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ebmstate: An R Package For Disease
Progression Analysis Under Empirical
Bayes Cox Models
by Rui J. Costa and Moritz Gerstung

Abstract The new R package ebmstate is a package for multi-state survival analysis. It is suitable
for high-dimensional data and allows point and interval estimation of relative transition hazards,
cumulative transition hazards and state occupation probabilities, under clock-forward and clock-
reset Cox models. Our package extends the package mstate in a threefold manner: it transforms
the Cox regression model into an empirical Bayes model that can handle high-dimensional data; it
introduces an analytical, Fourier transform-based estimator of state occupation probabilities for clock-
reset models that is much faster than the corresponding, simulation-based estimator in mstate; and it
replaces asymptotic confidence intervals meant for the low-dimensional setting by non-parametric
bootstrap confidence intervals. Our package supports multi-state models of arbitrary structure, but
the estimators of state occupation probabilities are valid for transition structures without cycles only.
Once the input data is in the required format, estimation is handled automatically. The present
paper includes a tutorial on how to use ebmstate to estimate transition hazards and state occupation
probabilities, as well as a simulation study showing how it outperforms mstate in higher-dimensional
settings.

1 Introduction

Multi-state models based on transition hazard functions are often used in the statistical analysis of
longitudinal data, in particular disease progression data (Hougaard, 1999). The multi-state model
framework is particularly suitable to accommodate the growing level of detail of modern clinical
data: as long as a clinical history can be framed as a random process which, at any moment in time,
occupies one of a few states, a multi-state model is applicable. Another strong point of this framework
is that it can incorporate a regression model, i.e., a set of assumptions on how covariates, possibly
time-dependent ones, affect the risk of transitioning between any two states of the disease. Once
estimated, multi-state models with regression features allow the stratification of patients according to
their transition hazards. In addition, it is possible, under some models, to generate disease outcome
predictions. These come in the form of state occupation probability estimates, meaning estimates of the
probability of being in each state of the disease over a given time frame.

The survival analysis ‘task view’ of the Comprehensive R Archive Network lists seven R packages
that are able to fit general multi-state models and, at the same time, feature some kind of regression
model or algorithm: flexsurv (Jackson, 2016), msm (Jackson, 2011), SemiMarkov (Listwon and
Saint-Pierre, 2015), survival (Therneau, 2015), mstate (de Wreede et al., 2010), mboost (Hothorn et al.,
2020) – as extended by gamboostMSM (Reulen, 2014) – and penMSM (Reulen, 2015). All of them
implement relative risk regression models (as defined in Aalen et al., 2008, p. 133). The only exceptions
are survival, which also fits Aalen’s additive regression model (Aalen, 1989), and flexsurv, which
also implements accelerated failure time models (see, for example, Aalen et al., 2008, p. 443).

Recall that a Cox regression model is a semi-parametric model in which every transition hazard
is assumed to be the product of a baseline hazard function of unspecified form (the non-parametric
component) and an exponential relative risk function (the parametric component) (Aalen et al., 2008, p.
133). Generally, the relative risk regression models implemented in these packages are Cox regression
models. However, some models in flexsurv, as well as those in msm and SemiMarkov, also restrict
the baseline hazards to specific parametric families, i.e. they are fully parametric. In msm and
SemiMarkov, the stronger assumptions regarding the functional form of the hazard are leveraged
to do away with other common assumptions: SemiMarkov drops the usual Markov property to
implement homogeneous semi-Markov models; msm is suitable for panel data, i.e., data in which the
state of each individual is known only at a finite series of times.

Packages penMSM and gamboostMSM are the best suited to deal with higher-dimensional
covariate data. The first of these packages relies on a structured fusion lasso method, while the second
implements (jointly with mboost) a boosting algorithm. Both methods induce sparsity in the number
of non-zero covariate effects, as well as equality among the different transition effects of each covariate,
and are thus especially useful to reduce complicated multi-state models to more interpretable ones.
The remaining packages assume standard, fixed effects relative risk regression models and do not
include regularisation or variable selection features.
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It is also illustrative to order the seven packages mentioned according to how extensive their
analysis workflow is. Packages SemiMarkov and penMSM are intended for the estimation of relative
transition hazards only (i.e., for estimating the impact of covariates on each transition hazard). With the
package mboost (as extended by gamboostMSM) it is also possible to estimate the baseline transition
hazards. Finally, a more complete workflow including estimates of both relative and cumulative
transition hazards, as well as state occupation probabilities, is implemented in flexsurv, msm and
mstate, and has been under implementation in survival (version 3.0 or later).

