CONTRIBUTED RESEARCH ARTICLE 157

shinymgr: A Framework for Building,
Managing, and Stitching Shiny Modules
into Reproducible Workflows

by Laurence A. Clarfeld, Caroline Tang, and Therese Donovan

Abstract The R package shinymgr provides a unifying framework that allows Shiny developers to
create, manage, and deploy a master Shiny application comprised of one or more “apps”, where an
“app” is a tab-based workflow that guides end-users through a step-by-step analysis. Each tab in a
given “app” consists of one or more Shiny modules. The shinymgr app builder allows developers to
“stitch” Shiny modules together so that outputs from one module serve as inputs to the next, creating
an analysis pipeline that is easy to implement and maintain. Apps developed using shinymgr can be
incorporated into R packages or deployed on a server, where they are accessible to end-users. Users
of shinymgr apps can save analyses as an RDS file that fully reproduces the analytic steps and can
be ingested into an RMarkdown or Quarto report for rapid reporting. In short, developers use the
shinymgr framework to write Shiny modules and seamlessly combine them into Shiny apps, and
end-users of these apps can execute reproducible analyses that can be incorporated into reports for
rapid dissemination. A comprehensive overview of the package is provided by 12 learnr tutorials.

1 Introduction

The shiny R package allows users to build interactive web apps straight from R, without advanced
knowledge of HTML or JavaScript (Chang et al., 2022). A shiny web app can permit an expedient
analysis pipeline or workflow. Ideally, the pipeline can produce outputs that are fully reproducible
(Peng, 2011; Gentleman and Lang, 2007; Alston and Rick, 2021). Moreover, the pipeline can permit
rapid reporting to convey the results of an analysis workflow to a target audience (Stoudt et al., 2021)
(Figure 1).

shiny applications range from simple to complex, each with an intended purpose developed for
an intended user audience. Several R packages provide a development framework for building
multi-faceted master applications, including shinipsum for prototyping (Fay and Rochette, 2020),
golem (Fay et al., 2021), and rhino (Zyla et al., 2023).

From the developer’s perspective, complex shiny applications can result in many lines of code,
creating challenges for collaborating, debugging, streamlining, and maintaining the overall product.
shiny modules are a solution to this problem. As stated by Winston Chang (shi, 2020), “A shiny module
is a piece of a shiny app. It can’t be directly run, as a shiny app can. Instead, it is included as part of a
larger app . . . Once created, a shiny module can be easily reused — whether across different apps, or
multiple times in a single app.” shiny modules, and modularization in general, are a core element of
agile software development practices (Larman, 2004). Several authors have contributed R packages for
distributing pre-written shiny modules for general use, including the datamods (Perrier et al., 2022),
shiny.reglog (Kosinski, 2022), periscope (Brett and Neuhaus, 2022), shinyauthr (Campbell, 2021), and

Data
Define o :
5 it isiticn Analysis :
Analysis cqu&n 2 Outpﬁts Reporting
Workflow Wrangling

Reproducible Workflow

Figure 1: Stages of a reproducible workflow, a process that moves an inquiry from raw data to
insightful contribution.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=shinipsum
https://CRAN.R-project.org/package=golem
https://CRAN.R-project.org/package=rhino
https://CRAN.R-project.org/package=datamods
https://CRAN.R-project.org/package=shiny.reglog
https://CRAN.R-project.org/package=periscope
https://CRAN.R-project.org/package=shinyauthr

CONTRIBUTED RESEARCH ARTICLE

158

jsmodule (Kim and Lee, 2022) packages.

However, as the number of available modules increases, there is a pressing need for documenting
available shiny modules and easily incorporating them into new workflows. For example, consider a
toy modular-based app that guides a user through an analysis of the famous “Iris Dataset,” which
contains 150 records of 3 species of iris, including measurements of the length and width of the flowers’
sepals and petals (Fisher, 1936). The app, called “Iris Explorer,” consists of 5 tabs to be worked through
in sequence (Figure 2, top).

Tab 1 displays instructions for use, while tab 2 performs a k-means clustering of the data, where k
is specified by the user. The resulting clusters are displayed with two variables of the user’s choosing
as depicted in Figure 2. In tab 3, the user will choose a value 7, indicating the number of rows by
which to randomly subset the data, and in tab 4 the user selects a single variable to be plotted as a
bar chart. Finally, in tab 5 the user can save their outputs as an RDS file. This contrived example
includes some key elements of a typical workflow in that the five tabs introduce a dataset, guide the
user through light data wrangling, produce analysis outputs, and offer the ability to save the results.

The app’s blueprint (Figure 2, bottom) identifies the shiny modules in each tab, showing how
outputs from one module can serve as inputs to the next. Note that while this example shows a single
module in each tab with differing inputs/outputs, in the general case tabs can contain an arbitrary
number of shiny modules (including multiple instances of the same module) and each module can
have multiple inputs/outputs.

While two of the shiny modules within the “iris_explorer” app pertain to the iris dataset specifically
(“iris_intro” and “iris_cluster”), the remaining shiny modules (“subset_rows”, “single_column_plot”,
and “save”) may be incorporated into other apps.

ntro Cluster Iris Data Subset Rows Plot Column Save
Cluster data from the iris dataset by specifying the attributes and number of clusters.
X Variable
Sepal.Length v f’, 1
o0
¥ Variabl
Variable o L]
0
Sepal.width - = o
pa gt ‘? ® ®
= [] o oo
Clust t 3 o [] .ﬂ.. [eelee]
uster coun & ow
: A e % o
: o o0 ° o
a : [] y e o
[] L] L
o0
& [
T T T T T T T T
45 50 5.5 6.0 6.5 7.0 7.5 80
SepalLength
Previous Next
Tab1l Tab2 Tab 3 Tab4 Tab5s
Iris Intro K-means Subset Rows Plot Column Save
clustering

e .

