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Fitting a Quantile Regression Model for
Residual Life with the R Package qris
Kyu Hyun Kim, Sangwook Kang, and Sy Han Chiou

Abstract In survival analysis, regression modeling has traditionally focused on assessing covariate
effects on survival times, which is defined as the elapsed time between a baseline and event time.
Nevertheless, focusing on residual life can provide a more dynamic assessment of covariate effects, as
it offers more updated information at specific time points between the baseline and event occurrence.
Statistical methods for fitting quantile regression models have recently been proposed, providing
favorable alternatives to modeling the mean of residual lifetimes. Despite these progresses, the lack
of computer software that implements these methods remains an obstacle for researchers analyzing
data in practice. In this paper, we introduce an R package qris (Kim et al., 2022), which implements
methods for fitting semiparametric quantile regression models on residual life subject to right
censoring. We demonstrate the effectiveness and versatility of this package through comprehensive
simulation studies and a real-world data example, showcasing its valuable contributions to survival
analysis research.

1 Introduction

In the analysis of time-to-event data, standard statistical inference procedures often focus on
quantities based on failure time and its relationship with covariates measured at baseline. However,
throughout the follow-up process, inference procedures based on residual life become increasingly
intuitive for assessing the survival of subjects and can offer insights into the effectiveness of treatments
in prolonging the remaining lifetime. As covariates can substantially change over time and models
based solely on baseline covariates have limited potential for long-term prognosis, there is a growing
interest in modeling the remaining lifetime of a surviving subject with updated patient information.
Many efforts have been made to model the mean residual life including proportional mean residual
life models (Maguluri and Zhang, 1994; Oakes and Dasu, 1990, 2003; Chen et al., 2005), additive
mean residual life models (Chen and Cheng, 2006; Chen, 2007; Zhang et al., 2010), and proportional
scaled mean residual life models (Liu and Ghosh, 2008). Given that failure times are usually
right-skewed and heavy-tailed, the mean of the residual life might not be identifiable if the follow-up
time is not sufficiently long. For this reason, quantiles, which are robust under skewed distribution,
have traditionally been used more frequently as alternative summary measures. For example, the
approach on the semiparametric quantile regression model for continuous responses (Koenker and
Bassett Jr, 1978) has been extended to uncensored failure time data (Jung, 1996; Portnoy and
Koenker, 1997; Wei et al., 2006) and censored failure times data (Ying et al., 1995; Portnoy, 2003;
Peng and Huang, 2008; Huang, 2010).

When the outcome variable is the residual life, semiparametric quantile models that apply the
inverse probability of censoring weighting (IPCW) principle to address right-censored observations
have been explored (Jung et al., 2009; Kim et al., 2012; Li et al., 2016). These approaches are
based on non-smooth estimating functions with respect to regression parameters, and the estimates
of the regression parameters are obtained either through zero-crossing of non-smooth estimating
functions using grid search techniques (Jung et al., 2009) or by optimizing non-smooth objective
functions with L1-minimization algorithms (Kim et al., 2012; Li et al., 2016). While these methods
are relatively straightforward to implement, an additional challenge lies in standard error estimation,
which necessitates the computationally intensive use of a multiplier bootstrap method (Li et al.,
2016). Alternatively, Jung et al. (2009) and Kim et al. (2012) utilized the minimum dispersion
statistic and the empirical likelihood method, respectively, to bypass the need to directly estimate
the variance of the regression parameter estimator for hypothesis testing and constructing confidence
intervals. The non-smooth nature of the estimating functions in these approaches precludes the
estimation of variance using the robust sandwich-type variance estimator typically employed in
equation-based estimation methods. To lessen the associated computational burden, an induced
smoothing was proposed (Brown and Wang, 2005), which modifies the non-smooth estimating
equations into smooth ones. Leveraging the asymptotic normality of the non-smooth estimator, the
smooth estimating functions are constructed by averaging out the random perturbations inherent in
the non-smooth estimating functions. The resulting estimating functions become smooth with respect
to the regression parameters, allowing for the straightforward application of standard numerical
algorithms, such as the Newton-Raphson method. Furthermore, these smoothed estimating functions
facilitate the straightforward computation of variances using the robust sandwich-type estimator.
The induced smoothing approach has been employed in fitting semiparametric accelerated failure
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time (AFT) models via the rank-based approach (Johnson and Strawderman, 2009; Chiou et al.,
2021, 2015b; Kang, 2017). Regarding quantile regression, Choi et al. (2018) considered the induced
smoothing approach under a competing-risks setting. All of these methods are based on modeling
event times. Recently, Kim et al. (2023) proposed an induced smoothing estimator for fitting a
semiparametric quantile regression model for residual life.

The availability of published R packages for fitting quantile regression models is somewhat
limited. The rq(), nlrq(), rqss(), and crq() functions in the package quantreg (Koenker, 2022)
are predominantly used and provide various features for fitting linear, nonlinear, non-parametric, and
censored quantile regression models, respectively. The rq() function minimizes non-smooth objective
functions to obtain point estimates of regression coefficients and can accommodate right-censored
survival times by incorporating weights. By redefining survival times as the remaining lifetime at
time t0, one can also obtain a non-smoothed estimator for quantile regression models for residual
life (Kim et al., 2012). On the other hand, the nlrq() function is designed to fit a nonlinear
quantile regression model, while the rqss() function fits additive quantile regression models with
nonparametric terms, including univariate components and bivariate components, using smoothing
splines and total variation regularization techniques (Koenker et al., 1994; Koenker and Mizera,
2004). Furthermore, the crq() function fits a quantile regression model for censored data on the
τ -th conditional quantile function of the response variable. Overall, the quantreg implements three
methods for handling right-censored survival times: Powell (1986)’s estimator, Portnoy (2003)’s
estimator and Peng and Huang (2008)’s estimator. However, none of the implemented methods in
the nlrq(), rqss(), or crq() functions are applicable for handling censored residual life using the
induced smoothing methods. The only function that implements the induced smoothing method is
the aftsrr() function in the package aftgee (Chiou et al., 2021), but it is specifically designed for
fitting semiparametric AFT models, which are not directly applicable to fitting quantile regression
models.

Other R packages that can be used to fit quantile regression models for survival data include the
package ctqr (Frumento, 2021), package Brq (Alhamzawi, 2020), package brms (Bürkner, 2018), and
package cmprskQR (Dlugosz et al., 2019). The ctqr() function in the package ctqr implements the
methods proposed in Frumento (2021) for right or interval-censored failure times with left-truncation.
The Bqr() function in the package Brq implements Bayesian methods based on the asymmetric
Laplace distribution. In the package brms, the brm() function with the family=asym_laplace()
option enables the implementation of full Bayesian inference. The crrQR() function in the package
cmprskQR allows fitting quantile regression models with competing risks. All of these R packages
are designed for fitting quantile regression models for failure times defined from a baseline and are
not applicable to the residual life setting.

