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nortsTest: An R Package for Assessing
Normality of Stationary Processes
by Asael Alonzo Matamoros, Alicia Nieto-Reyes, and Claudio Agostinelli

Abstract Normality is the central assumption for analyzing dependent data in several time series
models, and the literature has widely studied normality tests. However, the implementations of
these tests are limited. The nortsTest package is dedicated to fill this void. The package performs
the asymptotic and bootstrap versions of the tests of Epps and Lobato and Velasco and the tests of
Psaradakis and Vavra, random projections and El Bouch for normality of stationary processes. These
tests are for univariate stationary processes but for El Bouch that also allows bivariate stationary
processes. In addition, the package offers visual diagnostics for checking stationarity and normality
assumptions for the most used time series models in several R packages. This work aims to show the
package’s functionality, presenting each test performance with simulated examples and the package
utility for model diagnostic in time series analysis.

1 Introduction

Normality (a set of observations sampled from a Gaussian process) is an essential assumption in various
statistical models. Therefore, developing procedures for testing this assumption is a topic that has
gained popularity over several years. Most existing literature and implementation is dedicated to
independent and identically distributed random variables (D’Agostino and Stephens, 1986); no results
show that these tests are consistent when applied to stationary processes. For this context, several tests
have been proposed over the years, but as far as we know, no R package or consistent implementation
exists.

The proposed nortsTest package provides seven test implementations to check normality of
stationary processes. This work aims to present a review of these tests and introduce the package
functionality. Thus, its novelty lies in being the first package and paper dedicated to the implementa-
tion of normality tests for stationary processes. The implemented tests are: (i) the asymptotic Epps
test, (Epps, 1987) and (Nieto-Reyes et al., 2014), based on the characteristic function and (ii) its sieve
bootstrap approximation (Psaradakis and Vávra, 2020), (iii) the corrected Skewness-Kurtosis (SK) test
implemented by Lobato and Velasco (2004) as an asymptotic test and (iv) by Psaradakis and Vávra
(2020) with a sieve bootstrap approximation, (v) the random projections test proposed by Nieto-Reyes
et al. (2014), which makes use of the tests in (i) and (iii), (vi) the Psadarakis and Vávra test (Psaradakis
and Vávra, 2017) that uses a bootstrap approximation of the Anderson and Darling (1952) test statistic
for stationary linear processes and (vii) a normality test by El Bouch et al. (2022) for multivariate
dependent samples. Tests (i) to (vi) are for univariate stationary processes.

Furthermore, we propose the check_residual() function for checking time-series models’ assump-
tions. This function returns a report for stationarity, seasonality, normality tests and visual diagnostics.
check_residual() supports models from the most used packages for time-series analysis, such as
the packages forecast (Hyndman and Khandakar, 2008) and aTSA (Qiu, 2015) and even functions in
the base R (Team, 2018); for instance, it supports the HoltWinters (stats R package) function for the
Holt and Winters method (Holt, 2004). In addition, the proposed nortsTest package has already been
applied in the literature, see Nieto-Reyes (2021) and Nieto-Reyes (2022).

Section 2 provides the theoretical background, including preliminary concepts and results. Section
3 introduces the normality tests for stationary processes, each subsection introducing a test framework
and including examples of the tests functions with simulated data. Section 4 provides numerical exper-
iments with simulated data and a real-world application: Subsection 4.1 reports a simulation study for
the implemented normality tests and Subsection 4.2 the package’s functionality for model checking in
a real data application. The carbon dioxide data measured in the Malua Loa Observatory (Stoffer, 2020)
is analyzed using a state space model from the forecast package, evaluating the model’s assumptions
using our proposed check_residuals() function. Section 5 discusses the package functionality and
provides our conclusions. Furthermore, we mention our future intended work on the package.

2 Preliminary concepts

This section provides some theoretical aspects of stochastic processes that are a necessary theoretical
framework for the following sections. Shumway and Stoffer (2010) and Tsay (2010) give more details
of the following definitions and results below.
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For the purpose of this work, T is a set of real values denoted as time, T ⊆ R, for instance T = N

or T = Z, the naturals or integer numbers respectively. We denote by X := {Xt}t∈T a stochastic process
with Xt a real random variable for each t ∈ T. Following this notation, a time-series is just a finite
collection of ordered observations of X (Shumway and Stoffer, 2010). An important measure for a
stochastic process is its mean function µ(t) := E[Xt] for each t ∈ T, where E[·] denotes the usual
expected value of a random variable. A generalization of this measure is the k-th order centered
moment function µk(t) := E[(Xt − µ(t))k] for each t ∈ T and k > 1; with the process variance
function being the second order centered moment, σ2(t) := µ2(t). Other important measures are the
auto-covariance and auto-correlation functions, which measure the linear dependency between two
different time points of a given process. For any t, s ∈ T, they are, respectively,

γ(t, s) := E[(Xt − µ(t))(Xs − µ(s))] and ρ(t, s) :=
γ(t, s)√

µ2(t)
√

µ2(s)
.

Other widely used measure functions for the analysis of processes are the skewness and kurtosis
functions, defined as s(t) := µ3(t)/[µ2(t)]3/2 and k(t) := µ4(t)/[µ2(t)]2 for each t ∈ T, respectively.

A generally used assumption for stochastic processes is stationarity. It has a key role in forecasting
procedures of classic time-series modeling (Tsay, 2010) or as a principal assumption in de-noising
methods for signal theory (Wasserman, 2006).

Definition 1 A stochastic process X is said to be strictly stationary if, for every collection τ =
{t1, t2, . . . , tk} ⊂ T and h > 0, the joint distribution of {Xt}t∈τ is identical to that of {Xt+h}t∈τ .

The previous definition is strong for applications. A milder version of it, which makes use of the
process’ first two moments, is weak stationarity.

Definition 2 A stochastic process X is said to be weakly stationary if its mean function is constant in
time, µ(t) = µ, its auto-covariance function only depends on the difference between times, γ(s, t) =
σ|t − s| for a σ ∈ R, and it has a finite variance function, µ2(t) = µ2 < ∞.

For the rest of this work, the term stationary will be used to specify a weakly stationary process. A
direct consequence of the stationarity assumption is that the previous measure functions get simplified.
Thus, given a stationary stochastic process X, its mean function, k-th order centered moment, for k > 1,
and auto-covariance function are respectively,

µ = E[Xt1 ], µk = E[(Xt1 − µ)k] and γ(h) = E[(Xt1+h − µ)(Xt1 − µ)],

which are independent of t1 ∈ T.

Given a sample x1, . . . , xn, n ∈ N, of equally spaced observations of X, their corresponding
estimators, sample mean, sample k-th order centered moment and sample auto-covariance, are
respectively

µ̂ := n−1
n

∑
i=1

xi, µ̂k := n−1
n

∑
i=1

(xi − µ̂)k and γ̂(h) := n−1
n−h

∑
i=1

(xi+h − µ̂)(xi − µ̂).

A particular case in which stationarity implies strictly stationarity is a Gaussian process.

Definition 3 A stochastic process X is said to be a Gaussian process if for every finite collection
τ = {t1, t2, . . . , tk} ⊂ T, the joint distribution of {Xt}t∈τ has a multivariate normal distribution.

A series of mean zero uncorrelated random variables with finite constant variance is known as
white noise. If additionally, it is formed of independent and identically distributed (i.i.d) normal
random variables, it is known as Gaussian white noise; which is a particular case of stationary Gaussian
process. For the rest of the work, Xt ∼ N(µ, σ2) denotes that the random variable Xt is normally
distributed with mean µ and variance σ2 and χ2(v) denotes the Chi square distribution with v degrees
of freedom.

Other classes of stochastic processes can be defined using collections of white noise, for instance,
the linear process.

Definition 4 Let X be a stochastic process. X is said to be linear if it can be written as

Xt = µ + ∑
i∈Z

ϕiϵt−i,
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where {ϵi}i∈Z is a collection of white noise random variables and {ϕi}i∈Z is a set of real values such
that ∑i∈Z |ϕj| < ∞.

