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BMRMM: An R Package for Bayesian
Markov (Renewal) Mixed Models
by Yutong Wu and Abhra Sarkar

Abstract We introduce the BMRMM package implementing Bayesian inference for a class of Markov
renewal mixed models which can characterize the stochastic dynamics of a collection of sequences,
each comprising alternative instances of categorical states and associated continuous duration times,
while being influenced by a set of exogenous factors as well as a ‘random’ individual. The default
setting flexibly models the state transition probabilities using mixtures of Dirichlet distributions and
the duration times using mixtures of gamma kernels while also allowing variable selection for both.
Modeling such data using simpler Markov mixed models also remains an option, either by ignoring
the duration times altogether or by replacing them with instances of an additional category obtained
by discretizing them by a user-specified unit. The option is also useful when data on duration times
may not be available in the first place. We demonstrate the package’s utility using two data sets.

1 Introduction

Markov models (MMs) are widely used for modeling the transition dynamics of categorical state
sequences. Classical Markov renewal models (MRMs) additionally model the state duration times,
when available, where the state transitions follow Markov dynamics and the state duration times follow
a continuous distribution that depends on the immediately preceding and following states (Figure 1).
M(R)Ms have been widely used in different variations (Phelan, 1990; Eichelsbacher and Ganesh, 2002;
Muliere et al., 2003; Alvarez, 2005; Diaconis and Rolles, 2006; Bulla and Muliere, 2007; Etterson et al.,
2007; Bacallado et al., 2009; Li, 2009; Epifani et al., 2014; Siebert and Söding, 2016; Holsclaw et al., 2017;
Sesia et al., 2019). There are also some sparse works on covariate-dependent Markov models (Muenz
and Rubinstein, 1985; Gradner, 1990; Alioum et al., 1998; Islam and Chowdhury, 2006).

The existing literature however focuses very heavily on modeling single sequences. Sarkar et al.
(2018) developed a highly flexible and computationally efficient class of Bayesian Markov mixed
models (BMMMs) for jointly modeling a collection of categorical sequences, each one associated
with an individual as well as a set of time-invariant external covariates (e.g., the sex and genotype
of the associated individual, an experimental condition under which the sequence was generated,
etc.). BMMMs characterize the state transition probabilities using a convex combination of a fixed
covariate-dependent component and a random individual-level component, both being Dirichlet
distributed. They further allow covariate levels with similar effects to be probabilistically clustered
together, allowing automatic selection of the significant covariates, and providing a sophisticated
framework for analyzing data sets having the aforementioned structure.

BMMMs however do not model duration times of the states which are often additionally available
in real-world applications. Recently, Wu et al. (2023) extended BMMMs to Bayesian Markov renewal
mixed models (BMRMMs), allowing for the additional analysis of continuous duration times which,
depending on the application, can either be the duration for which a state persists or the duration
between two consecutive states, i.e., inter-state intervals (ISIs). Specifically, they modeled the duration
times using mixtures of gamma kernels with mixture probabilities being a convex combination a
covariate-dependent effect and an individual-level effect, similar to BMMMs. Covariate levels with
similar influences on mixture probabilities are clustered together in BMRMMs as well, allowing the
selection of the significant covariates. BMRMMs thus holistically model both state transitions and
continuous duration times, painting a comprehensive picture of the underlying stochastic dynamics.

In this article, we describe the R package BMRMM which implements BMMMs and BMRMMs,
collectively referred to henceforth as BM(R)MMs. The BMRMM package runs posterior inference
for categorical state transitions and continuous duration times, if available, via a Markov chain
Monte Carlo (MCMC) algorithm, returning an object containing comprehensive inference results. The
package also includes a suite of plotting functions to display the results graphically. Specifically for
continuous duration times, when available, the package provides users with three different options:
(i) ignore the duration times and model the state transitions alone as a BMMM; (ii) introduce an
additional category by discretizing the continuous duration times by a user-specified unit, and analyze
the appended state transitions as a BMMM; (iii) model the duration as a mixture of gamma kernels
using a BMRMM, as proposed in Wu et al. (2023). Additionally, users can choose to turn off one or
both of the fixed covariate effects and the random individual effects. Overall, the BMRMM package
thus gives users a lot of flexibility in handling their data sets, providing inferences for both Bayesian
Markov renewal or non-renewal models as needed.
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The BMRMM package conveniently includes a synthetic foxp2 data set that describes the labo-
ratory study on the role of the FoxP2 gene implicated in speech deficiencies for adult mice, which is
also the motivating application for the methodology of BMMMs and BMRMMs. Mutations in the
FoxP2 gene have long been associated with severe deficits in vocal communication for mammals
(MacDermot et al., 2005). Mice with and without the mutation singing under various "social contexts"
have thus been studied in many experiments (Fujita et al., 2008; Castellucci et al., 2016; Gaub et al.,
2016; Chabout et al., 2016). The FoxP2 data set (Chabout et al., 2016), e.g., comprises the sequences
of syllables making up the songs as well as the lengths of inter-syllable intervals (ISIs). The data set
foxp2 included in the BMRMM package is taken from the simulation study of Wu et al. (2023). It is
much shorter than the real FoxP2 data set but closely mimics its other aspects and is used in this paper
to demonstrate how to obtain detailed inferences for both syllable transitions and ISI dynamics for a
comprehensive analysis of the vocal repertoire in mice with and without the FoxP2 mutation.

The utility of the BMRMM package goes well beyond the FoxP2 data set. As described above, the
package is designed for scenarios where the data set consists of categorical state sequences associated
with an individual as well as a number of observed covariates where additional data on continuous
duration times may or may not be available. Data sets with such structures are frequently observed
in different areas of scientific research and can potentially benefit from the BMRMM package. For
example, Islam and Chowdhury (2006) analyzed the transitions of different rainfall orders in three
districts of Bangladesh under three covariates, wind speed, humidity, and maximum temperature. In
an education assessment study, Zhang et al. (2019) recorded sequences of writing states, characterized
by keystroke logs, for 257 eighth graders of various genders, races, and socioeconomic statuses.
Combescure et al. (2003) estimated the control states of 371 asthma patients with different body mass
indices (BMIs) and disease severity over a four-year-long study and produced the asthma control data
set, which we will use as an additional example to demonstrate the utility of our package in this paper.
For such data sets, the BMRMM package provides a flexible, sophisticated, and principled way to
model fixed effects of the covariates and random effects of the individuals in both the state transition
dynamics and the distribution of the ISIs.