Figure 2: Top: The "iris_explorer" app guides a user through an analysis of the iris dataset in a
tab-based sequence. Bottom: A blueprint of the "iris_explorer" app shows the 5 tabs, each containing a
single module identified by name within blue ovals. Some of the shiny modules require inputs and
generate outputs as identified in gray polygons.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=jsmodule

CONTRIBUTED RESEARCH ARTICLE 159

Developers who utilize the same shiny modules within different apps will naturally be faced with
several questions:

. Which shiny modules have been written? Are they well documented with unit testing?
. What are the module’s inputs (arguments) and outputs (returns)?

. Where are the shiny modules stored?

How can shiny modules be combined into a cohesive, well-documented app?

. How can production-ready apps be deployed for end-users?

TR W N e

Users of an app created with the shinymgr framework may wish to know:

6. Can analysis outputs be saved as a fully reproducible workflow?
7. Can outputs be ingested into a Rmarkdown or Quarto template for rapid reporting?

1.1 Introducing shinymgr

The R package, shinymgr, was developed to meet these challenges (Clarfeld et al., 2024). The shinymgr
package includes a general framework that allows developers to create shiny modules, stitch them
together as individual “apps” that are embedded within the master shiny application, and then deploy
them on a shiny server or incorporate them into R packages. shinymgr was motivated from our
first-hand experience in our work building tools that assist scientists in remote wildlife monitoring
with the R package AMMonitor (Balantic and Donovan, 2020). Dependencies of shinymgr include the
packages DBI (R Special Interest Group on Databases (R-SIG-DB) et al., 2022), reactable (Lin, 2022),
RSQLite (Miiller et al., 2022), renv (Ushey, 2023), shiny (Chang et al., 2022), shinyjs (Attali, 2021), and
shinydashboard (Chang and Borges Ribeiro, 2021).

From the developer’s perspective, an “app” consists of an ordered set of tabs, each of which
contain specified shiny modules. shiny modules are the basic element in the shinymgr framework; they
can be used and re-used across different tabs and different apps. Information about each module and
app is stored in a SQLite database (Hipp, 2020). The shinymgr app builder “stitches” shiny modules
together so that outputs from one module serve as inputs to the next, creating an analysis pipeline
that is easy to implement and maintain. When apps are production-ready , developers can deploy a
stand-alone shiny application independent of shinymgr on a server or within an R package. From the
end-user’s perspective, an “app” created with the shinymgr framework consists of an ordered series of
shiny tabs, establishing an analysis. Users can save their inputs and outputs as an RDS file to ensure
full reproducibility. Furthermore, the RDS file may be loaded into an R Markdown (Rmd) or Quarto
(qgmd) template for rapid reporting. We are unaware of existing packages that unify the elements of
modularization, documentation, reproducibility, and reporting in a single framework.

We introduce shinymgr in sections 2-4 below. In section 2 we describe how developers can create
apps using the shinymgr framework. In section 3 we describe how developers can deploy a shinymgr
project on a local machine, server, or within an R package. In section 4 describes the end-user
experience, where end-users execute an “app” and store results for reproducibility and reporting. The
package tutorials and cheat sheet are described in section 5. The shinymgr package comes with a series
of learnr (Schloerke et al., 2020) tutorials described at the end of the paper.

2 Developing shinymgr apps

2.1 Setting up shinymgr

The canonical home of shinymgris https://code.usgs.gov/vtcfwru/shinymgr/ where shinymgr users
may post merge requests and bug fix requests. shinymgr may also be downloaded from CRAN.

install.packages("shinymgr"”)
The development version can be downloaded with:

remotes::install_gitlab(

repo = "vtcfwru/shinymgr”,
auth_token = Sys.getenv("GITLAB_PAT"),
host = "code.usgs.gov",

build_vignettes = FALSE)

Once installed, a new shinymgr project can be created within a parent directory:

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=shinymgr
https://CRAN.R-project.org/package=DBI
https://CRAN.R-project.org/package=reactable
https://CRAN.R-project.org/package=RSQLite
https://CRAN.R-project.org/package=renv
https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=shinyjs
https://CRAN.R-project.org/package=shinydashboard
https://CRAN.R-project.org/package=learnr
https://code.usgs.gov/vtcfwru/shinymgr/

CONTRIBUTED RESEARCH ARTICLE 160

set the directory path that will house the shinymgr project
parentPath <- getwd()

set up raw directories and fresh database
shinymgr_setup(

parentPath = parentPath,

demo = TRUE)

The shinymgr_setup() function produces the following directory structure within the primary
“shinymgr” directory. This structure consists of 3 files that make up the “master” app (global.R, server.R,
and ui.R), and 9 directories. If the argument demo is set to FALSE, these directories will be largely
empty, except for the “modules_mgr” and “database” directories, which will contain shiny modules
for rendering shinymgr’s Ul and an empty SQLite database, respectively. If the argument demo is set
to TRUE, each directory will include several demo files as shown, including a pre-populated database.
Here, we highlight a subset of the demo files related to the “iris_explorer” app to guide developers
through the key elements of shinymgr (additional demo files come with package but are omitted here
for clarity).

shinymgr

+-- analyses

| \-- iris_explorer_Gandalf_2023_06_05_16_30.RDS
+-- data

| \-- iris.RData

+-- database

| \-- shinymgr.sqlite

+-- global.R

+-- modules

| +-- iris_cluster.R

| +-- iris_intro.R

| +-- single_column_plot.R

| \-- subset_rows.R

+-- modules_app

| \-- iris_explorer.R

+-- modules_mgr

| +-- add_app.R

| +-- add_mod.R

| +-- add_report.R

| +-- add_tab.R

| +-- app_builder.R

| +-- my_db.R

| +-- new_analysis.R
| +-- new_report.R

| +-- queries.R

| +-- save_analysis.R
| +-- stitch_script.R
| \-- table.R

+-- reports

| \-- iris_explorer

| \-- iris_explorer_report.Rmd
+-- server.R

+-- tests

+-- shinytest

+-- test-iris_explorer-expected

|

| | +-- 001.json
| | +-- 001.png
| | +-- 002.json
| | \-- 002.png
|

\-- test-iris_explorer.R
+-- shinytest.R

+-- testthat

| +-- test-iris_cluster.R
| \-- test-subset_rows.R
\-- testthat.R

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 161

== www
+-- dark_mode.css
\-- shinymgr-hexsticker.png

The directory structure produced by shinymgr_setup() includes the following:

* The analyses directory provides the developer an example of a previously run analysis that was
created using the shinymgr framework (an RDS file). An analysis file name includes the app
name (e.g. “iris_explorer”), the name of the person who ran the analysis (e.g. “Gandalf”), and
the date and time of the analysis (e.g., “iris_explorer_Gandalf_2023_06_05_16_30.RDS").

