

To my knowledge, there is currently no R-based implementation of a generalized homology search
program, although there exist interfaces to external programs that can be called from within R. The
DECIPHER package is a natural fit for large-scale homology search because of its functionality for
managing big biological data (Wright, 2016). With this in mind, here I introduce DECIPHER v3 with
the addition of general-purpose search and improvements to sequence databases. DECIPHER can
now find locally homologous regions between two sets of nucleotide or protein sequences, report
their scores and, if desired, align the search hits. In the examples below, I show the application of
DECIPHER’s search functions to common search problems. DECIPHER v3 is available from the
Bioconductor package repository.

2 Design of the sequence search algorithm implemented in DECIPHER

The development of search functionality within DECIPHER was inspired by user experiences with
BLAST. First, BLAST is very sensitive but relatively slow for large sets of query and target sequences.
Alternative search programs showed it was possible to exceed BLAST’s speed, potentially at the
expense of sensitivity. Second, BLAST results are limited by multiple parameters that have led to
misinterpretation (Gonzalez-Pech et al., 2019; Shah et al., 2019; Madden et al., 2019). Third, reliance on
BLAST requires running software outside of the R environment, and it would be preferable to have
similar functionality available within R. These issues guided the development of fast and versatile
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Figure 1: Overview of the main parameters and functions comprising homology search in DECIPHER.

search and pairwise alignment functions in DECIPHER.

As shown in Figure 1, homology search in DECIPHER v3 is separated into three functions:
indexing the target sequences with IndexSeqs, searching a query (pattern) for significant target
(subject) hits with SearchIndex, and, optionally, aligning those hits with AlignPairs. The statistical
basis for DECIPHER’s heuristic search algorithm is related to that of BLAT (Kent, 2002). Assuming
equal frequencies of letters from an alphabet of size A, the probability of finding at least one match of
length k among T target k-mers is: probability = 1− (1− (1/A)k)T . When this probability is near zero,
as is typically the case when 4 ≥ A ≤ 20 and k > 1, it can be approximated as T/Ak. It is convenient
to score using the negative log-likelihood of probability: − loge(probability) ≈ k ∗ loge(A)− loge(T).
The k ∗ loge(A) term can be replaced with the negative loge of the normalized frequency ( f ) expected
for a specific k-mer when k is variable in length or alphabet composition is non-uniform (i.e., f ≈ A−k).

This scoring approach can be extended to approximate the probability of finding multiple k-mer
matches within a region of a given size (Kent, 2002). However, the existence of insertions or deletions
(i.e., gaps) between matches complicates the application of an analytical scoring approach. Hence,
DECIPHER uses a search formula with empirical costs for the number of positions (sep) and gaps (gap)
between chained matches. The final scoring formula for a hit between a query and target sequence is:

score =
n

∑
i=1

(− loge( f )) +
n−1

∑
i=1

(sepCost ∗ √sep) +
n−1

∑
i=1

(gapCost ∗ √gap)− loge(Q)− loge(T/step)

Where f is the expected frequency of the ith k-mer match, sep is the number of positions separating
neighboring (i.e., i and i + 1) matches, gap is the minimum length of insertions or deletions (indels)
between neighboring matches, Q is the number of k-mers queried, and T is the number of k-mers in
the target sequence, and step is the staggering between adjacent k-mers recorded in the inverted index.

Affine (i.e., constant plus linear) gap penalties are popular for sequence alignment, although it is
known that the distribution of indel lengths is approximated by a Zipfian distribution (Wygoda et al.,
2024). In the absence of alignment it is only feasible to estimate the total number of gaps between
k-mers rather than their individual lengths. For this reason, the square root function was selected
to penalize distances between adjacent k-mer matches in SearchIndex. The square root functional
form gradually decreases the marginal penalty for longer distances, which reflects the diminishing
probability of observing longer gaps. Since the probability of gaps relative to mismatches is unknown,
both sepCost and gapCost are empirically optimized parameters.