An important class of processes is the auto-regressive moving average (ARMA). Box and Jenkins
(1990) introduced it for time series analysis and forecast, becoming very well-known in the 90s and
early 21st century.

Definition 5 For any non-negative integers p, q, a stochastic process X is an ARMA(p, q) process if
it is a stationary process and

Xt =
p

∑
i=0

ϕiXt−i +
q

∑
i=0

θiϵt−i, (1)

where {ϕi}
p
i=0 and {θi}

q
i=0 are sequences of real values with ϕ0 = 0, ϕp ̸= 0, θ0 = 1 and θq ̸= 0 and

{ϵi}i∈Z is a collection of white noise random variables.

Particular cases of ARMA processes are those known as auto-regressive (AR(p) := ARMA(p, 0))
and mean average (MA(q) := ARMA(0, q)) processes. Additionally, a random walk is a non stationary
AR(1) process satisfying (1) with p = 1, ϕ1 = 1 and q = 0. Several properties of an ARMA process can
be extracted from its structure. For that, the AR and MA polynomials are introduced

AR : ϕ(z) = 1 −
p

∑
i=0

ϕizi and MA : θ(z) =
q

∑
i=0

θizi,

where z is a complex number and, as before, ϕ0 = 0, ϕp ̸= 0, θ0 = 1 and θq ̸= 0. Conditions for
stationarity, order selection and, process behavior are properties studied from these two polynomials.

For modeling volatility in financial data, Bollerslev (1986) proposed the generalized auto-regressive
conditional heteroscedastic (GARCH) class of processes as a generalization of the auto-regressive conditional
heteroscedastic (ARCH) processes (Engle, 1982).

Definition 6 For any p, q ∈ N, a stochastic process X is a GARCH(p, q) process if it satisfies
Xt = µ + σtϵt with

σ2
t = α0 +

p

∑
i=1

αiϵ
2
t−i +

q

∑
i=1

βiσ
2
t−i.

µ is the process mean, σ0 is a positive constant value, {αi}
p
i=1 and {βi}

q
i=1 are non-negative sequences

of real values and {ϵt}t∈T is a collection of i.i.d. random variables.

A more general class of processes are the state-space models (SSMs), which have gained popularity
over the years because they do not impose on the process common restrictions such as linearity
or stationarity and are flexible in incorporating the process different characteristics (Petris et al.,
2007). They are widely used for smoothing (West and Harrison, 2006) and forecasting (Hyndman and
Khandakar, 2008) in time series analysis. The main idea is to model the process dependency with
two equations: the state equation, which models how parameters change over time, and the innovation
equation, which models the process in terms of the parameters. Some particular SSMs that analyze
the level, trend and seasonal components of the process are known as error, trend, and seasonal (ETS)
models. There are over 32 different variations of ETS models (Hyndman et al., 2008). One of them is
the multiplicative error, additive trend-seasonality (ETS(M, A, A)) model.

Definition 7 A SSM process X follows an ETS(M,A,A) model, if the process accepts

Xt = [Lt−1 + Tt−1 + St−1](1 + ϵt)

as innovation equation and

Lt = Lt−1 + Tt−1 + α(Lt−1 + Tt−1 + St−m)ϵt

Tt = Tt−1 + β(Lt−1 + Tt−1 + St−m)ϵt

St = St−m + γ(Lt−1 + Tt−1 + St−m)ϵt,

as state equations. α, β, γ ∈ [0, 1], m ∈ N denotes the period of the series and {ϵt} are i.i.d normal
random variables. For each t ∈ Z, Lt, Tt and St represent respectively the level, trend and seasonal
components.
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3 Normality tests for stationary processes

Extensive literature exists on goodness of fit tests for normality under the assumption of independent
and identically distributed random variables, including, among others, Pearson’s chi-squared test
(Pearson and Henrici, 1895), Kolmogorov-Smirnov test (Smirnov, 1948), Anderson-Darling test (An-
derson and Darling, 1952), SK test (Jarque and Bera, 1980) and Shapiro-Wilk test, (Shapiro and Wilk,
1965) and (Royston, 1982). These procedures have been widely used in many studies and applications,
see D’Agostino and Stephens (1986) for further details. There are no results, however, showing that
the above tests are consistent in the context of stationary processes, in which case the independence
assumption is violated. For instance, Gasser (1975) provides a simulation study where Pearson’s
chi-squared test has an excessive rejection rate under the null hypothesis for dependent data. For
this matter, several tests for stationary processes have been proposed over the years. A selection of
which we reference here. Epps (1987) provides a test based on the characteristic function, Hinich (1982)
proposes a similar test based on the process’ spectral density function (Berg et al., 2010, for further
insight). Gasser (1975) gives a correction of the SK test, with several modifications made in Lobato
and Velasco (2004), Bai and Ng (2005) and Psaradakis (2017), which are popular in many financial
applications. Bontemps and Meddahi (2005) constructs a test based on Stein’s characterization of a
Gaussian distribution. Using the random projection method (Cuesta-Albertos et al., 2007), Nieto-Reyes
et al. (2014) build a test that upgrades the performance of Epps (1987) and Lobato and Velasco (2004)
procedures. Furthermore, Psaradakis and Vávra (2017) adapts the Anderson and Darling (1952)
statistic for stationary linear processes approximating its sample distribution with a sieve bootstrap
procedure.

Despite the existing literature, consistent implementations of goodness of fit test for normality of
stationary processes in programming languages such as R or Python are limited. This is not the case
for normality of independent data, the nortest package (Gross and Ligges, 2015) implements tests
such as Lilliefors (Dallal and Wilkinson, 1986), Shapiro-Francia (Royston, 1993), Pearson’s chi-squared,
Cramer von Misses (Anderson, 1962) and Anderson-Darling. For a multivariate counterpart, the
mvnTest package (Pya et al., 2016) implements the multivariate Shapiro-Wilk, Anderson-Darling,
Cramer von Misses, Royston (Royston, 1992), Doornik and Hansen (Doornik and Hansen, 2008),
Henze and Zirkler (Henze and Zirkler, 1990) and the multivariate Chi square test (Vassilly Voinov and
Voinov, 2016). For the case of dependent data, we present here the nortsTest package. Type within
R install.packages("nortsTest", dependencies = TRUE) to install its latest released version from
CRAN. nortsTest performs the tests proposed in Epps (1987), Lobato and Velasco (2004), Psaradakis and
Vávra (2020), Nieto-Reyes et al. (2014), Psaradakis and Vávra (2017) and El Bouch et al. (2022).

Additionally, the package offers visualization functions for descriptive time series analysis and
several diagnostic methods for checking stationarity and normality assumptions for the most used
time series models of several R packages. To elaborate on this, Subsection 3.1 introduces the package
functionality and software and Subsection 3.2 provides an overview of tests for checking stationary
and seasonality. Finally, Subsections 3.3-3.5 present a general framework of each of the implemented
normality tests and their functionality by providing simulated data examples.

3.1 Software

The package works as an extension of the nortest package (Gross and Ligges, 2015), which performs
normality tests in random samples but for independent data. The building block functions of the
nortsTest package are:

• epps.test(), function that implements the test of Epps,

• epps_bootstrap.test(), function that implements a bootstrap approximation of the test of
Epps,

• lobato.test(), function that implements the asymptotic test of Lobato and Velasco,

• lobato_bootstrap.test(), function that implements a bootstrap approximation of the test of
Lobato and Velasco,

• rp.test(), function that implements the random projection test of Nieto-Reyes, Cuesta-Albertos
and Gamboa,

• vavra.test(), function that implements the test of Psaradaki and Vavra, and

• elbouch.test(), function that implements the test of El Bouch, Michel and Comon.

