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bootCT: An R Package for Bootstrap
Cointegration Tests in ARDL Models
by Gianmarco Vacca, Maria Zoia, Stefano Bertelli

Abstract The Autoregressive Distributed Lag approach to cointegration or bound testing, proposed
by Pesaran in 2001, has become prominent in empirical research. Although this approach has many
advantages over the classical cointegration tests, it is not exempt from drawbacks, such as possible
inconclusive inference and distortion in size. Recently, Bertelli and coauthors developed a bootstrap
approach to the bound tests to overcome these drawbacks. This paper introduces the R package
bootCT, which implements this method by deriving the bootstrap versions of the bound tests and of the
asymptotic F-test on the independent variables proposed by Sam and coauthors in 2019. As a spinoff,
a general method for generating random multivariate time series following a given VECM/ARDL
structure is provided in the package. Empirical applications showcase the main functionality of the
package.

1 Introduction

Cointegration and error correction are fundamental concepts in the analysis of economic data, insofar
as they provide an appropriate framework for testing economic hypotheses about growth and fluctu-
ation. Several approaches have been proposed in the literature to determine whether two or more
non-stationary time series are cointegrated, meaning they share a common long-run relationship.
There are two basic types of tests for cointegration: single equation tests and VAR-based tests. The
former check the presence of unit roots in cointegration residuals (see, e.g., Engle and Granger, 1987;
Engle and Yoo, 1987; Mackinnon, 1991; Gabriel et al., 2002; Cook, 2006) or test the significance of
the error-correction (EC) term coefficient (Kremers et al., 1992; Maddala and Kim, 1998; Arranz and
Escribano, 2000; Ericsson and MacKinnon, 2002). The latter, such as the Johansen (1991) approach,
tackle the problem of detecting cointegrating relationships in a VAR model. This latter approach,
albeit having the advantage of avoiding the issue of normalization, as well as allowing the detection
of multiple cointegrating vectors, is far from being perfect. In the VAR system all variables are treated
symmetrically, as opposed to the standard univariate models that usually have a clear interpretation
in terms of exogenous and endogenous variables. Furthermore, in a VAR system all the variables are
estimated at the same time, which is problematic if the relation between some variables is flawed, that
is affected by some source of error. In this case a simultaneous estimation process tends to propagate
the error affecting one equation to the others. Furthermore, a multidimensional VAR models employs
plenty of degrees of freedom.
The recent cointegration approach, known as Autoregressive Distributed Lag (ARDL) approach to
cointegration or bound testing, proposed by Pesaran et al. (2001) (PSS), falls in the former strand
of literature. It has become prominent in empirical research because it shows several advantages
with respect to traditional methods for testing cointegration. First, it is applicable also in cases of
mixed order integrated variables, albeit with integration not exceeding the first order. Thus, it evades
the necessity of pre-testing the variables and, accordingly, avoids some common practices that may
prevent finding cointegrating relationships, such as dropping variables or transforming them into
stationary form (see McNown et al., 2018). Second, cointegration bound tests are performed in
an ARDL model that allows different lag orders for each variable, thus providing a more flexible
framework than other commonly employed approaches. Finally, unlike other cointegration techniques,
which are sensitive to the sample size, the ARDL approach provides robust and consistent results for
small sample sizes.
Notably, the ARDL bound testing methodology has quickly spread in economics and econometrics to
study the cointegrating relationships between macroeconomic and financial variables, to evaluate the
long-run impact of energy variables, or to assess recent environmental policies and their impact on
the economy. Among the many applications, see for instance Haseeb et al. (2019); Reda and Nourhan
(2020); Menegaki (2019); Yilanci et al. (2020); Hussain et al. (2019); Abbasi et al. (2021).
The original bound tests proposed by Pesaran et al. (2001) are an F-test for the significance of the
coefficients of all lagged level variables entering the error correction term (Fov), and a t-test for the
coefficient of the lagged dependent variable. When either the dependent or the independent variables
do not appear in the long-run relationship, a degenerate case arises. The bound t-test provides answers
on the occurrence of a degenerate case of second type, while the occurrence of a degeneracy case of
first type can be assessed by testing whether the dependent variable is of integration order I(1). This
type of check violates the spirit and motivation of the bound tests, which are supposed to be applicable
in situations of unknown order of integration for the variables.
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Recently, McNown et al. (2018) pointed out how, due to the low power problem of unit root tests,
investigating the presence of a first type degeneracy by testing the integration order of the dependent
variable may lead to incorrect conclusions. Therefore, they suggested checking for its occurrence by
testing the significance of the lagged levels of the independent variables via an extra F-test (Find),
which was also worked out in its asymptotic version (SMK; Sam et al., 2019).
Besides problems in testing the occurrence of degenerate cases, in general, the main drawback of
the bound tests is the occurrence of potentially inconclusive results, if the test statistic lies between
the bounds of the test distribution under the null. Furthermore, the asymptotic distributions of the
statistics may provide a poor approximation of the true distributions in small samples. Finite sample
critical values, even if only for a subset of all possible model specifications, have been worked out
in the literature (see Mills and Pentecost, 2001; Narayan and Smyth, 2004; Kanioura and Turner,
2005; Narayan, 2005), while Kripfganz and Schneider (2020) provided the quantiles of the asymptotic
distributions of the tests as functions of the sample size, the lag order and the number of long-run
forcing variables. However, this relevant improvement does not eliminate the uncertainty related to
the inconclusive regions, or the existence of other critical issues related to the underlying assumptions
of the bound test framework, such as the (weak) exogeneity of the independent variables or the
non-stationarity of the dependent variable.
To overcome the mentioned bound test drawbacks, Bertelli et al. (2022) proposed bootstrapping the
ARDL cointegration test. Inference can always be pursued with ARDL bootstrap tests, unlike what
happens with both the PSS tests and the SMK test on the independent variables. Bootstrap ARDL tests
were first put forward by McNown et al. (2018) in an unconditional ARDL model, which omits the
instantaneous differences of the exogenous variables in the ARDL equation, rather than a conditional
one, as originally proposed by Pesaran et al. (2001). The unconditional model is often used, for
reason of practical convenience, in empirical research. Simulation results in Bertelli et al. (2022) have
highlighted the importance of employing the appropriate specification, especially under degenerate
cases. In fact, it has been pointed out that a correct detection of these cases requires the comparison of
the test outcomes in both the conditional and unconditional settings. Erroneous conclusions, based
exclusively on one model specification, can thus be avoided.
In this paper, bootstrap bound tests, thereby including the bootstrap versions of the Fov, t and Find
bound tests, are carried out in a conditional ARDL model setting. This approach allows to overcome
the problem of inconclusive regions of the standard bound tests. A comparison with the outcomes
engendered by the unconditional ARDL bootstrap tests is nevertheless provided for the Find test, to
avoid erroneous inference in presence of degenerate cases.
The paper is organized as follows. Section 2.2 introduces the theoretical results of the ARDL coin-
tegration bound tests. Section 2.3 details the steps carried out by the bootstrap procedure, which
allows the construction of the (bootstrap) distribution - under the null - for the Fov, t, conditional Find
and unconditional Find tests. Section 2.4 introduces the R package bootCT (Vacca and Bertelli, 2023)
and its functionalities: a method for the generation of random multivariate time series that follow
a user-specified VECM/ARDL structure, with some examples, and the main function that carries
out the aforementioned bootstrap tests, while also computing the PSS and SMK bound tests. The
trade-off between accuracy and computational time of the bootstrap procedure is also investigated,
under several scenarios in terms of sample size and number of replications. Notably, a function that
performs the PSS bound tests is already available in the dynamac package (Jordan and Philips, 2020),
while no R routine has so far been implemented for the SMK test, to the best of our knowledge. Section
2.5 gives some empirical applications that employ the core function of the package and its possible
outputs. Section 2.6 concludes. Appendix 2.7 briefly delves into technical details of the conditional
ARDL model and its possible specifications 1.