The recently developed R package qris (Kim et al., 2022) provides an efficient tool for fitting
semiparametric quantile regression models for residual life subject to right censoring. The qris package
offers three methods for estimating the regression parameters: L1-minimization of non-smooth
objective functions, induced smoothing with a non-iterative approach, and an iterative procedure. For
standard error estimation, the qris package provides two resampling-based approaches: the partial
multiplier bootstrap and the full multiplier bootstrap methods. The partial multiplier bootstrap
method utilizes the robust sandwich-type estimator by incorporating the sample variance of perturbed
estimating functions, while the full multiplier bootstrap method is obtained by considering the
sample variance from the solutions of perturbed estimating functions. To enhance the interpretability
of results, the qris package incorporates graphical visualizations of covariate effects at different
quantiles and base times, utilizing the plotting environment similar to that in the ggplot2 package
(Wickham et al., 2022), thereby allowing for extensive flexibility and customization. The ultimate
goal of creating the qris package is to facilitate the easy incorporation of quantile regression for
residual life into daily routines. The package qris is available on the Comprehensive R Archive
Network (CRAN) at https://CRAN.R-project.org/package=qris.

The rest of the article is organized as follows: Section Semiparametric quantile regression for
residual life introduces a semiparametric regression model for quantiles of residual life and the
estimation methods implemented in the package. Section Package implementation provides details
about computing algorithms. Illustrations of the package using a simulated dataset and the real
data from the North Central Cancer Treatment Group are presented in Section Illustration. Finally,
in Section Conclusion, concluding remarks are provided along with some discussions.

2 Semiparametric quantile regression for residual life

Define T as the potential failure time that is subject to right censoring by C and X as a p × 1 vector
of covariates, where p is the number of covariates, including an intercept. The observed data consists
of n independent copies of (Z, δ, X), where Z = min(T , C), δ = I(T ≤ C), and I(·) is an indicator
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function. We also assume T and C are marginally independent. Define the τ -th quantile of the
residual life at t0 > 0 as θτ (t0) that satisfies P (Ti − t0 ≥ θτ (t0) | Ti > t0) = 1 − τ . We consider
the semiparametric quantile regression model for the residual life (Kim et al., 2012, 2023). Given
Ti > t0,

log(Ti − t0) = X⊤
i β0(τ , t0) + ϵi, i = 1, . . . , n, (1)

where β0(τ , t0) is a p × 1 vector of regression coefficients, and ϵi is a random error having zero τ -th
quantile. The quantile regression model for a continuous response (Koenker and Bassett Jr, 1978) is
a special case of Equation (1) when t0 = 0. For ease of notation, we omit τ and t0 in β0(τ , t0) and
θτ (t0) and write β0 and θ. We present different estimation procedures to estimate β0 given τ and
t0 in the following.

2.1 Estimation using non-smooth functions

When there is no censoring, an estimator for β0 in Equation (1) can be obtained by solving the
estimating equation (Kim et al., 2012), where

1
n

n∑
i=0

I [Ti ≥ t0]Xi

{
I
[
log(Ti − t0) ≤ X⊤

i β
]

− τ
}
= 0. (2)

However, Equation (2) cannot be directly used when Ti − t0 is subject to right censoring. The IPCW
technique can be incorporated into Equation (2) to account for the right censoring (Li et al., 2016).
Specifically, in the presence of right censoring, the estimator for β0 in Equation (1) can be obtained
as the root of the following weighted estimating equations:

Ut0 (β, τ ) =
1
n

n∑
i=1

I [Zi ≥ t0]Xi

{
I
[
log(Zi − t0) ≤ X⊤

i β
]

δi

Ĝ(Zi)/Ĝ(t0)
− τ

}
, (3)

where Ĝ(·) is the Kaplan-Meier estimate of the survival function G(·) of the censoring time C

and Ĝ(t) =
∏

i:ti≤t(1 −
∑n

j=1(1 − δj)I(Zj ≤ ti)/
∑n

j=1 I(Zj ≥ ti)). A computational challenge
arises because the exact solution to Equation (3) might not exist due to the non-smoothness in β
caused by the involvement of indicator functions. When the exact solutions do not exist, the root
of Equation (3) can be approximated by minimizing the L1-objective function Lt0 (β, τ ) (Li et al.,
2016),

Lt0 (β, τ ) =
1
n

n∑
i=1

δiI [Zi > t0]

Ĝ(Zi)/Ĝ(t0)

∣∣∣log(Zi − t0) − X⊤
i β

∣∣∣+∣∣∣∣∣M − β⊤
n∑

l=1

−Xl
δlI [Zl > t0]

Ĝ(Zl)/Ĝ(t0)

∣∣∣∣∣+
∣∣∣∣∣M − β⊤

n∑
l=1

2τXlI [Zl > t0]

∣∣∣∣∣ ,
where M > 0 bounds

∣∣∣∣β⊤∑n
i=1 −Xi

δiI [Zi>t0]

Ĝ(Zi)/Ĝ(t0)

∣∣∣∣ and
∣∣β⊤∑n

i=1 2τXiI [Zi > t0]
∣∣ from above. Nu-

merically, the limit M is set to be an extremely large number, and the qris() function uses M = 106.
Denote the resulting estimator to be β̂NS. It has been shown that β̂NS is consistent for β0 and
asymptotically normally distributed (Li et al., 2016).

Despite the well-established asymptotic properties, directly estimating the variance of β̂NS is
impractical because it involves the derivative of non-smooth functions. A multiplier bootstrap
method has typically been employed (Li et al., 2016) to address this difficulty. The multiplier
bootstrap method considers the perturbed version of Ut0 (β, τ ), defined as

U∗
t0 (β, τ ) =

1
n

n∑
i=1

ηiI [Zi ≥ t0]Xi

{
I
[
log(Zi − t0) ≤ X⊤

i β
]

δi

Ĝ∗(Zi)/Ĝ∗(t0)
− τ

}
,

where ηi, i = 1, . . . , n, are independently and identically (iid) generated from a positive random
variable with unity mean and variance, and Ĝ∗(·) is a perturbed version of Ĝ(·), constructed as
Ĝ∗(t) =

∏
i:ti≤t(1 −

∑n
j=1 ηj(1 − δj)I(Zj ≤ ti)/

∑n
j=1 ηjI(Zj ≥ ti)) for a given realization of

ηi. On the other hand, a perturbed L1-objective function, denoted as L∗
t0 (β, τ ), can be similarly
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constructed, where

L∗
t0 (β, τ ) =

1
n

n∑
i=1

δiI [Zi > t0]

Ĝ∗(Zi)/Ĝ∗(t0)

∣∣∣log(Zi − t0) − X⊤
i β

∣∣∣+∣∣∣∣∣M − β⊤
n∑

l=1

−Xl
δlI [Zl > t0]

Ĝ∗(Zl)/Ĝ∗(t0)

∣∣∣∣∣+
∣∣∣∣∣M − β⊤

n∑
l=1

2τXlηlI [Zl > t0]

∣∣∣∣∣ .
Solving for U∗

t0 (β, τ ) = 0, or equivalently, minimizing L∗
t0 (β, τ ), yields one realization of β̂NS. The

multiplier bootstrap variance is computed as the sample variance of a large number of realizations
of β̂NS.

2.2 Estimation using induced smoothed functions

The regression coefficient in Equation (1) can be more efficiently obtained through the induced
smoothed version of Equation (3). The induced smoothed estimating functions are constructed by
taking the expectation with respect to a mean-zero random noise added to the regression parameters
in Equation (3). Specifically,

Ũt0 (β, τ , H) = Ew{Ut0 (β + H1/2W, τ )}

=
1
n

n∑
i=1

I [Zi > t0]Xi

{
Φ

(
X⊤

i β − log(Zi − t0)√
X⊤

i HXi

)
δi

Ĝ(Zi)/Ĝ(t0)
− τ

}
, (4)

where H = O(n−1), W ∼ N(0, Ip) is a standard normal random vector, Ip is the p × p identity
matrix, and Φ(·) is the cumulative distribution function of a standard normal random variable. A
typical choice for H is to fix it at n−1Ip, while some alternative choices are explored in Chiou et al.
(2015a). Let β̂IS be the solution to Ũt0 (β, τ , H) = 0. Since Equation (4) is a smooth function in β,
the estimator can be obtained using standard numerical algorithms such as the Newton-Raphson
method. Moreover, the induced smoothed estimator for β0 has been shown to be asymptotically
equivalent to its non-smooth counterpart (Kim et al., 2023).