¢ The data directory stores RData files that can be used by various shinymgr apps (e.g., “iris.RData”).

¢ The database directory stores the shinymgr SQLite database, named “shinymgr.sqlite.” The
database is used by the developer to track all shiny modules, their arguments (inputs), returns
(outputs), and how they are combined into shinymgr apps.

* The modules directory stores stand-alone shiny modules. These files are largely written by
the developer with the help of the mod_init() function, and are registered in the database
with the mod_register() function. Four of the example shiny modules listed are used in the
“iris_explorer” app.

¢ The modules_app directory stores shiny modules that are shinymgr “apps” — the stitching
together of shiny modules into a tab-based layout that provides an analysis workflow (Figure 2
shows the “iris_explorer” app layout). Files within the “modules_app” directory are not written
by hand - instead, they are created with the shinymgr “app builder.”

¢ The modules_mgr directory stores shiny modules that build the overall shinymgr framework.

¢ The reports directory provides an example of an RMarkdown (Rmd) template (e.g., “iris_explorer_report.Rmd”),
allowing for rapid reporting by an end-user.

¢ The tests directory stores both testthat (Wickham, 2011) and shinytest (Chang et al., 2021) code
testing scripts.

¢ The www directory stores images that may be used by a shiny app.

* In addition to these directories, three files are created for launching the master shinymgr shiny
application:

1. ui.R - This file contains code to set the user interface for the master shinymgr app.

2. server.R - The master server file.

3. global.R - The global.R file is sourced into the server.R file at start-up. It sources all of
the shiny modules within the shinymgr framework so they are available when shinymgr is
launched.

2.2 The shinymgr developer’s portal

Once set-up is complete, the launch_shinymgr() function will launch the shinymgr “Developer’s
Portal” Ul, allowing developers to create and test new shinymgr apps.

launch shinymgr
launch_shinymgr(shinyMgrPath = paste@(parentPath, "/shinymgr"))

The portal is recognizable by the shinymgr logo in the upper left corner (Figure 3). The portal
consists of three main tabs in the left menu. The “Developer Tools” tab is used to create apps, view the
shinymgr database, and register reports, while the “Analysis (beta)” and “Reports (beta)” tabs allow
developers to evaluate apps from the user’s perspective.

The “Developer Tools” section includes 4 tabs for app development: The “Build App” tab allows
the developer to create new shinymgr apps from existing modules using the shinymgr app builder;
the “Database” tab displays the shinymgr database tables, the “Queries” tab contains a set of standard
database queries, and the “Add Reports” tab allows the developer to link a report (Rmd or gmd) to a
given shinymgr app (Figure 3), as described below.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=testthat
https://CRAN.R-project.org/package=shinytest

CONTRIBUTED RESEARCH ARTICLE 162

shinymgr

Database

Build App Queries Add Report

Developer Portal

This is where you use modules from the database to build an app. It is essential that an App be fully planned
before being built. For more on planning your App, see the walkthrough in the tutorials. Once your app is

€ Analysi a) planned, this builder allows will document the details of your app in the SQLite database, including the App's
metadata, tabs, mods, and how the mods will be stitched together. The builder than writes a script for your
B Reports (beta) App to the modules_app directory. Your App can then be run using 'New Analysis'. Press "Start New App" to
' begin.
& Developer Tools
Start New App

Figure 3: The shinymgr Developer Portal consists of a sidebar panel where developers can create new
shiny modules and new apps, and test-drive analyses and reports from the user’s perspective. The
main panel shows the "Build App" tab within the "Developer Tools" section.

2.3 The shinymgr database

The shinymgr SQLite database (“shinymgr.sqlite”) is a single file created by the shinymgr_setup()
function. The database tracks all shiny modules, their arguments (inputs), returns (outputs), their
package dependencies and version numbers, how they are combined into an “app,” and any reports
that are associated with apps. The database tables are populated via dedicated shinymgr functions.

The shinymgr database consists of 11 tables in total (Figure 4). These tables are connected to each
other as a typical relational database, with primary keys establishing unique records in each table, and
foreign keys that reference primary keys in other tables (see Appendix A for a full database schema
and the “database” learnr tutorial for additional information).

”ou " ou ”ou

The “apps,” “appReports,” “reports,” “appTabs,” and “tabs” tables largely store information on
what a user would see when they run an analysis. The table “apps” stores information about apps
such as “iris_explorer.” Apps consist of tabs, which are listed in the “tabs” table. Tabs are linked to
apps via the “appTabs” table. The table “reports” lists any Rmd or qmd files that serve as a report
template, and the table “appReports” links a specific report with a specific app.

Four of the 11 database tables focus on modules, highlighting that shiny modules are basic building
blocks of any shinymgr app. Developers create new shiny modules with the mod_init() function,
which copies a shinymgr module template (an R file template) that includes a header with key-value
that describe the module, including the module name, display name, description, citation, notes, and
module arguments and returns (if any). For example, the header of the iris_cluster module is:

#!! ModName = iris_cluster

#!! ModDisplayName = Iris K-Means Clustering

#!! ModDescription = Clusters iris data based on 2 attributes

#!! ModCitation = Baggins, Bilbo. (2023). iris_cluster. [Source code].