2 Cointegration bound tests in ARDL models

The starting point of the approach proposed by Pesaran et al. (2001) is a (K + 1) VAR(p) model

A(L)(zt − µ − ηt) = εt εt ∼ N(0, Σ), A(L) =

IK+1 −
p

∑
j=1

AjL
j

 t = 1, 2, . . . , T. (1)

1The R packages, either used in the creation of bootCT or employed in the analyses presented in this paper,
are magrittr (Bache and Wickham, 2022), gtools (Bolker et al., 2022), pracma (Borchers, 2022), Rcpp (Eddelbuettel,
2013), RcppArmadillo (Eddelbuettel et al., 2023), Rmisc (Hope, 2022), dynamac (Jordan and Philips, 2020), ARDL
(Natsiopoulos and Tzeremes, 2021), aod (Lesnoff et al., 2012), vars and urca (Pfaff, 2008a,b), aTSA (Qiu, 2015),
tseries (Trapletti and Hornik, 2023), reshape2, ggplot2 and stringr (Wickham, 2007, 2016, 2022), tidyverse and
dplyr (Wickham et al., 2019, 2023).
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Here, Aj are square (K + 1) matrices, zt a vector of (K + 1) variables, µ and η are (K + 1) vectors
representing the drift and the trend respectively, and det(A(z)) = 0 for |z| ≥ 1. If the matrix
A(1) = IK+1 − ∑

p
j=1 Aj is singular, the components of zt turn out to be integrated and possibly

cointegrated.
The VECM representation of (1) is given by (see Appendix 2.7.1 for details)

∆zt = α0 + α1t − A(1)zt−1 +
p−1

∑
j=1

Γj∆zt−j + εt. (2)

Now, to study the adjustment to the equilibrium of a single variable yt, given the other xt variables,
the vectors zt and εt are partitioned

zt =

 yt
(1,1)
xt

(K,1)

 , εt =

 εyt
(1,1)
εxt
(K,1)

 . (3)

The matrix A(1), which is assumed to be singular to allow cointegration, is partitioned conformably to
zt as 2

A(1) =


ayy
(1,1)

a′yx
(1,K)

axy
(K,1)

Axx
(K,K)

 . (4)

Under the assumption

εt ∼ N

(
0,


σyy
(1,1)

σ′
yx

(1,K)
σxy
(K,1)

Σxx
(K,K)


)

, (5)

the following holds
εyt = ω′εxt + νyt ∼ N(0, σy.x), (6)

where σy.x = σyy − ω′σxy with ω′ = σ′
yxΣ−1

xx , and νyt is independent of εxt.
Substituting (6) into (2) and assuming that the xt variables are exogenous towards the ARDL parame-
ters (that is, setting axy = 0 in A(1)) yields the system (see Appendix 2.7.1 for details)

∆yt = α0.y + α1.yt − ayyECt−1 +
p−1

∑
j=1

γ′
y.x,j∆zt−j + ω′∆xt + νyt (7)

∆xt = α0x + α1xt + A(x)zt−1 + Γ(x)(L)∆zt + εxt, (8)

where
γ′

y.x,j = γ′
y,j − ω′Γ(x),j (9)

α0.y = α0y − ω′α0x, α1.y = α1y − ω′α1x, (10)

and where the error correction term, ECt−1, expressing the long-run equilibrium relationship between
yt and xt, is given by

ECt−1 = yt−1 − θ0 − θ1t − θ′xt−1, (11)

with

θ0 = µy − θ′µx, θ1 = ηy − θ′ηx, θ′ = −
ã′y.x

ayy
= −

a′yx − ω′Axx

ayy
. (12)

Thus, no cointegration occurs when ãy.x = 0 or ayy = 0 . These two circumstances are referred to
as degenerate case of second and first type, respectively. Degenerate cases imply no cointegration
between yt and xt.
To test the hypothesis of cointegration between yt and xt, Pesaran et al. (2001) proposed an F-test, Fov
hereafter, based on the hypothesis system

H0 : ayy = 0 ∩ ãy.x = 0 (13)

H1 : ayy ̸= 0 ∪ ãy.x ̸= 0. (14)

2If the explanatory variables are stationary Axx is non-singular (rk(Axx) = K), while when they are integrated
but without cointegrating relationship Axx is a null matrix.
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Note that H1 covers also the degenerate cases

Hy.x
1 : ayy = 0 , ãy.x ̸= 0 (15)

Hyy
1 : ayy ̸= 0 , ãy.x = 0. (16)

The exact distribution of the F statistic under the null is unknown, but it is limited from above and
below by two asymptotic distributions: one corresponding to the case of stationary regressors, and
another corresponding to the case of first-order integrated regressors. As a consequence, the test is
called bound test and has an inconclusive area. 3

Pesaran et al. (2001) worked out two sets of (asymptotic) critical values: one, {τL,F}, for the case when
xt ∼ I(0) and another, {τU,F}, for the case when xt ∼ I(1). These values vary in accordance with the
number of regressors in the ARDL equation, the sample size and the assumptions made about the
deterministic components (intercept and trend) of the data generating process.
In this regard, Pesaran et al. (2001) introduced five different specifications for the ARDL model,
depending on its deterministic components, which are (see Appendix 2.7.2 for details)

I. No intercept and no trend

∆yt = −ayyECt−1 +
p−1

∑
j=1

γ′
y.x,j∆zt−j + ω′∆xt + νyt, (17)

where ECt−1 = yt−1 − θ′xt−1,

II. Restricted intercept and no trend

∆yt = −ayyECt−1 +
p−1

∑
j=1

γ′
y.x,j∆zt−j + ω′∆xt + νyt, (18)

where ECt−1 = yt−1 − θ0 − θ′xt−1. The intercept extracted from the EC term is αEC
0.y = ayyθ0.

III. Unrestricted intercept and no trend

∆yt = α0.y − ayyECt−1 +
p−1

∑
j=1

γ′
y.x,j∆zt−j + ω′∆xt + νyt, (19)

where ECt−1 = yt−1 − θ′xt−1.

IV. Unrestricted intercept, restricted trend

∆yt = α0.y − ayyECt−1 +
p−1

∑
j=1

γ′
y.x,j∆zt−j + ω′∆xt + νyt, (20)

where ECt−1 = yt−1 − θ1t − θ′xt−1. The trend extracted from the EC term is αEC
1.y = ayyθ1.

V. Unrestricted intercept, unrestricted trend

∆yt = α0.y + α1.yt − ayyECt−1 +
p−1

∑
j=1

γ′
y.x,j∆zt−j + ω′∆xt + νyt, (21)

where ECt−1 = yt−1 − θ′xt−1.

The model in (7) proposed by Pesaran et al. (2001) represents the correct framework in which to carry
out bound tests. However, bound test are often performed in an unconditional ARDL model setting,
specified as

∆yt = α0.y + α1.yt − ayyECt−1 +
p−1

∑
j=1

γ′
j∆zt−j + εyt, (22)

which omits the term ω′∆xt.
Bertelli et al. (2022) have highlighted that bootstrap tests performed in these two ARDL specifications
can lead to contrasting results. To explain this divergence, note that the conditional model makes use
of the following vector in the EC term

ã′y.x = a′yx − ω′Axx (23)

3The knowledge of the rank of the cointegrating matrix is necessary to overcome this impasse.
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(divided by ayy, see (12)) to carry out bound tests, while the unconditional one only uses the vector
a′yx, (divided by ayy), since it neglects the term ω′Axx. 4 This can lead to contrasting inference in two
instances. The first happens when a degeneracy of first type occurs in the conditional model, that is

ã′y.x = 0, (24)

because
a′yx = ω′Axx. (25)

In this case, the conditional model rejects cointegration, while the unconditional one concludes the
opposite. The other case happens when a degeneracy of first type occurs in the unconditional model,
that is

a′yx = 0, (26)

but
ã′y.x = ω′Axx ̸= 0. (27)

In this case, the unconditional model rejects cointegration, while the conditional one concludes for
the existence of cointegrating relationships, which are however spurious. Only a comparison of the
outcomes of the Find test performed in both the conditional and unconditional ARDL equation can
help to disentangle this problem. 5

In the following, bootstrap tests are carried out in the conditional ARDL model (7). However, when
a degeneracy of first type occurs in the unconditional model, the outcomes of the Find bootstrap
test performed in both the conditional and unconditional settings are provided. This, as previously
outlined, is performed to avoid the acceptance of spurious long-run relationships among the dependent
variable and the independent variables.