Following the idea in Section Estimation using non-smooth functions, the multiplier bootstrap
procedure can be similarly employed to estimate the variance of β̂IS. The perturbed version of
Equation (4) takes the form of

Ũ∗
t0 (β, τ , H) =

1
n

n∑
i=1

ηiI [Zi > t0]Xi

{
Φ

(
X⊤

i β − log(Zi − t0)√
X⊤

i HXi

)
Ĝ∗(t0)δi

Ĝ∗(Zi)
− τ

}
. (5)

The multiplier bootstrap procedure estimates the variance of β̂IS by calculating the sample variance
of a large number of realizations of β̂IS obtained by repeatedly solving Equation (5).

It has been shown that the asymptotic variance Var(β, τ ) can be decomposed into A(β)⊤V(β)A(β)
(Kim et al., 2023), where the two components, A(β) and V(β), can be estimated separately. Since
Equation (4) is a smooth function in β, the slope matrix, A(β), can be conveniently estimated by
differentiating Ũt0 (β, τ , H) with respect to β. The explicit form of A(β) is as follows:

A(β) =
∂Ũt0 (β, τ , H)

∂β

=
1
n

n∑
i=1

I [Zi > t0]Xi
G(t0)δi

G(Zi)
ϕ

(
Xi

⊤β − log(Zi − t0)√
Xi

⊤HXi

)(
−Xi√

Xi
⊤HXi

)
, (6)

where ϕ(·) is the density function of the standard normal random variable.

The slope matrix, Â(β̂IS), can be evaluated directly by plugging in β̂IS and Ĝ(·). On the other
hand, the variance of the estimating function, V̂(β), can be obtained by a computationally efficient
resampling method motivated by the multiplier bootstrap procedure in Section Estimation using
non-smooth functions. Specifically, we propose estimating V̂(β̂IS) as the simple variance of a large
set of realizations of the perturbed version of Ũt0 (β̂IS, τ , H) presented in Equation (5). We refer to
this procedure as the partial multiplier bootstrapping approach because it utilizes the perturbed
estimating function, similar to the full multiplier bootstrapping approach, but the computation of
Â(β̂IS) and V̂(β̂IS) does not involve the repeated solving of the perturbed estimating equations.
Thus, the partial multiplier bootstrapping approach is expected to be computationally more efficient
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than the multiplier bootstrap method. A similar procedure and its performance have been studied
in modeling failure times with semiparametric AFT models (Chiou et al., 2014, 2021).

2.3 Iterative procedure in induced smoothing estimation

The induced estimator β̂IS is obtained with a fixed H, as described in Section Estimation using
induced smoothed functions, and its variance is estimated separately. This estimation procedure can
be viewed as a special case of the following iterative procedure, which updates H and β̂IS iteratively.
Specifically, the iterative algorithm utilizes the Newton-Raphson method while sequentially updating
β̂IS and V̂ar(β̂IS) until convergence. Similar iterative algorithms have also been considered previously
in the induced smoothing approach for semiparametric AFT models (Johnson and Strawderman,
2009; Chiou et al., 2014, 2015b; Choi et al., 2018). The iterative procedure is summarized as follows:

Step 1: Set the initial values β̂(0), Σ̂(0) = Ip, and H(0) = n−1Σ̂(0).

Step 2: Given β̂(k) and H(k) at the k-th step, update β̂(k) by

β̂(k+1) = β̂(k) − Â(β̂(k))−1Ũt0 (β̂
(k), τ , H(k)).

Step 3: Given β̂(k+1) and Σ̂(k), update Σ̂(k) by

Σ̂(k+1) = Â(β̂(k+1))−1V̂(β̂(k+1), τ )Â(β̂(k+1))−1.

Step 4: Set H(k+1) = n−1Σ̂(k+1). Repeat Steps 2, 3 and 4 until β̂(k) and Σ̂(k) converge.

The initial value, β̂(0), could be chosen as β̂NS. We define β̂IT and Σ̂IT as the values of β̂(k) and
Σ̂(k) at convergence, and V̂ar(β̂IT) = n−1Σ̂IT. In Step 3, V̂(β̂(k+1), τ ) is obtained using the partial
multiplier bootstrap approach. However, the full multiplier bootstrap approach can also be employed
but would require longer computation times.

3 Package implementation

The main function in the qris package for estimating the regression parameters in the quantile
regression model for residual life is the qris() function. The qris() function is written in C++ and
incorporated into R using the Rcpp (Eddelbuettel et al., 2022a) and RcppArmadillo (Eddelbuettel
et al., 2022b) packages. The synopsis of qris is:

> args(qris)
function (formula, data, t0 = 0, Q = 0.5, nB = 100, method = c("smooth",
"iterative", "nonsmooth"), se = c("fmb",
"pmb"), init = c("rq", "noeffect"), verbose = FALSE,
control = qris.control())

The required argument is formula, which specifies the quantile regression model to be fitted
using the variables in data. The formula assumes that the response variable is a ‘Surv’ object
created by the Surv() function in the survival package (Therneau, 2021). This formula structure
is commonly adopted for handling survival data in R, as seen in functions like survreg() and
coxph() in the survival package. The argument t0 specifies the base time used in defining residual
life. The default value of t0 is set to zero, in which case residual life reduces to a failure time.
The Q argument is used to specify the target quantile of residual life to estimate, with the default
value being set to 0.5 (median). The nB argument specifies the bootstrapping size used in standard
error estimation, with the default value set to 100. The method argument specifies one of the three
estimation methods: "nonsmooth", "smooth", and "iterative", corresponding to the estimating
procedures outlined in Sections Estimation using non-smooth functions, Estimation using induced
smoothed functions, and Iterative procedure in induced smoothing estimation, respectively. Given
the point estimates of the regression parameters, their standard errors can be estimated using one
of two implemented methods: se = "fmb" and se = "pmb". The se = "fmb" method employs a
full-multiplier bootstrapping approach to estimate the variance by the sample variance of large
realizations of β̂. The se = "pmb" method estimates the variance using a robust sandwich variance
estimator and employs the computationally efficient partial multiplier bootstrapping approach
described in Section Estimation using induced smoothed functions. The "fmb" option is available for
all three point estimation methods, whereas the "pmb" option is not available for the "nonsmooth"
point estimation method due to the lack of a closed-form sandwich variance estimator. The init
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argument allows users to specify the initial value for estimating regression parameters by either a
p-dimensional numerical vector or a character string. In the latter case, the options init = "rq"
and init = "noeffect" correspond to the point estimate obtained from the rq() function in the
quantreg package and a p-dimensional vector of zeros, respectively. The default value for init is
init = "rq". Among the three methods implemented for point estimation, method = "smooth" and
method = "nonsmooth" are non-iterative, in the sense that point estimation is performed separately
from the estimation of standard errors. On the other hand, method = "iterative" calculates point
estimates and the corresponding standard error estimates simultaneously through iterative updates.
When method = "iterative", users can define specific convergence criteria using qris.control().
The available options in qris.control() are as follows.