Other computer programs for Markov models with covariates include MARKOV (Marshall et al.,
1995) and MKVPCI (Alioum and Commenges, 2001). R packages for analyzing discrete Markov
models include markovchain (Spedicato, 2017) and msm (Jackson, 2011). SemiMarkov (Listwon and
Saint-Pierre, 2015) and SMM (Barbu et al., 2018) provide functions for the simulation and estimation
of traditional semi-Markov models. Some R packages provide the inference of hidden semi-Markov
models, such as mhsmm (O’Connell and Højsgaard, 2011) and hhsmm (Amini et al., 2022). Ferguson
et al. (2012) built the msSurv package which provides a nonparametric estimation of semi-Markov
models but does not consider covariates. There are also R packages implementing MRPs in specific
application areas. For example, Kharrat et al. (2019) introduced the Countr package for flexible
regression models based on MRPs. Pustejovsky (2021) developed the ARPobservation for simulating
behavior streams based on alternating renewal processes. Other R packages for categorical data
analysis include catdap (Katsura, 1980) and vcd (Meyer et al., 2022). To our knowledge, there has not
been an R package that implements flexible Bayesian M(R)MMs.

In the following section, we summarize the technical details of BMRMMs. Documentation for the
functions of the BMRMM package is then provided. Next, we demonstrate the usage of our package
in analyzing two different data sets. The final section contains some concluding remarks.

2 The Bayesian Markov (renewal) mixed models

We briefly describe the BM(R)MM methodologies here – more details can be found in Sarkar et al.
(2018) and Wu et al. (2023). Consider specifically a sequence s comprising Ts state instances and
let ys,t denote the state at time t in sequence s. The states ys,t’s come from a set Y = {1, 2, . . . , d0}.
Within a sequence s, there are Ts − 1 duration times (state persistence times or inter-state intervals),
denoted by {τs,t}s0,Ts

s=1,t=2, where τs,t is the duration between the (t − 1)th and tth states in sequence
s, and s0 represents the total number of sequences. Figure 1 presents a graphical summary of the
data structure. Each sequence s is associated with p categorical covariates or factors, denoted by
xs,j ∈ Xj = {1, 2, . . . , dj}, and an individual, denoted by is. Without loss of generality, we assume
that the analyses of the transition probabilities and the duration times distributions both include
all p covariates. Moreover, the analysis of duration times counts the previous state ys,t−1 as an
additional (p + 1)th covariate. In the BMRMM package, users have the flexibility to select particular
covariates for each analysis and exclude the previous state from the analysis of duration times. In their
original definition in Pyke (1961), the duration time τs,t in an MRP was allowed to depend on both the
preceding state ys,t−1 and the following state ys,t. To keep the notation simple and the methodology
easy to understand for a broad audience, we however only include the preceding state ys,t−1 as a
predictor of τs,t in this paper. This analysis can be easily modified to have the pair (ys,t−1, ys,t) as a
predictor instead of just ys,t−1, as was actually done in Wu et al. (2023).
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Figure 1: Graphical model showing the data structure: ys,t denotes the observed state at the tth time
location in the sth sequence; τs,t denotes the observed duration times (either state persistence times
or inter-state intervals) between the states ys,t−1 and ys,t; each sequence s is also associated with an
individual is and a set of exogenous time-invariant covariates xs,1, . . . , xs,p. The Markov mixed model
considered in this article analyzes the state transitions ys,t in a collection of sequences; the Markov
renewal mixed model additionally analyzes the duration times τs,t; both models accommodate fixed
effects of the covariates xs,1, . . . , xs,p and random effects of the individuals is.

2.1 Model for state transitions

For a sequence s associated with individual i and covariate levels x1, . . . , xp, the transition probabilities

Pr(ys,t = yt | is = i, xs,1 = x1, . . . , xs,p = xp, ys,t−1 = yt−1) = P(i)
trans,x1,...,xp

(yt | yt−1) are defined as a
convex combination of a fixed covariate effect component λtrans,x1,...,xp (· | yt−1) and a random effect

component λ
(i)
trans:

P(i)
trans,x1,...,xp

(yt | yt−1) = π
(i)
trans,0(yt−1)λtrans,x1,...,xp (yt | yt−1) + π

(i)
trans,1(yt−1)λ

(i)
trans(yt | yt−1). (1)

The coefficients of the convex combination, namely, {π
(i)
trans,0(yt−1), π

(i)
trans,1(yt−1)} are individual-

specific and satisfy π
(i)
trans,1(yt−1) = 1 − π

(i)
trans,0(yt−1).

For each covariate j = 1, . . . , p, it is possible that some covariate levels exert a similar effect on the
transition dynamics. For example, the components λtrans,x1=1,x2,...,xp (· | yt−1) and λtrans,x1=2,x2,...,xp (· |
yt−1) would be equal if levels 1 and 2 of covariate 1 have similar influences on transition dynamics
for fixed levels for covariates 2, . . . , p. A clustering mechanism for covariate levels allows the fixed
component λtrans,x1,...,xp (· | yt−1) to be the same for all levels with a similar influence. In particular,

for covariate j, we construct the partition C(j)
trans = {C(j)

trans,hj
}ktrans,j

hj=1 of its levels, where ktrans,j is the
number of clusters for covariate j and hj represents the cluster index. We introduce latent variables

{ztrans,j,ℓ}
p,dj

j=1,ℓ=1 that indicate the cluster index for the ℓth label of covariate j. Two levels of the
covariate j, ℓ1, ℓ2 ∈ Xj = {1, . . . , dj}, are clustered together if and only if ztrans,j,ℓ1

= ztrans,j,ℓ2 . For
the fixed effects, we then replace the covariate levels x1, . . . , xp’s with cluster indices h1, . . . , hp’s and
present the fixed effect as λtrans,h1,...,hp (· | yt−1).

