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GenMarkov: Modeling Generalized
Multivariate Markov Chains in R
by Carolina Vasconcelos and Bruno Damásio

Abstract This article proposes a new generalization of the Multivariate Markov Chains (MMC) model.
The future values of a Markov chain commonly depend on only the past values of the chain in an
autoregressive fashion. The generalization proposed in this work also considers exogenous variables
that can be deterministic or stochastic. Furthermore, the effects of the MMC’s past values and the
effects of pre-determined or exogenous covariates are considered in our model by considering a
non-homogeneous Markov chain. The Monte Carlo simulation study findings showed that our
model consistently detected a non-homogeneous Markov chain. Besides, an empirical illustration
demonstrated the relevance of this new model by estimating probability transition matrices over the
space state of the exogenous variable. An additional and practical contribution of this work is the
development of a novel R package with this generalization.

1 Introduction

Multivariate Markov chains (MMC) have a wide range of applications, in various fields. Hence, several
studies and generalizations of the MMC models have been made. However, the availability of packages
that allow the estimation and application of these models are scarce, and most of these methods use
algorithms and software that are not broadly available or can only be applied in particular situations.
In the last few years, R software has been gaining importance in the field of statistical computing. This
phenomenon might be because it is free and open-source software, which compiles and runs on a wide
variety of operating systems. Specifically, in R software, there are some available packages related to
Markov chains (MC) and MMC. For example, the march package (Maitre and Emery, 2020; Berchtold
et al., 2020) allows the computation of various Markovian models for categorical data, including
homogeneous Markov chains of any order, MTD models, Hidden Markov models, and Double Chain
Markov Models. Ogier Maitre developed this package with contributions from Andre Berchtold,
Kevin Emery, Oliver Buschor, and Andre Berchtold maintains it. All the models computed by this
package are for univariate categorical data. The markovchain package (Spedicato, 2017) contains
functions and methods to create and manage discrete-time Markov chains. In addition, it includes
functions to perform statistical and probabilistic analysis (analysis of their structural proprieties).
Finally, the DTMCPack package (Nicholson, 2013) contains a series of functions that aid in both
simulating and determining the properties of finite, discrete-time, discrete-state Markov chains. There
are two main functions: DTMC and MultDTMC, which produce n iterations of a Markov Chain(s) based on
transition probabilities and an initial distribution given by the user, for the univariate and multivariate
case, respectively. This last package is the only one available in R for MMC. In general, the work
on MMC models is mostly based on improving the estimation methods and/or making the model
more parsimonious. In this work, we aim to develop a new generalization that considers exogenous
variables. Specifically, the effects of the MMC’s past values and the effects of pre-determined or
exogenous covariates are considered in our model by considering a non-homogeneous Markov chain.
Additionally, we address statistical inference and implement these methods in an R package. The
R package includes three functions: multimtd, multimtd_probit and mmcx. The first two functions
estimate the MTD model for multivariate categorical data, with Chings’s specification (Ching et al.,
2002) and with the Probit specification (Nicolau, 2014), respectively. The last function allows the
estimation of our proposed model, the Generalized Multivariate Markov Chain (GMMC) model. The
R package, GenMarkov, with these three functions is available in the Comprehensive R Archive
Network (CRAN) at https://CRAN.R-project.org/package=GenMarkov.

2 Multivariate Markov chains

Markov chains can be appropriate for representing dependencies between successive observations of
a random variable. However, when the order of the chain or the number of possible values increases,
Markov chains have lack parsimony. In this context, Jacobs and Lewis (1978), Pegram (1980) and
Logan (1981) proposed several models for HOMC. Notwithstanding these developments, the Mixture
Transition Distribution model (Raftery, 1985) proved to be more suitable to model HOMC, which
overshadowed the previously proposed models. Several relevant extensions of the MTD model
emerged: the Multimatrix MTD (Berchtold, 1995, 1996), which allowed modeling the MTD by using a
different m × m transition matrix for each lag, the Infinite-Lag MTD model that assumes an infinite
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lag order (l = ∞), which was first considered by Mehran (1989) and later developed by Le et al. (1996)
in a more general context. Finally, the MTD with General State Spaces allowed modeling more general
processes with an arbitrary space state (Martin and Raftery, 1987; Adke and Deshmukh, 1988; Wong
and Li, 2001). Although the MTD model presents a more parsimonious approach to model Markov
chains with order higher than one, it has weaknesses. Namely, when considering more than one data
sequence, one represents the MMC as a HOMC, by expanding the state-space. This approach could
result in a more complex probability transition matrix. Consequently, this can make the estimation
unfeasible as the order, states, and the number of data sequences increase. Additionally, the model
assumes the same transition matrix for each lag. In this setting, Ching et al. (2002) determined an
alternative to handle the unfeasibility of the conventional multivariate Markov chain (MMC) by
proposing a model with fewer parameters. The model developed is essentially the same as the MTD.
However, it considers a different m × m transition matrix for each lag and considers more than one
data sequence. In the proposed multivariate Markov chain model, Ching et al. (2002) assume the
following relationship:

Let x(j)
t be the state vector of the jth sequence at time t. If the jth sequence is in state l at time t then

x(j)
t+1 =

s

∑
k=1

λjkP(jk)x(k)t , for j = 1, 2, . . . , s (1)

where 0 ≤ λjk ≤ 1 for j ≤ s, k ≤ s and ∑s
k=1 λjk = 1 for j = 1, 2, . . . , s. The λjk can be interpreted as

the mixing probability of the jth state to the kth state.