Each of these functions accepts a numeric (numeric) or ts (time series) class object for storing data,
and returns a htest (hypothesis test) class object with the main results for the test. To guarantee the
accuracy of the results, each test performs unit root tests for checking stationarity and seasonality (see
Subsection 3.2) and displays a warning message if any of them is not satisfied.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=nortest
https://CRAN.R-project.org/package=mvnTest
https://CRAN.R-project.org/package=nortsTest
https://CRAN.R-project.org/package=nortsTest
https://CRAN.R-project.org/package=nortest
https://CRAN.R-project.org/package=nortsTest


CONTRIBUTED RESEARCH ARTICLE 139

For visual diagnostic, the package offers different plot functions based on the ggplot2 package
(Wickham, 2009): the autoplot() function plots numeric, ts and mts (multivariate time series) classes
while the gghist() and ggnorm() functions are for plotting histogram and qq-plots respectively; and
on the forecast package (Hyndman and Khandakar, 2008): ggacf() and ggPacf() for the display of
the auto-correlation and partial auto-correlations functions respectively.

Furthermore, inspired in the function checkresiduals() of the forecast package, we provide
the check_residuals() function to test the model assumptions using the estimated residuals. The
upgrade of our proposal is that, besides providing plots for visual diagnosis (setting the plot option
as TRUE), it does check stationarity, seasonality (Subsection 3.2) and normality, presenting a report
of the used tests and conclusions for assessing the model’s assumptions. An illustration of these
functions is provided in Subsection 4.2, where we show the details of the functions and their utility for
assumptions commonly checked in time series modeling.

3.2 Tests for stationarity

For checking stationarity, the nortsTest package uses unit root and seasonal unit root tests. These tests
work similarly, checking whether a specific process follows a random walk model, which clearly is a
non-stationary process.

Unit root tests

A linear stochastic process X that follows a random walk model is non stationary. Its AR polynomial
is ϕ(z) = 1 − z, whose solution (root) is unique and equal to one. Thus, it is common to test the non
stationarity of a linear process by checking whether its AR polynomial has a unit root (a root equal to
one).

The most commonly used tests for unit root testing are Augmented Dickey-Fuller (Said and Dickey,
1984), Phillips-Perron (Perron, 1988), kpps (Kwiatkowski et al., 1992) and Ljung-Box (Box and Pierce,
1970). In particular, the Ljung-Box test contrasts the null auto-correlation hypothesis of identically
distributed Gaussian random variables, which is equivalent to test stationarity. The uroot.test()
and check_residual() functions perform these tests, making use of the tseries package (Trapletti and
Hornik, 2019).

Seasonal unit root tests

Let X be a stationary process and m its period. Note that for observed data, m generally corresponds
to the number of observations per unit of time. X follows a seasonal random walk if it can be written
as

Xt = Xt−m + ϵt,

where ϵt is a collection of i.i.d random variables. In a similar way, the process X is non-stationary if it
follows a seasonal random walk. Or equivalently, X is non stationary if the seasonal AR(1) polynomial
(ϕm(z) = 1 − ϕzm) has a unit root. The seasonal.test() and check_residuals() functions perform
the OCSB test (Osborn et al., 1988) from the forecast package and the HEGY (Beaulieu and Miron,
1993) and Ch (Canova and Hansen, 1995) tests from the uroot package (de Lacalle, 2019).

3.3 Tests of Epps

The χ2 test for normality proposed by Epps (1987) compares the empirical characteristic function of
the one-dimensional marginal of the process with the one of a normally distributed random variable
evaluated at certain points on the real line. Several authors, including Lobato and Velasco (2004),
Psaradakis and Vávra (2017) and El Bouch et al. (2022), point out that the greatest challenge in the
Epps’ test is its implementation procedure, which we address with the nortsTest package. Other
existing tests based on the empirical characteristic function of the one-dimensional marginal of the
process include Hong (1999) and the references therein. This test differs, however, in that it uses
spectral analysis and derivatives.

Furthermore, Meintanis (2016) reviews on testing procedures based on the empirical characteristic
function. There, it is commented about the random projection test (Nieto-Reyes et al., 2014, and here
below) as a recent development of Epps’ test. In fact, in Nieto-Reyes et al. (2014) the consistency
of Epps test is improved by taking at random the elements at which the characteristic function is
evaluated. Additionally, El Bouch et al. (2022) proposes a sieve bootstrap modification of the Epps’
test. In addition to the classical asymptotic Epps’ test, we include these last two approaches here, and
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in the package, see the Example below and the paragraph before it. Let us provide now the foundation
behind the Epps’ tests.

Let X be a stationary stochastic process that satisfies

∞

∑
t=−∞

|t|k|γ(t)| < ∞ for some k > 0. (2)

The null hypothesis is that the one-dimensional marginal distribution of X is a Gaussian process. The
procedure for constructing the test consists of defining a function g, estimating its inverse spectral
matrix function, minimizing the generated quadratic function in terms of the unknown parameters of
the random variable and, finally, obtaining the test statistic, which converges in distribution to a χ2.

Given N ∈ N with N ≥ 2, let

Λ := {λ := (λ1, . . . , λN) ∈ RN : λi ≤ λi+1 and λi > 0, for i = 1, 2, . . . , N},

and g : R × Λ → Rn be a measurable function, where

g(x, λ) := [cos(λ1x), sin(λ1x), . . . , cos(λN x), sin(λN x)].

Additionally, let gθ : Λ → RN be a function defined by

gθ(λ) := [Re(Φθ(λ1)), Im(Φθ(λ1)), . . . , Re(Φθ(λN)), Im(Φθ(λN))]t ,

where the Re(·) and Im(·) are the real and imaginary components of a complex number and Φθ is
the characteristic function of a normal random variable with parameters θ := (µ, σ2) ∈ Θ, an open
bounded set contained in R × R+. For any λ ∈ Λ, let us also denote

ĝ(λ) :=
1
n

n

∑
t=1

[cos(λ1xt), sin(λ1xt), . . . , cos(λN xt), sin(λN xt)]
t.

Let f (v; θ, λ) be the spectral density matrix of {g(Xt, λ)}t∈Z at a frequency v. Then, for v = 0, it can
be estimated by

f̂ (0; θ, λ) :=
1

2πn

 n

∑
t=1

Ĝ(xt,0, λ) + 2
⌊n2/5⌋

∑
i=1

(1 − i/⌊n2/5⌋)
n−i

∑
t=1

Ĝ(xt,i, λ)

 ,

where Ĝ(xt,i, λ) = (ĝ(λ)− g(xt, λ))(ĝ(λ)− g(xt+i, λ))t and ⌊·⌋ denotes the floor function. The test
statistic general form under H0 is

Qn(λ) := min
θ∈Θ

{Qn(θ, λ)} ,

with
Qn(θ, λ) := (ĝ(λ)− gθ(λ))

tG+
n (λ)(ĝ(λ)− gθ(λ)),

where G+
n is the generalized inverse of the spectral density matrix 2π f̂ (0; θ, λ). Let

θ̂ := arg min
θ∈Θ

{Qn(θ, λ)} ,

be the argument that minimizes Qn(θ, λ) such that θ̂ is in a neighborhood of θ̂n := (µ̂, γ̂(0)). To
guarantee its’ existence and uniqueness, the following assumptions are required. We refer to them as
assumption (A.).

(A.) Let θ0 be the true value of θ under H0, then for every λ ∈ Λ the following conditions are
satisfied.

• f (0; θ, λ) is positive definite.

• Φθ(λ) is twice differential with respect to θ in a neighborhood of θ0.

• The matrix D(θ0, λ) =
∂Φθ(λ)

∂θ|θ=θ0

∈ RN×2 has rank 2.

• The set Θ0(λ) := {θ ∈ Θ : Φθ(λi) = Φθ0 (λi), i = 1, . . . , N} is a finite bounded set in Θ. And θ
is a bounded subset R × R+.

• f (0; θ, λ) = f (0; θ0, λ) and D(θ0, λ) = D(θ,λ) for all θ ∈ Θ0(λ).

Under these assumptions, the Epps’s main result is presented as follows.
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Theorem 1 (Epps, 1987, Theorem 2.1) Let X be a stationary Gaussian process such that (2) and (A.)
are satisfied, then nQn(λ) →d χ2(2N − 2) for every λ ∈ Λ.