We set Dirichlet priors for both fixed and individual effect components and let them center around
the same mean vector λtrans,0 to facilitate posterior computation. The probability vector λtrans,0 is also
given a Dirichlet prior with mean λtrans,00 to capture the natural preferences of certain states in Y :

λtrans,h1,...,hp (· | yt−1) ∼ Dir {αtrans,0λtrans,0(1 | yt−1), . . . , αtrans,0λtrans,0(d0 | yt−1)} ,

λ
(i)
trans(· | yt−1) ∼ Dir

{
α
(0)
transλtrans,0(1 | yt−1), . . . , α

(0)
transλtrans,0(d0 | yt−1)

}
,

λtrans,0(· | yt−1) ∼ Dir {αtrans,00λtrans,00(1), . . . , αtrans,00λtrans,00(d0)} .

We present the complete Bayesian hierarchical model for the transition dynamics as

(ys,t | ys,t−1 = yt−1, is = i, ztrans,1,xs,1 = h1, . . . , ztrans,p,xs,p = hp) ∼

Mult
{

P(i)
trans,h1,...,hp

(1 | yt−1), . . . , P(i)
trans,h1,...,hp

(d0 | yt−1)
}

, where

P(i)
trans,h1,...,hp

(· | yt−1) = π
(i)
trans,0(yt−1)λtrans,h1,...,hp (· | yt−1) + π

(i)
trans,1(yt−1)λ

(i)
trans(· | yt−1),

ztrans,j,ℓ ∼ Mult
{

µtrans,j(1), . . . , µtrans,j(dj)
}

, µtrans,j ∼ Dir(αtrans,j, . . . , αtrans,j),

λtrans,h1,...,hp (· | yt−1) ∼ Dir {αtrans,0λtrans,0(1 | yt−1), . . . , αtrans,0λtrans,0(d0 | yt−1)} ,

λ
(i)
trans(· | yt−1) ∼ Dir

{
α
(0)
transλtrans,0(1 | yt−1), . . . , α

(0)
transλtrans,0(d0 | yt−1)

}
,

λtrans,0(· | yt−1) ∼ Dir {αtrans,00λtrans,00(1), . . . , αtrans,00λtrans,00(d0)} ,

π
(i)
trans,0(yt−1) ∼ Beta(atrans,0, atrans,1),

αtrans,0 ∼ Ga(atrans,0, btrans,0), α
(0)
trans ∼ Ga(a(0)trans, b(0)trans).
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2.2 Model for continuous duration times

The BMRMM package provides three options for analyzing the duration times: (i) ignore the durations
altogether and only model the transition probabilities of the existing states, (ii) treat the durations as
blocks of a new special category, with a discretization unit specified by users, (iii) model the durations
as a continuous random variable with a flexible mixture of gamma distributions. For the first two
options, we only need to apply the model described in the previous subsection. For the third option,
we need to conduct a separate analysis of the duration times as described below.

Let K denote the number of gamma mixture components in the model for the duration times. We

let P(i)
dur(· | x1, . . . , xp, ys,t−1) denote the mixture probability vector given individual i, covariate levels

x1, . . . , xp, and preceding syllable ys,t−1. The preceding state ys,t−1 can be removed from the formula if
the users do not wish to consider its influence in the inference of the duration times. The distribution
of the continuous duration times, {τs,t}s0,Ts

s=1,t=2, is then modeled as

f (τs,t | is = i, xs,1 = x1, . . . , xs,p = xp, ys,t−1 = yt−1)

= ∑K
k=1 P(i)

dur(k | x1, . . . , xp, yt−1)Ga(τs,t | αk, βk),

where αk and βk denote the shape and rate parameters of the kth gamma mixture component, respec-
tively. We introduce a set of latent variables {zdur,s,t}s0,Ts

s=1,t=2 that represents the index of the mixture
component. If zdur,s,t equals to k, then τs,t follows Ga(αk, βk) distribution, i.e.,

f (τs,t | zdur,s,t = k) ∼ Ga(τs,t | αk, βk),

Pr(zdur,s,t = k | is = i, xs,1 = x1, . . . , xs,p = xp, ys,t−1 = yt−1) = P(i)
dur(k | x1, . . . , xp, yt−1).

Similar to the model for the transition probabilities, the mixture probabilities are a convex combi-
nation of a fixed population-level effect and a random individual-level effect:

P(i)
dur(· | x1, . . . , xp, yt−1) = π

(i)
dur,0(·)λdur,x1,...,xp ,yt−1

(·) + π
(i)
dur,1(·)λ

(i)
dur(·),

where λdur,x1,...,xp ,yt−1
(·) is the baseline component, λ

(i)
dur(·) is the random individual effect, and

{π
(i)
dur,0(k), π

(i)
dur,1(k)}

K
k=1 are individual-specific coefficients such that π

(i)
dur,1(k) = 1 − π

(i)
dur,0(k). Again,

for each covariate r = 1, . . . , p, p + 1 (where the (p + 1)th covariate is the preceding state yt−1), we

construct the partition C(r)dur = {C(r)dur,gr
}kdur,r

gr=1 of its levels, where kdur,r is the number of clusters for

covariate r and gr represents the cluster index. We introduce latent variables {zdur,r,w}
p+1,dr
r=1,w=1 that

indicate the cluster index for the wth label of the rth covariate. We now replace the population-level
effect λdur,x1,...,xp ,yt−1

(·) with λdur,g1,...,gp ,gp+1
(·).

The mixture probability vectors are given Dirichlet priors with the mean vector λdur,0, which itself
centers around a global vector λdur,00:

λdur,g1,...,gp+1
(·) ∼ Dir

{
αdur,0λdur,0(1), . . . , αdur,0λdur,0(K)

}
,

λ
(i)
dur(·) ∼ Dir

{
α
(0)
durλdur,0(1), . . . , α

(0)
durλdur,0(K)

}
,

λdur,0(·) ∼ Dir
{

αdur,00λdur,00(1), . . . , αdur,00λdur,00(K)
}

.