> args(qris.control)
function (maxiter = 10, tol = 0.001, trace = FALSE)

The maxiter argument specifies the maximum number of iterations. The default value for
maxiter is ten, as the proposed algorithm typically converges within ten steps based on our
exploration. The convergence tolerance is controlled using the tol argument, which has a default
value of 1e-3. The trace argument takes a logical value and is used to determine whether to
print the result for each iteration. The default setting is trace = FALSE. The ‘qris’ object is fully
compatible with many of R’s generic functions, including coef(), confint(), plot(), predict(),
print(), residuals(), summary(), and vcov().

Among the available S3 methods, a unique feature of the qris package’s S3 plot method, when
applied to a ‘qris’ object, is its ability to automatically update the original object by extending
the range of τ or t0 values. This extension enables the generation of a covariate effect plot over the
newly specified values of τ or t0, providing a comprehensive visualization of the covariate effects
across the extended range. The S3 method for plotting a ‘qris’ object is shown below.

> argsAnywhere(plot.qris)
function (x, t0s = NULL, Qs = NULL, nB = NULL, vari = NULL, byQs = FALSE,

ggextra = NULL, ...)
NULL

The argument x is a ‘qris’ object created using the qris() function. The t0s and Qs arguments are
numeric vectors that enable users to specify the values of t0 or τ for plotting the covariate effect. If
t0s and Qs are not specified, the covariate effects are plotted against τ = 0.1, 0.2, . . . , 0.9 at the base
time (t0) inherited from the ‘qris’ object specified in x. The nB argument is a numerical variable
that controls the sample size for bootstrapping, used to compute standard error estimations based
on the variance estimation specified in the original ‘qris’ object. When nB is specified, the function
calculates standard errors for all combinations of t0 and τ specified in t0s and Qs, computes 95%
confidence intervals accordingly, and includes them in the covariate effect plot. The vari argument
is a character string that allows users to specify the names of the covariates they want to display
in the effect plots. When the vari argument is not specified, all covariates will be included in the
plots by default. The coefficient event plot can be plotted against the specified quantiles by setting
byQs = TRUE or against the specified base times by setting byQs = FALSE. Finally, the ggextra
argument allows users to pass additional graphical parameters to the ggplot2 package, offering
further customization options for the plots. When the plot() function is called, it internally invokes
the qris.extend() function to compute the covariate effects at additional values. The syntax for
the qris.extend() function is provided below:

> args(qris.extend)
function (x, t0s = NULL, Qs = NULL, nB = NULL, vari = NULL)
NULL

The arguments in qris.extend() are inherited from the arguments specified in the plot() function.
To reduce runtime when repeatedly calling the plot(), one can calculate the desired covariate
effects by applying qris.extend() outside of plot() first and then supply the results to plot().
This approach allows for pre-computation of the covariate effects, making it more efficient when
generating multiple plots. Overall, the unique plotting feature in qris provides users with a seamless
and effortless approach to conducting a comprehensive assessment of the covariate effects across
different quantiles or base times.
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4 Illustration

4.1 Simulated data

In this subsection, we present a simple simulation example to validate the implementations in the
proposed qris package. The simulation involves five covariates, denoted as X1, . . . , X5. Among these
covariates, X1 and X4 follow a standard uniform distribution, X2 follows a binomial distribution
with a success probability of 0.5, X3 follows a standard normal distribution, and X5 follows a
standard exponential distribution. We assume that X2, X3, X4, and X5 do not impact the residual
life, meaning their corresponding coefficient values β2, β3, β4, and β5 are zero. The survival time T
is generated from a Weibull distribution with the survival function S(t) = exp{−(ρt)κ} for t > 0,
where κ = 2, and ρ is obtained by solving

ρ−1{(ρt0)
κ − log(1 − τ )}(1/κ) − t0 = exp{β0 + β1X1}, (7)

for a specified t0 and τ . We set the intercept β0 = log(5) and β1 = log(2) at t0 = 0. Given ρ, τ , and
X1, the true values of β0 and β1 can be obtained sequentially from Equation 7 for different t0 > 0.
In our case, the corresponding true values of β0 are approximately 1.411 and 1.219 for t0 = 1 and 2,
respectively. Similarly, the true values of β1 are approximately 0.797 and 0.907 for t0 = 1 and 2,
respectively. The closed-form expression for generating T is then {− log(1 − u)}1/κ/ρ, where u is a
uniform random variable over (0, 1). Given these specifications, we have implemented the data.gen()
function to generate simulation data. The data.gen() function takes four arguments: n, t0, cen,
and Q, representing the sample size, t0, censoring proportion, and τ , respectively. We generate
censoring times C from an independent uniform distribution over (0, c), where c is chosen to achieve
the desired censoring proportions of 10% and 30%. Using the generated dataset, we fit the model
using three different estimation methods: induced smoothing, non-smooth, and iterative-induced
smoothing. All analyses were conducted on a 4.2 GHz Intel(R) quad Core(TM) i7-7700K central
processing unit (CPU) using R 4.3.0 (R Core Team, 2021). The following code demonstrates the
implementation of data.gen() to generate a simulation dataset.

> data.gen <- function(n, t0, cen = .3, Q = .5) {
+ if (!(t0 %in% 0:2))
+ stop("T0 is limited to three specific values: 0, 1, or 2.")
+ if (!(cen %in% c(0, .1, .3)))
+ stop("Censoring is limited to three specific values: 0%, 10%, or 30%.")
+ if (!(Q %in% c(.25, .5)))
+ stop("Q is limited to two specific values: 0.25, or 0.50.")
+ censoring <- Inf
+ if (t0 == 0) {
+ if (cen == .1) censoring <- runif(n, 0, 125.1)
+ if (cen == .3) censoring <- runif(n, 0, 25.49)
+ beta0 <- log(5); beta1 <- log(2)
+ }
+ if (t0 == 1) {
+ if (cen == .1) censoring <- runif(n, 0, 120.8)
+ if (cen == .3) censoring <- runif(n, 0, 23.41)
+ beta0 <- 1.410748; beta1 <- 0.7974189
+ }
+ if (t0 == 2) {
+ if (cen == .1) censoring <- runif(n, 0, 120.6)
+ if (cen == .3) censoring <- runif(n, 0, 26.20)
+ beta0 <- 1.219403; beta1 <- 0.9070615
+ }
+ dat <- data.frame(censoring,
+ Time0 = sqrt(-log(1 - runif(n))),
+ X1 = runif(n),
+ X2 = rbinom(n, 1, .5),
+ X3 = rnorm(n),
+ X4 = runif(n),
+ X5 = rexp(n, 1))
+ rho <- (-log(1 - Q))^0.5 * (((exp(beta0 + beta1 * dat$X1) + t0)^2 - t0^2)^-0.5)
+ dat$Time0 <- dat$Time0 / rho
+ dat$Time <- pmin(dat$Time0, dat$censoring)
+ dat$status <- 1 * (dat$Time0 < dat$censoring)
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+ subset(dat, select = c(Time, status, X1, X2, X3, X4, X5))
+ }
> set.seed(3)
> head(data.gen(200, 0))

Time status X1 X2 X3 X4 X5
1 4.283379 0 0.09137221 0 2.1638425 0.33833437 0.8751895
2 14.797025 1 0.81196535 1 0.8803785 0.82101134 0.3648634
3 5.934559 1 0.60923418 1 0.5051163 0.56536790 0.3997803
4 7.223266 1 0.54550179 1 0.1105902 0.32417202 1.2169470
5 15.128553 1 0.86115736 0 -0.2928586 0.05825095 0.1835962
6 5.135852 1 0.28915525 0 0.7723200 0.94126325 0.3809120

The data.gen() function generates a data.frame containing seven variables. The Time variable
represents the observed survival time, while the status variable serves as the event indicator, taking
the value 1 for observed events and 0 for censored observations. The variables X1, . . ., X5 are
the covariates. The implementation in the data.gen() function generates the Weibull survival
times using the inverse probability integral transform technique. Alternatively, users can use
the rweibull() function with the parameters shape = 2 and scale = 1 / rho to generate these
Weibull survival times directly.