The current nortsTest version, uses Λ := {lambda/γ̂(0)} as the values to evaluate the empirical
characteristic function, where γ̂(0) is the sample variance. By default lambda = c(1, 2). Therefore,
the implemented test statistic converges to a χ2 distribution with two degrees of freedom. The user
can change these Λ values as desired by simply specifying the function’s lambda argument, as we
show in the Example below.

Example 1 A stationary AR(2) process is drawn using a beta distribution with shape1 = 9 and
shape2 = 1 parameters, and performed the implementation of the test of Epps, epps.test(). At
significance level α = 0.05, the null hypothesis of normality is correctly rejected.

set.seed(298)
x = arima.sim(250,model = list(ar =c(0.5,0.2)),

rand.gen = rbeta,shape1 = 9,shape2 = 1)

# Asymptotic Epps test
epps.test(x)
#>
#> Epps test
#>
#> data: x
#> epps = 22.576, df = 2, p-value = 1.252e-05
#> alternative hypothesis: x does not follow a Gaussian Process

Asymptotic Epps test with random Lambda values as proposed in Nieto-Reyes et al. (2014).

set.seed(298)
epps.test(x, lambda = abs(rnorm(mean = c(1, 2), 2)))
#>
#> Epps test
#>
#> data: x
#> epps = 25.898, df = 2, p-value = 2.379e-06
#> alternative hypothesis: x does not follow a Gaussian Process

Approximated sieve bootstrap Epps test using 1000 repetitions of 250 units.

set.seed(298)
epps_bootstrap.test(x, seed = 298)
#>
#> Sieve-Bootstrap epps test
#>
#> data: y
#> bootstrap-epps = 22.576, p-value < 2.2e-16
#> alternative hypothesis: y does not follow a Gaussian Process

3.4 Tests of Lobato and Velasco

Lobato and Velasco (2004) provides a consistent estimator for the corrected SK test statistic for
stationary processes, see Lomnicki (1961) and Gasser (1975) for further insight. Note that the SK
test is also known as the Jarque-Bera test (Jarque and Bera, 1980), which is already available in several
R packages (Trapletti and Hornik, 2019, for instance). The improvement of this proposal over those
implementations is a correction in the skewness and kurtosis estimates by the process’ auto-covariance
function, resulting in a consistent test statistic under the assumption of correlated data. The test in
Lobato and Velasco (2004) is asymptotic, which is computationally efficient, as opposed to a bootstrap
based test. Psaradakis and Vávra (2020) show that the bootstrap modification of the Lobato and
Velasco’s test is a fair competitor against the original asymptotic test, beating other tests for normality
of the one-dimensional marginal distribution in terms of power. Thus, the package incorporates both
the asymptotic, lobato.test() and its bootstrap version lobato_bootstrap.test().

The general framework for the test is presented in what follows. On the contrary to the test of
Epps, this proposal does not require additional parameters for the computation of the test sample
statistic.
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Let X be a stationary stochastic process that satisfies

∞

∑
t=0

|γ(t)| < ∞. (3)

The null hypothesis is that the one-dimensional marginal distribution of X is normally distributed,
that is

H0 : Xt ∼ N(µ, σ2) for all t ∈ R.

Let kq(j1, j2, . . . , jq−1) be the q-th order cummulant of X1, X1+j1 , . . . , X1+jq−1 . H0 is fulfilled if all the
marginal cummulants above the second order are zero. In practice, it is tested just for the third and
fourth order marginal cummulants. Equivalently, in terms of moments, the marginal distribution is
normal by testing whether µ3 = 0 and µ4 = 3µ2

2. For non-correlated data, the SK test compares the
SK statistic against upper critical values from a χ2(2) distribution (Bai and Ng, 2005). For a Gaussian
process X satisfying (3), it holds the limiting result

√
n
(

µ̂3

µ̂4 − 3µ̂2
2

)
→d N[02, ΣF)],

where 02 := (0, 0)t ∈ R2 and ΣF := diag(6F(3), 24F(4)) ∈ R2x2 is a diagonal matrix with F(k) :=
∑∞

j=−∞ γ(j)k for k = 3, 4 (Gasser, 1975).

The following consistent estimator in terms of the auto-covariance function is proposed in Lobato
and Velasco (2004)

F̂(k) :=
n−1

∑
t=1−n

γ̂(t)[γ̂(t) + γ̂(n − |t|)]k−1,

to build a generalized SK test statistic

G :=
nµ̂2

3

6F̂(3)
+

n(µ̂4 − 3µ̂2)
2

24F̂(4)
.

Similar to the SK test for non-correlated data, the G statistic is compared against upper critical values
from a χ2(2) distribution. This is seen in the below result that establishes the asymptotic properties
of the test statistics, so that the general test procedure can be constructed. The result requires the
following assumptions, denoted by (B.), for the process X.

(B.)

• E[X16
t ] < ∞ for t ∈ T.

• ∑∞
j1=−∞ · · ·∑∞

jq−1=−∞ |kq(j1, . . . , jq−1)| < ∞ for q = 2, 3, . . . , 16.

• ∑∞
j=1

(
E
[

E[(X0 − µ)k|Bj]− µk

]2
)1/2

< ∞ for k = 3, 4, where Bj denotes the σ-field generated

by Xt, t ≤ −j.

• E [Zk]
2 + 2 ∑∞

j=1 E
(
[Zk]

[
(Xj − µ)k − µk

])
> 0 for k = 3, 4, with Zk = (X0 − µ)k − µk.

Note that these assumptions imply that the higher-order spectral densities up to order 16 are
continuous and bounded.

Theorem 2 (Lobato and Velasco, 2004, Theorem 1) Let X be a stationary process. If X is Gaussian
and satisfies (3) then G →d χ2(2), and under assumption (B.), the test statistic G diverges whenever
µ3 ̸= 0 or µ4 ̸= 3µ2

2.

Example 2 A stationary MA(3) process is drawn using a gamma distribution with rate = 3 and
shape = 6 parameters. The lobato.test() function performs the test of Lobato and Velasco to the
simulated data. At significance level α = 0.05, the null hypothesis of normality is correctly rejected.

set.seed(298)
x = arima.sim(250,model = list(ma = c(0.2, 0.3, -0.4)),

rand.gen = rgamma, rate = 3, shape = 6)
# Asymptotic Lobato & Velasco
lobato.test(x)
#>
#> Lobato and Velasco's test
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#>
#> data: x
#> lobato = 65.969, df = 2, p-value = 4.731e-15
#> alternative hypothesis: x does not follow a Gaussian Process

Approximated sieve bootstrap Lobato and Velasco test using 1000 repetitions of 250 units.

lobato_bootstrap.test(x, seed = 298)
#>
#> Sieve-Bootstrap lobato test
#>
#> data: y
#> bootstrap-lobato = 65.969, p-value < 2.2e-16
#> alternative hypothesis: y does not follow a Gaussian Process

3.5 The Random Projections test

The previous proposals only test for the normality of the one-dimensional marginal distribution of
the process, which is inconsistent against alternatives whose one-dimensional marginal is Gaussian.
Nieto-Reyes et al. (2014) provides a procedure to fully test normality of a stationary process using a
Crammér-Wold type result (Cuesta-Albertos et al., 2007) that uses random projections to differentiate
among distributions. In Nieto-Reyes et al. (2014) existing tests for the normality of the one dimensional
marginal are applied to the random projections and the resulting p-values combined using the false
discovery rate for dependent data (Benjamini and Yekutieli, 2001). The nortsTest package improves
on this test by allowing to use the less conservative false discovery rate in Benjamini and Hochberg
(1995).

We show the Crammér-Wold type result below. The result works for separable Hilbert spaces,
however here, for its later application, we restrict it to l2, the space of square summable sequences
over N, with inner product ⟨·, ·⟩.

Theorem 3 (Cuesta-Albertos et al., 2007, Theorem 3.6) Let η be a dissipative distribution on l2 and
Z a l2-valued random element, then Z is Gaussian if and only if

η{h ∈ l2 : ⟨Z, h⟩ has a Gaussian distribution} > 0.