{ appReports ‘ ,,,,,,, ‘ reports ‘
apps } I appTabs } """"""") -_-;::‘-
“ { tabModules ‘

‘ modFunctionArguments }

1 appStitching F

modules

| modFunctionReturns ‘

‘ modPackages }

Figure 4: The 11 tables of the shinymgr SQLite database. Lines indicate how the tables are related to
each other.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 163

#!! ModNotes = Demo module for the shinymgr package.
#!! ModActive = 1
#!! FunctionReturn = returndf !! selected attributes and their assigned clusters !! data.frame

The module code is written beneath the header (see Appendix B for an example). Function calls
within the module code should be written with package: : function() notation, making explicit any R
package dependencies. Once the module is completed, unit tests can written and stored in the shinymgr
project’s “tests” directory. The final module file is saved to the “modules” directory and registered into
the database with the mod_register() function. The mod_register() function populates the modules,
“modFunctionArguments”, and “modFunctionReturns” SQLite database tables. Further, it uses the
renv package to identify any package dependencies and inserts them into the modPackages table.
Readers are referred to the “modules” “tests”, and “shinymgr_modules” learnr tutorials that come

with the shinymgr package for more details.

Once modules are registered in the database, the developer can incorporate them into new apps.
As shiny modules and apps in the database represent files that contain their scripts, deleting a module
or an app from the database will delete all downstream database entries as well as (optionally) the
actual files themselves. Deletion of a module will fail if it is being used in other apps. Module updates
can be versioned by creating a new module and then referencing its precursor in the “modules”
database table.

2.4 The shinymgr app builder

Once developers create and register their own stand-alone shiny modules, apps are generated with
shinymgr’s app builder (Figure 5).

e

Developer Portal

This is where you use medules frem the dstabsse s build 8 8pp. tis essentisl that 8 App be fully plsnnad befare baing uilt For mare on planning your App, see the walkthrough in the tutsrisls.

Once your app is planned, this builder sllows will document the details of your app in the SQLite datsbase, including the App's metadats, tabs, mods, and how the mods will be stitched together. The
builder than writes a script for your App to the modules_app directory. Your App can then be run using 'New Analysis’ Press "Start New App” to begin.

App Metsdats b dd Modu h m
YOU r Ap p pkAppName

elem_type um elem_name
Display Name

App Video URL

Bootswatch theme name or CS5 file name

Notes

Figure 5: The shinymgr Developer Portal layout, showing the app builder in the Developer Tools.

Developers are guided through a process where they design their app from shiny modules they
have registered. The builder then populates the shinymgr database with instructions on how to
construct the app and writes the app’s script based on those instructions. The newly created script is
saved to the “modules_app” directory. Through this structured process, apps produced by the builder
are well-documented and generate highly reproducible analyses. Readers are encouraged to peruse
the tutorial, “apps”, for more information.

The qry_app_flow() function will query the database to return a list of the shiny modules and tabs
included in a specified app, such as “iris_explorer”:

look at the appTabs table in the database
gry_app_flow("iris_explorer”, shinyMgrPath = paste@(getwd(),"/shinymgr"))

fkAppName fkTabName tabOrder fkModuleName modOrder

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 164

1 iris_explorer IE_intro 1 iris_intro 1
2 iris_explorer IE_iris_data 2 iris_cluster 1
3 iris_explorer IE_subset_rows 3 subset_rows 1
4 iris_explorer IE_plot_data 4 single_column_plot 1

As shown in Figure 2, this app has 5 tabs, and each tab features a single module. The “Save” tab is
the final tab in all shinymgr apps and is not listed in the query result.

Developers can “beta test” apps prior to deployment by selecting the Analysis (beta) tab in the
Developer’s Portal (Figure 3). They can also create RMarkdown or Quarto report templates that accept
the outputs from an analysis and incorporate them into a report. Report metadata are logged in
the “reports” table of the database, and then linked with a specific app in the “appReports” table.
An end-user will run an analysis and render a report, a process described more fully in the “Using
shinymgr Apps” section below.

To summarize this section, developers use the shinymgr_setup() function to create the directory
structure and underlying database needed to build and run shiny apps with shinymgr. Developers
use the mod_init() and mod_register() functions to create modules and make them available for
inclusion in new apps built with the shinymgr app builder. A developer can create as many shinymgr
projects as needed. In each case, the shinymgr project is simply a fixed directory structure with three
R files (ui.R, server.R, and global.R), and a series of subdirectories that contain the apps and shiny
modules created by the developer, along with a database for tracking everything.

3 Deploying shinymgr projects

Once development is completed, developers can deploy their shinymgr project on a server or within an
R package by copying portions of the shinymgr project to a new location while retaining the original
project for future development. Once deployed, a shinymgr project no longer requires the shinymgr
package or database to be run. Thus, the files and directories to be copied for deployment include
only:

shinymgr

+-- data

+-- global.R
+-- modules

+-- modules_app
+-- modules_mgr
+-- reports

+-- server.R
+-- ui.R

\-- www

The master app files, ui.R, global.R, and server.R, are needed to run the shinymgr framework.

When deploying a shinymgr project within an R package, objects within the data folder should be
copied into the package’s “data” folder. The remaining files should be copied into a directory within

the package’s “inst” folder that will house the master shiny application. Deployment on a server such
as shinyapps.io will require similar adjustments.

After files are copied to the correct location, a few key adjustments are needed. First, the “mod-
ules_app” directory should contain only those apps (and dependent modules and reports) that can be
used by end-users; unused apps, modules, and reports can be deleted. Second, the new.analysis.R
script within the modules_mgr folder will require minor updates to remove dependencies on the
shinymgr database. Third, the ui.R and server.R scripts should be updated to no longer showcase
shinymgr and the Developer’s Portal; rather, it should be customized by the developer to create their
own purpose-driven apps. For example, Figure 6 shows a hypothetical deployment of the master
app titled “Deployed Project” that is based on the shinymgr framework. Notice the absence of the
Developer Tools tab and the absence of references to shinymgr. The “deployment” learnr tutorial
provides more in-depth discussion.

To summarize this section, deploying the shinymgr framework involves copying key elements
of the shinymgr developer project into package or server directories, updated as needed for use by
end-users. Readers are referred to the “deployment” tutorial for further information.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 165

Deployed Project =

@ Analysis Select an analysis

B nepores

Reset Analysis

Intro Cluster Iris Data Subset Rows Flot Column Save

Cluster data frem the iris dataset by specifying the attributes and number of clusters.