The score for each hit represents the significance of the match, with scores above minScore defined
as significant. To correct for multiple testing, the default minimum score for reporting hits is loge(D −
T + 1), where D is the number of unmasked positions in the database. By default, masking is applied
to low complexity, ambiguous, and repeat regions of both the query and target sequences to avoid
false positive hits within regions that are not due to common descent (i.e., homology). Masking is also
applied to target k-mers that are far more numerous than expected in order to accelerate the search
process. Since all remaining positions are fully indexed, DECIPHER’s search functions guarantee that
all matches of at least length k are scored. Protein matches are found in a reduced amino acid alphabet
with residue groups: {A}, {C}, {D, E}, {F, W, Y}, {G}, {H}, {I, L, M, V}, {N}, {P}, {Q}, {R, K}, and {S, T}.

The SearchIndex algorithm is written in C code and begins by calculating the normalized expected
frequency ( f ) for every k-mer. Query (pattern) sequences are processed in parallel if DECIPHER was
compiled with OpenMP enabled and processors is not 1. After masking each query, the locations of all
matching unmasked target (subject) k-mers are extracted from the inverted index and sorted by their
location within each target sequence. Next, k-mers with starting positions separated by exactly the
step size are collapsed into contiguous matches by combining their scores. If subject sequences are
provided to SearchIndex then the matches are extended to the left and right until encountering their
nearest neighbor or their score decreases. Matches between query and target sequences are chained
together using dynamic programming (Abouelhoda and Ohlebusch, 2003). The minimum score is
applied to the set of top scoring chains to generate the candidate hit set (Fig. 2). Top scoring hits are
returned after imposing any user-specified limits on the number of hits per target (perSubjectLimit)
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Figure 2: Matches between a query sequence and each target sequence in a database are chained
into high scoring hits. Hits are scored based on the number of positions separating matches and the
minimum number of implied gaps between matches.

and query (perPatternLimit) for each sequence queried.

The selection of an appropriate value for k-mer length (i.e., k) is critically important to balance
sensitivity and search speed. An advantage of DECIPHER’s scoring formulation is that is possible to
approximate sensitivity at a value of k for the objective of finding homologous matches of length Q
with a given percent identity (PID). If k is unknown, the IndexSeqs function allows users to provide
their goal sensitivity, Q, and PID to automatically estimate a reasonable value for k. Relatedly, a step
size (s) between target k-mers of greater than one position can be provided to make k-mers partly
overlapping or non-overlapping, which reduces the amount of memory required for the inverted
index at the expense of decreased sensitivity.

3 Comparing programs on a protein search benchmark

Homology search programs are typically compared on benchmarks composed of sequences assigned to
protein families based on their structures (Fox et al., 2014). To this end, I downloaded the set of 93,153
non-redundant amino acid sequences from the SCOPe (v2.08) database, which contains representative
sequences from 5,047 protein families. Families may contain homologous sequences with very high or
low similarity, representing a wide gamut of search cases. To create an independent test set, I withheld
a single protein from each of the 4,041 protein families with more than one representative sequence. I
constructed a matching decoy set by reversing the held-out proteins, as this is a common benchmarking
approach since proteins do not evolve by reversal (Steinegger and Soding, 2017). Therefore, the final
query set consisted of 8,082 sequences and the target set contained 89,112 sequences.

Ideally, all sequences in the same family as the query sequence would be found with higher scores
than any sequences in the decoy set. For each search, accuracy can be approximated as the fraction of a
protein’s family that was given higher scores than the highest scoring false positive hit to the matching
decoy protein, an accuracy measure commonly known as AUC1 (Buchfink et al., 2021). Figure 3
shows that providing SearchIndex with subject (target) sequences for k-mer extension improved
accuracy at the expense of approximately 2- to 3-fold slower search speed. As expected, lower values of
k-mer length and step size improved accuracy and decreased search speed. Impressively, DECIPHER
showed comparable accuracy and speed to MMseqs2 (release 15-6f452) at some values of k-mer length
and step size. Both programs were less sensitive than protein BLAST (v2.15.0), but able to achieve
much higher speeds under some parameterizations. All programs accurately detected the vast majority
of true positives above 40% identity (Fig. 3) despite the short lengths of many SCOPe sequences.