A dissipative distribution (Nieto-Reyes et al., 2014, Definition 2.1) is a generalization of the concept
of absolutely continuous distribution to the infinite-dimensional space. A Dirichlet process (Gelman
et al., 2013) produces random elements with a dissipative distribution in l2. In practice, generate
draws of h ∈ l2 with a stick-breaking process that makes use of beta distributions.

Let X = {Xt}t∈Z be a stationary process. As X is normally distributed if the process X(t) :=
{Xk}k≤t is Gaussian for each t ∈ Z, using the result above, Nieto-Reyes et al. (2014) provides a
procedure for testing that X is a Gaussian process by testing whether the process Yh = {Yh

t }t∈Z is
Gaussian.

Yh
t :=

∞

∑
i=0

hiXt−i = ⟨X(t), h⟩, (4)

where ⟨X(t), h⟩ is a real random variable for each t ∈ Z and h ∈ l2. Thus, Yh is a stationary process
constructed by the projection of X(t) on the space generated by h. Therefore, X is a Gaussian process
if and only if the one dimensional marginal distribution of Yh is normally distributed. Additionally,
the hypothesis of the tests Lobato and Velasco or Epps, such as (2), (3), (A) and (B), imposed on X are
inherited by Yh. Then, those tests can be applied to evaluate the normality of the one dimensional
marginal distribution of Yh. Further considerations include the specific beta parameters used to
construct the distribution from which to draw h and selecting a proper number of combinations to
establish the number of projections required to improve the method performance. All of these details
are discussed in Nieto-Reyes et al. (2014).

Next, we summarize the test of random projections in practice:

1. Select k, which results in 2k independent random projections (by default k = 1).

2. Draw the 2k random elements to project the process from a dissipative distribution that uses a
particular beta distribution. By default, use a β(2, 7) for the first k projections and a β(100, 1) for
the later k.
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3. Apply the tests of Lobato and Velasco to the even projected processes and Epps to the odd
projections.

4. Combine the obtained 2k p-values using the false discover rate. By default, use Benjamini and
Yekutieli (2001) procedure.

The rp.test() function implements the above procedure. The user might provide optional
parameters such as the number of projections k, the parameters of the first beta distribution pars1 and
those of the second pars2. The next example illustrates the application of the rp.test() to a stationary
GARCH(1,1) process drawn using normal random variables.

Example 3 A stationary GARCH(1,1) process is drawn with a standard normal distribution and
parameters α0 = 0, α1 = 0.2 and β1 = 0.3 using the (fGarch package, Wuertz et al., 2017). Note
that a GARCH(1,1) process is stationary if the parameters α1 and β1 satisfy the inequality α1 + β1 < 1
(Bollerslev, 1986).

set.seed(3468)
library(fGarch)
spec = garchSpec(model = list(alpha = 0.2, beta = 0.3))
x = ts(garchSim(spec, n = 300))
rp.test(x)
#>
#> k random projections test.
#>
#> data: x
#> k = 1, p.value adjust = Benjamini & Yekutieli, p-value = 1
#> alternative hypothesis: x does not follow a Gaussian Process

At significance level α = 0.05, the applied random projections test with k = 1 as the number of
projections shows no evidence to reject the null hypothesis of normality.

3.6 The Psaradakis and Vavra’s test

Psaradakis and Vávra (2017) adapted a distance test for normality for a one-dimensional marginal
distribution of a stationary process. Initially, the test was based on the Anderson (1952) test statistic
and used an auto-regressive sieve bootstrap approximation to the null distribution of the sample
test statistic. Later, Psaradakis and Vávra (2020) considered this test as the ultimate normality test
based on the empirical distribution function, and adapted its methodology to a wide range of tests,
including Shapiro-Wilk (Shapiro and Wilk, 1965), Jarque-Bera (Jarque and Bera, 1980), Cramer von
Mises (Anderson, 1962), Epps, and Lobato-Velasco. Their experiments show that the Lobato-Velasco
and Jarque-Bera test’s bootstrap version performs best in small samples.

Although the test is said to be applicable to a wide class of non-stationary processes by transforming
them into stationary by means of a fractional difference operator, no theoretic result was apparently
provided to sustain this transformation. This work restricts the presentation of the original procedure
to stationary processes.

Let X be a stationary process satisfying

Xt =
∞

∑
i=0

θiϵt−i + µ0, t ∈ Z, (5)

where µ0 ∈ R, {θi}∞
i=0 ∈ l2 with θ0 = 1 and {ϵt}∞

i=0 is a collection of mean zero i.i.d random variables.
The null hypothesis is that the one dimensional marginal distribution of X is normally distributed,

H0 : F(µ0 +
√

γ(0)x)− FN(x) = 0, for all x ∈ R,

where F is the cumulative distribution function of X0, and FN denotes the standard normal cumulative
distribution function. Note that if ϵ0 is normally distributed, then the null hypothesis is satisfied.
Conversely, if the null hypothesis is satisfied, then ϵ0 is normally distributed and, consequently, X0.
The considered test for H0 is based on the Anderson-Darling distance statistic

Ad =
∫ ∞

−∞

[Fn(µ̂ +
√

γ̂(0)x)− FN(x)]2

FN(x)[1 − FN(x)]
dFN(x), (6)
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where Fn(·) is the empirical distribution function associated to F based on a simple random sample
of size n. Psaradakis and Vávra (2017) proposes an auto-regressive sieve bootstrap procedure to
approximate the sampling properties of Ad arguing that making use of classical asymptotic inference
for Ad is problematic and involved. This scheme is motivated by the fact that under some assumptions
for X, including (5), ϵt admits the representation

ϵt =
∞

∑
i=1

ϕi(Xt−i − µ0), t ∈ Z, (7)

for certain type of {ϕi}∞
i=1 ∈ l2. The main idea behind this approach is to generate a bootstrap sample

ϵ∗t to approximate ϵt with a finite-order auto-regressive model. This is because the distribution of the
processes ϵt and ϵ∗t coincide asymptotically if the order of the auto-regressive approximation grows
simultaneously with n at an appropriate rate (Bühlmann, 1997). The procedure makes use of the ϵ∗

′
t s

to obtain the X∗′
t s through the bootstrap analog of (7). Then, generate a bootstrap sample of the Ad

statistic, A∗
d , making use of the bootstrap analog of (5).

The vavra.test() function implements Psaradakis and Vávra (2020) procedure. By default, it
generates 1,000 sieve-bootstrap replications of the Anderson-Darling statistic. The user can provide
different test procedures, such as the Shapiro-Wilk, Jarque-Bera, Cramer von Mises, Epps or Lobato-Velasco
test, by specifying a text value to the normality argument. The presented values are Monte Carlo
estimates of the Ad statistic and p.value.

Example 4 A stationary ARMA(1,1) process is simulated using a standard normal distribution and
performs Psaradakis and Vávra procedure using Anderson-Darling and Cramer von Mises test statistics.
At significance level α = 0.05, there is no evidence to reject the null hypothesis of normality.

set.seed(298)
x = arima.sim(250,model = list(ar = 0.2, ma = 0.34))
# Default, Psaradakis and Vavra's procedure
vavra.test(x, seed = 298)
#>
#> Psaradakis-Vavra test
#>
#> data: x
#> bootstrap-ad = 0.48093, p-value = 0.274
#> alternative hypothesis: x does not follow a Gaussian Process

Approximate Cramer von Mises test for the Psaradakis and Vavra’s procedure

vavra.test(x, normality = "cvm", seed = 298)
#>
#> Sieve-Bootstrap cvm test
#>
#> data: x
#> bootstrap-cvm = 0.056895, p-value = 0.49
#> alternative hypothesis: x does not follow a Gaussian Process

3.7 The multivariate kurtosis test

The literature contains some procedures to test the null hypothesis that a multivariate stochastic
process is Gaussian. Those include Moulines et al. (1992), a test based on the characteristic function,
and Steinberg and Zeitouni (1992), a test based on properties of the entropy of Gaussian processes that
does not make use of cumulant computations. According to El Bouch et al. (2022), these tests may
hardly be executable in real time. Consequently, they propose a test based on multivariate kurtosis
(Mardia, 1970). The proposed procedure is for p = 1, 2, and we elaborate on it in what follows. In
Section 6.3 of El Bouch et al. (2022), they suggest to apply random projections for higher dimensions
but they do not investigate the procedure any further.