3 The new bootstrap procedure

The bootstrap procedure here proposed focuses on a ARDL model specified as in (17)-(21), depending
on the assumptions on the deterministic components.
The bootstrap procedure consists of the following steps:

1. The ARDL model is estimated via OLS and the related test statistics Fov, t or Find are computed.

2. In order to construct the distribution of each test statistic under the corresponding null, the
same model is re-estimated imposing the appropriate restrictions on the coefficients according
to the test under consideration.

3. Following McNown et al. (2018), the ARDL restricted residuals are then computed. For example,
under Case III, the residuals are

ν̂Fov
yt = ∆yt − α̂0.y −

p−1

∑
j=1

γ̂′
y.x,j∆zt−j − ω̂′∆xt (28)

ν̂t
yt = ∆yt − α̂0.y + ̂̃a′y.xxt−1 −

p−1

∑
j=1

γ̂′
y.x,j∆zt−j − ω̂′∆xt (29)

ν̂Find
yt = ∆yt − α̂0.y + âyyyt−1 −

p−1

∑
j=1

γ̂′
y.x,j∆zt−j − ω̂′∆xt. (30)

Here, the apex ” .̂ ” denotes the estimated parameters. The other cases can be dealt with in a
similar manner.

4. The VECM model

∆zt = α0 − Azt−1 +
p−1

∑
j=1

Γj∆zt−j + εt (31)

is estimated as well (imposing weak exogeneity), and the residuals

ε̂xt = ∆xt − α̂0x + Âxxxt−1 −
p−1

∑
j=1

Γ̂(x)j∆zt−j (32)

4The latter is introduced in the ARDL equation by the operation of conditioning yt on the other variables xt of
the model

5In fact, as ω′Axxxt ≈ I(0), the conclusion that yt ≈ I(0) must hold. This in turn entails that no cointegration
occurs between yt and xt.
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are computed. This approach guarantees that the residuals ε̂xt, associated to the variables xt
explained by the marginal model (8), are uncorrelated with the ARDL residuals ν̂.

yt.

5. A large set of B bootstrap replicates are sampled from the residuals calculated as in (28),(29),
(30) and (32). In each replication, the following operations are carried out:

(a) Each set of (T − p) resampled residuals (with replacement) ν̂
(b)
zt = (ν̂

(b)
yt , ε̂

(b)
xt ) is re-centered

(see Davidson and MacKinnon, 2005)

˙̂ν(b)yt = ν̂
(b)
yt − 1

T − p

T

∑
t=p+1

ν̂
(b)
yt (33)

˙̂εb
xit = ε̂

(b)
xit −

1
T − p

T

∑
t=p+1

ε̂
(b)
xit i = 1, . . . , K. (34)

(b) A sequential set of (T − p) bootstrap observations, y∗t , x∗t t = p + 1, . . . , T, is generated
as follows

y∗t = y∗t−1 + ∆y∗t , x∗t = x∗t−1 + ∆x∗t , (35)

where ∆x∗t are obtained from (32) and ∆y∗t from either (28), (29) or (30) after replacing in
each of these equations the original residuals with the bootstrap ones.
The initial conditions, that is the observations before t = p + 1, are obtained by drawing
randomly p observations in block from the original data, so as to preserve the data
dependence structure.

(c) An unrestricted ARDL model is estimated via OLS using the bootstrap observations, and

the statistics F(b),H0
ov , t(b),H0 F(b),H0

ind are computed.

6. The bootstrap distributions of
{

F(b),H0
ov

}B
b=1,

{
F(b),H0

ind
}B

b=1 and
{

t(b),H0
}B

b=1 under the null are
then employed to determine the critical values of the tests. By denoting with M∗

b the ordered
bootstrap test statistic, and with α the nominal significance level, the bootstrap critical values
are determined as follows

c∗α,M = min
{

c :
B

∑
b=1

1{M∗
b>c} ≤ α

}
M ∈ {Fov, Find} (36)

for the F tests and

c∗α,t = max
{

c :
B

∑
b=1

1{t∗b<c} ≤ α

}
(37)

for the t test.
Here, 1{x∈A} is the indicator function, which is equal to one if the condition in subscript is
satisfied and zero otherwise.

The null hypothesis is rejected if the F statistic computed at step 1, Fov or Find, is greater than the
respective c∗α,M, or if the t statistic computed at the same step is lower than c∗α,t.

4 Illustration of the bootCT package

This section describes the main functionalities of the bootCT package. The functions included in
the package are essentially of two types. The function sim_vecm_ardl generates data according to a
given data generating process (DGP), assuming either the presence or the absence of cointegrating
relationships between variables, or degenerate cases. The function boot_ardl tests the presence of
cointegrating relationships employing the Pesaran ARDL bound tests (Fov and t), the SMK bound test
on lagged independent variables (Find), and the novel ARDL bootstrap testing procedure.

4.1 Generating a multivariate time series: the sim_vecm_ardl function

The function sim_vecm_ardl allows to simulate a multivariate time series from a given conditional
ARDL specification for a dependent variable yt and a VAR/VECM specification for the remaining
independent variables xt. In this regard, it represents an interesting addition to extant data generating
procedures for VAR/VECM models. The arguments of this function can be divided into two subgroups.
A group of parameters pertains the VECM model (7) and (8), with Axx identifying the matrix of the
long-run relationships among the xt variables, and Γj’s, j = 1, ..., p − 1 the short-run matrices of the
system variables. Additionally, the parameter ayy weighs the EC term for yt, while a′yx is the parameter
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vector weighting the variables xt in the ARDL equation. The vector a′yx, after conditioning yt on the
other variables (xt, see model 7) becomes ã′y.x = a′yx − ω′Axx.
The second group of parameters concerns the model intercept and trend of the VAR specification, µ

and η, which in the VECM representation become α0 = Aµ + (IK+1 − ∑
p−1
i=1 Γj − A)η and α1 = Aη

and in the conditional ARDL become αEC
0.y = ayy(µy − ã′y.xµx) + γ′

y.x(1)η and aEC
1.y = ayy(ηy − ã′y.xηx).

As explained in Appendix 2.7.2, intercept and trend appear in the error correction (EC) term of the
ARDL equation only when restricted. Accordingly, they both do not appear in the EC in the case I, the
intercept does not appear in the EC term in cases III, IV and V (it is freely set to α0.y) while the trend
appears in the EC term only in the case IV (it is freely set to α1.y for case V). Accordingly, when these
terms are not restricted, they need to be supplied by the user.
The approach used to specify the function inputs offers great control to the user, in terms of generating
specific (conditional) ARDL-based cointegration structures.
The function sim_vecm_ardl takes the following arguments:

• nobs: number of observations to generate;

• case: indicates the conditional ARDL specification in terms of deterministic component (in-
tercept and trend) among the five specifications proposed by Pesaran et al. (2001), given in
(17)-(21).

• sigma.in: covariance matrix, Σ, of the error term εt;

• gamma.in: list of short-run parameter matrices Γj;

• axx.in: cointegrating relationships, Axx, pertaining the independent variables in the marginal
VECM model;

• ayx.uc.in: vector of parameters, as in ayx;

• ayy.in: the ayy term, weighting the EC term in the ARDL equation;

• mu.in: mean vector, µ, in the starting VAR specification, used to define the VECM intercept for
CASE II;

• eta.in: trend vector, η, in the starting VAR specification, used to define the VECM trend for
case IV;

• azero.in: unrestricted intercept of the VECM specification (valid only for cases III, IV and V),
when the intercept is not involved in the EC term;

• aone.in: unrestricted coefficient of the trend in the VECM specification (valid only for case V),
when the trend is not involved in the EC term;

• burn.in: additional observations burn-in observations to be generated. A total of burn.in +
nobs observations are generated, but only the last nobs are kept in the data;

• seed.in: seed number for the generation of εt ∼ N(0, Σ).