We assess the performance of the proposed implementation across various scenarios, including
three sample sizes (n = 200, 400, 1000), three levels of t0 (0, 1, 2), two censoring proportions
(10% and 30%), and two values of τ (0.25 and 0.50). For a given dataset, we apply the full-
multiplier bootstrapping approach with 200 bootstrap samples to all three available estimating
procedures: method = "nonsmooth", method = "smooth", and method = "iterative". To facilitate
the evaluation process, we create the do_fmb() function to record the coefficient estimates, standard
errors, and computing times for fitting a single simulated dataset generated from data.gen(). The
following is the implementation of the do_fmb() function and the corresponding code to run the
simulation with 200 replications. We present the code and result of the simulation experiments
conducted at three different sample sizes, with t0 values set to 0 and 1, while holding the censoring
proportion at 30% and τ value at 0.5. The results for other simulation scenarios are provided in the
Supplementary Materials.

> do_fmb <- function(n, t0, cen, Q, nB) {
+ dat <- data.gen(n, t0, cen, Q)
+ fm <- Surv(Time, status) ~ X1 + X2 + X3 + X4 + X5
+ stamp <- NULL
+ stamp[1] <- Sys.time()
+ f1 <- qris(fm, data = dat, t0 = t0, Q = Q, nB = nB, method = "smooth", se = "fmb")
+ stamp[2] <- Sys.time()
+ f2 <- qris(fm, data = dat, t0 = t0, Q = Q, nB = nB, method = "nonsmooth", se = "fmb")
+ stamp[3] <- Sys.time()
+ f3 <- qris(fm, data = dat, t0 = t0, Q = Q, nB = nB, method = "iterative", se = "fmb")
+ stamp[4] <- Sys.time()
+ list(smooth = c(f1$coef, f1$std),
+ nonsmooth = c(f2$coef, f2$std),
+ iter = c(f3$coef, f3$std),
+ times = diff(stamp))
+ }
> B <- 200
> set.seed(2)
> sims0_fmb <- mapply(function(n, t0)

+ replicate(B, do_fmb(n, t0 = t0, cen = .3, Q = .5, nB = 200)),
+ n = c(200, 400, 1000), t0 = c(0, 0, 0), SIMPLIFY = F)

> sim1_fmb <- mapply(function(n, t0)
+ replicate(B, do_fmb(n, t0 = t0, cen = .3, Q = .5, nB = 200)),
+ n = c(200, 400, 1000), t0 = c(1, 1, 1), SIMPLIFY = F)

Figure 1 displays violin plots that provide visualizations of the empirical distribution of the
coefficient estimates. As expected, all three estimators exhibit small biases, which are calculated as
the difference between the point estimates (PE) and the true regression coefficients. Furthermore,
the empirical distributions of the PEs demonstrate a normal-like shape, aligning with the asymptotic
properties of the proposed method (Li et al., 2016; Kim et al., 2023). When the sample size is smaller
(e.g., n = 200 and 400), the nonsmooth approach appears to yield slightly larger empirical standard
errors (ESE) compared to the smooth or iterative approaches. However, when n = 1000, the ESEs
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are similar across all approaches. On the other hand, the comprehensive simulation results presented
in Table 1 of the Supplementary Materials confirm that all coefficient estimates closely approximate
the true regression coefficients. On the other hand, the ESEs and the averaged estimated standard
errors (ASE) are in close agreement for all scenarios, indicating the validity of the variance estimation.
Furthermore, the computation times, which are presented separately in the upper panel of Table 1,
indicate that when employing the full multiplier bootstrapping approach, the nonsmooth approach
demonstrates a slight advantage in terms of computational efficiency over the smooth approach,
while the iterative approach takes 5.1 to 9.5 times longer than the smooth approach. In summary,
the timing results show that the proposed method can yield valid inference results within seconds,
even with large datasets of up to 1000 observations or when using the computationally demanding
full multiplier bootstrapping approach for variance estimation.
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Figure 1: Comparison of the smooth, nonsmooth and iterative estimators with se = "fmb" under
30% censoring and τ = 0.5.

When t0 = 0, the targeted semiparametric quantile regression model for residual life simplifies to
the standard quantile regression model for survival time. In such cases, existing functions like crq()
from the quantreg package (Koenker, 2022) can be employed. A comparison between the performance
of crq() and our proposed implementation when t0 = 0 is presented in the Supplementary Materials,
where the standard errors of the crq() are obtained from the bootstrap method with 200 bootstrap
samples. Overall, the performance of crq() is comparable to the proposed methods in terms of bias
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Table 1: Runtimes (in seconds) when se = fmb and se = pmb.

t0 = 0 t0 = 1
se method 200 400 1000 200 400 1000

fmb Smooth 0.103 0.174 0.471 0.106 0.178 0.480
Nonsmooth 0.080 0.142 0.472 0.080 0.141 0.468
Iterative 0.981 1.500 2.410 0.985 1.567 2.882

pmb Smooth 0.022 0.052 0.223 0.022 0.053 0.224
Iterative 0.296 0.580 1.407 0.296 0.581 1.435

and standard errors. However, we have occasionally encountered situations where the crq() function
fails to converge, particularly when the sample size is large, as in the case of n = 1000. In the other
extended simulation scenarios outlined in the Supplementary Materials, which encompass various
levels of t0, censoring proportions, and τ , the proposed methods consistently exhibit satisfactory
performance across all settings.

The true potential of the proposed smooth approach lies in its capability for efficient variance
estimation through the implementation of the partial multiplier bootstrapping approach. This
approach eliminates the need for repetitive solving of estimating equations, resulting in improved
computational efficiency in variance estimation. To demonstrate its usefulness, we conducted a
simulation using both the smooth approach and the iterative approach with the partial multiplier
bootstrapping approach (se = "pmb"). This simulation was conducted under the settings of τ = 0.5,
t0 = 0 and 1, and a 30% censoring rate. The do_pmb() function was accordingly modified as follows.

