
CONTRIBUTED RESEARCH ARTICLE 67

Prediction, Bootstrapping and Monte
Carlo Analyses Based on Linear Mixed
Models with QAPE 2.0 Package
by Alicja Wolny–Dominiak and Tomasz Ża̧dło

Abstract The paper presents a new R package qape for prediction, accuracy estimation of various
predictors and Monte Carlo simulation studies of properties of both predictors and estimators of
accuracy measures. It allows to predict any population and subpopulation characteristics of the
response variable based on the Linear Mixed Model (LMM). The response variable can be transformed,
e.g. to logarithm and the data can be in the cross-sectional or longitudinal framework. Three bootstrap
algorithms are developed: parametric, residual and double, allowing to estimate the prediction
accuracy. Analyses can also include Monte Carlo simulation studies of properties of the methods used.
Unlike other packages, in the prediction process the user can flexibly define the predictor, the model,
the transformation function of the response variable, the predicted characteristics and the method of
accuracy estimation.

1 Introduction

One of the tasks in application of mixed models in the real-life problems is the prediction of random
effects. Then, the predicted values give the possibility for further prediction, e.g. characteristics of
interest such as sum, mean or quantiles or the future value of the response variable for cross-sectional
or longitudinal data.

Three main predictors of these characteristics are proposed in the literature: Empirical Best Linear
Unbiased Predictors - EBLUPs (see e.g. Henderson (1950) and Royall (1976)), PLUG-IN predictors (see
e.g. Boubeta et al. (2016), Chwila and Żądło (2019), Hobza and Morales (2016)) and Empirical Best
Predictors - EBPs (see e.g. Molina and Rao (2010)). Each assumes the LMM to model the response
variable.

The numerous successful applications of these three predictors for cross-sectional and longitudinal
data can be found in the model approach in survey sampling, including the small area estimation. In
paper Fay III and Herriot (1979) the Authors introduce the prediction of the mean income for small
places based on the special case of the LMM model called Fay-Herriot model and the EBLUP. The
analysis of poverty is extended in many works, e.g. in Molina and Rao (2010) and Christiaensen et al.
(2012). In turn, in Battese et al. (1988) the Authors analyse the total crop areas based on survey and
satellite data using EBLUPs. The proposed LMM model is known as the Battese-Harter-Fuller model.
The predictors are also exploited in the subject of experience rating in non-life insurance, see Frees
et al. (1999) and Bühlmann and Gisler (2005), where the longitudinal data are under consideration.
The insurance premium for the next period for every policy in the insurance portfolio is predicted.

A major challenge in this type of prediction is the estimation of the prediction accuracy measure.
Most often it is the Root Mean Squared Error (RMSE), which is given in analytical form or can be e.g.
estimated using bootstrap. A feature of the distribution of the squared prediction error is usually a
very strong positive asymmetry. Because the mean is not recommended as the appropriate measure
of the central tendency in such distributions, the alternative prediction accuracy measure called the
Quantile of Absolute Prediction Errors (QAPE), proposed by Żądło (2013) and Wolny-Dominiak and
Żądło (2020), can be applied.

There is a variety of R packages to calculate the considered predictors together with the accuracy
measure of prediction, usually the RMSE. The package sae, see Molina and Marhuenda (2015), provides
EBLUPs based on Fay-Herriot and Battese-Harter-Fuller models. In turn, the multivariate EBLUP for
Fay-Herriot models is implemented in msae, see Permatasari and Ubaidillah (2021). Several EBLUPs
introduced in Rao and Yu (1994) are implemented in package saery introduced by Lefler et al. (2014),
likewise in JoSAE, see Breidenbach (2018), but with additional heteroscedasticity analysis. The EBP is
provided in the package emdi described in Kreutzmann et al. (2019).

A new package in this area is our proposed package qape. It allows the prediction of flexibly
defined characteristics of the response variable using the above three predictors, assuming an appro-
priate LMM. A novel feature of the package qape, compared to those already in place, is the ability of
bootstrap estimation of the prediction accuracy measures, both the RMSE and QAPE. Three types of
bootstrap procedures are provided: parametric, residual and double.

There are three groups of functions in this package: predictors values calculation, bootstrap
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estimation of RMSE and QAPE measures, and Monte Carlo (MC) analysis of properties of predictors
and prediction accuracy estimators. The prediction is based on a LMM model defined by the user and
allows to predict the population characteristics of the response variable, which can be defined by a
linear combination (in the case of EBLUP), by any R function (e.g. sum) or any function defined by
the user (in the case of the EBP and PLUG-IN predictors). The package allows for full flexibility in
defining: the model, the predicted characteristic, and the transformation of the response variable.

This paper is organized as follows. Firstly, the background of the LMM is presented together
with the theoretical foundations of the prediction including prediction accuracy measures. Then, the
package functionality in the area of prediction is presented and illustrated. A short application based
on radon data, a cross-sectional dataset available in HLMdiag package, to predict three subpopulation
characteristics is shown. Subsequently, the theoretical background of the prediction accuracy measures
estimation based on bootstrap is presented. Implementations of bootstrap algorithms in qape are
briefly introduced. Finally, the procedure of the model-based Monte Carlo simulation study is
discussed. The paper ends with a conclusion.

2 Prediction accuracy measures

We consider the problem of prediction of any given function of the population vector Y of the response
variable:

θ = fθ(Y) (1)

under the LMM. It covers linear combinations of Y (such as one future realization of the response vari-
able or population and subpopulation means and totals) but also other population and subpopulation
characteristics such quantiles and variability measures.