We present the complete Bayesian hierarchical model for the continuous duration times as

(τs,t | zdur,s,t = k) ∼ Ga(τs,t | αk, βk),

(zdur,s,t | is = i, zdur,1,xs,1
= g1, . . . , zdur,p,xs,p = gp, zdur,p+1,ys,t−1

= gp+1) ∼

Mult
{

P(i)
dur,g1,...,gp+1

(1), . . . , P(i)
dur,g1,...,gp+1

(K)
}

, where

P(i)
dur,g1,...,gp+1

(k) = π
(i)
dur,0(k)λdur,g1,...,gp+1

(k) + π
(i)
dur,1(k)λ

(i)
dur(k),

λdur,g1,...,gp+1
(·) ∼ Dir

{
αdur,0λdur,0(1), . . . , αdur,0λdur,0(K)

}
, αdur,0 ∼ Ga(adur,0, bdur,0),

λ
(i)
dur(·) ∼ Dir

{
α
(0)
durλdur,0(1), . . . , α

(0)
durλdur,0(K)

}
, α

(0)
dur ∼ Ga(a(0)dur, b(0)dur),

λdur,0(·) ∼ Dir
{

αdur,00λdur,00(1), . . . , αdur,00λdur,00(K)
}

,

π
(i)
dur,0(k) ∼ Beta(adur,0, adur,1),

αk ∼ Ga(adur,0, bdur,0), βk ∼ Ga(adur,0, bdur,0).
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Inference is based on samples drawn from the posterior using a Metropolis-Hastings-within-Gibbs
MCMC algorithm. Most full conditionals are available in closed form and can be directly sampled from.
A Metropolis-Hastings step is however used for updating the discrete valued cluster configurations.
There is, however, no conjugate prior for gamma distributions with unknown shape parameters
(Damsleth, 1975). Recently, Miller (2019) designed a procedure that efficiently approximates the
posterior full conditionals of gamma shape parameters under a gamma prior with another gamma
density. We adopt this approximation in our MCMC algorithm.

3 The BMRMM R package

3.1 Package description

The BMRMM package is developed to implement Bayesian Markov (renewal) mixed models. The
main function BMRMM of the package carries out detailed analyses of the state transitions and their
duration times (if applicable) as described in the previous section. Moreover, the package includes a
number of supplementary functions that use the results of the main function to produce numerical
summaries, visualizations, and diagnostics. Table 1 provides a brief description of all functions.

Function Description

BMRMM Creates a BMRMM object.
summary.BMRMM Summary for an object of class BMRMM and create a BMRMMsummary object.
plot.BMRMMsummary Visualization of a BMRMMsummary object.
hist.BMRMM Returns histograms of duration times for a BMRMM object.
diag.BMRMM Provides MCMC diagnostic plots for a BMRMM object.
model.selection.scores Returns the LPML and WAIC scores of the mixture gamma model.

Table 1: Summary of functions in the BMRMM package.

3.2 The main function BMRMM

The main function is BMRMM which implements the inference for both the state transition probabilities
and the duration times. We summarize the parameters in Table 3 and present the function as follows.

BMRMM(data, num.cov, cov.labels = NULL, state.labels = NULL,
random.effect = TRUE, fixed.effect = TRUE,
trans.cov.index = 1:num.cov, duration.cov.index = 1:num.cov,
duration.distr = NULL, duration.incl.prev.state = TRUE,
simsize = 10000, burnin = simsize/2)

The parameter data specifies the target data set and needs to follow a certain structure. The first
column should list the individual IDs is, followed by p columns for the values of the p associated
covariates xs,j, then two columns for the values of the previous state ys,t−1, the current state ys,t, and
finally a column for duration times τs,t. The package supports one to five categorical covariates that
take on values 1, 2, . . .. The duration times column is optional if the user would like to use BMMM
instead of BMRMM to analyze just the state transitions. This is shown in Table 2. The users can look at
the included simulated data set foxp2 as an example.

Id Covariate 1 . . . Covariate p Previous State Current State State Durations/ISI

Table 2: Columns of the desired input data set.

The number of covariates in the data set is specified by the argument num.cov. The argument
cov.labels is a list of vectors giving the names of covariate levels in the covariate order that is
presented in data while the parameter state.labels is a vector providing the names of the transition
states. The default labels are Arabic numerals. The random.effect parameter gives users the option
to exclude the random individual effects. If random.effect is set to FALSE, the transition probabilities
(and the mixture probabilities for duration times, if applicable) will only consider the influence of the
covariate levels. Similarly, the fixed.effect parameter allows users to exclude the fixed population
effects. The default values for random.effect and fixed.effect are both TRUE. The covariate indices
for the two analyses can be specified by setting trans.cov.index and duration.cov.index. We note
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that indices specified by trans.cov.index and duration.cov.index refer to the index of the covariate
when the first covariate is given index 1, thus different from its index in data.

Users can define duration.distr in the following three ways.

1. If users set duration.distr to be NULL, which is the default setting, then the duration times will
be ignored and not modeled at all. The BMMM described will be implemented to analyze the
existing state transitions alone.

2. If duration.distr is set as list(‘mixDirichlet’, unit), the duration times will be used to
construct a new state ‘dur.state’, which will be analyzed along with the original set of states.
The additional argument unit must be defined and acts both as a threshold and as a block

size for duration times. For example, if the unit is set to 5, then for each duration value greater
than 5 units, each block of 5 unit in it will be treated as an instance of a new 'dur.state' state.
If there is a state transition from state ‘a’ to ‘b’ with a duration time of 15 seconds and the
unit is specified at 5 seconds, then the updated Markov sequence will contain three consecutive
‘dur.state’ states, i.e., (‘a’, ‘dur.state’, ‘dur.state’, ‘dur.state’, ‘b’). Since we
adopt the floor operation, a duration time of say 17.68 seconds will also be replaced by three
consecutive instances of 'dur.state' states in this example. The BMMM model will then be
implemented to analyze the resulting appended state transitions.
These first two options may naturally result in loss of information and is therefore not recom-
mended when a detailed analysis of the distribution of the duration times is warranted.