The state probability distribution of the kth sequence at time (t + 1) depends on the weighted

average of P(jk)x(k)t . Here P(jk) is a transition probability matrix from the states in the kth sequence to

the states in the jth sequence and x(k)t is the state probability distribution of the kth sequences at time t.
In matrix form:

x(j)
t+1 ≡


x(1)t+1

...
x(s)t+1

 =


λ11P(11) . . . λ1sP(1s)

...
. . .

...
λs1P(s1) . . . λssP(ss)




x(1)t
...

x(s)t

 ≡ Qxt (2)

where Q is an ms × ms block matrix (s × s blocks of m × m matrices) and xt is a stacked ms column
vector (s vectors, each one with m rows).

The matrices P(jk) can be estimated for each data sequence by counting the transition frequency
from the states in the kth sequence to those in the jth sequence, obtaining the transition frequency
matrix for the data sequence. After normalization, the estimates of the transition probability matrices,
i.e., P̂(jk), are obtained. Regarding the λjk coefficients, the estimation method proposed by Ching et al.
(2002) involves the following optimization problem:

minλmaxi|[
m

∑
k=1

λjk P̂(jk) x̂(k) − x̂(j)]| (3)

s.t.
s

∑
k=1

λjk and λjk ≥ 0

Besides this, different models have been proposed for multiple categorical data sequences. Kijima
et al. (2002) proposed a parsimonious MMC model to simulate correlated credit risks. Siu et al.
(2005) proposed an easy to implement model; however, its applicability was limited by the number
of parameters involved. Ching et al. (2008) proposed a simplified model based on an assumption
proposed in Zhang et al. (2006). Zhu and Ching (2010) proposed a method of estimation based on
minimizing the prediction error with equality and inequality restrictions and Nicolau and Riedlinger
(2014) proposed a new approach to estimate MMC which avoids imposing restrictions on the parame-
ters, based on non-linear least squares estimation, facilitating the model estimation and the statistical
inference. Berchtold (2003) proposed a MTD model for heteroscedastic time series. Lastly, Wang et al.
(2014) proposed a new multivariate Markov chain model to reduce the number of parameters. Thus,
generally, the models used in the published papers were developed by Ching et al. (2002) or were a
consequent generalization of them and addressed the MMC as an end in itself. In Damásio (2013) and
Damásio and Nicolau (2014), a different and innovative concept was proposed: the usage of MMC
as regressors in a certain model. Hence, given that the MMC Granger causes a specific dependent
variable, and taking advantage of the information about the past state interactions between the MMC
categories, it was possible to forecast the current dependent variable more accurately. Other relevant
contributions are related to the optimization algorithm, as in Lèbre and Bourguignon (2008) and Chen
and Lio (2009), and to empirical applications (Ching et al., 2003; Ching and Ng, 2006; Damásio, 2018;
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Damásio and Mendonça, 2019; Damásio and Mendonça, 2020). Also, Damásio and Nicolau (2020)
proposed a new methodology for detecting and testing the presence multiple structural breaks in a
Markov chain occurring at unknown dates. In the vast majority of MMC models’ studies, a positive
correlation between the different data sequences is assumed due to the restrictions imposed. This
aspect means it is always considered that at moment t, an increase in a state probability for a data
sequence has an increasing impact on another data sequence, for time t + 1. Thereupon, if one has
a negative correlation between series, the parameter estimates are forced to be zero. The solution to
this problem is very straightforward; one can relax the assumptions and not assume the constraints.
However, that means the results produced by the model will no longer be probabilities. Raftery and
Tavaré (1994) presented an alternative, by dropping the positivity condition and imposing another set
of restrictions. Ching et al. (2008) also tackled this issue and proposed a method where one splits the
Q matrix into the sum of two other matrices and one represents the positive correlations and another
the negative correlations. Also, in Nicolau (2014), a specification completely free from constraints,
inspired by the MTD model, was proposed, facilitating the estimation procedure and, at the same
time, providing a more accurate specification for Pj(i0|i1, . . . , is). The model was:

Pj(i0|i1, . . . , is) = PΦ
j (i0|i1, . . . , is) :=

Φ(ηj0 + ηj1P(i0|i1) + · · ·+ ηjsP(i0|is))
∑m

k=1 Φ(ηj0 + ηj1P(k|i1) + · · ·+ ηjsP(k|is))
(4)

where nji ∈ R(j = 1, . . . , s; i = 1, . . . , m) and Φ is the (cumulative) standard normal distribution
function.