To assess the accuracy of the particular predictor θ̂, firstly, the prediction error is defined as
U = θ̂ − θ. Therefore, the well-known RMSE has the following formula:

RMSE(θ̂) =
√

E(θ̂ − θ)2 =
√

E(U2). (2)

The alternative to the RMSE based on the mean could be the QAPE based on quantiles. It represents
the pth quantile of the absolute prediction error |U|, see Żądło (2013) and Wolny-Dominiak and Żądło
(2020), and it is given by:

QAPEp(θ̂) = inf
{

x : P
(∣∣θ̂ − θ

∣∣ ≤ x
)
≥ p

}
= inf {x : P (|U| ≤ x) ≥ p} (3)

This measure informs that at least p100% of observed absolute prediction errors are smaller than
or equal to QAPEp(θ̂), while at least (1 − p)100% of them are higher than or equal to QAPEp(θ̂).
Quantiles reflect the relation between the magnitude of the error and the probability of its realization.
It means that using the QAPE, it is possible to make a full description of the distribution of prediction
errors instead of using the average (reflected by the RMSE). Furthermore, the MSE is the mean of
positively (usually very strongly) skewed squared prediction errors, where the mean should not be
used as a measure of the central tendency of positively skewed distributions.

The above described accuracy prediction measures RMSE and QAPE can be estimated using the
bootstrap techniques. Their estimators as well as the bootstrap distributions of the prediction errors
based on any (assumed or misspecified) model are provided in qape package, including algorithms
where the parallel computing is used.

In the qape package, the whole prediction process has its own specific procedure, which can be
presented in the following steps.

Procedure 1 The process of prediction, accuracy measures estimation and Monte Carlo simulation
analyses in qape

1. Define the characteristics of the response variable to predict,

2. provide the information on sample and population values,

3. define the LMM,

4. estimate parameters of the LMM,

5. predict the random variable θ using the chosen class of predictors,

6. estimate the prediction accuracy measures RMSE and QAPE using one of the developed boot-
strap algorithms,

7. conduct simulation analyses of properties of predictors and accuracy measures estimators under
any (also misspecified) LMM model.
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3 The prediction under LMM

The main functions of the qape package provide the bootstrap estimation of prediction accuracy
measures. However, it must be preceded by the prediction process, including the choice of the LMM
and the predictor.

3.1 The model

Let Y denote the vector of response variables Y1, Y2, ..., YN . Assuming, without a loss of generality,
that only the first n realizations of Yi are observed, Y can be decomposed as Y =

[
YT

s YT
r
]T , where

Ys and Yr are of dimension n × 1 and (N − n)× 1, respectively. In all notations, the subscript "s"
is used for observed realizations of the variable of interest and "r" for the unobserved ones. Two
known matrices of auxiliary variables are also considered, denoted by X and Z, which are associated
with fixed and random effects, respectively. The X matrix is of dimension N × p, and it consists of
p regression variables. It can be decomposed like Y as follows: X =

[
XT

s XT
r
]T , where matrices Xs

and Xr, both known, are of dimension n × p and (N − n)× p, respectively. Similarly, the Z matrix of
dimension N × h can be written as follows: Z =

[
ZT

s ZT
r
]T , where matrices Zs and Zr, both known,

are of dimension n × h and (N − n)× h, respectively.

Then, let LMM(X, Z, ψ) denotes the LMM of the following form (e.g. Rao and Molina (2015), p.
98): 

Y = Xβ + Zv + e
E(e) = 0, E(v) = 0

Var(e) = R(δδδ), Var(v) = G(δδδ)
(4)

The vector of parameters in model (4) is then ψ =
[
βT δδδT

]T , where β is a vector of fixed effects of
dimension p × 1 and δδδ is a vector of variance components. The random part of the model is described
by the known matrix Z, a vector v of random effects of dimension h × 1 and a vector e of random
components of dimension N × 1, where e and v are assumed to be independent. The vector of random
components e will be decomposed similarly to the vector Y, i.e. e =

[
eT

s eT
r
]T .

In the residual bootstrap implemented in qape, there is a need to re-write the LMM model to take
account of the specific structure of data, i.e. the grouping variables taken into account in the random
part of the model. In this case, without a loss of the generality, the LMM model can be written as
follows:

Y = Xβ + Z1v1 + ... + Zlvl + ... + ZLvL + e, (5)

where v1, . . . , vl , . . . , vL are independent vectors of random effects assumed for different divisions
of the Y vector (under different grouping of the data) and Z1, . . . , Zl , . . . , ZL are known matrices of

auxiliary variables associated with random effects. Writing in (5): Z =



Z1 . . . 0 . . . 0
...

. . .
...

0 . . . Zl . . . 0
...

. . .
...

0 . . . 0 . . . ZL

 and

v =
[
vT

1 . . . vT
l . . . vT

L
]T the LMM model is obtained. Let

vl =
[
vT

l1 . . . vT
lk . . . vT

lKl

]T
(6)

be of dimension Kl Jl × 1, where vlk is of dimension Jl × 1 for all k = 1, ..., Kl and Kl is the number
of random effects at the lth level of grouping. Hence, Zl is N × Kl Jl . For example, if the random
regression coefficient model is considered with two random coefficients where both random effects
are subpopulation-specific, where D is the number of subpopulations, then L = 1, K1 = 2 and J1 = D.

3.2 Predictors

In the qape package, in the general case the predicted characteristic is given by any function of
response variables:

θ = fθ(Y). (7)

Under the LMM(X, Z, ψ) model it could be predicted using one of three predictors:

1. Empirical Best Linear Unbiased Predictor (EBLUP),

2. Empirical Best Predictor (EBP) under nested error LMM,
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3. PLUG-IN predictor under the LMM.

The first predictor (EBLUP) allows to predict the linear combination of the response variables:

θ = fθ(Y) = γTY = γT
s Ys + γT

r Yr, (8)

where γ is a vector of weights. In this case, the predicted characteristic θ is basically the linear
combination of the response variable. For example, if one of the elements of γ equals 1 and the rest of
the elements equals 0, then one realization of the response variable is predicted. If all elements in γ
vector equal 1, then θ becomes the sum of all Yi’s in the whole considered population dataset. The
two-stage EBLUP corresponds to the Best Linear Unbiased Predictor (BLUP) introduced in Henderson
(1950) and Royall (1976) as:

θ̂BLUP(δδδ) = γT
s Ys + θ̂r(δδδ), (9)

where the predictor of the linear combination γT
r Yr of unobserved random variables is given by

θ̂r(δδδ) = γT
r Xr β̃(δδδ) + γT

r Zr ṽ(δδδ), where β̃(δδδ) is the Best Linear Unbiased Estimator of β and ṽ(δδδ) is
the Best Linear Unbiased Predictor of v, both presented in (4). As shown by Żądło (2017) p. 8094, if
Cov(er, es) = 0, then the predictor (9) is the BLUP of θ defined as the linear combination (8). Even
if Cov(er, es) ̸= 0, the predictor θ̂r(δδδ) is the Best Linear Unbiased Predictor of the following linear
combination of β and v: γT

r Xrβ + γT
r Zrv. The EBLUP θ̂EBLUP is obtained by replacing the vector of

variance components δδδ in BLUP (9) with the estimator δ̂δδ. If (a) the expectation of the predictor is finite,
(b) δ̂δδ is any even, translation-invariant estimator of δδδ, (c) the distributions of both random effects and
random components are symmetric around 0 (not necessarily normal), the EBLUP remains unbiased,
as proved by Kackar and Harville (1981).