If parameter values for mu.in, eta.in, azero.in, or aone.in and case number turn out to be in
contradiction, an error message is displayed.
As output, the function gives out a list containing the data, both in level and first difference, along with
all the parameter values given as input. Additionally, all intermediate transformation of parameters
via VECM transformation or as a by-product of conditioning yt on xt are included in the output.
Figure 1 depicts three-time series, dep_1_0, ind_1_0 and ind_2_0, generated using this function
and affected by a cointegrating relationship, one panel for each case, from I to V. The variable
dep_1_0 represents the dependent variable yt of the ARDL equation, while ind_1_0 and ind_2_0 the
independent ones, x1t and x2t.
The code used to generate the data for case I is the following:

corrm = matrix(c( 0, 0, 0,
0.25, 0, 0,
0.4, -0.25, 0), nrow = 3, ncol = 3, byrow = T)

Corrm = (corrm + t(corrm)) + diag(3)

sds = diag(c(1.3, 1.2, 1))

sigma.in = (sds %*% Corrm %*% t(sds))

gamma1 = matrix(c(0.6, 0, 0.2,
0.1, -0.3, 0,
0, -0.3, 0.2), nrow = 3, ncol = 3,byrow=T)

gamma2= gamma1 * 0.3
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omegat = sigma.in[1, -1] %*% solve(sigma.in[-1, -1])
axx.in = matrix(c( 0.3, 0.5,

-0.4, 0.3), nrow = 2, ncol = 2, byrow = T)
ayx.uc.in = c(0.4, 0.4)
ayy.in = 0.6

data.vecm.ardl_1 =
sim_vecm_ardl(nobs = 200,

case = 1,
sigma.in = sigma.in,
gamma.in = list(gamma1, gamma2),
axx.in = axx.in,
ayx.uc.in = ayx.uc.in,
ayy.in = ayy.in,
mu.in = rep(0, 3),
eta.in = rep(0, 3),
azero.in = rep(0, 3),
aone.in = rep(0, 3),
burn.in = 100,
seed.in = 999)

Additionally, Figure 2 displays other three time series, dep_1_0 (yt), ind_1_0 (x1t) and ind_2_0 (x2t),
when a degeneracy of second type occurs (ayy = 0) in the long-run relationship in the ARDL equation
of dep_1_0 on ind_1_0, ind_2_0. The five panels represents the behavior of these series in the Cases
from I to V. It is worth noting the different scenario implied by these cases: case III depicts a trend for
the yt variable, case IV highlights the inclusion of a trend in the cointegrating relationship, and case V
exhibits a quadratic trend in the yt variable.
Finally, the flowchart in Figure 3 details the internal steps of the function sim_vecm_ardl and the
data generation workflow. There, it is specified how the parameters of the VAR, VECM and ARDL
equation are introduced. Attention is paid on whether the error correction mechanism involves either
intercept or trend (or both) via the internal computation of the parameters θ0 and θ1 (and thus αEC

0.y

and αEC
1.y ). When the EC term does not involve intercept and/or trend, α0 and α1 are supplied by the

user, depending on the case under study.
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Figure 1: Simulated data from the VECM / conditional ARDL specifications, for every case. Made
with ggplot (Wickham, 2016).
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Figure 2: Simulated data from the VECM / conditional ARDL specifications (degenerate case of type
2, ayy = 0), for every case. Made with ggplot.
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VAR/VECM input
µ, η, α0, α1, case

VECM/ARDL input
Axx, ayx, ayy, Γj

VECM Intercept and trend

CASE I:
µ = η = 0 → α0 = α1 = 0

CASE II:
µ input, η = 0, α0 = A(1)µ, α1 = 0

CASE III:
η = 0

α0 input, α1 = 0

CASE IV:
α0 input, η input, α1 = A(1)η

CASE V:

α0 input, α1 input

Long-run VECM matrix

A =

[
ayy a′yx
0 Axx

]
.

Short-run VECM
matrices Γj

Γ(1) = IK − ∑
p
j=1 Γj

ARDL Intercept and trend

CASE I:
µ = η = 0 →

θ0 = α0.y = θ1 = α1.y = 0

CASE II:
θ0 ̸= 0 α0.y = 0 (Intercept in EC)

η = 0 → θ1 = α1.y = 0

CASE III:
α0.y = α0y − ω′α0x (θ0 = 0)

η = 0 → θ1 = α1.y = 0

CASE IV:
α0.y = α0y − ω′α0x (θ0 = 0)

θ1 ̸= 0 α1.y = 0 (Trend in EC)

CASE V:
α0.y = α0y − ω′α0x (θ0 = 0)

α1.y = α1y − ω′α1x (θ1 = 0)

Σ input.
Error generation
u′

t ∼ NK+1(0, Σ)

Conditioning
ω′ = σ′

yxΣ−1
xx

ã′y.x = a′yx − ω′Axx

Ã =

[
ayy ã′y.x
0 Axx

]
γy.x,j = γyx − ω′Γ(x),j

Γ̃j =

[
γy.x,j
Γ(x),j

]
νyt = εyt − ω′εxt

Other input:
nobs, burn.in

∆xt via (8)
xt = ∆xt + xt−1

∆yt via (7)
yt = ∆yt + yt−1

Unconditional parameters for ∆xt Conditional parameters for ∆yt

Until nobs+burn.in. Discard burn.in

Figure 3: Flowchart of the sim_vecm_ardl function inner steps. When applying (7) and (8), ytj = 0, ∆ytj = 0, xtj = 0, ∆xtj = 0 for any tj < 1. Boxes denote parameter definitions and
transformations. Circles denote crucial actions, Empty nodes denote function inputs.
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4.2 Bootstrapping the ARDL bound tests: the boot_ardl function

This function develops the bootstrap procedure detailed previously. As an option in the initial
estimation phase, it offers the possibility of automatically choosing the best order for the lagged
differences of all the variables in the ARDL and VECM models. This is done by using several criteria.
In particular, AIC, BIC, AICc, R2 and R2

adj are used as lag selection criteria for the ARDL model, while
the overall minimum between AIC, HQIC, SC and FPE is used for the lag selection for the VECM.
In particular, the auto_ardl function in the package ARDL (Natsiopoulos and Tzeremes, 2021) selects
the best ARDL order in terms of the short-run parameter vectors γy.x,j, while the VARselect function
in the package vars (Pfaff, 2008a) selects the best VECM order in terms of the short-run parameter
matrices Γ(x),j. Furthermore, the user can input a significance threshold for the retention of single
parameters in the Γj and in the γy.x,j vectors.
The function boot_ardl takes the following arguments:

• data: input dataset. Must contain a dependent variable and a set of independent variables;

• yvar: name of the dependent variable enclosed in quotation marks. If unspecified, the first
variable in the dataset is used;

• xvar: vector of names of the independent variables, each enclosed in quotation marks. If
unspecified, all variables in the dataset except the first are used;

• fix.ardl: vector (j1, . . . , jK), containing the maximum orders of the lagged differences (i.e.,
∆yt−j1 , ∆x1,t−j2 , . . . , ∆x1,t−jK ) for the short term part of the ARDL equation, chosen in advance;

• info.ardl: (alternatively to fix.ardl) the information criterion used to choose the best lag
order for the short term part of the ARDL equation. It must be one between AIC (default), AICc,
BIC, R2, , adjR2;

• fix.vecm: scalar m containing the maximum order of the lagged differences (i.e., ∆zt−m) for the
short term part of the VECM equation, chosen in advance;

• info.vecm: (alternatively to fix.vecm) the information criterion used to choose the best lag
order for the short term part of the VECM equation. Must be one among AIC (default), HQIC, SC,
FPE;