This specification is denoted as and MTD-Probit model. The log-likelihood is given by:

LL = ∑
i1,i2,...,iis ,i0

ni1,i2,...,iis ,i0 log(PΦ
j (i0|i1, . . . , is)) (5)

and the maximum likelihood estimator is defined, as usual, as η̂ = arg maxnj1,...,njs
LL. The parameters

Pjk(i0|i1), k =1, . . . , s can be estimated in advance, through the consistent and unbiased estimators
proposed by Ching et al. (2002):

P̂jk(i0|i1) =
ni1i0

∑n
i0=1 ni1i0

(6)

This specification can be superior to the MTD because the estimation procedure is easier, and the
standard numerical optimization routines can be easily applied in the absence of constraints. However,
similarly to the standard MTD, the likelihood is not a strictly concave function on the entire parameter
state-space, thus the choice of starting values is still important. Additionally, the model describes
a broader range of possible dependencies since the parameters are not constrained. Moreover, this
proposed model is more accurate than the MTD model. For more details on this, see Nicolau (2014).

Overall, the published work on MMC models was mostly based on improving the estimation
methods and/or making the model more parsimonious. In Damásio (2013) and Damásio and Nicolau
(2014), a different approach was used, and the work developed focused on the usage of MMC as
regressors in a certain model. Notably, it showed that an MMC can improve the forecast of a dependent
variable. In a way, it demonstrated that an MMC can be an end in itself, but it can be an instrument to
reach an end or a purpose. In this work, the opposite will be developed: instead of considering an
MMC as regressors, a model in which a vector with pre-determined exogenous variables is part of
Ft−1 is proposed.

3 Covariates in Markov chain models

Regarding the inclusion of covariates in Markov chains models, Regier (1968) proposed a two-state
Markov chain model, where the transition matrix probabilities were a function of a parameter, q,
that described the tendency of the subject to move from state to state. Kalbfleisch and Lawless
(1985) proposed a panel data analysis method under a continuous-time Markov model that could be
generalized to handle covariate analysis and the fitting of certain non-homogeneous models. This
work overcame the limitations of Bartholomew (1968), Spilerman and Singer (1976) and Wasserman
(1980) methodologies, by developing a new algorithm that provided a very efficient way of obtaining
maximum likelihood estimates. Also, Muenz and Rubinstein (1985) developed a Markov model for
covariates dependence of binary sequences, where the transitions probabilities were estimated through
two logistic regressions that depended on a set of covariates. Essentially, Muenz and Rubinstein
(1985) modeled a non-homogeneous Markov chain through logistic regression, considering only
two states. Islam et al. (2004) developed an extension of this model considering three states, and
Islam and Chowdhury (2006) generalized this approach for HOMC. Additionally, Azzalini (1994)
proposed a model to study the influence of time-dependent covariates on the marginal distribution of
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a binary response in serially correlated binary data, where Markov chains are expressed in terms of
transitional probabilities. Jackson (2011) proposed a Markov model for panel data, which allowed
for the transitions intensities to vary between individuals or constant time-dependent covariates.
Specifically, this work allowed to account for different intensities throughout transitions of states
and include individual-specific covariates. The time-inhomogeneos model proposed is restricted to
piecewise-constant intensities. The implementation of this work is available in the package msm.
More recently, Bolano (2020) proposed an MTD-based approach to handle categorical covariates, that
considers each covariate separately and combines the effects of the lags of the MTD and the covariates
employing a mixture model. Specifically, the model is given by:

P(Xt = k | Xt−1 = i, C1 = c1, . . . , Cl = cl) ≈ θ0aik +
l

∑
h=1

θhdchk (7)

where aik is the transition probability from state i to state k, as in a conventional Markov chains
and dchk is the probability of observing the states k given the modality ch of the covariate h. Lastly,
θ0, . . . , θl are the weights of the explanatory elements of the model.

According to the literature presented, several researchers have proposed methodologies or gen-
eralizations to include covariates in Markov chain models. Primarily for social sciences and health
applications, where the transition probabilities were generally modeled through logistic regression.
However, there has been an increased focus on categorical covariates, opposing continuous covariates
and a lack of approaches to multivariate Markov chain models. Thus, with this work, we aim to tackle
this research gap.

4 Multivariate Markov chains with covariates

4.1 Theoretical model

In this work, a new generalization of Ching et al. (2002) MMC model is presented: the GMMC model,
that is, we will consider exogeneous or pre-determined covariates in the σ - algebra generated by the
available information until t − 1 (Ft−1). These variables can be deterministic or stochastic and do not
necessarily need to be reported at time t. Broadly, the model is given by:

P(Sjt = k|Ft−1) = P(Sjt = k|S1t−1 = i1, S2t−1 = i2, . . . , Sst−1 = is, xt) (8)

We can specify this model as proposed by Ching et al. (2002) with Raftery’s notation:

P(Sjt = i0|S1t−1 = i1, . . . , Sst−1 = is, xt) ≡
λj1P(Sjt = i0|S1t−1 = i1, xt) + · · ·+ λjsP(Sjt = i0|Sst−1 = is, xt) (9)

subject to the usual constraints.