To introduce the second predictor, called EBP, considered e.g. by Molina and Rao (2010), firstly,
the Best Predictor (BP) θ̂BP of characteristic θ(Y) has to be defined. It is computed by minimizing
the Mean Squared Error MSE(θ̂) = E(θ̂ − θ)2 and can be written as θ̂BP = E(θ|Ys). It means that the
conditional distribution of Yr|Ys must be known to compute its value while at least the parameters
of this distribution, denoted by ψ in (4), are unknown. The EBP θ̂EBP is obtained by replacing these
parameters with estimators ψ̂. Its value can be computed according to the Monte Carlo procedure
presented in the supplementary document for this paper.

The last predictor is the PLUG-IN predictor defined as (e.g. Chwila and Żądło (2019)):

θ̂PLUG−IN = θ(
[
YT

s ŶT
r
]T
), (10)

where Ŷr is the vector of fitted values of unobserved random variables under the assumed model (any
model specified by the statistician). Under the LMM and if the linear combination of Y is predicted,
the PLUG-IN predictor is the EBLUP, but generally, it is not optimal. However, it was shown in
simulation studies that it can have similar or even higher accuracy compared to empirical (estimated)
best predictors, where the best predictors minimize the prediction mean squared errors (cf. e.g.
Boubeta et al. (2016), Chwila and Żądło (2019), Hobza and Morales (2016)). Moreover, the PLUG-IN
predictor is less computationally demanding than the EBP.

3.3 Predictors in qape

To deal with the LMM model, the qape package uses the lmer() function from the lme4 package,
see Bates et al. (2015). Assuming (4) and based on Ys, the vector of model parameters ψ = [βT , δδδT ]T

is estimated using the Restricted Maximum Likelihood Method (REML), known to be robust on
non-normality, see e.g Jiang (1996), and ψ̂ is obtained.

In order to obtain the predictor of θ, one of the three qape functions can be applied: EBLUP(),
ebpLMMne() or plugInLMM(). Firstly, the characteristic of response variables of interest has to be defined.
It is actually obvious for EBLUP, which can be used only to predict the population/subpopulation
linear combination (e.g. the sum) by using the argument gamma equivalent to the population vector
of weights γ in (8). For other two predictors, the EBP and the PLUG-IN, the input argument called
thetaFun has to be given (see fθ(.) in (7)). Function thetaFun could define one characteristic or a
vector of characteristics, for example:

> thetaFun1 <- function(x) median(x)
> thetaFun2 <- function(x) c(sum(x), mean(x), sd(x))

Secondly, two groups of input arguments, common to all three predictors, has to be provided:

• group 1 - arguments defining the sample and the population

– YS - values of the dependent variable in the sample (Ys),

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=qape
https://CRAN.R-project.org/package=qape
https://CRAN.R-project.org/package=lme4
https://CRAN.R-project.org/package=qape


CONTRIBUTED RESEARCH ARTICLE 71

– reg - the population matrix of auxiliary variables named in fixed.part, random.part and
division,

– con - the population 0 − 1 vector with 1s for elements in the sample and 0s for elements
which are not in the sample,

• group 2 - arguments defining the model

– fixed.part - fixed-effects terms declared as in lm4::lmer function,

– random.part - random-effects terms declared as in lm4::lmer function,

– weights - the population vector of weights.

The weights make it possible to include heteroscedasticity of random components in the LMM.

In EBLUP() and plugInLMM() the random-effects terms of the LMM have to be declared as the
input argument random.part. The form of the ebpLMMne predictor, in turn, requires defining in the
ebpLMMne() function the so-called division argument instead of random.part. This input represents
the variable dividing the population dataset into subsets, which are taken into account in the nested
error linear mixed model with ’division’-specific random components (presented in supplementary
document for this paper).

In the process of prediction, it is often necessary to perform data transformation before estimat-
ing the model parameters. An example is the logarithmic scaling of the variable of interest. The
qape package offers the possibility for declaring the argument backTrans to conduct the data back-
transformation. Hence, a very flexible solution is used which allows to use any transformation of the
response variable such that the back-transformation can be defined. This argument (available in R or
defined by the user function) should be the back-transformation function of the already transformed
dependent variable used to define the model, e.g. for log-transformed YS used as the response variable:

> backTrans <- function(x) exp(x)

The main output is the value of predictor thetaP. For each class of predictors, there are two S3
methods registered for existing generic functions print and summary. The full list of output arguments
is presented in detail in the qape-manual file, cf. Wolny-Dominiak and Żądło (2023).

3.4 Radon data and the model

In order to demonstrate the functionality of the package’s main functions, in the following examples
the radon dataset available in HLMdiag package (Loy and Hofmann (2014)) is analyzed. It contains
the results of a survey measuring radon concentrations in 919 owner-occupied homes in 85 counties
of Minnesota (see Figure 1). A study was conducted in 1987-1988 by the Minnesota Department of
Health, showing that indoor radon levels are higher in Minnesota compared to typical levels in the U.S.
In the data, the response variable log.radon (denoted in (11) by log(Yic)) is the radon measurement in
logarithms of picoCurie per liter. The independent variables, on the other hand, are: uranium (x1ic) the
average county-level soil uranium content, basement (x2ic) the 0-1 variable indicating the level of the
home at which the radon measurement was taken - 0 for basement, 1 for the first floor, and county
(denoted by subscript c in (11)) is county ID.