4 Example 1: Locating nucleotide sequences in a genome

A common application of sequence search is to find the location of nucleotide sequences in a genome.
This may include query sequences that are long or short, contiguous or discontiguous (e.g., exons),
and similar or distant to the genome. Consider the case of locating promoter elements in a bacterial
genome. Here, the query sequences are relatively short but may contain mismatches or indels at
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Figure 3: The SCOPe database of amino acid sequences assigned to protein families was used to
compare search programs. (A) Speed is shown relative to protein BLAST (horizontal gray line) for
easier comparison. All programs were configured to use the maximum available processor threads.
DECIPHER achieved greater accuracy (average AUC1) with inclusion of subject sequences to allow
extension of k-mer matches. The value of k-mer length (k) is shown on each DECIPHER point. Lower
values of k and step size improved accuracy at the expense of speed. MMseqs2 results are shown
across a range of user-specified sensitivities from −s 1 to −s 10, with the default of 5.7 shown as a
point. BLAST was run under its default settings, which reports hits with E-values less than 10. (B) The
average fraction of true positives given higher scores than those of their corresponding decoy false
positive increases with percent identity between the true positives and query sequences. DECIPHER
results are shown at different k-mer lengths for a step size of 1 when supplying the subject sequences
(i.e., the black line in (A)). MMseqs2 and BLAST results are shown at their default settings.

some sites relative to the genome. As a case study, I downloaded the set of 1,440 confirmed and
strong confidence promoters in the E. coli genome from RegulonDB (Salgado et al., 2024). Given that
promoters can map to the forward or reverse strand, it is necessary to build an index from both strands
using IndexSeqs. Since the optimal value for k is unknown, it is possible to instead specify the goal of
90% sensitivity for query sequences of length 60 nucleotides and 80% identity to the genome, resulting
in an estimated k of 5. Then, SearchIndex can be used to obtain a data frame containing hits meeting
the minimum score:

query <- readDNAStringSet("<<path to promoters.fas>>")
target <- readDNAStringSet("<<path to genome.fas>>")
target <- c(target, reverseComplement(target)) # search both stands
index <- IndexSeqs(target, sensitivity=0.9, percentIdentity=80, patternLength=60)
hits <- SearchIndex(query, index, perSubjectLimit=0, processors=NULL) # use all CPUs

Performing this search for 1,440 promoter sequences of length 60 takes 4.1 seconds on a machine
with 16 processor cores and 45 seconds using a single processor. In contrast, searching for a single
promoter using the Biostrings function matchPattern takes 6.7 seconds when allowing for up to
12 mismatches or gaps (i.e., ≥ 80% identity). This equates to a speedup of over 2,000-fold with
16 processors or 200-fold with a single processor using DECIPHER. Alternatively, the Biostrings
function matchPDict can search for all patterns without indels in 22 seconds. The SearchIndex function
finds 1,593 significant hits, while the matchPattern function finds 1,478 matches and the matchPDict
function finds 1,455 matches. All matchPDict matches are found by matchPattern, and all but one of
the matchPattern matches overlap with a hit found by SearchIndex.

5 Example 2: Aligning to the nearest neighbor in a reference database

Perhaps the most common use of biological sequence search is to find homologous sequences in a
reference set. For example, the online BLAST search tool allows selection from a wide variety of
databases, including many that are taxon or gene specific. To test the use of DECIPHER for this
purpose, I downloaded the set of 17,103 sequences that are part of the Fungi Internal Transcribed
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Figure 4: The scores output by SearchIndex and AlignPairs for each hit (point) show similar correlations
with percent identity. Lower read (query) coverage often resulted in higher percent identities for the
same score, implying the hit corresponded to a smaller aligned region with higher PID.