L]
X Variable ®
L]
Sepallength - 3 . P L]
’- *
¥ Variable ® h
w
1 o
&
SepalWidi - % ..- L *
E Y) .
et
Cluster count & @ ‘] : [ese=e]
Lo
*® 000 W
- o @
o o o L]
L] L]
[] L]] L]
L L]
o [
T
45 50 55 60 65 70 75 B0
Sepallength

Figure 6: An example of a deployed shinymgr app. The deployed version excludes the Developers
Tools tab and is an example of what the end user sees when using a deployed app.

4 Using shinymgr apps

Apps built with shinymgr can appeal to various types of end-users. When deployed as part of an
R package, end-users would be anyone who uses that package. Apps may also be distributed as
stand-alone scripts, or hosted on a server, as described above. Developers may also use shinymgr to
produce apps for their own use (i.e., the developer is the end-user). Regardless of who the intended
end-user is, this section discusses that user’s experience after the master app is deployed.

Whoever the intended audience for the app, this section discusses how an app can be used after it
has been deployed.

4.1 Reproducible analyses

The final tab in any shinymgr app provides the opportunity to save the analysis itself. Reproducibility
is a core tenet of shinymgr. Therefore, a robust set of metadata are saved as an RDS file to allow
a user to understand and replicate their results. An example of a completed analysis is the file,
“iris_explorer_Gandalf_2023_06_05_16_30.RDS,” which stores a user’s analytic steps for a run of the
“iris explorer” app. The code below reads in this example file, and shows the structure (a list with 23
elements):

rds_filepath <- paste@(getwd(),"/shinymgr/analyses/iris_explorer_Gandalf_2023_06_05_16_30.RDS")
old_analysis <- readRDS(rds_filepath)
str(old_analysis, max.level = 2, nchar.max = 20, vec.len = 15)

List of 23

$ analysisName : chr "iri"| __truncated__
$ app : chr "iris_explorer”

$ username : chr "Gandalf"”

$ mod2-clusters : int 3

$ mod2-xcol : chr "Sepal.Length”

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 166

$ mod2-ycol : chr "Petal.Length”

$ mod3-full_table__reactable__pageSize : int 10

$ mod3-resample : 'shinyActionButtonValue' int 1
$ mod3-full_table__reactable__pages : int 15

$ mod3-subset_table__reactable__page :int 1

$ mod3-full_table__reactable__page :int 1

$ mod3-sample_num : int 20

$ mod3-subset_table__reactable__pages :int 2

$ mod3-subset_table__reactable__pageSize: int 10

$ returns :List of 3

..$ datal:List of 1
..$ data2:List of 1
..$ data3:List of 2

$ notes : chr "Thi"| __truncated__
$ timestamp : POSIXct[1:1], format: "202"| __truncated__
$ metadata :List of 6

..$ appDescription: chr "Clu"| __truncated__

..$ modi :List of 7

..$ mod2 :List of 7

..$ mod3 :List of 7

..$ mod4 :List of 7

..$ lockfile :List of 2
$ app_code : chr "# T"| __truncated__
$ iris_intro_code : chr "#!1"| __truncated__
$ iris_cluster_code : chr "#!1"] __truncated__
$ subset_rows_code : chr "#!!"]| __truncated__
$ single_column_plot_code : chr "#!!"| __truncated__

The list stores a great deal of information:

* analysisName is the name of the analysis and is equivalent to the filename of the RDS file
(without the extension)

* app is the name of the app that produced the saved analysis results.

¢ username was entered in the “Save” tab when the analysis was performed.

* mod#-value indicate the values of each shiny module’s arguments (inputs), if any exist, at the
time the analysis was saved.

¢ returns includes values of all outputs (returns) of each module.

* notes were entered in the “Save” tab when the analysis was performed.

* timestamp is the date/time when the analysis was saved.

¢ metadata includes robust information about each module, including the app description and
the description of each module as it was originally stored in the shinymgr database tables. The
metadata list element also includes an renv “lockfile”: a list that describes the R version and R
package dependencies (including shinymgr) used by the app itself. The lockfile captures the
state of the app’s package dependencies at the time of its creation; in the case of shinymgr, it
contains the dependencies used by the developer who created the app. Each lockfile record
includes the name and version of the package and their installation source.

e *_code attributes with this format contain the source code for the app.

The code list element allows an end user to revisit the full analysis with shinymgr’s rerun_analysis()
function, supplying the file path to a saved shinymgr analysis (RDS file).

rerun_analysis(analysis_path = rds_filepath)

The rerun_analysis() function will launch a shiny app with two tabs (Figure 7); it can only be
run during an interactive R session, with no other shiny apps running.

The first tab is called “The App”, and will be visible when the rerun_analysis() function is called.
It contains a header with the app’s name, a subheading of “Analysis Rerun,” and a fully functioning,
identical copy of the shiny app used to generate the saved analysis. Below that, a disclaimer appears,
indicating the app was produced from a saved analysis. A summary of the analysis is presented on
the second tab that displays the values used to produce the given analysis output.

If the rerun_analysis() function fails, it could be due to a change in R and package versions
currently installed on the end-user’s machine. To that end, the lockfile that is included in the metadata
section of the RDS file can be used to restore the necessary R packages and R version with the
restore_analysis() function. This function will attempt to create a self-contained renv R project that

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 167

The App Analysis Summary

iris_explorer
Analysis Rerun

This app is generated from a shinymgr analysis performed by Gandalf on 2022-08-04. A technical summary of this analysis can be viewed on the next
tab.

Intra Cluster Iris Data Subset Rows Plot Column Save

These are instructions for the iris_explorer app. This app clusters data by user-specified columns, then takes a random subset of the data
The inputs and returns of each module can be downloaded as an .RDS file.

Next

Figure 7: A screenshot of the rerun_analysis() function, as called on the saved analysis from the
iris_explorer app (RDS file). The active tab, called "The App", allows a user to rerun a previously
executed analysis. The "Analysis Summary" tab displays the values of all module arguments and
returns, captured when the analysis was saved, along with a detailed description of the app, it’s
modules, the App’s source code, and all package dependencies.

includes all of the packages and the R version used by the developer when the app was created. The
analysis RDS is added to this new project, where the rerun_analysis() function can be attempted
again. Readers are referred to the “analyses” tutorial for further information.