Figure 1: The maps of characteristics of radon concentration in counties in picoCurie per liter. The
gray colour means that the value is NA (Not Available)

In all considered examples, the prediction for the county no. 26 (county == 26) is conducted and
it is assumed that the observations in this county from the first floor (basement == 1) are not available
(see Figure 2).

The radon dataset is widely discussed in the literature. In the paper Nero et al. (1994), the Authors
used an ordinary regression model to predict county geometric means of radon concentration using
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Figure 2: The distributions of radon concentration in picoCurie per liter in counties. The red line
indicates county no. 26

surficial soil radium data from the National Uranium Resource Evaluation. In turn, the paper Price
et al. (1996) focuses on the prediction of the geometric mean of radon for each county, but using a
Bayesian approach. For the radon data we use the following model

log(Yic) = β1x1ic + (β2 + v1c)x2ic + β0 + v2c + eic, (11)

where i = 1, 2, . . . , N, c = 1, 2, . . . , C, N = 919 observations, C = 85 counties, β1, β2 and β0 are
unknown fixed effects, v1c and v2c are random effects, eic are random components, v1c, and eic are
mutually independent, v2c and eic are mutually independent too, Cor(v1c, v2c) = ρ, v1c ∼ (0, σ2

v1
),

v2c ∼ (0, σ2
v2
) and eic ∼ (0, σ2

e ). As can easily be seen, the considered model is the random coefficient
model with two correlated county-specific random effects. Its syntax written using the package lme4
notation is as follows:

radon.model <- lmer(log.radon ~ basement + uranium + (basement | county), data = radon)

This and similar LMMs are considered, analyzed, and used for the considered dataset in many
publications, with a good overview presented in Gelman and Hill (2006). In Gelman and Pardoe
(2006), based on their preceding research Price et al. (1996), Lin et al. (1999), Price and Gelman (2005),
a very similar model but with additional multivariate normality assumptions is studied, verified and
chosen as fitting well to the data within a Bayesian framework. The same model as in Gelman and
Pardoe (2006) with its special cases is considered in Cantoni et al. (2021) but within the frequentist
approach. Based on 25 measures of explained variation and model selection, the Authors conclude
that the same model as considered in our paper (with additional normality assumption, however,
which is not used in all cases considered in that paper), "seems the best" (Cantoni et al., 2021, p. 10) for
the radon data. Further tests of the model are presented by Loy (2013), Loy and Hofmann (2015) and
Loy et al. (2017) (see also Cook et al. (2007) for the introduction of the methodology) showing among
others: the normality and homescedasticity of random components, the normality of the distribution
of the random slope but – what is important for our further considerations – the lack of the normality
of the random intercept. Since the problem of choosing and verifying a model for the considered
dataset is widely discussed in the literature, we will focus on the issues that are new in this case,
namely the problem of prediction and estimation of the prediction accuracy as well as the Monte Carlo
analysis of predictors’ properties.

3.5 Example 1

This example shows the prediction procedure in the package qape. In the first step, it is needed to
define all the input arguments that will then be passed to the prediction functions.

> Ypop <- radon$log.radon # the population vector of the dependent variable
> # It is assumed that observations from the first floor
> # in county no. 26 are not available:
> con <- rep(1, nrow(radon))
> con[radon$county == 26 & radon$basement == 1] <- 0
> YS <- Ypop[con == 1] # sample vector of the dependent variable
> reg <- dplyr::select(radon, -log.radon) # the population matrix of auxiliary variables
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> fixed.part <- 'basement + uranium' # the fixed part of the considered model
> random.part <- '(basement|county)' # the random part of the considered model
> # The vector of weights to define
> # the predicted linear combination - the mean for county == 26:
> gamma <-
+ (1 / sum((radon$county == 26))) * ifelse((radon$county == 26), 1, 0)
> estMSE <- TRUE # to include the naive MSE estimator of the EBLUP in the output

Then the functions corresponding to each predictor can be used. First, the EBLUP prediction in
the package qape is presented. As the EBLUP is limited to the linear combination of random variables,
the predicted characteristic is simply the arithmetic mean. To be precise, it is the mean of logarithms of
measurements (instead of the mean of measurements), because the EBLUP can be used only under the
linear (linearized) models. As in the LMM the homescedasticity of random components is assumed,
the input argument weights = NULL is set up.

> myeblup <- EBLUP(YS, fixed.part, random.part, reg, con, gamma, weights = NULL, estMSE)
> # the value of the predictor of the arithmetic mean
> # of logarithms of radon measurements:
> myeblup$thetaP
[1] 1.306916
> myeblup$neMSE # the value of the naive MSE estimator
[1] 0.002292732

Hence, the predicted value of the arithmetic mean of logarithms of radon measurements equals
1.306916 log picoCurie per liter. The estimated root of prediction MSE equals

√
0.002292732 ≈ 0.048

log picoCurie per liter, but – what is important – it is the value of the naive RMSE estimator (as defined
by Rao and Molina, 2015, p. 106), which means that it ignores the decrease of accuracy due to the
estimation of model parameters.

The second part of this example shows the prediction of the arithmetic mean, geometric mean and
median of radon measurements (not logarithm of radon measurements) in county no. 26 with the use
of the PLUG-IN predictor. It requires the setting of two input arguments: thetaFun and backTrans.

> thetaFun <- function(x) {
+ c(mean(x[radon$county == 26]), psych::geometric.mean(x[radon$county == 26]),
+ median(x[radon$county == 26]))
+ }
> backTransExp <- function(x) exp(x) # back-transformation
> myplugin <- plugInLMM(YS, fixed.part, random.part, reg, con, weights = NULL,
+ backTrans = backTransExp, thetaFun)
> # values of the predictor of arithmetic mean, geometric mean
> # and median of radon measurements:
> myplugin$thetaP
[1] 3.694761 4.553745 3.900000

In this case we can conclude that the predicted values of the aritmethmic mean, geometric mean
and median in county no. 26 equal: 3.694761, 4.553745 and 3.9 picoCurie per liter, respectively. The
problem of prediction accuracy estimation will be discussed in the next sections of the paper.