• maxlag: (in conjunction with info.ardl / info.vecm) maximum number of lags for the auto_ardl
function in the package ARDL, and for the VARselect function in the package vars;

• a.ardl: significance threshold for the short-term ARDL coefficients (γy.x,j) in the ARDL model
estimation;

• a.vecm: significance threshold for the short-term VECM coefficients (in Γj) in the VECM model
estimation;

• nboot: number of bootstrap replications;

• case: type of the specification for the conditional ARDL in terms of deterministic components
(intercept and trend) among the five proposed by Pesaran et al. (2001), given in (17)-(21);

• a.boot.H0: probability/ies α by which the critical quantiles of the bootstrap distribution(s) c∗α,Fov
,

c∗α,t and c∗α,Find
must be calculated;

• print: if set to TRUE, shows the progress bar.

boot_ardl makes use of the lag_mts function which produces lagged versions of a given matrix of
time series, each column with a separate order. lag_mts takes as parameters the data included in a
matrix X and the lag orders in a vector k, with the addition of a boolean parameter last.only, which
allows to specify whether only the k-th order lags have to be retained, or all the lag orders from the
first to the k-th.
boot_ardl also acts as a wrapper for the most common methodologies detecting cointegration, offering
a comprehensive view on the testing procedures involved in the analysis. The resulting object, of class
bootCT, contains all the information about

• The conditional ARDL model estimates, and the unconditional VECM model estimates;

• the bootstrap tests performed in the conditional ARDL model;

• the Pesaran, Shin and Smith bound testing procedure (Fov and t-test, when applicable);

• the Sam, McNown and Goh bound testing procedure for Find, when applicable;

• the Johansen rank and trace cointegration tests on the independent variables.

Internally, the bootstrap data generation under the null is executed via a Rcpp function, employing the
Rcpp and RcppArmadillo packages (Eddelbuettel, 2013), so as to greatly speed up computational
times. As explained in the previous section, cointegration tests in the unconditional ARDL model are
performed in order to uncover the presence of spurious cointegrating relationships.
To this end, the function provides
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• the bootstrap critical values of the Fov, t and Find tests in the conditional model, at level
a.boot.H0, along with the same statistics computed in the conditional model.

• a flag, called fakecoint, that indicates divergence between the outcomes of the Find test per-
formed in both the conditional and unconditional model. In this circumstance, as explained
before, there is no cointegration (see Bertelli et al., 2022).

A summary method has been implemented to present the results in a visually clear manner. It accepts
the additional argument "out" that lets the user choose which output(s) to visualize: ARDL prints the
conditional ARDL model summary, VECM prints the VECM model summary, cointARDL prints the
summary of the bound tests and the bootstrap tests, cointVECM prints the summary of the Johansen
test on the independent variables.
A detailed flowchart showing the function’s workflow is displayed in Figure 4. There, the expressions
"C ARDL" and "UC ARDL" stand for conditional and unconditional ARDL model, respectively.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



C
O

N
T

R
IB

U
T

E
D

R
E

SE
A

R
C

H
A

R
T

IC
L

E
52

case, fix.vecm,
info.vecm, maxlag

data,
xvar, yvar

case, fix.ardl,
info.ardl, maxlag

VECM
Estimate

VECM estimation (either)
Fixed order VARselect()
fix.vecm info.vecm

maxlag

Compute
Find of

UC ARDL

ARDL estimation (either)
Fixed order auto_ardl()
fix.ardl info.ardl

maxlag

C ARDL
Estimate

Johansen test
results on xt

Estimation of the parameters:
A, Γj (j = 1, . . . , p)

α0, α1 based on case.
ε̂xt obtained via (32).

Significant estimates of

Γj filtered via a.vecm

Combine to get

Ã =

[
ayy ã′y.x
0 Axx

]
Γ̃j =

[
γy.x,j
Γ(x),j

]
ω (only in the C ARDL)

(αc
0)

′ = [α0.y α′
0x ], (αc

1)
′ = [α1.y α′

1x ]

Estimation of:
ayy , ay.x , γy.x,j (j = 1, . . . , p)
ω (only in the C ARDL )

α0.y ,α1.y based on case.

Significant estimates of

γy.x,j filtered via a.ardl

PSS/SMG
results in

the C ARDL.
Compute

Fov , t, Find

Null elements of Ã based on H0.
Nullity of αc

0 and
αc

1 based on case.
Combine the residuals

ût = [ν̂∗yt ε̂xt ]

Fov test
H0 : ayy = 0, ãy.x = 0:

Re-estimate ARDL, obtain
ν̂Fov

yt via (28)

t-test
H0 : ayy = 0:

Re-estimate ARDL, obtain
ν̂t

yt via (29)

Find test
H0 : ãy.x = 0:

Re-estimate ARDL, obtain
ν̂Find

yt via (30)

Sample and
center from Û.

Get U(b).

∆y(b)t , ∆x(b)t via (28-29-30-32)

x(b)t = ∆x(b)t + x(b)t−1.

y(b)t = ∆y(b)t + y(b)t−1

ARDL estimation under H0.
Get F(b),H0

ov , t(b),H0 ,
F(b),H0

ind (C) and F(b),H0
ind (UC)

c∗α,T at
level

a.boot.H0.

Decide comparing
Fov, t, Find each to its c∗α,T .

IF Find > c∗α,Find
(C)

AND Find < c∗α,Find
(UC)

→No real cointegration

Based on
case

UC C

UC and C model

b = 1, . . . , B

Figure 4: Flowchart of the boot_ardl function inner steps. Boxes denote parameter definitions and transformations. Diamonds denote function outputs. Dashed diamonds denote

intermediate output (not shown after function call). Empty nodes denote function inputs. The first p + 1 rows of z(b)t are set equal to the first p + 1 rows of the original data. The best
lag order for each difference variable in the ARDL model is determined via auto_ardl(). It is reported as a unique value p in γy.x,j for brevity in the flowchart.
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4.3 Execution time and technical remarks

In order to investigate the sensitivity of the procedure to different sample sizes and number of
bootstrap replicates, an experiment has been run using a three-dimensional time series of length
T = {50, 80, 100, 200, 500}, generating 100 datasets for each sample size with the sim_vecm_ardl
function (Case II, with cointegrated variables, and 2 lags in the short-run section of the model).
Then, the boot_ardl function has been called

boot_ardl(data = df_sim,
nboot = bootr,
case = 2,
fix.ardl = rep(2, 3),
fix.vecm = 2)

In the code above, bootr has been set equal to B = {200, 500, 1000, 2000}, the number of lags has
been assumed known (fix.ardl and fix.vecm), while default values have been used for every other
argument (such as a.ardl, a.vecm and a.boot.H0).
Table 1 shows the average running time per replication together with the coefficient of variation (%) of
the bootstrap critical values of the Fov test, for each value of T and B, across 100 replications for each
scenario.
Naturally, the running time increases as both sample size and bootstrap replicates increase. However,
it can be noticed how the coefficients of variation tend to stabilize for B ≥ 1000, especially for T > 80,
at the 5% significance level. Therefore, it is recommended a number of bootstrap replicates of at least
B = 1000 for higher sample size, or at least B = 2000 for smaller samples. The analysis has been
carried out using an Intel(R) Core(TM) i7-1165G7 CPU @ 2.80GHz processor, 16GB of RAM.