4.2 Rapid reporting

Another important feature of shinymgr is the ability to share results of an analysis with others in a
friendly, readable format with RMarkdown or Quarto. Apps produce an RDS file, which may be passed
into an Rmd or qmd file as a parameterized input. For example, the demo database includes a report
template called “iris_explorer_report.Rmd.” This file, with code shown below, allows users to navigate
to the RDS file produced by the “iris explorer” app and render the rapid report.

title: 'Annual Report for Iris Explorer'
output: html_document
params:
user:
label: "User”
value: "Bilbo”
placeholder: "Enter user name”

year:
label: "Year”
value: 2017
input: slider
min: 2010
max: 2018
step: 1
sep: ""
file:
input: file
label: "Choose RDS”
value: ""

multiple: FALSE
buttonLabel: "Browse to analysis output...”

> {r setup, include=FALSE}

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 168

knitr::opts_chunk$set(echo = FALSE)
library(knitr)
ps <- readRDS(params$file)

This report summarizes an analysis of iris data by

“r params$user” conducted in “r params$year”. Iris
data was clustered into “r ps$'mod2-clusters'™ groups
based on “r ps$'mod2-xcol'™ and “r ps$'mod2-ycol'".

A random sample of “r ps$'mod3-sample_num'> records
were collected, with sample sizes shown in the pie
chart below:

s
pie_data <- table(ps$returns$data2$subset_data$cluster)
pie(

X = pie_data,

labels = as.character(pie_data),

col = rainbow(length(pie_data)),

main = "Number of random samples by cluster”
)
legend(

x = "topright”,

legend = names(pie_data),

fill = rainbow(length(pie_data))
)

Some things to note about this analysis are: “r ps$notes”
Respectfully submitted,

Gandalf

Reports may be run within the deployed version of shinymgr (e.g., left menu of Figure 6), or may
be run directly in R by opening the Rmd file and navigating to the RDS as a file input. Users who run
a report can download it to their local machine as a HTML, PDF, or Word file, where they can further
customize the output.

To summarize this section, users of shinymgr “apps” created with the shinymgr framework are
presented with a series of shiny tabs that establish an analysis workflow. Users can save their inputs
and outputs as an RDS file to ensure full reproducibility. Further, the RDS file may be loaded into an R
Markdown (Rmd) or Quarto (qmd) template for rapid reporting.

5 Tutorials and cheatsheet
with the package. Below is a list of current tutorials, intended to be worked through in order:

Available tutorials:

* shinymgr
- intro : "shinymgr-01: Introduction”
- shiny : "shinymgr-02: Shiny"”
- modules : "shinymgr-03: Modules”
- app_modules : "shinymgr-04: App modules”
- tests : "shinymgr-05: Tests”
- shinymgr : "shinymgr-06: shinymgr”
- database : "shinymgr-07: Database”
- shinymgr_modules : "shinymgr-@8: shinymgr_modules "
- apps : "shinymgr-09: Apps"”
- analyses : "shinymgr-10: Analyses”
- reports : "shinymgr-11: Reports”
- deployment : "shinymgr-12: Deployment”

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 169

The “intro” tutorial gives a general overview. Tutorials 2-5 are aimed at developers who are new
to shiny, while tutorials 6 — 12 focus on the shinymgr package.

Launch a tutorial with the learnr run_tutorial () function, providing the name of the module
to launch. The tutorial should launch in a browser, which has the benefit of being able to print the
tutorial to PDF upon completion:

learnr::run_tutorial(
name = "modules”,
package = "shinymgr")

Additionally, the package cheatsheet can be found with:
browseURL (paste@(find.package("shinymgr"), "/extdata/shinymgr_cheatsheet.pdf"))

Contributions are welcome from the community. Questions can be asked on the issues page at
https://code.usgs.gov/vtcfwru/shinymgr/issues.

6 Acknowledgments

We thank Cathleen Balantic and Jim Hines for feedback on the overall package and package tutorials.
shinymgr was prototyped by Therese Donovan at a shiny workshop taught by Chris Dorich and
Matthew Ross at Colorado State University in 2020 (pre-pandemic). We thank the instructors for
feedback and initial coding assistance. Any use of trade, firm, or product names is for descriptive
purposes only and does not imply endorsement by the U.S. Government. The Vermont Cooperative
Fish and Wildlife Research Unit is jointly supported by the U.S. Geological Survey, University of
Vermont, Vermont Fish and Wildlife Department, and Wildlife Management Institute.

7 Bibliography

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://code.usgs.gov/vtcfwru/shinymgr/issues

CONTRIBUTED RESEARCH ARTICLE 170

8 Appendix A

Entity relationship diagram for the shinymgr database, which tracks all components of an apps and
modules (Figure 8). The database consists of 11 tables. Primary keys are referenced with a “pk” prefix,
while foreign keys are referenced with an “fk” prefix. A full description of the database is contained in
the “database” learnr tutorial that comes with the shinymgr package

modDisplayName
‘modDescription
modCitation

'pkModuleName
modNotes

, modules
modActive
dateCreated

|

8
£
] g
£
E 2 ga
B e, 2, =23 Py
a =]
2 HIEE L S2eEE sge
sle £ SAEZ2T 2EESS g8 E
R 85298 c t220%¢ 2=5
3o D HEGE & HEROE-4-9 PR
R SEEs Sx2cc= 85 Y-
6 8=3 233558 NME R asg5
28530 L88ss< L8853 ¢ 3&suy
FERES HEEE HEE RS EEE TS
= 3 z]
iz g EfZzass Edzaas E&£a> s
g
2
Eg-g
,‘,_35{’
=z258
=<
8 o552
L=l wpr=pre e}
-
'\H 1
5
g = o 2
o £ £ ,onft
S2ES g e EL2385
88 EE s EfDLo
£z o588 EzgelPzl
£335¢ LEE S Z5285¢5
HEEES 522838 E
EER ac<3 8g35::3
- | @lefez B Bloe e E X