4.2 Estimation and inference

This proposed model is estimated through MLE, similar to the standard MTD model. The log-
likelihood is given by:

LL =
n

∑
t=1

logP(Sjt = i0|S1t−1 = i1, . . . , Sst−1 = is, xt) (10)

Additionally, the probabilities can be estimated through an multinomial logit model. The proof for
consistency and asymptotic distribution is available in the Supplementary Material section.

4.3 Monte Carlo simulation study

A Monte Carlo simulation study was designed to evaluate the dimension and power of the test
parameters of the proposed model. The R statistical environment was used for all computations. This
simulation study was comprised of two parts.
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Table 1: Power and dimension of test assessment

Hypothesis Test

Power H0 : λ11 = 0 λ̂2
11

se(λ̂11)2 ∼ χ2
(1)

H0 : λ12 = 1 (λ̂12−1)2

se(λ̂12)2 ∼ χ2
(1)

Dimension H0 : λ11 = 1 (λ̂11−1)2

se(λ̂11)2 ∼ χ2
(1)

H0 : λ12 = 0 λ̂2
12

se(λ̂12)2 ∼ χ2
(1)

Part I: Detect a non-homogeneous Markov chain

First, we considered two sequences with two and three states. The main goal was to assess if the
model detected the presence of a non-homogeneous Markov chain correctly and if the estimate of
the parameter would correspond to the expected. So, given two sequences, one generated through a
non-homogeneous Markov chain and the other generated through a homogeneous Markov chain, it
would be expected that the parameter associated with the transition probabilities of the first sequence
would be one and the parameter associated with the transition probabilities of the second sequence
would be zero. With this in mind, the transitions probabilities of the first sequence were estimated
through a logistic regression, where parameters of this regression were randomly generated in R, and
the second sequence was generated through a first-order Markov chain. Hence, for both states cases
considered, it was expected that the estimated regression would be:

P(S1t = i0|S1t−1 = i1, S2t−1 = i2, xt−1) =

1 × P(S1t = i0|S1t−1 = i1, xt−1) + 0 × P(S1t = i0|S2t−1 = i2, xt−1) (11)

To assess the test power and dimension, we used the Wald test with the following hypothesis:

The simulation procedure was performed as follows:

1. Generate the values of the coefficients for the probability transition matrix of series S1t randomly;
2. Generate the probability transition matrix of series S2t randomly;
3. Set the initial value of S2t to 1 and simulate the following from the defined probability transition

matrix;
4. In each iteration (of 1000 repetitions),

• Generate Xt ∼ N(2, 25);
• Generate the time-varying probabilities of series S1t through the values of the fixed

coefficients and the lagged variable xt;
• Set the initial values of the series S1t as 1;
• For each period t, simulate the next state of S1t from the probabilities simulated for that

moment;
• Estimate the model through the function mmcx;
• Calculate the Wald test and add to the counter if it is rejected.

Considering two states, the test dimension was at 5.7% with a sample size of 100 observations,
sightly increased with 500 observations, and returned to the expected values in 1000 and 5000 ob-
servations. For a sample size of 100, 500, and 1000 observations, we have low test power. So, when
considering two states, the sample must have at least 5000 observations, or, if that is not possible,
consider a higher significance level when testing for individual significance.

Considering three states, the test dimension was 9.7% for a sample size of 100 observations, 0.2%
for a sample size of 500 observations, and 0.3% for a sample size of 1000. Regarding the test power, we
see similar behavior, for a sample of 100 observations, the test power was 90.5%, and from a sample
of 500 observations, we reach a test power of 100%. Thus, when considering three states, one may
consider a sample of 500 observations without compromising the test power and dimension.
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Figure 1: Simulation study results for two-states, displaying the proportion of rejections of the null
hypothesis for two parameter values. Dimension of test remains stable regardless sample size. Power
of test increases with sample size. The proposed model detects the presence of non-homogenenous
Markov Chain.

9.
7

0.
2

0.
3

9.
7

0.
2

0.
3

0%

3%

6%

9%

100 500 1000
Sample size

P
ro

po
rt

io
n 

of
 r

ej
ec

tio
ns

 o
f t

he
 n

ul
l h

yp
ot

he
si

s

λjk

0

1

Dimension of test

90
.5

10
0

10
0

90
.5

10
0

10
0

0%

25%

50%

75%

100%

100 500 1000
Sample size

P
ro

po
rt

io
n 

of
 r

ej
ec

tio
ns

 o
f t

he
 n

ul
l h

yp
ot

he
si

s

λjk

0

1

Power of test

Figure 2: Simulation study results for three-states, displaying the proportion of rejections of the null
hypothesis for two parameter values. Dimension of test decreases as sample size increases. Power of
test is stable regardless of sample size. The proposed model detects the presence of non-homogenenous
Markov Chain.
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Figure 3: Simulation study results for persistent states on low values of the parameters (case 1),
displaying the proportion of rejections of the null hypothesis for four parameter values. Dimension
decreases as sample size increases. Power of test increases with sample size. The proposed model has
low power of test when low parameter values are associated with persistent states.