3. If duration.distr is set to be list(‘mixgamma’, shape, rate), the duration times are modeled
as a continuous random variable using a flexible mixture of gamma kernels, as described for a
BMRMM model. In this case, users can specify the prior shape and rate parameters with the
shape and rate arguments within the definition of duration.distr. We note that shape and
rate must be numeric vectors of the same length.

By default, we consider the previous state ys,t−1 as a covariate when we model the duration times
as continuous variables, i.e., duration.incl.prev.state is set to TRUE. Users can set this parameter to
FALSE if they wish to exclude the previous state when analyzing the duration times. The remaining
parameters simsize and burnin denote the total number of MCMC iterations and the number of
burn-ins, respectively.

Argument Explanation Default value

data the data set to be used following the required format
num.cov an integer giving the number of observed covariates in data
cov.labels a list of vectors giving names of all covariate levels NULL
state.labels a vector giving names of the states NULL
random.effect TRUE if random individual effects are included TRUE
fixed.effect TRUE if fixed population effects are included TRUE
trans.cov.index selects the covariates to analyze for transition probabilities 1:num.cov
duration.cov.index selects the covariates to analyze for duration times 1:num.cov
duration.distr specifies the distribution for duration times NULL
duration.incl.prev.state TRUE if yt−1 acts as a covariate for the analysis of duration times TRUE
simsize number of MCMC iterations 10000
burnin number of burnins of the MCMC algorithm simsize/2

Table 3: Arguments to the BMRMM function.

The BMRMM function returns an object of class BMRMM, which either contains only results.trans
or both of results.trans and results.duration if duration times follow a mixture gamma distri-
bution. For the state transitions, the posterior mean transition probability matrices for each combi-
nation of the covariate levels and each individual are given by results.trans$tp.exgns.post.mean
and results.trans$tp.anmls.post.mean, respectively. Additionally, results.trans$clusters stores
cluster configurations for each covariate from each MCMC iteration. As for duration times, the
fields results.duration$shape.samples and results.duration$rate.samples record the shape and
rate parameters, for each mixture component in every MCMC iteration, respectively. Meanwhile,
results.duration$comp.assignment gives the assignment of the mixture component for each data
point in the last MCMC iteration. Similar to transition probabilities, results.duration$clusters gives
the cluster configurations of the covariates. Other elements of results.trans and results.duration
can be found in the detailed R function description.

3.3 Summarizing BMRMM results

The BMRMM package provides an S3 method for summarizing results of a BMRMM object as follows.
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summary.BMRMM(object, delta = 0.02, digits = 2, ...)

The object must be of class BMRMM. The argument delta is associated with local tests for transition
probabilities, which we will explain further. The digit parameter is an integer used for number
formatting, as in the general summary function. The summary.BMRMM function returns an object of class
BMRMMsummary with the following fields.

• trans.global and dur.global

These two fields give the global test results from the inference of transition probabilities and
duration times. Global tests show the significance of the covariates in affecting the state
transitions and duration times. Specifically, for each covariate, the empirical distribution of
the size of the clusters in the stored MCMC iterations is calculated. The null hypothesis that a
covariate is not important is equivalent to the event that all its levels are in the same cluster, or,
in other words, that the cluster size for the covariate is just one.

• trans.probs.mean and trans.probs.sd

The two fields provide the mean and standard deviation for the posterior mean of each transition
type under all combinations of covariate levels, respectively.

• trans.local.mean.diff and trans.local.null.test

The BMRMMsummary object also contains local test results for transition probabilities. Local tests
analyze the differences between the transition probabilities associated with two different levels
of a covariate j, fixing the levels of the other covariates. For every pair of levels of covariate j,
trans.local.mean.diff gives the absolute differences in transition probabilities for each transi-
tion type in the MCMC iterations. The local null hypothesis we test for each transition type is
that this difference is at least the pre-specified value delta. Meanwhile, trans.local.null.test
gives the probability of the null hypothesis that the difference between two covariate levels is
not significant under each transition type.

• dur.mix.params and dur.mix.probs

For each mixture component, dur.mix.params provides the estimates of the gamma shape and
rate parameters from the last MCMC iteration. For every covariate level, users can obtain the
mixture probabilities by calling the field dur.mix.probs, which can be further used to estimate
the length of the duration times.

3.4 Visualizing results with BMRMM plotting functions

The main plotting function of the package, plot.BMRMMsummary, is an S3 method for class BMRMMsummary.
It gives the barplots for global tests as well as heatmaps for the posterior mean and standard deviation
for transition probabilities, local tests for transition probabilities, mixture parameters and probabilities
for duration times. The parameters of plot.BMRMMsummary include x, which must be an object of class
BMRMMsummary and type, which is a single string representing the field of x that needs to be plotted.
The function also takes general plotting arguments such as xlab, ylab, etc.

plot.BMRMMsummary(x, type, xlab = NULL, ylab = NULL, main = NULL, col = NULL, ...)

When duration times are analyzed as continuous variables using mixture gamma distributions,
the users can use the S3 method hist.BMRMM to generate histograms for duration times along with the
estimated posterior distribution. The parameter x is an object of class BMRMM. The argument comp gives
the specific mixture component that the user would like to investigate. When comp is NULL, which is
the default setting, the histogram of all observed duration times is plotted and superimposed with the
posterior mean of the fitted mixture gamma distribution. When comp is a specific integer, we will be
looking at the last MCMC iteration. The histogram for duration times assigned with component comp
will be presented alongside the mixture gamma distribution with the shape and rate parameters from
the last MCMC iteration. Users can refer to the documentation of the general hist function to see the
interpretation for the rest of the parameters.

hist.BMRMM(x, comp = NULL, xlim = NULL, breaks = NULL, main = NULL,
col = 'gray', xlab = 'Duration times', ylab = 'Density', ...)