/_

odPPReports

}-T'kAppName
fkReportName
notes

appVideoURL
appCss
dateCreated
fkParentAppName
appCitation

appActive

appDisplayName
appNotes

apps
pkAppName
appDescription

Figure 8: Entity relationship diagram for the shinymgr database, which tracks all components of an
apps and modules. The database consists of 11 tables. Primary keys are referenced with a "pk" prefix,
while foreign keys are referenced with an "fk" prefix. A full description of the database is contained in
the "database" learnr tutorial that comes with the shinymgr package.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

171

9 Appendix B

Modules in shinymgr are written by developers for their own purposes. The shinymgr: :mod_init()
function creates a template for module development. The header is a series of key-value pairs that
the developer fills out (typically after the module code is written and tested). The “iris_cluster”
module is presented below as an example. The module consists of two paired functions: here,
iris_cluster_ui(id) and iris_cluster_server(). The Ul is a function with an argument called
id, which is turned into module’s “namespace” with the NS() function. A namespace is simply the
module’s identifier and ensures that function and object names within a given module do not conflict
with function and object names in other modules. The Id’s for each input and output in the Ul must
be wrapped in a ns() function call to make explicit that these inputs are assigned to the module’s
namespace. All UI elements are wrapped in a taglList() function, where a taglList allows one to
combine multiple UI elements into a single R object. Readers should consult the “modules,” “tests,”
and “shinymgr_modules” tutorials for additional information.

#!! ModName = iris_cluster

#!! ModDisplayName = Iris K-Means Clustering

#!! ModDescription = Clusters iris data based on 2 attributes

#!1 ModCitation = Baggins, Bilbo. (2022). iris_cluster. [Source code].
#!! ModNotes =

#!! ModActive = 1

#!! FunctionReturn = returndf !! selected attributes and their assigned clusters !! data.frame

iris_cluster_ui <- function(id){
create the module's namespace
ns <- NS(id)

taglist(
sidebarlLayout(
sidebarPanel(
add the dropdown for the X variable
selectInput(
ns("xcol"),
label = "X Variable”,
choices = c¢(
"Sepal.Length”,
"Sepal.Width",
"Petal.Length”,
"Petal.Width"

)7

selected = "Sepal.Length”
))
add the dropdown for the Y variable
selectInput(

ns("ycol"),

label = "Y Variable”,

choices = c(
"Sepal.Length”,
"Sepal.Width",
"Petal.Length”,
"Petal.Width"

),

selected = "Sepal.Width”

),

add input box for the cluster number

numericInput(
ns("clusters”),
label = "Cluster count”,
value = 3,
min = 1
max = 9

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 172

), # end of sidebarPanel

mainPanel (
create outputs
plotOutput(
ns("plot1")
)
) # end of mainPanel
) # end of sidebarlLayout
) # end of taglist
} # end of UI function

iris_cluster_server <- function(id) {
moduleServer(id, function(input, output, session) {

combine variables into new data frame
selectedData <- reactive({

iris[, c(input$xcol, input$ycol)]
»

run kmeans algorithm
clusters <- reactive({
kmeans (
x = selectedData(),
centers = input$clusters
)
»

output$plotl <- renderPlot({
par(mar = c(5.1, 4.1, 0, 1))
plot(
selectedData(),
col = clusters()$cluster,
pch = 20,
cex 3
)
»

return(
reactiveValues(
returndf = reactive({
cbind(
selectedData(),
cluster = clusters()$cluster
)
»
)
)

}) # end of moduleServer function

} # end of irisCluster function

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 173

References

Modularizing shiny app code, 2020. URL https://shiny.posit.co/r/articles/improve/modules/.
Accessed: 2010-09-30. [p157]

J. M. Alston and J. A. Rick. A beginner’s guide to conducting reproducible research. The Bulletin of
the Ecological Society of America, 102(2):e01801, 2021. doi: https://doi.org/10.1002/bes2.1801. URL
https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1002/bes2.1801. [p157]

D. Attali. shinyjs: Easily Improve the User Experience of Your Shiny Apps in Seconds, 2021. URL https:
//CRAN.R-project.org/package=shinyjs. R package version 2.1.0. [p159]

C. Balantic and T. Donovan. Ammonitor: Remote monitoring of biodiversity in an adaptive framework
with r. Methods in Ecology and Evolution, 11(7):869-877, 2020. doi: https:/ /doi.org/10.1111/2041-
210X.13397. [p159]

C. Brett and 1. Neuhaus. periscope: Enterprise Streamlined 'Shiny” Application Framework, 2022. URL
https://CRAN.R-project.org/package=periscope. R package version 1.0.1. [p157]

P. Campbell. shinyauthr: Shiny’ Authentication Modules, 2021. URL https://CRAN.R-project.org/
package=shinyauthr. R package version 1.0.0. [p157]

W. Chang and B. Borges Ribeiro. shinydashboard: Create Dashboards with 'Shiny’, 2021. URL https:
//CRAN.R-project.org/package=shinydashboard. R package version 0.7.2. [p159]

W. Chang, G. Csardi, and H. Wickham. shinytest: Test Shiny Apps, 2021. URL https://CRAN.R-
project.org/package=shinytest. R package version 1.5.1. [p161]

W. Chang, J. Cheng, J. Allaire, C. Sievert, B. Schloerke, Y. Xie, J. Allen, J. McPherson, A. Dipert,
and B. Borges. shiny: Web Application Framework for R, 2022. URL https://CRAN.R-project.org/
package=shiny. R package version 1.7.3. [p157, 159]

L. Clarfeld, C. Tang, and T. Donovan. shinymgr: A framework for building, managing, and stitching shiny
modules into reproducible workflows., 2024. R package version 1.1.0. [p159]

C. Fay and S. Rochette. shinipsum: Lorem-Ipsum Helper Function for shiny’ Prototyping, 2020. URL https:
//cran.r-project.org/web/packages/shinipsum/index.html. R package version 0.1.0. [p157]

C. Fay, S. Rochette, V. Guyader, and C. Girard. Engineering Production-Grade Shiny Apps. Chapman and
Hall/CRC, 2021. doi: https:/ /doi.org/10.1201/9781003029878. [p157]

R. A. Fisher. The use of multiple measurements in taxonomic problems. Annals of eugenics, 7(2):
179-188, 1936. doi: https://doi.org/10.1111/j.1469-1809.1936.tb02137.x. [p158]