The qape package allows to use the Empirical Best Predictor (EBP) (see the supplementary
document for this paper) as well. It provides predicted values of any function of the variable of
interest, as the PLUG-IN predictor. However, this requires stronger assumptions to be met. The EBP
procedure available in qape package is prepared under the assumption of the normality of the variable
of interest after any transformation. However, in the case of the considered model for logarithms of
radon measurements, the assumption is not met as we mentioned before based on the results presented
in the literature. It can also be verified using normCholTest function (available in qape package) as
follows:

> normCholTest(radon.model, shapiro.test)$p.value
[1] 2.589407e-08

Moreover, due to the fact of very time-consuming iterative procedure used to compute the EBP for the
general case, in the qape package the function ebpLMMne uses a very fast procedure working only for
nested error Linear Mixed Models (see Molina and Rao (2010)).

The prediction of any function of the random variables based on cross-sectional data has been
considered. Its special case, not presented above but widely discussed in the econometric literature,

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=qape
https://CRAN.R-project.org/package=qape
https://CRAN.R-project.org/package=qape
https://CRAN.R-project.org/package=qape
https://CRAN.R-project.org/package=qape


CONTRIBUTED RESEARCH ARTICLE 74

is the prediction of one random variable, in this case a radon measurement for one non-observed
owner-occupied home. Furthermore, the qape package is also designed for prediction based on
longitudinal data for current or future periods as shown in examples for the EBLUP, plugInLMM and
ebpLMMne functions in the qape-manual file, cf. Wolny-Dominiak and Żądło (2023).

4 Bootstrap procedures

The qape package provides three main types of bootstrap algorithms: the parametric bootstrap, the
residual bootstrap and the double-bootstrap.

The parametric bootstrap procedure is implemented according to González-Manteiga et al. (2007)
and González-Manteiga et al. (2008) and could be described in the following steps:

1. based on n observations of the dependent and independent variables (Ys, Xs and Zs) estimate ψ
to obtain the vector of estimates ψ̂,

2. generate B realizations y∗(b)i of Yi, under the LMM(X, Z, ψ̂) and multivariate normality of
random effects and random components obtaining

y∗(b) =
[
y∗(b)1 ... y∗(b)i ... y∗(b)N

]T
, where i = 1, 2, ..., N and b = 1, 2, ..., B,

3. decompose the vector y∗(b) as follows
[
y∗(b)T

s y∗(b)T
r

]T
,

4. in the bth iteration (b = 1, 2, ..., B)

(a) compute the bootstrap realization θ∗(b) = θ∗(b)(y∗(b), ψ̂) of random variable θ,

(b) obtain the vector of estimates ψ̂
∗(b) using y∗(b)

s and compute the bootstrap realization of

predictor θ̂ denoted by θ̂∗(b)(y∗(b)
s , ψ̂

∗(b)
) based on LMM(X, Z, ψ̂

∗(b)
),

(c) compute bootstrap realizations of prediction error U∗ denoted by u∗ and for the bth
iteration given by:

u∗(b) = θ̂∗(b)(y∗(b)
s , ψ̂

∗(b)
)− θ∗(b)(y∗(b), ψ̂) = θ̂∗(b) − θ∗(b), (12)

5. compute the parametric bootstrap estimators of prediction accuracy measures: RMSE and QAPE
replacing prediction errors U in (2) and (3) by their bootstrap realizations.

Another possible method to estimate the prediction accuracy measures is the residual bootstrap.
In what follows, we use the notation srswr(A, m) to indicate the outcome of taking a simple random
sample with replacement of size m of rows of matrix A. If A is a vector, it simplifies to a simple random
sample with replacement of size m of elements of A.

To obtain the algorithm of the residual bootstrap, it is enough to replace step 2 of the parametric
bootstrap procedure presented above with the following procedure of the population data generation
based on (5):

• generate B population vectors of the variable of interest, denoted by y∗(b) as

y∗(b) = Xβ̂ + Z1v∗(b)
1 + ... + Zlv

∗(b)
l + ... + ZLv∗(b)

L + e∗(b), (13)

where β̂ is an estimator (e.g. REML) of β, e∗(b) is a vector of dimension N × 1 defined as

srswr(col1≤i≤n êi, N), where êi (i = 1, 2, ..., n) are residuals, v∗(b)
l (for 1, 2, ..., L) is the vector of di-

mension Kl Jl × 1 built from the columns of the matrix: srswr
([

v̂l1 . . . v̂lk . . . v̂lKl

]
, Jl

)
of dimension Jl × Kl , where v̂lk are estimates of elements of random effects vector (6).

The next 3–5 steps in this procedure are analogous to steps in the parametric bootstrap procedure.

In the above-described step, it can be seen that if more than one vector of random effect is assumed
at the lth level of grouping, then the elements are not sampled with replacement independently. In
this case, rows of the matrix formed by these vectors are sampled with replacement.

The residual bootstrap algorithm can also be performed with so-called "correction procedure".
This procedure, which can improve the properties of the residual bootstrap estimators due to the
underdispersion of the uncorrected residual bootstrap distributions, is presented in the supplementary
document for this paper.
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5 Bootstrap in qape

Two bootstrap procedures are implemented in separate functions: bootPar() (the parametric bootstrap)
and bootRes() (the residual bootstrap). According to the general Procedure 1, the step preceding the
bootstrap procedure in both functions is the definition of the predictor object. It must be one of the
following: EBLUP, ebpLMMne or plugInLMM. This object has to be passed to bootPar() or bootRes() as
the input parameter predictor. The other input parameters are intuitive: B - the number of bootstrap
iterations and p - order of quantiles in the estimated QAPEs.

The additional input parameter in bootRes() is a logical condition called correction, which makes
it possible to include an additional correction term for both random effects and random components,
presented in the supplementary document for this paper, to avoid the problem of underdispersion of
residual bootstrap distributions.