Finally, users can check the MCMC diagnostics with the traceplots and autocorrelation plots
produced by the function diag.BMRMM. The object parameter should be an object of class BMRMM. For
transition probabilities, users can specify the covariate levels as well as the state transitions they are
interested in by defining cov.combs and transitions, respectively. For duration times, users can
define components, a numeric vector, to obtain the diagnostic plots for shape and rate parameters of
the specific component kernels.

diag.BMRMM(object, cov.combs = NULL, transitions = NULL, components = NULL)
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3.5 Model selection scores for continuous duration times

When the duration times are modeled using mixtures of gamma distributions, model selection can be
performed on the number of mixture components using the function model.selection.scores.

model.selection.scores(object)

The function takes an object as its input, which must be an object of class BMRMM. It returns a list
consisting of the log pseudo marginal likelihood (LPML) (Geisser and Eddy, 1979) and the widely
applicable information criterion (WAIC) (Watanabe and Opper, 2010) scores of the model. Larger
values of LPML and smaller values of WAIC indicate better model fits. They are particularly suitable
for complex Bayesian hierarchical models as they can be easily computed from the MCMC samples.

4 Illustrations on the synthetic FoxP2 data set

The FoxP2 data set records the songs sung by adult male mice of two genotypes, wild type or FoxP2,
denoted by W and F, respectively (Chabout et al., 2016). The mice sang under three social contexts, U
(fresh female urine on a cotton tip placed inside the male’s cage), L (an awake and behaving adult
female placed inside the cage), and A (an anesthetized female placed on the lid of the cage). Each song
comprises a sequence of syllables and continuous inter-syllable intervals (ISIs). The data set can be
used to analyze the effect of the FoxP2 gene on the vocal syntax of mice, in turn providing insights
into the effects of the gene on human vocal communication abilities and related deficiencies. The real
FoxP2 data set originates from the study by Chabout et al. (2016) and requires permission to use. Wu
et al. (2023) simulated a data set that closely mimics the real one. For demonstrating the BMRMM
package, we included in it a shortened version of this synthetic data set which we refer to as the foxp2
data set. The foxp2 synthetic data set has 17391 rows and 6 columns, which are Id, Genotype, Context,
Prev_State, Cur_State, and Transformed_ISI. The original FoxP2 data set records ISIs in seconds. In
the simulated data set foxp2, following Wu et al. (2023), log(1+ISI) values are used which give a better
model fit.

Id Genotype Context Prev_State Cur_State Transformed_ISI

1 2 2 3 3 0.20197711
1 2 2 3 3 0.06972753
1 2 2 3 3 0.07211320
1 2 2 3 3 0.15790932
1 2 2 3 3 0.06781471
1 2 2 3 3 0.09426236

Table 4: Part of the simulated FoxP2 data set foxp2.

If we are only interested in analyzing the transition probabilities with the covariates genotype and
social contexts, we would use the main function as follows.

R> res.fp2 <- BMRMM(foxp2, num.cov = 2)

If we would like to pick specific covariates for our analyses, we can define trans.cov.index
and duration.cov.index accordingly. For example, if we only want to use context for transition
probabilities and genotype for ISIs, we would run the following.

R> res.fp2 <- BMRMM(foxp2, num.cov = 2,
trans.cov.index = c(2), duration.cov.index = c(1))

If we would like to analyze the ISIs as part of the original state sequence following a mixture
Dirichlet distribution, as was done by Sarkar et al. (2018), the ISIs are replaced by (possibly consecutive)
"silent" states by dividing them into blocks of 250 milliseconds. The BMRMM function can do this by
setting duration.distr as a list with the string 'mixDirichlet' and the argument unit as log(0.25 +
1), based on the log transformation.

R> res.fp2 <- BMRMM(foxp2, num.cov = 2,
duration.distr = list('mixDirichlet', unit = log(0.25+1)))

In the next example, we would like to analyze the ISIs as continuous variables following a mixture
gamma distribution. For syllable transitions, we use both genotype and context as covariates. For the
ISIs, in addition to these two, we also use the preceding syllable as a covariate.
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R> res.fp2 <- BMRMM(data = foxp2, num.cov = 2, state.labels = c('d', 'm', 's', 'u'),
cov.labels = list(c('F', 'W'), c('U', 'L', 'A')),
duration.distr = list('mixgamma', shape = rep(1, 4), rate = rep(1, 4)))

In what follows, we show the results for the last function call. The returned res.fp2 have two parts,
which are named res.fp2$results.trans and res.fp2$results.duration. Now we demonstrate
how we print and visualize the results.

First, we obtain a BMRMMsummary object, sm.fp2, by calling the summary.BMRMM function on the
returned results res.fp2. The global test results for identifying the significant covariates can be
found by calling the fields trans.global and dur.global. The function plot.BMRMMsummary is called
to visualize the global tests using barplots, as presented in Figure 2. We recall that a covariate is
significant when its levels formed more than one cluster with very high posterior probability (the bar
heights). Figure 2 and the printed results suggest that every covariate is significant for the ISIs but
only the social context is significant for the transition probabilities.

R> sm.fp2 <- summary(res.fp2)
R> sm.fp2$trans.global

label_data
cluster_data Context Genotype

1 0 1
3 1 0

R> sm.fp2$dur.global
label_data

cluster_data Context Genotype prev_state
2 0.00 1.00 0.10
3 1.00 0.00 0.90
4 0.00 0.00 0.01

R> plot(sm.fp2, 'trans.global')
R> plot(sm.fp2, 'dur.global')
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Figure 2: Results for the simulated foxp2 data set showing the global tests of significance of the
covariates for the state transitions (left) and the ISIs (right). The bars represent the estimated posterior
probabilities of the number of clusters formed by the levels of each covariate.

The plotting function can be called to visualize the posterior transition probabilities under different
combinations of the covariate levels. We show in Figure 3 the heatmaps for the posterior mean and
standard deviation of the transition probabilities for each transition type for the following combinations
of covariates: (F, A) and (W, L).