The p-value of this test is obtained as 2(1 − FN(z)) where, as above, FN denotes the standard
normal cumulative distribution function. There,

z := (B̂p − E[B̂p])/
√

E[(B̂p − E[B̂p])2],
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where

B̂p := n−1
n

∑
t=1

(xt
t Ŝ

−1xt)
2,

and

Ŝ := n−1
n

∑
t=1

xtxt
t .

In El Bouch et al. (2022), there reader can found the exact computations of E[B̂p] and E[(B̂p − E[B̂p])2].

This test is implemented in the elbouch.test() function. By default, the function computes the
univariate El Bouch test. If the user provides a secondary data set, the function computes the bivariate
counterpart.

Example 5 Simulate a two-dimensional stationary VAR(2) process using independent AR(1) and
AR(2) processes with standard normal distributions and apply the bivariate El Bouch test. At signifi-
cance level α = 0.05, there is no evidence to reject the null hypothesis of normality.

set.seed(23890)
x = arima.sim(250,model = list(ar = 0.2))
y = arima.sim(250,model = list(ar = c(0.4,0,.1)))
elbouch.test(y = y,x = x)
#>
#> El Bouch, Michel & Comon's test
#>
#> data: w = (y, x)
#> Z = 0.92978, p-value = 0.1762
#> alternative hypothesis: w = (y, x) does not follow a Gaussian Process

4 Simulations and data analysis

4.1 Numerical experiments

Inspired by the simulation studies in Psaradakis and Vávra (2017) and Nieto-Reyes et al. (2014), we
propose here a procedure that involves drawing data from the AR(1) process

Xt = ϕXt−1 + ϵt, t ∈ Z, for ϕ ∈ {0,±0.25,±0.4}, (8)

where the {ϵt}t∈Z are i.i.d random variables. For the distribution of the ϵt we consider different
scenarios: standard normal (N), standard log-normal (log N), Student t with 3 degrees of freedom (t3),
chi-squared with 10 degrees of freedom (χ2(10)) and gamma with (7, 1) shape and scale parameters
(Γ(7, 1)).

As in Psaradakis and Vávra (2017), m = 1, 000 independent draws of the above process are
generated for each pair of parameter ϕ and distribution. Each draw is taken of length past + n,
with past = 500 and n ∈ {100, 250, 500, 1000}. The first 500 data points of each realization are then
discarded in order to eliminate start-up effects. The n remaining data points are used to compute
the value of the test statistic of interest. In each particular scenario, the rejection rate is obtained by
computing the proportion of times that the test is rejected among the m trials.

Tables 1 and 2 present the rejection rate estimates. For every process of length n, the columns
represent the used AR(1) parameter and the rows the distribution used to draw the process. The
obtained results are consistent with those obtained in the publications where the different tests were
proposed. As expected, rejection rates are around 0.05 when the data is drawn from a standard normal
distribution, as in this case the data is drawn from a Gaussian process. Conversely, high rejection
rates are registered for the other distributions. Low rejection rates are observed, however, for the
χ2(10) distribution when making use of some of the tests. For instance, the Epps and bootstrap Epps
tests, although they consistently tend to 1 when the length of the process, n, increases. Another case
is the El Bouch test. However, this one maintains low rates for large values of |ϕ| when n increases.
Furthermore, for the random projections test, the number of projections used in this study is the
default k = 1, which is by far a lower number than the recommended by Nieto-Reyes et al. (2014).
However, even in these conditions, the obtained results are satisfactory, with the random projection
test having even better performance than the tests of Epps (1987) or Psaradakis and Vávra (2017).

An important aspect in selecting a procedure is its computation time. Thus, for each length of the
process, n, there is an additional column, max.phi, in Tables 1 and 2. Each entry in this column refers to
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Table 1: Part 1. Rejection rate estimates over m = 1, 000 trials of the seven studied goodness of fit test
for the null hypothesis of normality. The data is drawn using the process defined in (8) for different
values of phi and n displayed in the columns and different distributions for epsilont in the rows. phi
in 0, 0.25, 0.4, n in 100, 250. For each test and distribution, max.phi represents the maximum rejection
rate’s running time in seconds among the different values of the AR parameter.

n = 100 n = 250

phi -0.4 -0.25 0.0 0.25 0.4 max.phi -0.4 -0.25 0.0 0.25 0.4 max.phi

Lobato and Velasco
N 0.041 0.044 0.047 0.032 0.035 0.769 0.059 0.037 0.054 0.040 0.037 0.646
logN 1.000 1.000 1.000 1.000 1.000 0.610 1.000 1.000 1.000 1.000 1.000 0.653
t3 0.797 0.853 0.902 0.875 0.829 0.627 0.990 0.994 0.998 0.999 0.983 0.674
chisq10 0.494 0.698 0.770 0.707 0.610 0.620 0.930 0.995 0.998 0.997 0.977 0.657
Gamma(7,1) 0.995 1.000 0.999 0.996 0.988 0.634 1.000 1.000 1.000 1.000 1.000 0.665

Epps
N 0.056 0.051 0.062 0.060 0.063 0.695 0.048 0.058 0.053 0.066 0.063 0.736
logN 0.908 0.917 0.972 0.985 0.984 0.729 1.000 1.000 1.000 0.999 1.000 0.777
t3 0.243 0.291 0.370 0.317 0.248 0.722 0.776 0.872 0.908 0.881 0.780 0.769
chisq10 0.267 0.440 0.548 0.469 0.360 0.699 0.611 0.850 0.930 0.866 0.721 0.739
Gamma(7,1) 0.866 0.961 0.996 0.993 0.965 0.722 1.000 1.000 1.000 1.000 1.000 0.782

Random Projections
N 0.051 0.042 0.045 0.039 0.050 1.301 0.045 0.033 0.046 0.038 0.050 1.905
logN 1.000 1.000 1.000 1.000 1.000 1.330 1.000 1.000 1.000 1.000 1.000 1.906
t3 0.790 0.863 0.879 0.823 0.727 1.320 0.982 0.994 0.995 0.991 0.975 1.949
chisq10 0.589 0.730 0.757 0.640 0.542 1.295 0.957 0.994 0.994 0.969 0.888 1.926
Gamma(7,1) 0.998 1.000 1.000 0.998 0.989 1.308 1.000 1.000 1.000 1.000 1.000 1.963

Psaradakis and Vavra
N 0.052 0.048 0.051 0.058 0.050 17.905 0.061 0.046 0.038 0.051 0.045 22.115
logN 1.000 1.000 1.000 1.000 1.000 17.149 1.000 1.000 1.000 1.000 1.000 21.841
t3 0.700 0.799 0.851 0.780 0.695 17.503 0.960 0.979 0.991 0.977 0.960 22.183
chisq10 0.498 0.673 0.804 0.689 0.550 18.029 0.902 0.983 0.997 0.988 0.933 22.197
Gamma(7,1) 0.989 1.000 1.000 1.000 0.998 18.467 1.000 1.000 1.000 1.000 1.000 22.292

Bootstrap Lobato
N 0.057 0.052 0.047 0.059 0.052 37.141 0.035 0.049 0.048 0.058 0.049 40.532
logN 1.000 1.000 1.000 1.000 1.000 32.509 1.000 1.000 1.000 1.000 1.000 40.793
t3 0.797 0.867 0.899 0.869 0.809 32.755 0.989 0.994 0.996 0.996 0.989 41.158
chisq10 0.567 0.729 0.801 0.745 0.649 32.242 0.942 0.990 1.000 0.994 0.963 40.950
Gamma(7,1) 0.999 1.000 1.000 0.998 0.991 31.763 1.000 1.000 1.000 1.000 1.000 41.277