Part II: Detecting Parameters Assigned Values

Secondly, we performed a simulation study where we considered two non-homogeneous Markov
chain with two states. Here, the main goal was to assess if the model correctly detected the parameters
assigned. So, in this case, we started by generating the terms of the model proposed. These terms were
estimated through logistic regression, and the parameters of this regression were randomly generated
in R. Similarly to Part I, we considered a Wald test to assess the power and dimension of the test. The
simulation procedure was performed as follows:

1. Generate the values of the coefficients to calculate the probability transition matrices randomly;
2. In each iteration (of 1000 repetitions),

• Generate {xt} ∼ N(2, 25);
• Generate the probabilities P

(
Sjt|Sst−1, xt−1

)
, with j = 1, 2 and s = 1, 2.

• Set the initial values of the series S1t and S2t as 1;
• For each period t, calculate the probabilities P (S1t|S1t−1, S2t−1, xt−1) and P (S2t|S1t−1, S2t−1, xt−1)

through the assigned values of the λ’s. Considering the calculated probabilities, simulate
the next state for each series, S1t and S2t.

• Estimate the model through the function mmcx;
• Calculate the Wald test and add to the counter if it is rejected.

The probabilities P (S1t|S1t−1, xt−1) and P (S1t|S2t−1, xt−1) presented some differences regarding
its values’ distributions. Specifically, P (S1t|S1t−1, xt−1) had more extreme probabilities values, with
the minimum value being close to 0 and the maximum value being close to 1. And, the probabilities
P (S1t|S2t−1, xt−1) had more moderate values, with the minimum value being, on average, 0.3 and the
maximum value, 0.7. When the probabilities have values close to 1, one says that the states/regimes
are persistent. We calculated the power and dimension of test for each value of λ when the estimated
probabilities are moderate and when they are extreme. Hence, considering equation 1:

P (S1t = i0|S1t−1 = i1, . . . , S2t−1 = i2, xt−1) =

λ11P (S1t = i0|S1t−1 = i1, xt−1) + λ12P (S1t = i0|S2t−1 = is, xt−1) (12)

The parameter λ11 will be associated with more extreme probabilities and λ12 will be associated
with more moderate probabilities.

When the states are persistent and the parameter’s value is low (i.e., 0.2 and 0.4), we have low test
power. By increasing this value, the power of test increases as well. When the states are not persistent,
we do not have a clear pattern regarding the power of test, for a value of the parameter of 0.2, the
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Figure 4: Simulation study results for persistent states on high values of the parameters (case 2),
displaying the proportion of rejections of the null hypothesis for four parameter values. Dimension
and power of test increase as sample size increases. The results point towards a low test power in this
setting.

power of test is still low (although not as low as the first scenario), increases when we have a value of
0.4, decreases when the value is 0.6 and increases again when the value is 0.8. Overall, the estimated
standard errors seem high, leading to low test power. Regarding the test dimension, when we have a
higher weight associated with the non-persistent states, the test dimension converges to 0. However,
when this weight is associated with the persistent states, the test dimension increases with the sample
size, reaching a value of 10% in some cases. Hence, one must use a 10% significance level to perform
statistical inference on the parameters in this situation.

4.4 Software implementation

Regarding the software implementation for each function, for the multimtd function the estimation
method was presented in Berchtold (2001) applied to the multivariate case. For multimtd_probit, a
package for numerical maximization of the log-likelihood, maxLik (Henningsen and Toomet, 2011),
was used. This package performs Maximum Likelihood estimation through different optimization
methods that the user can choose. The optimization methods available are Newton-Raphson, Broyden
- Fletcher - Goldfarb - Shanno, BFGS al- algorithm, Berndt - Hall - Hall - Hausman, Simulated AN-
Nealing, Conjugate Gradients, and Nelder-Mead. Finally, for the mmcx function, a different approach
was used. Unlike the MTD- Probit, the model proposed has equality and inequality restrictions in the
parameters. The maxLik (Henningsen and Toomet, 2011) package only allows one type of restriction
for each Maximum Likelihood estimation, so it was not possible to use this package to estimate
the proposed model with exogenous variables. Hence, the algorithm used was the Augmented La-
grangian method, available in the alabama (Varadhan, 2015) package through the function auglag.
This estimation method for the proposed model is not very common, however, it has been applied to
Markov chain models (Rajarshi, 2013). The GMMC model’s probabilities were estimated through a
Multinomial Logit using rmultinom of the nnet package (Venables and Ripley, 2002).