R> plot(sm.fp2, 'trans.probs.mean')
R> plot(sm.fp2, 'trans.probs.sd')

We also perform the local test to assess the influence of genotype on the transition probabilities by
computing the absolute difference of the transition probabilities between F and W among the thinned
MCMC samples after burn-ins, i.e., |∆λtrans,·,x2 (yt | yt−1)| = |λtrans,1,x2 (yt | yt−1) − λtrans,2,x2 (yt |
yt−1)|. The estimated posterior probability for the null hypothesis is therefore the proportion of times
|∆λtrans,·,x2 (yt | yt−1) ≤ δ| is observed in the MCMC samples, where x2 is the social context and δ is the
user-specific difference threshold delta. The plotting function plot.BMRMMsummary gives the plots for
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Figure 3: Results for the simulated foxp2 data set showing the posterior mean and standard deviation
for each transition type for selected covariate combinations, (F, A) (top) and (W, L) (bottom).

all local test results if we set the type to be ‘trans.local.mean.diff’ or ‘trans.local.null.test’.
Here, we show the results of local tests for the covariate 1 (i.e., genotype) with delta equaling the
default value of 0.02, and present the plots in Figure 4. From the figure, we see that the posterior
probabilities of the null hypotheses are generally large for most transition types (e.g., transitions to the
syllable u) regardless of the social context, indicating that genotype does not have a strong influence
on transition probabilities with a fixed context under these transition types.

R> plot(sm.fp2, 'trans.local.mean.diff')
R> plot(sm.fp2, 'trans.local.null.test')

Next, we turn our attention to the ISIs. We first check the fit of our estimated mixture gamma
distribution presented in Figure 5a. We then look further into the shape of each mixture component in
Figure 5b. From the histogram for each component, we see that components 2 and 4 represent longer
ISIs while components 1 and 3 represent shorter ISIs.

R> hist(res.fp2, xlim = c(0,1))
R> for(comp in 1:4) {

hist(res.fp2, comp = comp)
}

We examine the values of mixture parameters and mixture probabilities for each covariate level in
the last MCMC iteration, which provides insights into the influence of the covariate on ISI lengths.

R> sm.fp2$dur.mix.params
shape.k rate.k

Comp 1 29.07 394.30
Comp 2 1.23 1.49
Comp 3 8.46 465.66
Comp 4 3.03 20.13

R> sm.fp2$dur.mix.probs
$Genotype

F W
Comp 1 0.46 0.48
Comp 2 0.19 0.13
Comp 3 0.10 0.15
Comp 4 0.25 0.24
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Figure 4: Results for the simulated foxp2 data set showing local test results for genotypes fixing the
social context, U (top), L (middle), and A (bottom). The averaged absolute difference in transition
probabilities between F and W is presented on the left. The posterior probabilities of the corresponding
null hypotheses are on the right.
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Figure 5: Results for the simulated foxp2 data set showing the histograms of the ISIs with the estimated
posterior gamma mixture density (left) and the histograms of the ISIs for each mixture component
(right).
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$Context
U L A

Comp 1 0.58 0.35 0.48
Comp 2 0.14 0.16 0.18
Comp 3 0.08 0.21 0.08
Comp 4 0.20 0.28 0.25

$prev_state
d m s u

Comp 1 0.52 0.52 0.42 0.42
Comp 2 0.13 0.13 0.22 0.17
Comp 3 0.11 0.11 0.10 0.18
Comp 4 0.24 0.24 0.26 0.23

From the mixture probabilities, we see that mice with genotype F have a much higher mixture
probability in component 2 compared to genotype W, which indicates mice with the FoxP2 mutation
require a longer ISI between pronouncing two syllables, a reflection of vocal impairment.

Finally, we check the MCMC diagnostic plots and see if we had good mixing for the parameters.
Here we focus on a specific transition type, u → m, for covariate combination {F, U} and a specific
mixture component (component 2). We show these plots in Figure 6.

R> diag.BMRMM(res.fp2, cov.combs = list(c(1, 1)),
transitions = list(c(4, 2)), components = c(2))

5 Illustrations on the asthma control data set

The BMRMM package is able to analyze duration times in detail which could either be the ISIs, as seen
in the synthetic foxp2 data set, or the state persistence times, as in a traditional semi-Markov model.
To demonstrate the usage of our package in analyzing the state persistence times, we use the asthma
control data set from the ARIA (Association pour la Recherche en Intelligence Artificielle) study of
severe asthmatic patients (Combescure et al., 2003) in France between 1997 and 2001. At each visit,
a chest physician graded the asthma control status of the patient using control scores (Juniper et al.,
1999). The data set contains the sojourn time of the control states as well as three covariates: Asthma
severity, sex, and the body mass index (BMI) of the patients. Saint-Pierre et al. (2003) used a Markov
model with piece-wise constant intensities to model the asthma control evolution and proposed a
regression model for analyzing the effect of covariates. Combescure et al. (2003) used the data set
to assess the relationship between asthma severity and control of asthma. Listwon and Saint-Pierre
(2015) fitted a semi-Markov model for the sojourn times using exponential and Weibull distributions
and analyzed the effect of covariates individually due to complexity. Our BMRMM package is able to
analyze the effect of the three covariates while also incorporating random individual effects exhibited
by different patients on transition dynamics and state duration times.

The asthma data set we use here is from the SemiMarkov package (Listwon and Saint-Pierre,
2015). We have renamed and reordered the columns such that the data set fits the required format.
Specifically, the data set has 928 rows, recording the asthma control states of 371 patients, which is
one of the following three transient states: Optimal control (State 1), sub-optimal control (State 2), and
unacceptable control (State 3). Each state can transit to any other two states and the state duration
times are recorded. The data set also contains three binary covariates of the asthma patients, including
the disease severity (1 if mild-moderate and 2 if severe), BMI (body mass index, 1 if BMI < 25 and 2
otherwise), and sex (1 if women and 2 if men). We display part of the processed data in Table 5, where
Duration is the sojourn time in Prev_State.

Id Severity BMI Sex Prev_State Cur_State Duration

2 2 2 1 3 2 0.1533
2 2 2 1 2 2 4.1232
3 2 2 2 3 1 0.0958
3 2 2 2 1 3 0.2300
3 2 2 2 3 1 0.2656
3 2 2 2 1 1 5.4073

Table 5: Part of the asthma data set from the ARIA study of severe asthmatic patients.
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Figure 6: Results for the simulated foxp2 data set showing the MCMC diagnostic plots, including
traceplots and autocorrelation plots.

We investigate the transition dynamics and state persistence times of the asthma data set using the
BMRMM function. We consider K = 4 mixture components for state persistence times. The choice of K is
derived from running the BMRMM model several times with different K’s and comparing the fitness
of the models using the LPML and WAIC scores.