T B Exec. Time (sec) cv(Fov)(5%) cv(Fov)(2.5%) cv(Fov)(1%)

50 200 23.38 8.648 10.925 13.392
50 500 48.37 6.312 6.952 8.640
50 1000 96.65 4.806 5.613 6.288
50 2000 231.15 4.255 4.226 4.946

80 200 23.46 7.251 8.936 11.263
80 500 50.19 4.998 6.220 7.946
80 1000 143.00 3.882 4.453 5.305
80 2000 255.64 2.912 3.623 4.518

100 200 37.89 7.707 8.583 10.955
100 500 52.86 4.691 5.304 7.557
100 1000 184.51 3.512 4.567 5.695
100 2000 212.65 3.519 3.674 4.185

200 200 35.46 6.644 7.173 10.365
200 500 76.78 4.734 5.355 6.225
200 1000 148.25 3.124 4.177 5.034
200 2000 484.51 2.811 3.361 3.907

500 200 54.47 6.641 8.694 10.414
500 500 133.17 5.137 5.816 6.408
500 1000 271.87 3.905 4.585 5.283
500 2000 561.71 3.221 3.490 4.145

Table 1: Average execution times (in seconds) of the boot_ardl function, for different combinations of
sample size T and bootstrap replicates B. Coefficients of variation (cv) reported for the Fov bootstrap
critical values at level 5%, 2.5% and 1%.

5 Empirical applications

This section provides two illustrative application which highlight the performance of the bootstrap
ARDL tests.
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5.1 An application to the German macroeconomic dataset

In the first example, the occurrence of a long-run relationship between consumption [C], income [INC],
and investment [INV] of Germany has been investigated via a set of ARDL models, where each variable
takes in turn the role of dependent one, while the remaining are employed as independent. The models
have been estimated by employing the dataset of Lütkepohl (2005) which includes quarterly data of
the series over the years 1960 to 1982. The data have been employed in logarithmic form. Figure 5
displays these series over the sample period.
Before applying the bootstrap procedure, the order of integration of each series has been analyzed.
Table 2 shows the results of ADF test performed on both the series and their first-differences (k = 3
maximum lags). The results confirm the applicability of the ARDL framework as no series is integrated
of order higher than one.
The following ARDL equations have been estimated:

I First ARDL equation (C | INC, INV):

∆ log Ct = α0.y − ayy log Ct−1 − ay.x1 log INCt−1 − ay.x2 log INVt−1+ (38)
p−1

∑
j=1

γy.j∆ log Ct−j +
s−1

∑
j=1

γx1.j∆ log INCt−j +
r−1

∑
j=1

γx2.j∆ log INVt−j+

ω1∆ log INCt + ω2∆ log INVt + νt.

II Second ARDL equation (INC | C, INV):

∆ log INCt = α0.y − ayy log INCt−1 − ay.x1 log Ct−1 − ay.x2 log INVt−1+ (39)
p−1

∑
j=1

γy.j∆ log INCt−j +
s−1

∑
j=1

γx1.j∆ log Ct−j +
r−1

∑
j=1

γx2.j∆ log INVt−j+

ω1∆ log Ct + ω2∆ log INVt + νt.

III Third ARDL equation (INV | C, INC):

∆ log INVt = α0.y − ayy log INVt−1 − ay.x1 log Ct−1 − ay.x2 log INCt−1+ (40)
p−1

∑
j=1

γy.j∆ log INVt−j +
s−1

∑
j=1

γx1.j∆ log Ct−j +
r−1

∑
j=1

γx2.j∆ log INCt−j+

ω1∆ log Ct + ω2∆ log INCt + νt.

Table 3 shows the estimation results for each ARDL and VECM model. It is worth noting that the
instantaneous difference of the independent variables are highly significant in each conditional ARDL
model. Thus, neglecting these variables in the ARDL equation, as happens in the unconditional
version of the model, may potentially lead to biased estimates and incorrect inference. For the sake of
completeness, also the results of the marginal VECM estimation are reported for each model.
The code to prepare the data, available in the package as the ger_macro dataset, is:

data("ger_macro")
LNDATA = apply(ger_macro[,-1], 2, log)
col_ln = paste0("LN", colnames(ger_macro)[-1])
LNDATA = as.data.frame(LNDATA)
colnames(LNDATA) = col_ln

Then, the boot_ardl function is called, to perform the bootstrap tests. In the code chunk below, Model
I is considered.

set.seed(999)
BCT_res_CONS = boot_ardl(data = LNDATA,

yvar = "LNCONS",
xvar = c("LNINCOME", "LNINVEST"),
maxlag = 5,
a.ardl = 0.1,
a.vecm = 0.1,
nboot = 2000,
case = 3,
a.boot.H0 = c(0.05),
print = T)
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to which follows the call to the summary function

summary(BCT_res_CONS, out = "ARDL")
summary(BCT_res_CONS, out = "VECM")
summary(BCT_res_CONS, out = "cointVECM")
summary(BCT_res_CONS, out = "cointARDL")

The first summary line displays the output in the ARDL column of Table 3 and the second column of
Table 4, Model I. The second line corresponds to the VECM columns of Table 3, Model I - only for the
independent variables. The information on the rank of the Axx in Table 3 is inferred from the third
line. Finally, the fourth summary line corresponds to the test results in Table 4, Model I. A textual
indication of the presence of spurious cointegration is displayed at the bottom of the "cointARDL"
summary, if detected.
In this example, the bootstrap and bound testing procedures are in agreement only for model I,
indicating the existence of a cointegrating relationship. Additionally, no spurious cointegration is
detected for this model. As for models II and III, the null hypothesis is not rejected by the bootstrap
tests, while the PSS and SMG bound tests fail to give a conclusive answer in the Find test.
The running time of the entire analysis is of roughly 11 minutes, using an Intel(R) Core(TM) i7-1165G7
CPU @ 2.80GHz processor, 16GB of RAM.

level variable first difference

Series lag ADF p.value ADF p-value

log Ct

0 -1.690 0.450 -9.750 < 0.01
1 -1.860 0.385 -5.190 < 0.01
2 -1.420 0.549 -3.130 0.030
3 -1.010 0.691 -2.720 0.080

log INCt

0 -2.290 0.217 -11.140 < 0.01
1 -1.960 0.345 -7.510 < 0.01
2 -1.490 0.524 -5.120 < 0.01
3 -1.310 0.587 -3.290 0.020

log INVt

0 -1.200 0.625 -8.390 < 0.01
1 -1.370 0.565 -5.570 < 0.01
2 -1.360 0.570 -3.300 0.020
3 -1.220 0.619 -3.100 0.032

Table 2: ADF preliminary test (null hypothesis: random walk with drift).
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Figure 5: log-consumption/investment/income graphs (level variables and first differences). Made
with ggplot.
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Model I Model II Model III

ARDL VECM ARDL VECM ARDL VECM
∆ log Ct ∆ log INVt ∆ log INCt ∆ log INCt ∆ log Ct ∆ log INVt ∆ log INVt ∆ log Ct ∆ log INCt

log Ct−1
-0.307 ***

(0.055)
0.168 *
(0.081)

-0.0011
(0.0126)

0.1286*
(0.0540)

0.611 .
(0.339)

-0.2727***
(0.0704)

-0.0508
(0.0796)

log INCt−1
0.297 ***
(0.055)

0.124 *
(0.054)

-0.017
(0.014)

-0.183*
(0.079)

-0.491
(0.340)

0.2619***
(0.0681)

0.0464
(0.0772)

log INVt−1
-0.001
(0.011)

-0.152 *
(0.063)

0.016
(0.017)

0.0209
(0.0135)

-0.00107
(0.0142)

-0.1531*
(0.0607)

-0.1212*
(0.060)

∆ log Ct−1
-0.248 **
(0.079)

0.899 *
(0.442)

0.211 .
(0.113)

0.375***
(0.1086)

0.9288*
(0.442)

1.113 *
(0.441)

0.2072 .
(0.1142)

∆ log Ct−2
0.744

(0.431)
0.8049 .
(0.4345)

∆ log INCt−1
-0.1404
(0.1095)

∆ log INCt−2
0.2675**
(0.0958)

0.1522.
(0.0912)

∆ log INVt−1
-0.18

(0.111)
0.035

(0.029)
-0.189 .
(0.1097)

-0.175
(0.1075)

0.0479 .
(0.0282)

∆ log INVt−2
0.049 .
(0.027)

0.0591*
(0.0245)

0.0578*
(0.0223)

0.0562*
(0.0266)