Bootstrap Epps
N 0.047 0.053 0.048 0.052 0.044 57.749 0.058 0.052 0.053 0.048 0.043 65.367
logN 0.846 0.877 0.963 0.974 0.959 56.756 1.000 1.000 1.000 1.000 0.999 65.968
t3 0.183 0.238 0.313 0.230 0.196 57.350 0.752 0.863 0.913 0.841 0.754 65.699
chisq10 0.252 0.364 0.527 0.450 0.358 56.627 0.596 0.813 0.913 0.854 0.685 65.369
Gamma(7,1) 0.816 0.948 0.993 0.979 0.931 56.986 1.000 1.000 1.000 1.000 1.000 65.315

El Bouch
N 0.040 0.047 0.044 0.033 0.050 0.798 0.040 0.054 0.052 0.061 0.059 1.020
logN 0.990 0.998 0.998 0.995 0.980 0.805 1.000 1.000 1.000 1.000 1.000 1.025
t3 0.833 0.883 0.928 0.886 0.846 0.824 0.996 0.999 0.998 0.998 0.991 1.044
chisq10 0.041 0.152 0.281 0.155 0.046 0.812 0.062 0.386 0.597 0.388 0.065 1.031
Gamma(7,1) 0.833 0.905 0.929 0.898 0.818 0.818 0.993 0.998 0.999 0.995 0.989 1.042

a different distribution and contains the maximum running time in seconds to obtain the rejection rate
among the different values of the AR parameter. That is, for a fix distribution, the rejection rates are
computed for each of the five possibilities of ϕ and the time that it takes recorded. The running time in
the table is the largest among the five. Furthermore, in Table 3 we show the time in seconds that each
studied test takes to check whether a given process is Gaussian. In particular, the table contains the
average running time over 1,000 trials that takes to generate and check a Gaussian AR(1) process with
parameter ϕ = 0.5. This is done for different sample sizes, n ∈ {1000, 2000, 3000, 4000, 5000}. According
to the table, the asymptotic tests (Lobato and Velasco, Epps, random projections and El Bouch) have
similar running times. On the contrary, the bootstrap based tests (Psaradakis and Vavra, Bootstrap
Epps and Lobato and Velasco) have, as expected, higher running times on average. Furthermore,
Tables 1 and 2 show similar results in time performance. There, the maximum running time of the
bootstrap based tests exceeds in more than ten seconds the time obtained with the asymptotic based
tests. It is worth saying that the tables have been obtained with R version 4.3.1 (2023-06-16) and
platform aarch64-apple-darwin20 (64-bit),running under macOS Sonoma 14.2.1.
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Table 2: Part 2. Rejection rate estimates over m = 1, 000 trials of the seven studied goodness of fit test
for the null hypothesis of normality. The data is drawn using the process defined in (8) for different
values of phi and n displayed in the columns and different distributions for epsilont in the rows. phi
is in 0, 0.25, 0.4 and n in 500, 1000. For each test and distribution, max.phi represents the maximum
rejection rate’s running time in seconds among the different values of the AR parameter.

n = 500 n = 1,000

phi -0.4 -0.25 0.0 0.25 0.4 max.phi -0.4 -0.25 0.0 0.25 0.4 max.phi

Lobato and Velasco
N 0.041 0.035 0.052 0.035 0.049 0.729 0.048 0.050 0.040 0.062 0.040 1.065
logN 1.000 1.000 1.000 1.000 1.000 0.743 1.000 1.000 1.000 1.000 1.000 1.076
t3 1.000 1.000 1.000 1.000 1.000 0.844 1.000 1.000 1.000 1.000 1.000 1.116
chisq10 0.999 1.000 1.000 1.000 1.000 0.824 1.000 1.000 1.000 1.000 1.000 1.082
Gamma(7,1) 1.000 1.000 1.000 1.000 1.000 0.825 1.000 1.000 1.000 1.000 1.000 1.105

Epps
N 0.048 0.046 0.056 0.065 0.050 0.905 0.034 0.038 0.046 0.033 0.059 1.182
logN 1.000 1.000 1.000 1.000 1.000 0.931 1.000 1.000 1.000 1.000 1.000 1.294
t3 0.991 0.994 0.996 0.997 0.985 0.936 1.000 0.998 1.000 1.000 0.999 1.235
chisq10 0.924 0.991 0.999 0.991 0.969 0.917 0.997 1.000 1.000 1.000 1.000 1.202
Gamma(7,1) 1.000 1.000 1.000 1.000 1.000 0.873 1.000 1.000 1.000 1.000 1.000 1.239

Random Projections
N 0.044 0.043 0.040 0.040 0.048 2.723 0.021 0.027 0.043 0.043 0.047 4.544
logN 1.000 1.000 1.000 1.000 1.000 2.759 1.000 1.000 1.000 1.000 1.000 4.588
t3 1.000 1.000 1.000 1.000 1.000 2.755 1.000 1.000 1.000 1.000 1.000 4.531
chisq10 1.000 1.000 1.000 1.000 0.998 2.782 1.000 1.000 1.000 1.000 1.000 4.520
Gamma(7,1) 1.000 1.000 1.000 1.000 1.000 2.843 1.000 1.000 1.000 1.000 1.000 4.527

Psaradakis and Vavra
N 0.048 0.050 0.045 0.053 0.039 26.957 0.055 0.045 0.047 0.043 0.033 37.993
logN 1.000 1.000 1.000 1.000 1.000 27.209 1.000 1.000 1.000 1.000 1.000 37.282
t3 1.000 1.000 1.000 1.000 1.000 26.599 1.000 1.000 1.000 1.000 1.000 37.642
chisq10 1.000 1.000 1.000 1.000 1.000 27.418 1.000 1.000 1.000 1.000 1.000 37.731
Gamma(7,1) 1.000 1.000 1.000 1.000 1.000 27.659 1.000 1.000 1.000 1.000 1.000 38.232

Bootstrap Lobato
N 0.055 0.048 0.053 0.037 0.035 53.110 0.050 0.046 0.067 0.049 0.047 72.528
logN 1.000 1.000 1.000 1.000 1.000 52.632 1.000 1.000 1.000 1.000 1.000 71.845
t3 1.000 1.000 1.000 1.000 1.000 52.763 1.000 1.000 1.000 1.000 1.000 71.454
chisq10 1.000 1.000 1.000 1.000 1.000 52.455 1.000 1.000 1.000 1.000 1.000 73.413
Gamma(7,1) 1.000 1.000 1.000 1.000 1.000 53.204 1.000 1.000 1.000 1.000 1.000 72.253

Bootstrap Epps
N 0.051 0.043 0.033 0.043 0.051 78.920 0.055 0.054 0.056 0.044 0.064 101.883
logN 1.000 1.000 1.000 1.000 1.000 78.194 1.000 1.000 1.000 1.000 1.000 101.753
t3 0.979 0.995 0.998 0.996 0.985 79.735 1.000 1.000 1.000 1.000 1.000 100.766
chisq10 0.911 0.986 0.996 0.995 0.945 80.841 0.997 1.000 1.000 1.000 0.998 101.250
Gamma(7,1) 1.000 1.000 1.000 1.000 1.000 78.688 1.000 1.000 1.000 1.000 1.000 101.360

El Bouch
N 0.065 0.053 0.047 0.061 0.059 1.419 0.055 0.064 0.051 0.048 0.045 2.467
logN 1.000 1.000 1.000 1.000 1.000 1.435 1.000 1.000 1.000 1.000 1.000 2.500
t3 1.000 1.000 1.000 1.000 1.000 1.453 1.000 1.000 1.000 1.000 1.000 2.492
chisq10 0.100 0.609 0.871 0.609 0.076 1.439 0.176 0.858 0.984 0.865 0.173 2.470
Gamma(7,1) 1.000 1.000 1.000 1.000 1.000 1.444 1.000 1.000 1.000 1.000 1.000 2.483

4.2 Real data application

As an illustrative example, we analyze the monthly mean carbon dioxide, in parts per million (ppm),
measured at the Mauna Loa Observatory, in Hawaii, from March 1958 to November 2018. The carbon
dioxide data measured as the mole fraction in dry air on Mauna Loa constitute the longest record of
direct measurements of CO2 in the atmosphere. This dataset is available in the astsa package (Stoffer,
2020) under the name cardox data and it is displayed in the left panel of Figure 1. The plot’s grid is
created using the cowplot package (Wilke, 2020).