> do_pmb <- function(n, t0, cen, Q, nB) {
+ dat <- data.gen(n, t0, cen, Q)
+ fm <- Surv(Time, status) ~ X1 + X2 + X3 + X4 + X5
+ stamp <- NULL
+ stamp[1] <- Sys.time()
+ f1 <- qris(fm, data = dat, t0 = t0, Q = Q, nB = nB, method = "smooth", se = "pmb")
+ stamp[2] <- Sys.time()
+ f2 <- qris(fm, data = dat, t0 = t0, Q = Q, nB = nB, method = "iterative", se = "pmb")
+ stamp[3] <- Sys.time()
+ list(smooth = c(f1$coef, f1$std),
+ iter = c(f2$coef, f2$std),
+ times = diff(stamp))
+ }
> B <- 200
> set.seed(2)
> sims0_pmb <- mapply(function(n, t0)
+ replicate(B, do_pmb(n, t0 = t0, cen = .3, Q = .5, nB = 200)),
+ n = c(200, 400, 1000), t0 = c(0, 0, 0), SIMPLIFY = F)
> sims1_pmb <- mapply(function(n, t0)
+ replicate(B, do_pmb(n, t0 = t0, cen = .3, Q = .5, nB = 200)),
+ n = c(200, 400, 1000), t0 = c(1, 1, 1), SIMPLIFY = F)

The simulation results obtained using the partial multiplier bootstrapping approach are presented
in Figure 2 and Tables 7 – 12 in the Supplementary Materials, while the computing times are
displayed in the lower panel of Table 1. Overall, the estimation results obtained using se = "pmb"
in Figure 2 closely resemble those in Figure 1 with se = "fmb". As seen in Tables 7 and 8, the ESEs
from the non-iterative and iterative methods are comparable, while the ASEs slightly overestimate
the ESEs when the sample size is small. The gaps are slightly smaller for the iterative method, as
shown in some cases (Johnson and Strawderman, 2009; Kim et al., 2021). The magnitudes of the
differences are not large, and they also become smaller when the sample size reaches n = 1000. More
importantly, the computing times with se = "pmb" show significant speed improvements compared
to when se = "fmb" is used in every case; we observed up to 79% timing improvements.

After confirming the satisfactory performance of the proposed methodologies, we now proceed to
illustrate the application of the init argument. This argument controls the initial values assigned
to the root-finding algorithm’s estimates and the plotting capacity of the qris package. For this
illustrative example, we consider a simpler simulation scenario that involves a single binary covariate.
This simplified simulation can be generated using the revised version of the data.gen() function
provided below.
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Figure 2: Comparison of the smooth and iterative estimators with se = "pmb" under 30%
censoring and τ = 0.5.

> ## Global parameters
+ rho0 <- .2 * sqrt(log(2))
+ rho1 <- .1 * sqrt(log(2))
> data.gen <- function(n) {
+ dat <- data.frame(censoring = runif(n, 0, 23.41),
+ Time0 = sqrt(-log(1 - runif(n))),
+ X = rbinom(n, 1, .5))
+ dat$Time0 <- ifelse(dat$X > 0, dat$Time0 / rho1, dat$Time0 / rho0)
+ dat$Time <- pmin(dat$Time0, dat$censoring)
+ dat$status <- 1 * (dat$Time0 < dat$censoring)
+ subset(dat, select = c(Time, status, X))
+ }
> set.seed(10)
> head(dat <- data.gen(200))

Time status X
1 6.034713 1 1
2 7.181451 0 1
3 9.993908 0 1
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4 16.225520 0 1
5 1.993033 0 1
6 5.277471 0 0

The updated data.gen() function returns a data.frame comprising three variables: Time,
status, and X, representing the observed survival time, event indicator, and binary covariate,
respectively. We will first illustrate the usage of the argument init by considering three different
initial values: init = "rq", init = c(1,1), and a random vector init = rnorm(2), all used in
conjunction with the smooth estimator method = "smooth". The following codes provide an example
with different initial values.

> (random <- rnorm(2))
[1] 1.5025446 0.5904095
> f1 <- qris(Surv(Time, status) ~ X, data = dat, t0 = 1, init = "rq", nB = 0)
> f2 <- update(f1, init = c(1, 1))
> f3 <- update(f1, init = random)
> all.equal(f1$coef, f2$coef)
[1] TRUE
> all.equal(f2$coef, f3$coef)
[1] TRUE

The ‘qris’ object, with its call component, is compatible with the update() function, a built-in
function commonly used for updating the attributes of an existing object without requiring redundant
and repetitive code. In the example above, we used the update() function to modify the initial
value specification in f1. We observed that different initial values yield identical point estimates,
thereby affirming the robustness of the proposed method against fluctuations in initial values.

The covariate effects, along with their associated 95% point-wise confidence intervals across
various quantiles or base times, can be visually assessed by applying the generic function plot() to
a ‘qris’ object. We demonstrate this feature using the following qris fit, where the standard errors
are obtained using se = "pmb", t0 = 1, and all other parameters are set to their default values.
We update the qris fit with extended quantiles over 0.4, 0.5, 0.6, 0.7 and plot the covariate effects
against these quantiles using the plot() function.

> fit <- qris(Surv(Time, status) ~ X, data = dat, t0 = 1, se = "pmb")
> fit2 <- qris.extend(fit, Qs = 4:7 / 10)

The extended ‘qris’ fit generated by the qris.extend() function inherits all the attributes from
the original ‘qris’ object and includes additional ggdat components. The following code compares
the components of the returned values from the extended ‘qris’ fit and the original ‘qris’ fit.

> class(fit2)
[1] "qris"
> names(fit)
[1] "call" "coefficient" "data" "formula" "para"
[6] "stderr" "varNames" "vcov"
> setdiff(names(fit2), names(fit))
[1] "ggdat"

Specifically, the extended ‘qris’ fit inherits call, coefficient, para, stderr, varNames, and vcov
from the original ‘qris’ object. The call component is the function call from the original qris() fit,
while coefficient, stderr, and vcov are used to store the point estimates, standard error estimates,
and covariance matrix, respectively. The para component is a list containing the parameters specified
during the fitting of the quantile regression model, and varNames is a character string representing
the variable names in the function call. The newly added values are ggdat and gg. The ggdat is a
data frame containing covariate information generated under the different quantiles and base times
specified in the qris.extend(). Finally, the corresponding covariate effect plot can be generated by
plotting the extended ‘qris’ fit as follows.

> plot(fit2)

The true values of β’s at different quantiles and base times, computed from Equation (7), can
be implemented in the following commands.

> ## Global parameters
> r <- 2:1 * sqrt(log(2)) / 10
> k <- 2
> ## Function to calculate true beta
> trueB <- function(t0, tau) {
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+ b <- log(1 / r * ((r * t0) ^ k - log(1 - tau))^(1 / k) - t0)
+ c(b[1], b[2] - b[1])
+ }
> ## True beta calculation
> true_Q <- c(t(sapply(4:7 / 10, trueB, t0 = 1)))
> true_t0 <- c(t(sapply(1:3, trueB, tau = .5)))

The following code extends the ‘ggplot’ objects generated by plot.qris() by adding additional
layers of true value curves and incorporating various ggplot options. The resulting figures, Figure 3a
and Figure 3b, present the output based on whether the covariate effects are plotted against
quantiles or base times, respectively. This observed trend aligns with the specifications described
in Equation (7), where increasing τ corresponds to an increasing β0 while keeping ρ and X fixed.
On the other hand, the covariate effect does not change with quantiles but slightly increases with
base times, echoing the model specification where β0 is inversely related to t0 and β1 increases as t0
increases.