∆ log Ct
0.7070***
(0.1093)

1.8540***
(0.5425)

∆ log INCt
0.471***
(0.074)

-0.445***
(0.4726)

∆ log INVt
0.065**
(0.019)

-0.0230
(0.025)

const. 0.048 ***
(0.013)

0.036
(0.066)

0.033 *
(0.017)

0.002
(0.018)

0.0266 .
(0.0155)

0.023
(0.0666)

-0.056
(0.072)

0.0517**
(0.0157)

0.0378*
(0.0177)

J-test rk(Axx) = 2 rk(Axx) = 2 rk(Axx) = 2

Table 3: Conditional ARDL and VECM results for the consumption/income/investment dataset, along with rank of the Axx matrix via the Johansen (J) test.
Significance codes: (***) 1%; (**) 5%; (.) 10%.
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PSS / SMG Threshold Outcome

Model Lags Test Boot. Critical Values I(0) 5% I(1) 5% Statistic Boot Bound

I (1,0,0)
Fov 3.79 3.79 4.85 10.75

Y Yt -2.88 -2.86 -3.53 -5.608
Find 4.92 3.01 5.42 15.636

II (1,1,0)
Fov 5.79 3.79 4.85 2.867

N Ut -3.69 -2.86 -3.53 -2.315
Find 7.38 3.01 5.42 3.308

III (1,1,0)
Fov 5.50 3.79 4.85 3.013

N Ut -3.32 -2.86 -3.53 -2.020
Find 6.63 3.01 5.42 4.189

Table 4: Cointegration analysis for the three ARDL equations in the German macroeconomic data. The
optimal number of ARDL lags in the short-run - in the form (y, x1, x2), matching the model definition -
bootstrap critical values, bound test thresholds and test statistics for each test are shown (case III).
The outcome columns draw conclusions on each type of model (bootstrap or bound): Y = cointegrated,
N = not cointegrated, D1 = degenerate of type 1, D2 = degenerate of type 2, U = inconclusive inference.

5.2 An application on Italian Macroeconomic Data

Following Bertelli et al. (2022), the relationship between foreign direct investment [FDI], exports [EXP],
and gross domestic product [GDP] in Italy is investigated. The data of these three yearly variables
have been retrieved from the World Bank Database and cover the period from 1970 to 2020. In the
analysis, the log of the variables has been used and [EXP] and [FDI] have been adjusted using the GDP
deflator. Figure 6 displays these series over the sample period.
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Figure 6: log-GDP/export/investment graphs (level variables and first differences). Made with
ggplot.
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Table 5 shows the outcomes of the ADF test performed on each variable, which ensures that the
integration order is not higher than one for all variables. Table 6 shows the results of bound and
bootstrap tests performed in ARDL model by taking each variable, in turn, as the dependent one. The
following ARDL equations have been estimated:

I First ARDL equation (GDP | EXP, FDI):

∆ log GDPt = α0.y − ayy log GDPt−1 − ay.x1 log EXPt−1 − ay.x2 log FDIt−1+ (41)
p−1

∑
j=1

γy.j∆ log GDPt−j +
s−1

∑
j=1

γx1.j∆ log EXPt−j +
r−1

∑
j=1

γx2.j∆ log FDIt−j+

ω1∆ log EXPt + ω2∆ log FDIt + νt

. For this model, a degenerate case of the first type can be observed, while the simpler bound
testing procedure does not signal cointegration.

II Second ARDL equation (EXP | GDP, FDI):

∆ log EXPt = α0.y − ayy log EXPt−1 − ay.x1 log GDPt−1 − ay.x2 log FDIt−1+ (42)
p−1

∑
j=1

γy.j∆ log EXPt−j +
s−1

∑
j=1

γx1.j∆ log GDPt−j +
r−1

∑
j=1

γx2.j∆ log FDIt−j+

ω1∆ log GDPt + ω2∆ log FDIt + νt.

For this model, the ARDL bootstrap test indicates absence of cointegration, while the bound
testing approach is inconclusive for the Find test.

III Third ARDL equation (FDI | GDP, EXP):

∆ log FDIt = α0.y − ayy log FDIt−1 − ay.x1 log GDPt−1 − ay.x2 log EXPt−1+ (43)
p−1

∑
j=1

γy.j∆ log FDIt−j +
s−1

∑
j=1

γx1.j∆ log GDPt−j +
r−1

∑
j=1

γx2.j∆ log EXPt−j+

ω1∆ log GDPt + ω2∆ log EXPt + νt.

For this model, the long-run cointegrating relationship is confirmed using both boostrap and
bound testing. No spurious cointegration is detected.

The code to load the data and perform the analysis (e.g. for Model I) is:

data("ita_macro")
BCT_res_GDP = boot_ardl(data = ita_macro,

yvar = "LGDP",
xvar = c("LEXP", "LFI"),
maxlag = 5,
a.ardl = 0.1,
a.vecm = 0.1,
nboot = 2000,
case = 3,
a.boot.H0 = c(0.05),
print = T)

For the sake of simplicity, the conditional ARDL and VECM marginal models outputs included in each
cointegrating analysis is omitted. The summary for the cointegration tests for Model I is called via

summary(BCT_res_GDP, out = "ARDL") # extract lags
summary(BCT_res_GDP, out ="cointARDL") # ARDL cointegration

This empirical application further highlights the importance of dealing with inconclusive inference via
the bootstrap procedure, while naturally including the effect of conditioning in the ARDL model, as
highlighted in Bertelli et al. (2022).

6 Conclusion

The bootCT package allows the user to perform bootstrap cointegration tests in ARDL models by
overcoming the problem of inconclusive inference which is a well-known drawback of standard bound
tests. The package makes use of different functions. The function boot_ardl performs the bootstrap
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No Drift, No Trend Drift, No Trend Drift and Trend

Variable Lag = 0 Lag = 1 Lag = 2 Lag = 3 Lag = 0 Lag = 1 Lag = 2 Lag = 3 Lag = 0 Lag = 1 Lag = 2 Lag = 3

log GDPt 0.99 0.974 0.941 0.796 < 0.01 < 0.01 < 0.01 0.084 0.99 0.99 0.99 0.99
log FDIt 0.572 0.599 0.675 0.725 < 0.01 0.0759 0.3199 0.5174 < 0.01 0.013 0.151 0.46
log EXPt 0.787 0.71 0.698 0.684 0.479 0.288 0.467 0.433 0.629 0.35 0.463 0.379

∆ log GDPt < 0.01 < 0.0164 0.0429 0.0402 < 0.01 0.0861 0.3989 0.4267 < 0.01 < 0.01 0.0166 0.017
∆ log FDIt < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
∆ log EXPt < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.0336 0.0315

Table 5: ADF preliminary test for the second example.

PSS / SMG Threshold Outcome

Model Lags Test Boot. Critical Values I(0) 5% I(1) 5% Statistic Boot Bound

I (1,1,0)
Fov 3.730 4.070 5.190 9.758

D1 Nt -2.020 -2.860 -3.530 -2.338
Find 3.710 3.220 5.620 2.273

II (1,0,0)
Fov 5.400 4.070 5.190 2.649

N Ut -3.380 -2.860 -3.530 -1.889
Find 5.630 3.220 5.620 3.481

III (1,0,0)
Fov 5.360 4.070 5.190 6.716

Y Yt -3.550 -2.860 -3.530 -4.202
Find 6.500 3.220 5.620 7.017

Table 6: Cointegration analysis for the three ARDL equations in the Italian macroeconomic data. The
optimal number of ARDL lags in the short-run - in the form (y, x1, x2), matching the model definition -
bootstrap critical values, bound test thresholds and test statistics for each test are shown (case III).
The outcome columns draw conclusions on each type of model (bootstrap or bound): Y = cointegrated,
N = not cointegrated, D1 = degenerate of type 1, D2 = degenerate of type 2, U = inconclusive inference.