Spacer (ITS) project (BioProject PRJNA177353), which serves as a marker region for fungal taxonomy
(Schoch et al., 2014) and is searchable from BLAST’s online tool. As a query, I downloaded a set
of 4,823 unique ITS reads (SRA accession SRR5098782) obtained from the gut of a healthy human
subject as part of the Human Microbiome Project (Nash et al., 2017). Since every read is expected to be
homologous to every reference sequence, it is useful to limit the number of hits per read by specifying
a perPatternLimit.

index <- IndexSeqs(reference, K=8L, processors=NULL)
hits <- SearchIndex(reads, index, perPatternLimit=100, processors=NULL)
aligned <- AlignPairs(reads, reference, hits, processors=NULL)
PID <- 100*aligned$Matches/aligned$AlignmentLength
coverage <- 100*(aligned$Matches + aligned$Mismatches)/width(reads)[aligned$Pattern]

Searching the inverted index required 14 seconds using 16 processors and a k-mer length of 8. This
resulted in 475,443 search hits, which were aligned by AlignPairs in 3.7 seconds using 16 processors.
Alignment provides a means to easily calculate the PID between each query/target hit, making it
straightforward to determine the nearest reference sequence to each read using R code. There are
multiple ways to formulate PID (Raghava and Barton, 2006), all of which are possible to calculate
from the metadata output by AlignPairs. Here, we will compute PID of the alignment, which is
correlated with the scores output by SearchIndex and AlignPairs (Fig. 4). This example illustrates
the power and speed offered by the new search functions in DECIPHER v3.

6 Example 3: Searching for homology between genomes

Determination of orthology represents a challenging application of sequence search, as establishing
homology is difficult in the presence of substantial sequence divergence. As an example, I used
DECIPHER’s search functions to find orthologous proteins in humans and zebrafish (Danio rerio),
which share a common ancestor approximately 450 million years ago (Bi et al., 2021). Many studies use
reciprocal best hits to define orthologs by intersecting the best hit for each sequence from a first (query)
genome to a second (target) genome with the best hit in the other direction (Hernandez-Salmeron and
Moreno-Hagelsieb, 2020). Writing a ReciprocalSearch function in R is straightforward, given the two
sets of sequences, k-mer length (k), and step size (s):

ReciprocalSearch <- function(seqs1, seqs2, k, s, CPUs=NULL) { # bidirectional searching
index1 <- IndexSeqs(seqs2, K=k, step=s, verbose=FALSE, processors=CPUs)
hits1 <- SearchIndex(seqs1, index1, perPatternLimit=1, verbose=FALSE, processors=CPUs)
index2 <- IndexSeqs(seqs1, K=k, step=s, verbose=FALSE, processors=CPUs)
hits2 <- SearchIndex(seqs2, index2, perPatternLimit=1, verbose=FALSE, processors=CPUs)
m <- match(hits1$Pattern, hits2$Subject) # intersect the best hits
w <- which(!is.na(m))
w <- w[hits1$Subject[w] == hits2$Pattern[m[w]]]
hits1[w,]

}
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Figure 5: More orthologous pairs were predicted when searching protein (amino acid) sequences rather
than their corresponding coding (nucleotide) sequences. Lower values of k-mer length and, especially,
step size permitted the identification of a greater number of putative orthologs with or without
matching protein annotations. The approximate p-value (one-sided binomial test) for observing a
given number of matched annotations by chance is shown above each bar.

Since many animal proteins are isoforms, I reduced each set to the unique protein sequences having
distinct protein names and distinct gene names, maintaining the longest isoform per gene. This process
resulted in 20,169 human proteins (BioProject PRJNA559484) and 23,005 zebrafish proteins (BioProject
PRJNA11776). Applying the reciprocal search strategy predicted substantially more orthologs when
searching with protein rather than their corresponding coding (nucleotide) sequences (Fig. 5). Consis-
tent with the previous results, smaller k-mer lengths generally provided more orthologous hits, while
increasing step size had a more detrimental effect than increasing k-mer length.

Additional information is required to determine whether the greater number of reciprocal best
hits is due to more correct or incorrect predictions. It is possible to use annotation agreement as a
proxy for the quality of orthology predictions (Altenhoff et al., 2016). In total, 3,481 distinct protein
names are common to human and zebrafish genomes, and the remaining proteins either lack a protein
name, are without an ortholog in the other species, or follow alternative nomenclature. The total
number of predicted orthologous pairs was correlated with the number of matching annotations, with
putative protein orthologs having far more matched annotations than predicted nucleotide orthologs.
Furthermore, increases in matched annotations were statistically significant (Fig. 5). These results
confirm the expectations that amino acid search provides greater sensitivity than nucleotide search
and lower values of step size improve sensitivity.