> library(ggplot2)
> plot(fit2) + theme(legend.position = "bottom") +
+ geom_line(aes(x = Qs, y = true_Q, col = variable, linetype = "True value")) +
+ scale_linetype_manual(name = "", values = c("True value" = "dotdash"))
> b <- plot(fit2, t0s = 1:3, byQs = F)
> b + theme(legend.position = "bottom") +
+ geom_line(aes(x = t0s, y = true_t0, col = variable,
+ linetype = "True value")) +
+ scale_linetype_manual(name = "", values = c("True value" = "dotdash"))

(a) Plot for Q ∈ {0.4, . . . , 0.7} at t0 = 1 (b) Plot for t0 ∈ {1, . . . , 3} at Q = 0.5

Figure 3: (a) Estimated effects of covariate with the associated 95% pointwise confidence intervals
for quantiles ranging from 0.4 to 0.7 at t0 = 1. Red and blue solid lines are the point estimates of
regression parameters for intercept and covariate X, respectively. Similarly, red and blue dotted lines
are the upper and lower bounds of 95% pointwise confidence intervals for intercept and covariate
X, respectively. (b) Estimated effects of covariate with the associated 95% pointwise confidence
intervals for base times ranging from 1 to 3 at τ = 0.5. Red and blue solid lines are the point
estimates of regression parameters for intercept and covariate X, respectively. Similarly, red and
blue dotted lines are the upper and lower bounds of 95% pointwise confidence intervals for intercept
and covariate X, respectively.

4.2 North Central Cancer Treatment Group Lung Cancer Data

The North Central Cancer Treatment Group Lung Cancer Data records the survival of patients
with advanced lung cancer, along with assessments of the patients’ performance status measured by
both physicians and the patients themselves (Loprinzi et al., 1994). The original objective of the
study was to ascertain whether descriptive information from a patient-completed questionnaire could
offer prognostic insights. The original objective of the study was to determine whether descriptive
information from a patient-completed questionnaire could provide prognostic information. However,
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for this illustration, we focus on how gender and weight loss affect the quantiles of residual life for
patients diagnosed with advanced lung cancer at different time points. The lung cancer data are
publicly available from the survival package (Therneau, 2021) as lung. The following code displays
the structure of the lung dataset with variables of interest.

> data(cancer, package = "survival")
> str(subset(lung, select = c(time, status, sex, wt.loss)))
'data.frame': 228 obs. of 4 variables:
$ time : num 306 455 1010 210 883 ...
$ status : num 2 2 1 2 2 1 2 2 2 2 ...
$ sex : num 1 1 1 1 1 1 2 2 1 1 ...
$ wt.loss: num NA 15 15 11 0 0 10 1 16 34 ...

The lung data contains 228 patients whose observed survival times in days and censoring status
(1 = censored, 2 = dead) are recorded in the time and the status columns, respectively. Although
the censoring status in this dataset is not recorded in the typical 0-1 fashion, the Surv() function is
still applicable to create the corresponding “Surv" object. The lung data yields a censoring rate
of 27.6% with a median survival time of 310 days. The covariates of interest are gender (sex =
1 if male, sex = 2 if female) and weight loss (wt.loss). In the following, we use the proposed
semiparametric quantile regression models to assess the gender and standardized weight loss effects
on different quantiles of residual life at different base times.

We first model the median residual life (Q = 0.5) when the base time is one month (t0 = 30).
Since the estimated median survival times for combined lung cancers are typically less than one
year, with a range of 8 to 13 months (Siegel et al., 2021), setting the base time at one month
provides insight into how gender and weight loss impact the residual time in early follow-up. In the
following, we obtain the regression coefficient estimates using the induced smoothing functions and
the corresponding variance estimate with the partial multiplier bootstrap approach.

> lung$male <- factor(lung$sex, 1:2, c("Male", "Female"))
> lung$std.wt.loss <- scale(lung$wt.loss)
> fit1 <- qris(Surv(time, status) ~ male + std.wt.loss,
+ data = lung, t0 = 30, Q = .5, nB = 100,
+ method = "smooth", se = "pmb")
> summary(fit1)
Call:
qris(formula = Surv(time, status) ~ male + std.wt.loss,
data = lung, t0 = 30, Q = 0.5, nB = 100, method = "smooth",
se = "pmb")

qris Estimator
estimate std.Error z.value p.value

(Intercept) 5.5611 0.0950 58.550 <2e-16 ***
maleFemale 0.4804 0.1805 2.661 0.0078 **
std.wt.loss -0.0731 0.0837 -0.874 0.3824
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Subjects with missing values (in any of the variables relevant for the modeling task) are
automatically removed when qris() is called. The estimated intercept implies that the median
residual life for patients who have survived up to 30 days is exp(5.5611) = 260.1 days for a male with
an average weight loss. More interestingly, the summary shows that the gender effect is statistically
significant at the 0.05 significance level, indicating that a female patient is expected to have a median
residual life at 30 days that is exp(0.4804) = 1.617 times that of a male patient with the same
weight loss. The effect of the weight loss is not statistically significant at the 0.05 level. In addition
to summary(), important statistics such as the coefficient and variance estimates can be extracted
by S3 methods coef() and vcov(), respectively.

> coef(fit1)
(Intercept) maleFemale std.wt.loss
5.56111984 0.48044228 -0.07307635
> vcov(fit1)

(Intercept) maleFemale std.wt.loss
(Intercept) 0.009021459 -0.010944549 -0.003074041
maleFemale -0.010944549 0.032594288 0.002847148
std.wt.loss -0.003074041 0.002847148 0.006998314
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Moreover, the corresponding 95% Wald-type confidence interval can be printed by applying the
confint() function to the ‘qris’ object.

> confint(fit1)
2.5 % 97.5 %

(Intercept) 5.3749598 5.74727989
maleFemale 0.1265926 0.83429199
std.wt.loss -0.2370390 0.09088626

The update() function can be conveniently applied to update existing ‘qris’ objects. The
following examples update the method and se arguments from fit1. The updated results yield
similar coefficient estimates, but the non-smooth procedure (method = "nonsmooth") yields slightly
greater standard error estimates.

> summary(fit2 <- update(fit1, method = "nonsmooth", se = "fmb"))
Call:
qris(formula = Surv(time, status) ~ male + std.wt.loss,
data = lung, t0 = 30, Q = 0.5, nB = 100, method = "nonsmooth",
se = "fmb")

qris Estimator
estimate std.Error z.value p.value

(Intercept) 5.5585 0.1132 49.106 <2e-16 ***
maleFemale 0.4695 0.2015 2.331 0.0198 *
std.wt.loss -0.0668 0.1029 -0.650 0.5159
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> summary(update(fit1, method = "iterative"))
Call:
qris(formula = Surv(time, status) ~ male + std.wt.loss,
data = lung, t0 = 30, Q = 0.5, nB = 100, method = "iterative",
se = "pmb")

qris Estimator
estimate std.Error z.value p.value

(Intercept) 5.5605 0.1016 54.712 <2e-16 ***
maleFemale 0.4807 0.1626 2.957 0.0031 **
std.wt.loss -0.0720 0.0903 -0.797 0.4252
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

At a lower (Q = 0.25) and a higher (Q = 0.75) quantiles, the gender effect remains significant
at the 0.05 significance level indicating female patients are associated with longer lower-quantile and
higher-quantile residual life than male patients with the same weight loss. Among these models, we
observed that female patients tend to have higher coefficient estimates when fitting higher-quantile
residual life. While the sign of the estimated regression coefficient for weight loss changes to a
negative value when considering the lower quantile, the effects remain statistically insignificant for
both the lower and higher quantiles.