The objective of this subsection is to propose a model to analyze this time series and check the
assumptions on the residuals of the model using our implemented check_residuals() function.
The time series clearly has trend and seasonal components (see left panel of Figure 1), therefore,
an adequate model that filters both components has to be selected. We make use of an ETS model.
For its implementation, we make use the ets() function from the forecast package (Hyndman and
Khandakar, 2008). This function fits 32 different ETS models and selects the best model according
to information criteria such as Akaike’s information criterion (AIC) or Bayesian Information criteria (BIC)
(Chen and Chen, 2008). The results provided by the ets() function are:
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Table 3: Average running time in seconds, over 1000 iterations, to compute the null hypothesis of
Gaussianity for each of the studied tests (first column) and different sample sizes, n = 1000 (second
column), n = 2000 (third column), n = 3000 (fourth column), n = 4000 (fifth column) and n = 5000
(sixth column). Each iteration makes use of a Gaussian AR(1) process with parameter phi = 0.5.

tests n = 1000 n = 2000 n = 3000 n = 4000 n = 5000

Lobato and Velasco 0.0010 0.0014 0.0020 0.0026 0.0035
Epps 0.0010 0.0015 0.0021 0.0027 0.0035
Random Projections 0.0026 0.0045 0.0063 0.0082 0.0105
El Bouch 0.0023 0.0046 0.0074 0.0109 0.0152
Psaradakis and Vavra 0.0286 0.0429 0.0565 0.0012 0.0014

Bootstrap Lobato 0.0542 0.0014 0.0019 0.0025 0.0032
Bootstrap Epps 0.0013 0.0018 0.0023 0.0029 0.0037

Figure 1: Left panel: CO2 Levels at Mauna Loa, time-series plot. The cardox data show a positive
tendency and strong seasonality. Right panel: forecast of the next 12 months for the CO2 levels at
Mauna Loa, the model’s predictions capture the time-series behaviour.
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library(forecast)
library(astsa)
model = ets(cardox)
summary(model)
#> ETS(M,A,A)
#>
#> Call:
#> ets(y = cardox)
#>
#> Smoothing parameters:
#> alpha = 0.5451
#> beta = 0.0073
#> gamma = 0.1076
#>
#> Initial states:
#> l = 314.4546
#> b = 0.0801
#> s = 0.6986 0.0648 -0.8273 -1.8999 -3.0527 -2.7629
#> -1.2769 0.7015 2.1824 2.6754 2.3317 1.165
#>
#> sigma: 9e-04
#>
#> AIC AICc BIC
#> 3429.637 3430.439 3508.867
#>
#> Training set error measures:
#> ME RMSE MAE MPE MAPE MASE
#> Training set 0.018748 0.3158258 0.2476335 0.005051657 0.06933903 0.152935
#> ACF1
#> Training set 0.09308391

The resulting model, proposed by the ets() function, for analyzing the carbon dioxide data in Mauna
Loa is an ETS[M, A, A] model. The parameters α, β and γ (see Definition 1) have being estimated
using the least squares method. If the assumptions on the model are satisfied, then the errors of
the model behave like a Gaussian stationary process. To check it, we make use of the function
check_residuals(). For more details on the compatibility of this function with the models obtained
by other packages see the nortsTest repository. In the following, we display the results of using
the Augmented Dickey-Fuller test (Subsection 3.1) to check the stationary assumption and the random
projection test with k = 1 projections to check the normality assumption. For the other test options see
the function’s documentation.

check_residuals(model,unit_root = "adf",normality = "rp",
plot = TRUE)

#>
#> ***************************************************
#>
#> Unit root test for stationarity:
#>
#> Augmented Dickey-Fuller Test
#>
#> data: y
#> Dickey-Fuller = -9.8935, Lag order = 9, p-value = 0.01
#> alternative hypothesis: stationary
#>
#>
#> Conclusion: y is stationary
#> ***************************************************
#>
#> Goodness of fit test for Gaussian Distribution:
#>
#> k random projections test.
#>
#> data: y
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Figure 2: Check residuals plot for the ETS(M,A,A) model. The upper panel shows the residuals
time-series plot, showing small oscillations around zero, which insinuates stationarity. The middle
plots are the residuals histogram (middle-left) and quantile-quantile plot (middle-right), both plots
suggest that the residuals have a normal distribution. The lower panel shows the autocorrelation
functions, for both plots, the autocorrelations are close to zero giving the impression of stationarity.

#> k = 1, p.value adjust = Benjamini & Yekutieli, p-value = 1
#> alternative hypothesis: y does not follow a Gaussian Process
#>
#>
#> Conclusion: y follows a Gaussian Process
#>
#> ***************************************************

The obtained results indicate that the null hypothesis of non stationarity is rejected at significance
level α = 0.01. Additionally, there is no evidence to reject the null hypothesis of normality at sig-
nificance level α = 0.05. Consequently, we conclude that the residuals follow a stationary Gaussian
process, having that the resulting ETS[M, A, A] model adjusts well to the carbon dioxide data in Mauna
Loa.

In the above displayed check_residuals() function, the plot argument is set to TRUE. The resulting
plots are shown in Figure 2. The plot in the top panel and the auto-correlation plots in the bottom panels
insinuate that the residuals have a stationary behavior. The top panel plot shows slight oscillations
around zero and the auto-correlations functions in the bottom panels have values close to zero in every
lag. The histogram and qq-plot in the middle panels suggest that the marginal distribution of the
residuals is normally distributed. Therefore, Figure 2 agrees with the reported results, indicating that
the assumptions of the model are satisfied.

As the assumptions of the model have been checked, it can be used for instance to forecast. The
result of applying the following function is displayed in Figure 1. It presents the carbon dioxide data
for the last 8 years and a forecast of the next 12 months. It is observable from the plot that the model
captures the process trend and periodicity.

autoplot(forecast(model,h = 12),include = 100,
xlab = "years",ylab = "CO2 (ppm)",
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main = "Forecast: Carbon Dioxide Levels at Mauna Loa")

5 Conclusions

For independent data, the nortest package (Gross and Ligges, 2015) provides five different tests for
normality, the mvnormtest package (Jarek, 2012) performs the Shapiro-Wilks test for multivariate
data and the MissMech package (Jamshidian et al., 2014) provides tests for normality in multivariate
incomplete data. To test the normality of dependent data, some authors such as Psaradakis and Vávra
(2017) and Nieto-Reyes et al. (2014) have available undocumented Matlab code, which is almost only
helpful in re-doing their simulation studies.

To our knowledge, no consistent implementation or package of tests for normality of stationary
processes has been done before. Therefore, the nortsTest is the first package to implement normality
tests in stationary processes. This work gives a general overview of a careful selection of tests for
normality in the stationary process, which consists of the most available types of tests. It additionally
provides examples that illustrate each of the test implementations.

For checking the model’s assumptions, the forecast and astsa packages contain functions for visual
diagnostic. Following the same idea, nortsTest provides similar diagnostic methods; it also reports
the results of testing stationarity and normality, the main assumptions for the residuals in time series
analysis.

6 Future work and projects

A further version of the nortsTest package will incorporate additional tests such as Bispectral (Hinich,
1982) and Stein’s characterization (Bontemps and Meddahi, 2005). Further future work will include a
Bayesian version of a residuals check procedure that uses the random projection method. Any future
version under development can be installed from GitHub using the following code.

if (!requireNamespace("remotes")) install.packages("remotes")
remotes::install_github("asael697/nortsTest",dependencies = TRUE)
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