Additionally, the hessian matrices were also computed, which allowed performing statistical
inference. The maxLik and auglag compute the Hessian matrices with the estimates. For the function
multimtd, since the optimization procedure of Berchtold (2001) was used, the hessian was computed
through the second partial derivatives. The function multi.mtd requires the following elements:

• y, a matrix of the categorical data sequences.

• deltaStop, the delta below which the optimization phases of the parameters stop.

• is_constrained, flag indicating whether the function will consider the usual set of constraints
(usual set: TRUE, new set of constraints: FALSE).

• delta, the amount of change to increase/decrease in the parameters for each iteration of the
optimization algorithm.
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The last three arguments concern the optimization procedure. For more details see Berchtold
(2001). Considering two vectors of two categorical data sequences, s1 and s2, to estimate the model
and obtain the results:

multi.mtd(y=cbind(s1,s2), deltaStop=0.0001, is_constrained=TRUE, delta=0.1)

The function multi.mtd_probit requires the following arguments:

• y, a matrix of the categorical data sequences.
• initial, a vector of the initial values of the parameters.
• nummethod, the numerical maximization method, currently either “NR” (for Newton-Raphson),

“BFGS” (for Broyden-Fletcher-Goldfarb-Shanno), “BFGSR” (for the BFGS algorithm imple-
mented in R), “BHHH” (for Berndt-Hall-Hall-Hausman), “SANN” (for Simulated ANNealing),
“CG” (for Conjugate Gradients), or “NM” (for Nelder-Mead). Lower-case letters (such as “nr”
for Newton-Raphson) are allowed. The default method is “BFGS”. For more details see maxLik
(Henningsen and Toomet, 2011) package.

Considering two vectors of two categorical data sequences, s1 and s2 again, to estimate the model
an obtain the results with BFGS maximization method:

multi.mtd_probit(y = cbind(s1,s2), initial=c(1,1,1), nummethod='bfgs')

Finally, the function mmcx requires the following elements:

• y, a matrix of categorical data sequences.
• x, a matrix of covariates (exogeneous variables).
• initial, a vector of the initial values of the parameters.

Considering two vectors of two categorical data sequences, s1 and s2, and a vector of an exoge-
neous variables, x, to estimate the model and obtain the results:

mmcx(y = cbind(s1,s2), x = cbind(x), initial=c(1,1))

These functions return a list with the parameter estimates, standard errors, z-statistics, p- values,
and the log-likelihood function value for each equation.

The package offers an additional function that allows to obtain the transition probability matrices
of mmcx considering a specific value of x defined by the user. The function is MMC_tpm and requires the
following elements:

• s, a matrix of categorical data sequences.
• x, a matrix of covariates (exogeneous variables).
• value, a single value of x, to condition the probability transition matrices.
• result, a list returned by the function mmcx containing the model’s estimates.

Considering two vectors of two categorical data sequences, s1 and s2, a vector of an exogeneous
variables, x and res the list returned by the function mmcx, to obtain the transition probability matrices:

MMC_tpm(s = cbind(s1,s2), x = cbind(x), value = max(x), result = res)

The function returns an array containing the probability transition matrices, conditioned on a
specific value of x, for each equation.

5 Illustration

Markov chain models are used in interdisciplinary areas, such as economics, business, biology,
and engineering, with applications to predict long-term behavior from traffic flow to stock market
movements, among others. Modeling and predicting stock markets returns is particularly relevant
for investors and policy makers. Since the stock market is a volatile environment, and the returns are
difficult to predict, estimating the set of probabilities that describe these movements, might provide
relevant input. Additionally, incorporating the effect of key macroeconomic variables could provide a
more accurate picture of this specific environment.

The following empirical illustration aims to model stock returns of two indexes as a function of
the interest rate spread, specifically the 10-Year Treasury Constant Maturity Minus 3-Month Treasury
Constant Maturity.
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Table 2: Summary statistics of stockreturns dataset

Variable Minimum 1st Quantile Median Mean 3rd Quantile Maximum
spreadt -0.52 0.92 1.54 1.454 2.03 2.97
rt;SP500 -12.765 -0.32 0.07 0.054 0.518 8.968
rt;DJIA -13.842 -0.327 0.071 0.046 0.508 10.764

The interest rate spread is a key macroeconomic variable and provides valuable information
regarding the economy state. Specifically, it has been used to forecast recessions as in Estrella and
Mishkin (1996), Dombrosky and Haubrich (1996), Chauvet and Senyuz (2016), Tian and Shen (2019)
and McMillan (2021). Generically, short-term yields are lower than long-term yields when the economy
is in expansion. On the other hand, short-term yields are higher than long-term yields when the
economy is in recession. The difference between these yields (or, more specifically, the yield curve’s
slope) can be used to forecast the state of the economy. Hence, this indicator might provide relevant
input for investors.