The main output values in both functions are basically the measures: estRMSE and estQAPE com-
puted based on (2) and (3), respectively, where prediction errors are replaced by their bootstrap
realizations. There is also the output error being the vector of bootstrap realizations of prediction
errors, which is useful e.g. in in-depth analysis of the prediction accuracy and for graphical presenta-
tion of results. To estimate these accuracy measures, we use below the residual bootstrap with the
correction procedure.

As previously stated, our package utilizes the lmer() function from the lme4 package for estimat-
ing model parameters. However, this function has been known to generate convergence warnings
in certain situations, listed for example by Bates et al. (2015) p. 25, when the estimated variances of
random effects are close to zero. Such scenarios may occur when models are estimated for smaller
or medium-sized datasets, when complex variance-covariance structures are assumed, or when the
grouping variable considered for random effects has only a few levels. Although we have not observed
such issues estimating model parameters based on the original dataset required to compute values of
the predictors in previous sections, bootstrapping or Monte Carlo simulations are more complex cases.
This is because, based on the estimates of model parameters, the values of the dependent variables are
generated B times, and then model parameters are estimated in each out of B iterations. Therefore, in
at least some iterations, dependent variable values may be randomly generated giving realizations,
where the variance of the random effect is relatively close to zero. As a result, estimates of model
parameters can be obtained; however, convergence issues implying warnings may occur. In such
cases, there are at least two possible solutions. The first option is to discard iterations with warnings,
which would imply that the dependent variable would not follow the assumed model as required,
but instead only its conditional version with relatively high values of variances of random effects. It
will imply overdispersed bootstrap distribution of random effects, which will affect the bias of the
bootstrap estimators of accuracy measures. The second option is to consider all generated realizations,
despite convergence warnings, as long as the parameters can be estimated for all iterations. We opted
for the latter solution, as argued in Bates et al. (2015) p. 25, who noted that "being able to fit a singular
model is an advantage: when the best fitting model lies on the boundary of a constrained space".

5.1 Example 2

The analyses presented in Example 1 are continued. We extend the previous results to include the
issue of estimating the prediction accuracy of the considered predictors. The use of functions for this
estimation primarily requires an object of class predictor, here "myplugin".

> class(myplugin)
[1] "plugInLMM"

The short chunk of the R code presents the residual bootstrap estimators of the RMSE (estRMSE) and
the QAPE (estQAPE) of the PLUG-IN predictors (plugin) of previously analyzed three characteristics
of radon measurements in county no. 26: the arithmetic mean, geometric mean and median. In this
and subsequent examples we make the computations for relatively high number of iterations allowing,
in our opinion, to get reliable results. These results are also used to prepare Figure 3. However, the
computations are time-consuming. The supplementary R file contains the same chunks of the code
but the number of iterations applied is smaller in order to execute the code swiftly.

> # accuracy measures estimates based on
> # the residual bootstrap with the correction:
> B <- 500 # number of bootstrap iterations
> p <- c(0.75, 0.9) # orders of Quantiles of Absolute Prediction Error
> set.seed(1056)
> residBoot <- bootRes(myplugin, B, p, correction = TRUE)
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> # values of estimated RMSEs of the predictor of three characteristics:
> # the arithmetic mean, geometric mean and median of radon measurements, respectively:
> residBoot$estRMSE
[1] 0.1848028 0.2003681 0.2824359
> # values of estimated QAPEs
> # (of order 0.75 in the first row, and of order 0.9 in the second row)
> # of the predictor of three characteristics:
> # the arithmetic mean, geometric mean and median of radon measurements,
> # in the 1st, 2nd and 3rd column, respectively:
> residBoot$estQAPE

[,1] [,2] [,3]
75% 0.1533405 0.2135476 0.2908988
90% 0.2813886 0.3397411 0.4374534

Let us concentrate on interpretations of estimators of accuracy measures for the predictor of
the geometric mean, i.e. the second value of residBoot$estRMSE, and values in the second column
of residBoot$estQAPE. It is estimated that the average difference between predicted values of the
geometric mean and their unknown realizations equals 0.2003681 picoCurie per liter. Furthermore, it
is estimated that at least 75% of absolute prediction errors of the predictor of the geometric mean are
smaller or equal to 0.2135476 picoCurie per liter and at least 25% of absolute prediction errors of the
predictor are higher or equal to 0.2135476 picoCurie per liter. Finally, it is estimated that at least 90%
of absolute prediction errors of the predictor of the geometric mean are smaller or equal to 0.3397411
picoCurie per liter and at least 10% of absolute prediction errors of the predictor are higher or equal to
0.3397411 picoCurie per liter. The distributions of bootstrap absolute prediction errors with values of
estimated RMSEs and QAPEs for the considered three prediction problems are presented in Figure 3.

Figure 3: The histograms of bootstrap absolute prediction errors for myplugin (for PLUG-IN predictors
of the arithmetic mean, geometric mean and median) for B = 500

Since the assumption of normality is not met, the parametric bootstrap should not be used in this
case. For this reason, we do not present the results for this method below, although – but for illustrative
purposes only – they are presented in the supplementary R file. Moreover, these analyses can also
be conducted using bootParFuture() and bootResFuture() functions where parallel computing
algorithms are applied. The input arguments and the output of these functions are the same as in
bootPar() and bootRes(). Examples based on these functions are also included in the supplementary
R file.

6 Bootstrap under the misspecified model in qape

The qape package also allows to use predictors under a model different from the assumed one (e.g. a
simpler or more robust model), but estimate its accuracy under the assumed model. In this case, the
parametric and residual bootstrap procedures are implemented in bootParMis() and bootResMis()
functions. These functions allow to estimate the accuracy of two predictors under the model correctly
specified for the first of them. Of course, it is expected that the estimated accuracy of the first predictor
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will be better than of the second one, but the key issue can be the difference between estimates of
accuracy measures. A small difference, even to the second predictor’s disadvantage, may be treated
by the user as an argument for using the second predictor due to its properties, such as robustness or
simplicity.

The considered functions allow to estimate the accuracy of two predictors, which belong to the
class plugInLMM, under the model used to define the first of them. The remaining arguments are the
same as in bootPar() and bootRes() functions: B - the number of bootstrap iterations, and p - orders
of QAPE estimates to be taken into account.