7 Coupling search to improved sequence databases in DECIPHER v3

The requirement for in-memory indexing is a downside of DECIPHER’s search functions relative
to BLAST for large target databases. For example, loading all chromosomes of the complete human
genome into memory requires 2.9 GB per strand before even building an inverted index. To mitigate
this downside, users can construct workflows that process queries in subsets, such as searching
individual chromosomes one at a time. For example, it is possible to search a database connection
(dbConn) in batches of a given number of sequences (i.e., batchSize in the example below):

n <- 0
batchSize <- 1000
repeat {
seqs <- SearchDB(dbConn, limit=paste(n, batchSize, sep=","))
hits <- SearchIndex(seqs, index)
# do something with hits here before the next batch
if (length(seqs) < batchSize)
break

n <- n + batchSize
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}

Since inception, DECIPHER has supported the curation of large amounts of biological sequences
through SQLite databases. DECIPHER v3 now supports multiple SQL database engines. This is
accomplished by relying on generic SQL syntax in conjunction with an interface to the DBI package
such as RMariaDB, RPostgres, or RSQLite. Supporting multiple database drivers allows users to
tailor their database configuration to their needs. While SQLite is portable and straightforward to
configure, other database types allow multiple users and distributed systems. This empowers users to
construct more complex workflows by accessing or updating subsets of a large sequence database.

8 Discussion

The new search functions in DECIPHER v3 have a wide variety of potential applications. Here, I
showed how users can control the trade-off between speed and accuracy by adjusting k-mer length
and step size. The search functions described above are parallelized with OpenMP, which provides a
substantial speed-up when multiple processors are enabled. Since all searches are in-memory, they can
be used in conjunction with DECIPHER’s database functionality to create adaptable and distributable
workflows. Unlike application-specific search tools, I designed DECIPHER’s search functions to be
highly flexible and empower users with more control. My hope is that these search functions will be
useful for creating customized workflows within the R environment.

A nice feature of BLAST is its general purpose use, which is mirrored by DECIPHER’s search
functions. Some alternative search methods make assumptions about the relative length of the query
versus target sequences and the degree to which they overlap. For example, short read alignment
methods typically expect the query (i.e., read) to be much shorter than the target (i.e., genome).
Similarly, protein search can be accelerated by assuming the query and target sequences have similar
lengths, because it is possible to constrain the search space to matches between similar positions
in the query and target sequences. This assumption fails to hold if query or target sequences are
incomplete or truncated. In contrast, DECIPHER’s search functions are intended to find all hits
sharing a significant set of (unmasked) k-mers.

As was used here, most benchmarks for homology inference are created to gauge how well a
program can identify structurally similar protein domains at very low percent identity (Saripella et al.,
2016). Structure-based search methods, such as DeepBLAST (Hamamsy et al., 2023) and Foldseek (van
Kempen et al., 2023), outperform sequence-based search methods on these benchmarks. This result
has led some to question whether protein BLAST is now obsolete (Al-Fatlawi et al., 2023). However,
domain-based benchmarks only represent a fraction of the situations where search is commonly used.
Many use cases involve finding full-length proteins in a proteome (Hernandez-Salmeron and Moreno-
Hagelsieb, 2020) or short nucleotide sequences in a genome (Marrama et al., 2023). DECIPHER’s
search functionality was designed to provide dependable search for these common use cases, as well
as many others.

The main strength of DECIPHER‘s search functions is their versatility. The main weakness is also
their versatility, because the functions are not tailored for any particular purpose. Specific applications,
such as paired-end read mapping, would require customized R code to process the results. For
example, DECIPHER does not automatically output BAM or SAM files that are common in mapping
applications, although similar information is contained within the functions’ outputs. In this sense,
DECIPHER is best suited for R users who have the inclination, time, and ability to develop code
around its functions. I anticipate that the new features in DECIPHER v3 will further encourage and
empower users to perform bioinformatics in the R environment.
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