We considered the 5-week-day daily stock returns (rt = 100 × log(Pt/Pt−1), where Pt is the
adjusted close price) of two indexes, S&P500 and DJIA, from November 11th 2011 to September 1st

2021 (2581 observations). Additionally, we considered the interest rate spread (spreadt), the 10-Year
Treasury Constant Maturity Minus 3-Month Treasury Constant Maturity. The data was retrieved from
FRED. Below, we have the descriptive statistics of these variables.

Moreover, to apply the model proposed, it is necessary to have a categorical time series, thus we
applied the following procedure:

Sst =


1, rt ≤ q̂s;0.25

2, q̂s;0.25 < rt < q̂s;0.75

3, rt ≥ q̂s;0.75

where q̂s;α is the estimated quantile of order α of the marginal distribution of rt. Considering this
illustration and the model proposed, we will have two equations:

P(Ssp500,t|Ssp500,t−1, Sdjia,t−1, spreadt−1) =

λ11P(Ssp500,t|Ssp500,t−1, spreadt−1) + λ12P(Ssp500,t|Sdjia,t−1, spreadt−1) (13)

P(Sdjia,t|Ssp500,t−1, Sdjia,t−1, spreadt−1) =

λ21P(Sdjia,t|Ssp500,t−1, spreadt−1) + λ22P(Sdjia,t|Sdjia,t−1, spreadt−1) (14)

In Figures 5 to 8 generate through ggplot2 (Wickham, 2016) and gridExtra (Auguie, 2017), we
have the smoothed conditional probabilities of both series, depending on spreadt−1. The number
of observations is high, and the probabilities varied abruptly in a small time frame, making the
plots hard to read. To simplify, a moving average model (from pracma (Borchers, 2022)) of order 5,
due to the frequency of the data, was adjusted to these probabilities to illustrate how they evolve
throughout time. These plots represent the probabilities associated with the parameters of the general
model proposed, showcasing how these vary throughout time and the main of advantage of this
generalization. Instead of having fixed matrices of transition probabilities, we allow for these to vary
throughout time, depending on the values of spreadt−1. Specifically, Figures 5 and 6 correspond to
the non-homogeneous Markov chain to build the SP&500’s equation and Figures 7 and Figures 8
correspond to the non-homogeneous Markov chain to build DJIA’s equation. We see a similar behavior
within each series regardless of whether it depends on the previous states of S1t or S2t. Additionally,
the scales of the graphs are small, indicating that these probabilities vary around the same set of
values.
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Figure 5: Estimated conditional probabilities of series 1 (SP500) depending on spreadt−1 and on
series 1 (SP500) previous state: P(Ssp500,t|Ssp500,t−1, spreadt−1). This figure shows the estimated non-
homogeneous Markov chain from which the realized probabilites will be extracted to maximize the
log-likelihood function.
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Figure 6: Estimated conditional probabilities of series 1 (SP500) depending on spreadt−1 and on
series 2 (DJIA) previous state: P(Ssp500,t|Sdjia,t−1, spreadt−1). This figure shows the estimated non-
homogeneous Markov chain from which the realized probabilites will be extracted to maximize the
log-likelihood function.
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Figure 7: Estimated conditional probabilities of series 2 (DJIA) depending on spreadt−1 and on
series 1 (SP500) previous state: P(Sdjia,t|Ssp500,t−1, spreadt−1). This figure shows the estimated non-
homogeneous Markov chain from which the realized probabilites will be extracted to maximize the
log-likelihood function.
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Figure 8: Estimated conditional probabilities of series 2 (DJIA) depending on spreadt−1 and on series 2
(DJIA) previous state: P(Sdjia,t|Sdjia,t−1, spreadt−1). This figure shows the estimated non-homogeneous
Markov chain from which the realized probabilites will be extracted to maximize the log-likelihood
function.
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The model can be estimated through the mmcx function:

attach(stockreturns)
res <- mmcx(cbind(sp500, djia), spread_1, initial=c(1,1))

#> --------------------------------------------
#> Equation 1
#> Estimate Std. Error t value Pr(>|t|)
#> 1 0.685660 0.171346 4.002 0.000 ***
#> 2 0.314340 0.171346 1.835 0.067 *
#>
#> Log-Likelihood: -2636.355
#> --------------------------------------------
#> --------------------------------------------
#> Equation 2
#> Estimate Std. Error t value Pr(>|t|)
#> 1 0.629993 0.176383 3.572 0.000 ***
#> 2 0.370007 0.176383 2.098 0.036 **
#>
#> Log-Likelihood: -2636.622
#> --------------------------------------------

Considering the first equation, the effect of the probabilities depending on S&P500’s previous state
and the interest rate spread has a higher weight on the overall probability. Also, this estimate is highly
significant, presenting a p-value close to zero. The effect of DJIA’s previous state in S&P500 is lower
but it is also significant for a 10% significance level. In the second equation, the effect of S&P500’s
previous state is higher than DJIA’s and both estimates are highly significant.