The output results of bootParMis() and bootResMis() include – similarly to bootPar() and
bootRes() functions – estimates of the RMSEs and QAPEs of both predictors (denoted here by:
estRMSElmm, estRMSElmmMis, estQAPElmm and estQAPElmmMis), and boostrap realizations of their pre-
diction errors (errorLMM and errorLMMmis).

6.1 Example 3

In this example, we study the same accuracy measures as in Example 2, but the aim is to compare the
predictor myplugin and other predictor defined under the misspecified LMM. First, the misspecified
model has to be defined, and a relevant predictor has to be computed.

> fixed.part.mis <- '1'
> random.part.mis <- '(1|county)'
> myplugin.mis <- plugInLMM(YS, fixed.part.mis, random.part.mis, reg, con,
+ weights = NULL, backTrans = backTransExp, thetaFun)

Having two objects: myplugin and myplugin.mis, one can proceed to a comparison by estimating
bootstrap prediction accuracy performed using the residual bootstrap with correction procedure. In
this case, we estimate the prediction accuracy of these two predictors under the model used to define
the first of them.

> set.seed(1056)
> residBootMis <- bootResMis(myplugin, myplugin.mis, B, p, correction = TRUE)
> # residual bootstrap with the correction RMSE estimators
> # of 'plugin' of: arithmetic mean, geometric mean and median
> # of radon measurements in county 26:
> residBootMis$estRMSElmm
[1] 0.1848028 0.2003681 0.2824359
> # residual bootstrap with the correction RMSE estimators
> # of 'plugin.mis' of: arithmetic mean, geometric mean and median
> # of radon measurements in county 26:
> residBootMis$estRMSElmmMis
[1] 0.1919184 0.3192304 0.2762137
> # residual bootstrap with the correction QAPE estimators of order 0.75 and 0.9
> # of 'plugin' of: arithmetic mean, geometric mean and median
> # of radon measurements in county 26:
> residBootMis$estQAPElmm

[,1] [,2] [,3]
75% 0.1533405 0.2135476 0.2908988
90% 0.2813886 0.3397411 0.4374534
> # residual bootstrap with the correction QAPE estimators of order 0.75 and 0.9
> # of 'plugin.mis' of: arithmetic mean, geometric mean and median
> # of radon measurements in county 26:
> residBootMis$estQAPElmmMis

[,1] [,2] [,3]
75% 0.2267062 0.3802836 0.3255197
90% 0.2813787 0.4970726 0.4489399

The results, presented above, were obtained for the same number of bootstrap iterations as in
Example 2 (B = 500). If we compare, under the model defined in plugin, estimated RMSEs of plugin
and plugin.mis predictors of the geometric mean given by 0.2003681 and 0.3192304 picoCurie per
liter, respectively, we can state that the estimated accuracy (measured by RMSE estimators) of the first
predictor is better comparing with the second one. If we are not interested in the average accuracy
measures but in the right tail of the distribution of prediction errors, we can use estimates of QAPE
of order 0.9 to compare the accuracy. The result for the plugin.mis of the geometric mean equals to
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0.4970726 picoCurie per liter, and it is higher comparing with 0.3397411 picoCurie per liter obtained
for plugin for the same prediction problem. Hence, in this case, the accuracy comparison based both
on the RMSE and QAPE leads to the same finding.

In the previous paragraph, we have focused on the results for the case of prediction of the geometric
mean. If the comparison is made for the case of prediction of the arithmetic mean (the first column
of output results) or the median (the third column of output results), we will come to the same
conclusion regarding the estimated accuracy of plugin and plugin.mis as in the case of prediction of
the geometric mean.

Similarly to the residual bootstrap, the parametric bootstrap procedure paramBootMis available in
qape package can be performed. However, in the considered case the normality assumption is not met
(as discussed above) and the procedure is not recommended. The appropriate chunk of the R code is
presented in the supplementary R file, but it is solely intended for illustrative purposes.

7 Monte Carlo simulation analyses

In the previous section, our aim was to estimate the prediction accuracy under correctly specified
or misspecified model. In this section, we do not estimate the accuracy, but we approximate the
true prediction accuracy under the specified model in the Monte Carlo simulation study. The crucial
difference is that in this case, the model parameters used are obtained based on the whole population
dataset, not the sample. If the number of iterations is large enough, we can treat the computed values
of the measures as their true values, which are unknown in practice.

The last step of the analysis in qape package presented in Procedure 1 is the Monte Carlo (MC)
simulation analysis of:

• properties of predictors

• and properties of parametric, residual and double bootstrap estimators of accuracy measures.

The whole Monte Carlo procedure is as follows.

Procedure 2 Model-based Monte Carlo simulation analyses in qape

1. define the population vector of the dependent variable and the population matrix of auxiliary
variables,

2. provide the information on the division of the population into the sampled and non-sampled
part,

3. define θ - the characteristics of the response variable to be predicted,

4. define the predictors θ̂ and accuracy measures estimators which properties are to be assessed,

5. define the model to be used to generate realizations of the values of the dependent variable and
estimate its parameters based on population data,

6. For k=1, 2, ..., K

6.1. generate the population vector of the response variable based on the assumed model,

6.2. based on population data, compute the characteristics θ, denoted by θk,

6.3. based on sample data, estimate the parameters of the LMM,

6.4. based on sample data, compute values of predictors θ̂, denoted by θ̂k,

6.5. based on sample data, estimate the accuracy of θ̂ using bootstrap methods,

7. End For

8. compute accuracy measures of predictors using θ̂k and θk (for k = 1, 2, ..., K),

9. compute accuracy measures of estimators of prediction accuracy measures.