tests, and it acts as a wrapper of both the bootstrap and the standard bound tests, including also the
Johansen test on the independent variables of the model. Finally, it also performs the bound F-test
on the lagged independent variables, so far not available in other extant R packages. The function
sim_vecm_ardl, which allows the simulation of multivariate time series data following a user-defined
DGP, enriches the available procedures for multivariate data generation, while the function lag_mts
provides a supporting tool in building datasets of lagged variables for any practical purpose. Finally,
the use of Rcpp functions gives a technical advantage in terms of computational speed, performing
the bootstrap analysis within an acceptable time frame.
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7 Appendix

7.1 Section A - the methodological framework of (conditional) VECM and ARDL models

Expanding the matrix polynomial A(z) about z = 1, yields

A(z) = A(1)z + (1 − z)Γ(z), (44)

where

A(1) = IK+1 −
p

∑
j=1

Aj (45)

Γ(z) = IK+1 −
p−1

∑
i=1

Γizi, Γi = −
p

∑
j=i+1

Aj. (46)

The VECM model (2) follows accordingly, and

α0 = A(1)µ + (Γ(1)− A(1))η, α1 = A(1)η. (47)

Assuming that A(1) is singular and that the variables xt are cointegrated. This entails the following

A(1) =


ayy
(1,1)

a′yx
(1,K)

axy
(K,1)

Axx
(K,K)

 = B
(K+1,r+1)

C′
(r+1,K+1)

=

[
byy b′

yx
bxy Bxx

] [
cyy c′yx
cxy C′

xx

]
=

=

[
byycyy + b′

yxcxy byyc′yx + b′
yxC′

xx
bxycyy + Bxxcxy bxyc′yx + Axx

]
, rk(A(1)) = rk(B) = rk(C), (48)

where B and C are full column rank matrices arising from the rank-factorization of A(1) = BC′ with C
matrix of the long-run relationships of the process and Bxx, Cxx arising from the rank factorization of
Axx = BxxC′

xx, with rk(Axx) = rk(Bxx) = rk(Cxx) = r 6.
By partitioning the vectors α0, α1, the matrix A(1) and the polynomial matrix Γ(L) conformably to zt,
as follows

α0 =

 α0y
(1,1)
α0x
(K,1)

 , α1 =

 α1y
(1,1)
α1x
(K,1)

 (49)

A(1) =


a′(y)

(1,K+1)
A(x)

(K,K+1)

 =


ayy
(1,1)

a′yx
(1,K)

axy
(K,1)

Axx
(K,K)

 , Γ(L) =


γ′

y(L)
(1,K+1)
Γ(x)(L)
(K,K+1)

 =


γyy(L)
(1,1)

γ′
yx(L)
(1,K)

γxy(L)
(K,1)

Γxx(L)
(K,K)

 (50)

, and substituting (6) into (2) yields

∆zt =

[
∆yt
∆xt

]
=

[
α0.y
α0x

]
+

[
α1.y
α1x

]
t −
[

a′(y).x
A(x)

] [
yt−1
xt−1

]
+

[
γ′

y.x(L)
Γ(x)(L)

]
∆zt +

[
ω′∆xt

0

]
+

[
νyt
εxt

]
(51)

, where
α0.y = α0y − ω′α0x, α1.y = α1y − ω′α1x (52)

a′(y).x = a′(y) − ω′A(x), γ′
y.x(L) = γ′

y(L)− ω′Γ(x)(L). (53)

According to (51), the long-run relationships of the VECM turn out to be now included in the matrix[
a′
(y).x

A(x)

]
=

[
ayy − ω′axy a′yx − ω′Axx

axy Axx

]
. (54)

To rule out the presence of long-run relationships between yt and xt in the marginal model, the xt
variables are assumed to be exogenous with respect to the ARDL parameters, that is axy is assumed to
be a null vector. Accordingly, the long-run matrix in (54) becomes

Ã =

[
ayy a′yx − ω′Axx
0 Axx

]
=

[
ayy ã′y.x
0 Axx

]
=

[
byycyy byyc′yx + (b′

yx − ω′Bxx)C′
xx

0 BxxC′
xx

]
. (55)

6If the explanatory variables are stationary Axx is non-singular (rk(Axx) = K), while when they are integrated
but without cointegrating relationship Axx is a null matrix
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After these algebraic transformations, the ARDL equation for ∆yt can be rewritten as in (7).
In light of the factorization (48) of the matrix A(1), the long-run equilibrium vector θ can be expressed
as

θ′ = − 1
ayy

[
byy (byx − ω′Bxx)

]
(1,r+1)

[
c′yx
C′

xx

]
(r+1,K)

, (56)

where ãy.x = ayx − ω′Axx.
Bearing in mind that C′

xx is the cointegrating matrix for the variables xt, the equation (56) leads to the
following conclusion

rk
[

c′yx
C′

xx

]
=

{
r → yt ∼ I(0)
r + 1 → yt ∼ I(1)

, (57)

where r = rk(Axx) and 0 ≤ r ≤ K.

7.2 Section B - Intercept and trend specifications

Pesaran et al. (2001) introduced five different specifications for the ARDL model, which depend on
the deterministic components that can be absent or restricted to the values they assume in the parent
VAR model. In this connection, note that, in light of (47), the drift and the trend coefficient in the
conditional VECM (51) are defined as

αc
0 = Ã(1)(µ − η) + Γ̃(1)η, αc

1 = Ã(1)η, (58)

where Ã(1) is as in (55) and Γ̃(1) =
[

γ′
y.x(1)

Γ(x)(1)

]
.

Accordingly, after partitioning the mean and the drift vectors as

µ′

(1,K+1)
= [ µy

(1,1)
, µ′

x
(1,K)

], η′

(1,K+1)
= [ ηy

(1,1)
, η′x
(1,K)

], (59)

the intercept and the coefficient of the trend of the ARDL equation (7) are defined as

αEC
0.y = e′1αc

0 = ayyµy − ã′y.xµx + γ′
y.x(1)η = ayy(µy − θ′µx) + γ′

y.x(1)η, θ′ = −
ã′y.x

ayy
(60)

αEC
1.y = e′1αc

1 = ayyηy − ã′y.xηx = ayy(ηy − θ′ηx), (61)

where e1 is the K + 1 first elementary vector.
In the error correction term

ECt−1 = yt−1 − θ0 − θ1t − θ′xt−1 (62)

the parameters that partake in the calculation of intercept and trend are

θ0 = µy − θ′µx, θ1 = ηy − θ′ηx. (63)

In particular, these latter are not null only when they are assumed to be restricted in the model
specification.
The five specifications proposed by Pesaran et al. (2001) are

I No intercept and no trend:
µ = η = 0. (64)

It follows that
θ0 = θ1 = α0.y = α1.y = 0. (65)

Accordingly, the model is as in (17).

II Restricted intercept and no trend:
αc

0 = Ã(1)µ, η = 0, (66)

which entails
θ0 ̸= 0 αEC

0.y = ayyθ0, α0.y = θ1 = α1.y = 0. (67)

Therefore, the intercept stems from the EC term of the ARDL equation. The model is specified
as in (18)

III Unrestricted intercept and no trend:

αc
0 ̸= Ã(1)µ, η = 0. (68)
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Thus,
α0.y ̸= 0, θ0 = θ1 = α1.y = 0. (69)

Accordingly, the model is as in (19).

IV Unrestricted intercept, restricted trend:

αc
0 ̸= Ã(1)(µ − η) + Γ̃(1)η αc

1 = Ã(1)η, (70)

which entails
α0.y ̸= 0, θ0 = 0 θ1 ̸= 0 αEC

1.y = ayyθ1 α1.y = 0. (71)

Accordingly, the trend stems from the EC term of the ARDL equation. The model is as in (20).

V Unrestricted intercept, unrestricted trend:

αc
0 ̸= Ã(1)(µ − η) + Γ̃(1)η αc

1 ̸= Ã(1)η. (72)

Accordingly,
α0.y ̸= 0 α1.y ̸= 0, θ0 = θ1 = 0. (73)

The model is as in (21).
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