One of the advantages of this approach is the possibility to assess the transition probabilities for
specific values of xt, in this case, the interest rate spread. For both series, we calculated the transition
probabilities for this variable’s minimum and maximum value in the sample, which are -0.52 and 2.97,
respectively. To obtain the probability transition matrices for these two cases, the code is the following:

tpm_max <- MMC_tpm(cbind(sp500, djia), spread_1,
value = max(spread_1), result = res)

tpm_min <- MMC_tpm(cbind(sp500, djia), spread_1,
value = min(spread_1), result = res)

library(markovchain)
plot(new('markovchain', transitionMatrix = tpm_max[,,1])) # Generate figure 9
plot(new('markovchain', transitionMatrix = tpm_min[,,1])) # Generate figure 10
plot(new('markovchain', transitionMatrix = tpm_max[,,2])) # Generate figure 11
plot(new('markovchain', transitionMatrix = tpm_min[,,2])) # Generate figure 12

In Figures 10 and 9, we have the transition probabilities network for S&P500, corresponding
to the minimum and maximum value of the spread. The most noticeable difference between these
two networks is regarding the transition probability from the second state to the third state. For the
maximum value of spreadt−1, the transition probability from the second state to the third state is 0.6.
So, when the economy is strong, one might expect to have higher returns, when t − 1 was in the second
state. However, this scenario shifts when considering the minimum value of spreadt−1. The probability
of obtaining higher returns, that is, being in state three, becomes almost evenly distributed, regardless
of the state in t − 1. This indicates the instability of the stock market, when the economy is weaker.
Another difference in these networks, is regarding the transition probability from the third state to the
first state. For the maximum value of spreadt−1, this probability is 0.27 and for the minimum value
increases to 0.44. This is also expected, since when the economy is weaker, the probability of having
lower returns is greater.

Considering the second equation (Figures 11 and 12), corresponding to the DJIA’s returns, we see
a similar behaviour as in S&P500’s networks. The transition probability from the second state to the
third state is higher for the maximum value of spreadt−1 and the transition probability from the third
state to the first state is higher when we consider the minimum value of spreadt−1. Although, the
difference of this last probability between the minimum and maximum value of spreadt−1 is not as big
as in S&P500. Overall, the rest of the probabilities structure, remains the same.
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Figure 9: Graphical representation of the transition probability matrix of Series 1: SP500 for the
maximum value of spreadt−1. The highest probability of 0.6 refers to the transition from state 2 to
state 3.
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Figure 10: Graphical representation of the transition probability matrix of Series 1: SP500 for the
minimum value of spreadt−1. The highest probability of 0.56 refers to the transition from state 2 to
state 2.
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Figure 11: Graphical representation of the transition probability matrix of Series 2: DJIA for the
maximum value of spreadt−1. The probability of 0.58 refers to the transition from state 2 to state 3.
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Figure 12: Graphical representation of the transition probability matrix of Series 2: DJIA for the
minimum value of spreadt−1. The highest probability of 0.51 refers to the transition from state 2 to
state 2.

6 Conclusions, limitations and further research

Several proposals for including of exogenous variables in MMC models have been presented. The
main limitations were associated with the high complexity of the models to be developed and esti-
mated. Additionally, most models considered only categorical exogenous variables, existing a lack of
focus on continuous exogenous variables. This work proposes a new approach to include continuous
exogenous variables in Ching et al. (2002) model for multivariate Markov chain. This is relevant
because it allows studying the effect of previous series and exogenous variables on the transition
probabilities. The model is based on Ching et al. (2002) MMC model but considers non-homogeneous
Markov chains. Thus, the probabilities that compose the model are dependent on exogenous variables.
These probabilities are estimated as a usual non-homogeneous Markov chain through a multinomial
logit model. The model parameters are then estimated through MLE, as well as the standard errors.
We developed a package with the estimation function of the model proposed. In this, we consid-
ered the Augmented Lagrangian optimization method for estimating the parameters through MLE.
Additionally, we designed a Monte Carlo simulation study to assess this model’s test power and
dimension. The results showed that the model detected a non-homogeneous Markov chain. Moreover,
an empirical illustration demonstrated the relevance of this new model by estimating the probability
transition matrix for different exogenous variable values. Ignoring the effect of exogenous variables in
MMC means that we would not detect the probabilities’ changes according to the covariates’ values.
In this setting, one would have a limited view of the studied process. Hence, this approach allows
us to understand how a specific variable influences a specific process. The main contributions of this
work are the development of a package with functions for multivariate Markov chains, addressing the
statistical inference in these models and the inclusion of covariates. The limitations are related to the
implementation in R, specifically the optimization algorithm applied is not common for MMC models,
in that sense, it would be beneficial to study new approaches to optimizing the maximum likelihood
function as further research. Additionally, extending this generalization to the MTD-probit model
proposed by Nicolau (2014) would also be relevant, which removes the constraints of the model’s
parameters and allows the model to detect negative effects.
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