8 Monte Carlo analyses in qape

In order to perform a Monte Carlo (MC) analysis on the properties of predictors, it is necessary
to have access to the entire population data for both dependent and independent variables. The
function mcLMMmis() can be used with the following arguments. Firstly, the population values of
the dependent variable (after a necessary transformation) should be declared as Ypop. By using the
Ypop values, we can estimate the model parameters based on the entire population data (assuming
that they are known). This allows us to generate values of the dependent variable in the simulation
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study that can mimic its distribution in the entire population, not just in the sample. This approach
ensures that our simulation study can be an accurate representation of the random process in the
entire population, resembling the real-world scenario. Secondly, three predictors: predictorLMMmis,
predictorLMM, predictorLMM2, which belong to the class plugInLMM, are to be defined. The first one
is used only to define the (possibly misspecified) model used to generate population values of the
response variables. Accuracy of predictorLMM and predictorLMM2 is assessed in the simulation study.
The next two arguments include the number of MC iterations K and orders p of QAPEs used to assess
the prediction accuracy. Finally, it should be noted that it is possible to modify covariance matrices of
random components and random effects based on the model defined in predictorLMMmis, which are
used tThiso generate values of the dependent variable. It is possible by declaring values of ratioR
and ratioG arguments, which the diagonal elements of covariance matrices of random components
and random effects, respectively, are divided by.

The output of this function covers the following statistics of both predictors computed in the
simulation study: relative biases (rBlmm and rBlmm2), relative RMSEs (rRMSElmm and rRMSElmm2) and
QAPEs (QAPElmm and QAPElmm2). Simulation-based prediction errors of both predictors (errorLMM and
errorLMM2) are also taken into account.

8.1 Example 4

In the example, an MC simulation is carried out assuming the myplugin predictor. The goal is to
approximate the true accuracy of the prediction assuming model (11). Hence, in the package qape, all
input predictor objects in the function mcLMMmis have to be defined as myplugin.

> # input arguments:
predictorLMMmis <- myplugin # to define the model
predictorLMM <- myplugin # which properties are assessed in the simulation study
predictorLMM2 <- myplugin # which properties are assessed in the sim. study

Except that no modification of covariance matrices has to be used.

# diag. elements of the covariance matrix of random components are divided by:
ratioR <- 1
# diag. elements of the covariance matrix of random effects are divided by:
ratioG <- 1

We specify the number of Monte Carlo iterations.

K <- 500 # the number of MC iterations

The analysis is conducted in the object MC.

> set.seed(1086)
> MC <- mcLMMmis(Ypop, predictorLMMmis, predictorLMM, predictorLMM2,
+ K, p, ratioR, ratioG)
> # relative bias of 'predictorLMM'
> # of the arithmetic mean, geometric mean and median in county 26 (in %):
> MC$rBlmm
[1] -1.73208393 -0.04053178 -5.22355236

Results of the relative biases are obtained. It is seen, that under the assumed model the values of the
considered predictor of the geometric mean (the second value of MC$rBlmm) are smaller than possible
realizations of the geometric mean on average by 0.04053178%. In turn, the relative RMSEs are as
follows.

> # relative RMSE of 'predictorLMM'
> # of the arithmetic mean, geometric mean and median in county 26 (in %):
> MC$rRMSElmm
[1] 3.429465 4.665810 7.146678

In the considered case, the average difference between predicted values of the geometric mean and
its possible realizations (the second value of MC$rRMSElmm) equals 4.665810%. It should be noted that
this value can be treated as the true value of the relative RMSE (if the number of iterations is large
enough), not the estimated value obtained in Examples 2 and 3.

Finally, QAPEs of orders 0.75 and 0.9 are considered.
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> # QAPE of order 0.75 and 0.9 of 'predictorLMM'
> # of the arithmetic mean, geometric mean and median in county 26:
> MC$QAPElmm

[,1] [,2] [,3]
75% 0.1491262 0.1989504 0.2919221
90% 0.2895684 0.2959457 0.4728064

Let us interpret the results presented in the second column of MC$QAPElmm. At least 75% (90%) of
absolute prediction errors of the predictor of the geometric mean are smaller or equal to 0.1989504
(0.2959457) picoCurie per liter and at least 25% (10%) of absolute prediction errors of the predictor
are higher or equal to 0.1989504 (0.2959457) picoCurie per liter. Similar to the values of the rRMSEs
in the previous code chunk, the values can be considered to be true QAPE values, not the estimates
presented in Examples 2 and 3.

In Example 4, the accuracy of one predictor under the model used to define this predictor was
presented. A more complex version of the simulation study, where the properties of two predictors
are studied under the model defined by the third predictor, is presented in the supplementary R file.
What is more, the qape package also allows to use mcBootMis() function to conduct MC analyses of
properties of accuracy measure estimators (estimators of MSEs and QAPEs) of two predictors (which
belong to the class plugInLMM) declared as arguments. The model used in the simulation study is
declared in the first predictor, but the properties of accuracy measures estimators of both predictors are
studied. Output results of mcBootMis() covers simulation results on properties of different accuracy
measures estimators, including the relative biases and relative RMSEs of the parametric bootstrap
MSE estimators of both predictors. The same simulation-based statistics but for parametric bootstrap
QAPE estimators are also included. Other bootstrap methods, including the residual bootstrap with
and without the correction procedure, are also taken into account. The full list of output arguments of
mcBootMis() function are presented in qape-manual file, cf. Wolny-Dominiak and Żądło (2023).

9 Conclusions

The package enables R users to make predictions and assess the accuracy under linear mixed models
based on different methods in a fast and intuitive manner – not only based on the RMSE but also
based on Quantiles of Absolute Prediction Errors. It also covers functions which allow to conduct
Monte Carlo simulation analyses of properties of the methods of users interest. Its main advantage,
compared to other packages, is the considerable flexibility in terms of defining the model (as in the
lme4 package) and the predicted characteristic, but also the transformation of the response variable.

In our opinion, the package is useful for scientists, practitioners and decision-makers in all areas
of research where accurate estimates and forecasts for different types of data (including cross-sectional
and longitudinal data) and for different characteristics play the crucial role. We believe that it will be
of special interest to survey statisticians interested in the prediction for subpopulations with small or
even zero sample sizes, called small areas.
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A. Wolny-Dominiak and T. Żądło. qape: Quantile of Absolute Prediction Errors, 2023. URL https:
//CRAN.R-project.org/package=qape. R package version 2.0. [p71, 74, 80]
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