R> res.asm <- BMRMM(data = asthma, num.cov = 3, state.labels = c(1, 2, 3),
cov.labels = list(c('Mild-Moderate','Severe'),

c('BMI<25','BMI>=25'),
c('Women','Men')),

duration.distr = list('mixgamma', shape = rep(1, 4),
rate = rep(1, 4)))

We name the returned BMRMM object res.asm and obtain the BMRMMsummary object sm.asm by calling
the summary.BMRMM function. As in the FoxP2 application, we first plot the global test results for both
transition probabilities and state persistence times in Figure 7. For the transition probabilities, only the
severity of asthma is significant while for duration times only the preceding state is significant. The
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BMI value and the sex are not significant for either transition dynamics or state durations.
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Figure 7: Results for the asthma data set showing the global tests of significance of the covariates for
the state transitions (left) and the state persistence times (right). The bars represent the estimated
posterior probabilities of the number of clusters formed by the levels of each covariate.

R> sm.asm <- summary(res.asm)
R> sm.asm$trans.global

label_data
cluster_data BMI Severity Sex

1 0.96 0.00 1.00
2 0.04 1.00 0.00

R> sm.asm$dur.global
label_data

cluster_data BMI prev_state Severity Sex
1 0.88 0.00 0.88 0.99
2 0.12 0.14 0.12 0.01
3 0.00 0.86 0.00 0.00

R> plot(sm.asm, 'trans.global')
R> plot(sm.asm, 'dur.global')

We show the posterior mean and standard deviations of the state transition probabilities for men
and women with severe conditions and BMI ≥ 25 in Figure 8. We see that for severe patients with
BMI ≥ 25, the transition probabilities are similar for men and women. We also take a look at the local
test results for the BMI values fixing the severity of the patients in Figure 9. Though the absolute
differences between the two covariate levels for BMI are small, the probabilities for the null hypotheses
are also small, especially for transitions to state 1 and state 2. This suggests that even though the
influence of BMI on state transitions is not significant globally, it is significant given the severity of
asthma condition regardless of sex.

R> plot(sm.asm, 'trans.probs.mean')
R> plot(sm.asm, 'trans.probs.sd')

Figure 10a presents the histograms of the entire asthma data set, superimposed with the posterior
mean of the mixture gamma distribution. With four components, the estimated mixture gamma fits the
asthma data well. From the histogram for each component, we see from Figure 10b that component 1
and 2 represents shorter state persistence times while components 3 and 4 represent longer durations.

R> hist(res.asm, xlim = c(0,1))
R> for(comp in 1:4) {

hist(res.asm, comp = comp)
}

We investigate the covariates’ influence by examining the mixture probabilities from the last
MCMC iteration. An interesting discovery is that the mixture probabilities for both sexes, BMI levels,
and severity levels are the same, indicating that the levels of these three covariates do not strongly
influence the distributions of state durations. This matches the global test results in Figure 7. If the
preceding state is state 1, which is optimal control for asthma, the state duration time is longer than
that if the previous state is 2 or 3, as there is a lower weight in component 1 and higher weight in
components 3 and 4. On the other hand, if the preceding state is 3, which is unacceptable control, then
the state duration time is much shorter, as the mixture probability in component 1 is much higher
when the preceding state is state 3. We present some examples of the diagnostic plots for the asthma
data set in Figure 11.
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Figure 8: Results for the asthma data set showing the posterior mean and standard deviation
for each transition type for selected covariate combinations, {Severe, BMI ≥ 25, Men} (top) and
{Severe, BMI ≥ 25, Women} (bottom).
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Figure 9: Results for the asthma data set showing local test results for BMI fixing asthma severity
condition and sex, men (top) and women (bottom). The averaged absolute difference in transition
probabilities between BMI < 25 and BMI ≥ 25 is presented on the left. The posterior probability of the
null hypothesis is on the right.

R> sm.asm$dur.mix.probs
$Severity

Mild-Moderate Severe
Comp 1 0.37 0.37
Comp 2 0.26 0.26
Comp 3 0.20 0.20
Comp 4 0.17 0.17
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(b) Histograms of ISIs for each of the three com-
ponents of the gamma mixture model along
with the component density (red lines) from
the last MCMC iteration.

Figure 10: Results for the asthma data set showing the histograms of ISIs with the estimated posterior
gamma mixture density (left) and histograms of ISIs for each mixture component (right).

$BMI
BMI<25 BMI>=25

Comp 1 0.37 0.37
Comp 2 0.26 0.26
Comp 3 0.20 0.20
Comp 4 0.17 0.17

$Sex
Women Men

Comp 1 0.37 0.37
Comp 2 0.26 0.26
Comp 3 0.20 0.20
Comp 4 0.17 0.17

$prev_state
1 2 3

Comp 1 0.27 0.33 0.51
Comp 2 0.23 0.33 0.23
Comp 3 0.31 0.20 0.09
Comp 4 0.19 0.15 0.17

R> diag.BMRMM(res.fp2, cov.combs = list(c(1, 2, 1)),
transitions = list(c(1, 1)), components = c(3))

6 Conclusion

We presented the BMRMM package which implements both Bayesian Markov mixed models (BMMM)
for analyzing the state transitions and Bayesian Markov renewal mixed models (BMRMM) for addi-
tionally analyzing the duration times (being either state persistence times or inter-state intervals) in a
collection of categorical sequences, using flexible Dirichlet and gamma mixtures, respectively. The
BMRMM takes into account fixed effects of the associated covariates as well as random effects of the
associated individuals while simultaneously selecting the significant covariates separately for the state
transitions and the duration times. The package includes a synthetic foxp2 data set to demonstrate
the data framework and function usages. The package also provides a series of plotting functions for
visualizing the results of the analyses, including various global and local hypotheses tests, MCMC
diagnostics, etc. We are committed to maintaining and further developing the package in the future.
Future improvements to the package may include more options for the distribution types of transition
probabilities and duration times beyond the currently available mixture Dirichlet and mixture gamma
distributions, respectively.
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Figure 11: Results for the asthma data set showing the MCMC diagnostic plots, including traceplots
and autocorrelation plots.
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