R. Gentleman and D. T. Lang. Statistical analyses and reproducible research. Journal of Computational
and Graphical Statistics, 16(1):1-23, 2007. doi: 10.1198/106186007X178663. URL https://doi.org/
10.1198/106186007X178663. [p157]

R. D. Hipp. SQLite, 2020. URL https://www.sqlite.org/index.html. [p159]

J. Kim and H. Lee. jsmodule: 'RStudio” Addins and 'Shiny” Modules for Medical Research, 2022. URL
https://CRAN.R-project.org/package=jsmodule. R package version 1.3.0. [p158]

M. Kosinski. shiny.reglog: Optional Login and Registration Module System for ShinyApps, 2022. URL
https://statismike.github.io/shiny.reglog/. R package version 0.5.2. [p157]

C. Larman. Agile and iterative development: a manager's guide. Addison-Wesley Professional, 2004. [p157]

G. Lin. reactable: Interactive Data Tables Based on 'React Table’, 2022. URL https://CRAN.R-project.org/
package=reactable. R package version 0.3.0. [p159]

K. Miiller, H. Wickham, D. A. James, and S. Falcon. RSQLite: SQLite Interface for R, 2022. URL
https://CRAN.R-project.org/package=RSQLite. R package version 2.2.14. [p159]

R. D. Peng. Reproducible research in computational science. Science, 334(6060):1226-1227, 2011. doi:
10.1126/science.1213847. URL https://www.science.org/doi/abs/10.1126/science.1213847.

[p157]

V. Perrier, F. Meyer, and Z. S. Abeer. datamods: Modules to Import and Manipulate Data in *Shiny’, 2022.
URL https://CRAN.R-project.org/package=datamods. R package version 1.3.3. [p157]

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://shiny.posit.co/r/articles/improve/modules/
https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1002/bes2.1801
https://CRAN.R-project.org/package=shinyjs
https://CRAN.R-project.org/package=shinyjs
https://CRAN.R-project.org/package=periscope
https://CRAN.R-project.org/package=shinyauthr
https://CRAN.R-project.org/package=shinyauthr
https://CRAN.R-project.org/package=shinydashboard
https://CRAN.R-project.org/package=shinydashboard
https://CRAN.R-project.org/package=shinytest
https://CRAN.R-project.org/package=shinytest
https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=shiny
https://cran.r-project.org/web/packages/shinipsum/index.html
https://cran.r-project.org/web/packages/shinipsum/index.html
https://doi.org/10.1198/106186007X178663
https://doi.org/10.1198/106186007X178663
https://www.sqlite.org/index.html
https://CRAN.R-project.org/package=jsmodule
https://statismike.github.io/shiny.reglog/
https://CRAN.R-project.org/package=reactable
https://CRAN.R-project.org/package=reactable
https://CRAN.R-project.org/package=RSQLite
https://www.science.org/doi/abs/10.1126/science.1213847
https://CRAN.R-project.org/package=datamods

CONTRIBUTED RESEARCH ARTICLE

174

R Special Interest Group on Databases (R-SIG-DB), H. Wickham, and K. Miiller. DBI: R Database
Interface, 2022. URL https://CRAN.R-project.org/package=DBI. R package version 1.1.3. [p159]

B. Schloerke, J. Allaire, and B. Borges. learnr: Interactive Tutorials for R, 2020. URL https://CRAN.R-
project.org/package=learnr. R package version 0.10.1. [p159]

S. Stoudt, V. N. Vasquez, and C. C. Martinez. Principles for data analysis workflows. PLOS Computa-
tional Biology, 17(3):e1008770, 2021. doi: https:/ /doi.org/10.1371/journal.pcbi.1008770. [p157]

K. Ushey. renv: Project Environments, 2023. URL https://rstudio.github.io/renv/. R package
version 0.17.3. [p159]

H. Wickham. testthat: Get started with testing. The R Journal, 3:5-10, 2011. URL https://journal.r-
project.org/archive/2011-1/RJournal_2011-1_Wickham.pdf. [p161]

K. Zyla, J. Nowicki, L. Sieminiski, M. Rogala, R. Vibal, and T. Makowski. rhino: A Framework for Enterprise
Shiny Applications, 2023. https:/ /appsilon.github.io/rhino/, https:/ /github.com/Appsilon/rhino.
[p157]

Laurence A. Clarfeld

Vermont Cooperative Fish and Wildlife Research Unit
302 Aiken Center, University of Vermont
Burlington, VT 05405 USA

ORCiD: 0000-0002-3927-9411
laurence.clarfeld@uvm.edu

Caroline Tang

Queen’s University

Biology Department

116 Barrie St, Kingston, ON K7L 3N6
ORCiD: 0000-0001-7966-5854
17ct24@queensu.ca

Therese Donovan

U.S. Geological Survey, Vermont Cooperative Fish and Wildlife Research Unit
302 Aiken Center, University of Vermont

Burlington, VT 05405 USA

ORCiD: 0000-0001-8124-9251

tdonovan@uvm. edu

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=DBI
https://CRAN.R-project.org/package=learnr
https://CRAN.R-project.org/package=learnr
https://rstudio.github.io/renv/
https://journal.r-project.org/archive/2011-1/RJournal_2011-1_Wickham.pdf
https://journal.r-project.org/archive/2011-1/RJournal_2011-1_Wickham.pdf
https://orcid.org/0000-0002-3927-9411
mailto:laurence.clarfeld@uvm.edu
https://orcid.org/0000-0001-7966-5854
mailto:17ct24@queensu.ca
https://orcid.org/0000-0001-8124-9251
mailto:tdonovan@uvm.edu

	shinymgr: A Framework for Building, Managing, and Stitching Shiny Modules into Reproducible Workflows
	Introduction
	Introducing shinymgr

	Developing shinymgr apps
	Setting up shinymgr
	The shinymgr developer's portal
	The shinymgr database
	The shinymgr app builder

	Deploying shinymgr projects
	Using shinymgr apps
	Reproducible analyses
	Rapid reporting

	Tutorials and cheatsheet
	Acknowledgments
	Bibliography
	Appendix A
	Appendix B