> summary(update(fit1, Q = 0.25))
Call:
qris(formula = Surv(time, status) ~ male + std.wt.loss,
data = lung, t0 = 30, Q = 0.25, nB = 100, method = "smooth",
se = "pmb")

qris Estimator
estimate std.Error z.value p.value

(Intercept) 4.9111 0.1034 47.480 <2e-16 ***
maleFemale 0.4651 0.2041 2.279 0.0227 *
std.wt.loss 0.0543 0.0584 0.930 0.3525
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> summary(update(fit1, Q = 0.75))
Call:
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qris(formula = Surv(time, status) ~ male + std.wt.loss,
data = lung, t0 = 30, Q = 0.75, nB = 100, method = "smooth",
se = "pmb")

qris Estimator
estimate std.Error z.value p.value

(Intercept) 6.0748 0.1063 57.126 <2e-16 ***
maleFemale 0.5237 0.1487 3.522 0.0004 ***
std.wt.loss -0.0171 0.1166 -0.147 0.8835
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

We also consider the base time at six months t0 = 180, which enables us to assess gender and
weight loss effects in median residual time at a moderate length of follow-up. The estimated effect for
the gender and weight loss increases as t0 increases from 30 days to 180 days and becomes significant
at the 0.05 significant level. Additionally, the effect of the weight loss seems to be associated with a
shorter survival time after 180 days, with a p-value of 0.0008.

> summary(update(fit1, t0 = 180))
Call:
qris(formula = Surv(time, status) ~ male + std.wt.loss,
data = lung, t0 = 180, Q = 0.5, nB = 100, method = "smooth",
se = "pmb")

qris Estimator
estimate std.Error z.value p.value

(Intercept) 5.2243 0.0912 57.255 <2e-16 ***
maleFemale 0.5821 0.1867 3.117 0.0018 **
std.wt.loss -0.2515 0.0754 -3.337 0.0008 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The ‘qris’ object is designed to be compatible with S3 methods: predict() and residuals()
functions. The following presents the fitted survival times for two hypothetical male and female
patients with no weight loss, as well as the first five residual values for the dataset.

> lung.new <- data.frame(male = c("Male", "Female"), std.wt.loss = 0)
> predict(fit2, newdata = lung.new)

1 2
444.9026 289.4422
> head(residuals(fit2), 5)

1 2 3 4 5
-20.86127 -575.86127 232.44474 -416.82295 -555.82295

To better understand the covariate effects on different quantiles of residual time and across
different base times, we plot the estimated regression coefficients of the intercept, sex, and weight
loss in fit1 and fit2. Figures 4a and 4b display the estimated regression coefficients when method
= "smooth" and method = "nonsmooth", respectively, at different quantiles ranging from 0.2 and
0.5 at t0 = 30 days. The plot.qris() function is currently not available for the iterative estimator.
This is mainly due to an extended computation time involved, as indicated by our simulation results,
and the nature of plotting that necessitates computations across various quantiles or base times. As
expected, the two plots show very similar patterns. We plot the estimated regression coefficients
of the intercept, sex, and weight loss for different quantiles in the range of 0.2 to 0.5 at t0 = 50,
60, 70, and 80 days (Figure 4c), as well as for different base times in the range of 50 to 80 days
at τ = 0.2, 0.3, 0.4, and 0.5 (Figure 4d). The estimation method used is non-iterative induced
smoothed estimation (method = "smooth"). In Figure 4c, the estimated intercept increases as the
quantile increases (for a given base time). The estimated slopes for sex remain largely the same,
but those for weight loss tend to decrease slightly across different quantiles (for a given base time).
These patterns remain consistent for different base times. In Figure 4d, the estimated intercepts
increase as the quantiles increase, but with a given quantile, they remain flat across the different
base times considered. The estimated regression coefficients for the two covariates do not appear to
change significantly for different base times.

> hide <- theme(legend.position = "none")
> plot(fit1, Qs = 2:5 / 10, byQs = TRUE, ggextra = hide)
> plot(fit2, Qs = 2:5 / 10, byQs = TRUE, ggextra = hide)
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> plot(fit1, Qs = 2:5 / 10, t0s = 5:8 * 10, byQs = TRUE, ggextra = hide)
> plot(fit1, Qs = 2:5 / 10, t0s = 5:8 * 10, byQs = FALSE, ggextra = hide)

(a) method = ”smooth” and se = ”pmb” (b) method = ”nonsmooth” and se = ”fmb”

(c) method = ”smooth” and se = ”pmb” (d) Multiple covariate effect plot against base time

Figure 4: Green, red and blue lines are the point estimates of regression parameters for intercept,
covariate sex and covariate weight loss, respectively. Solid line and dotted line are the point estimates
and the upper and lower bounds of 95% pointwise confidence intervals for each regression coefficient.
(a) method = "smooth" and se = "pmb" (τ = 0.2, 0.3, 0.4, 0.5, t0 = 30) (b) method = "nonsmooth"
and se = "fmb" (τ = 0.2, 0.3, 0.4, 0.5, t0 = 30) (c) method = "smooth" and se = "pmb" against
quantiles (τ = 0.2, 0.3, 0.4, 0.5, t0 = 50, 60, 70, 80) (d) method = "smooth" and se = "pmb" against
base times (τ = 0.2, 0.3, 0.4, 0.5, t0 = 50, 60, 70, 80)

5 Conclusion

The purpose of the qris package is to provide a comprehensive tool for fitting quantile regression
models on residual life for right-censored survival data, with the aim of promoting widespread
dissemination and utilization. This package implements one estimation method based on non-
smooth estimating functions and two estimation methods based on their induced smoothed versions.
The non-smooth estimator is calculated through L1-type minimization while incorporating the
IPCW technique, and its variance is calculated using full multiplier bootstrapping. The first type of
the induced smoothed estimator, a non-iterative version, directly solves estimating functions, and
its variance can be calculated using either the full multiplier bootstrapping or the robust sandwich
form with partial multiplier bootstrapping. As evidenced by the simulation results, this enables
one to substantially reduce computing times without sacrificing estimation accuracy and stability
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compared to the original non-smooth function-based method. The iterative smoothed estimator
has an advantage in obtaining more precise estimates than its non-iterative version, although it
requires longer computing times. For all these methods, estimates of the regression coefficients
and their variances can be calculated at user-defined quantiles and base times, as long as they are
identifiable. Additionally, the package provides features for plotting estimates with associated 95%
confidence intervals against quantiles and base times using the generic plot function. These plots
visualize patterns of estimates at different quantiles and base times, helping users to easily grasp the
overall picture. The package qris and its included functions are verified through illustrations using
simulated data with interpretation of the results demonstrated through a real data application.

Some possible directions for extending our package are as follows. Efforts can be made to
reduce the computational burden associated with variance estimation, which currently accounts
for a significant portion of the computing time. In particular, the iterative-induced smoothed
method employs the partial multiplier bootstrap method to calculate variance estimates in each
iteration. Since this method requires multiple iterations, it is crucial to explore more computationally
efficient variance estimation procedures for each iteration to reduce the currently relatively longer
computation time. One approach is to utilize a closed-form estimation of the mid-part of the
sandwich-type variance, as discussed in Chiou et al. (2014); Choi et al. (2018). Implementing this
direct variance estimation in each iteration is expected to further enhance computation efficiency.
Another direction is to generalize the approaches to allow for the inclusion of sampling weights,
which is useful for bias correction when failure time data are generated from non-random sampling
designs, such as case-cohort designs (Prentice, 1986; Chiou et al., 2015b). The current estimating
functions implemented in the qris package assume that the data are randomly sampled, with sampling
weights set to 1." To the best of our knowledge, there is a lack of model-checking procedures and
model-comparison methods specifically designed for the non-smooth estimator, and a logical next
step would be to develop these procedures for subsequent integration into the package.
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