The present paper provides an introduction to ebmstate, a new R package for multi-state survival
analysis available for download on the Comprehensive R Archive Network (CRAN). The main goal of
ebmstate is to provide an analysis framework for the Cox model that performs better with higher-
dimensional covariate data and is also complete, in the sense of being able to generate point and
interval estimates of relative transition hazards, cumulative transition hazards and state occupation
probabilities, both under clock-forward and clock-reset models. A fundamental characteristic of
ebmstate is that it re-implements and extends the analysis framework of mstate, which is complete in
the sense just mentioned. In fact, to a large extent, our package was built by importing, adapting and
replacing functions from the mstate package. This not only eliminates redundancies, but also makes
our package more accessible to the numerous users of mstate (the three papers associated with mstate
have jointly over 2000 citations).

To improve the performance of mstate’s multi-state Cox model when dealing with higher-
dimensional covariate data, a ridge-type regularisation feature was added. We allow the regression
coefficients of the model to be partitioned into groups, with each group having its own Gaussian prior.
A group can gather, for example, all the regression coefficients for a given transition. Or, within a
given transition, coefficients can be grouped according to the covariate type they refer to (for example,
demographic, clinical or genomic type). The resulting hierarchical Bayes model is empirical in that
a full prior elicitation is not required (the mean and variance hyper-parameters of the Gaussian are
estimated from the data). Model fitting relies on the iterative algorithm introduced by Schall (1991),
which typically converges after a small number of steps. A simulation study showing that Schall’s
algorithm performance compares well with that of other algorithms for ridge penalty optimisation,
including one based on cross-validation, can be found in Perperoglou (2014).

The asymptotic confidence intervals generated by mstate are applicable when the number of
observations is much larger than the number of parameters to be estimated (see section Interval
estimation below). To preserve the completeness of mstate’s framework in higher-dimensional
settings, we therefore implemented non-parametric bootstrap intervals of regression coefficients,
cumulative transition hazards and state occupation probabilities.

The high computational cost implied by the non-parametric bootstrap motivated a third extension
to mstate. We developed an estimator of state occupation probabilities under clock-reset Cox models
that is based on a convolution argument (as in Spitoni et al., 2012) and the Fast Fourier transform
(FFT). At present, the estimation of such probabilities for clock-forward Cox models can be carried out
using the efficient, product-limit based algorithm available in mstate. However, for clock-reset Cox
models, only a simulation-based estimator is available in this package (see also the flexsurv package
for a similar, simulation-based estimator). The FFT estimator in ebmstate was conceived as a faster
alternative to this simulation-based estimator, but its scope is currently restricted to multi-state models
with transition structures that have no cycles, i.e. in which a transition between two states is either
not possible or follows a unique sequence of states. Figure 1 provides a short graphical summary of
ebmstate, with the main inputs – a genomic-clinical data set and an empirical Bayes multi-state Cox
model – and the main outputs – the estimates of relative hazards and state occupation probabilities
(cumulative transition hazards are omitted).

As already mentioned, our empirical Bayes method improves estimator performance in models
with larger numbers of covariates (see section Estimator performance on estimator performance).
Also, as a ridge-type regression method, it can be used as an alternative to the lasso method of
penMSM in two particular cases: when the levels of correlation between covariates are high enough to
compromise the stability of lasso-based covariate selection; or simply to improve prediction accuracy
when interpretability is not essential and the number of covariates is not greater than the number
of observations (Zou and Hastie, 2005). In addition, and perhaps more importantly, ebmstate goes
beyond the regularised estimation of transition hazards offered by penMSM and gamboostMSM:
point and interval estimates of state occupation probabilities under the regularised Cox model can
also be computed.
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2 Models

A multi-state Cox model is a continuous-time stochastic process with a finite (and usually small) state
space S . To better describe the models implemented in ebmstate, we define the following notation.
We let t denote the time since some initiating event (usually diagnosis or disease onset). For t ∈ [0, ∞),
we define the following random variables: X(t) represents the disease state of the patient, S(t) the
time spent in the current state, and Z⃗ (t) the value of a covariate vector. The realisation of each
component of the process {Z⃗ (t)} is a step function, possibly approximating the evolution in time
of a continuous covariate. In addition, {Z⃗ (t)} is assumed not-adapted to the filtration generated by
{X (t)} (an adapted covariate is one whose path until t is known once {X (u)}, u ≤ t, is known). The
transition hazard rate of a patient from state i to state j (i ̸= j) at time t, conditional on the sojourn
time and the covariate vector, is defined as

αij (t|z, s) := lim
h↓0

1
h

P
[

X(t + h) = j | X(t) = i, S(t) = s, Z⃗(t) = z
]

, s ∈ [0, ∞) , t ∈ [s, ∞) .

Independent right-censoring and left-truncation are assumed throughout (Aalen et al., 2008, p. 57).
The purpose of the present section is to give a (not necessarily exhaustive) description of the scope of
mstate and ebmstate with respect to the multi-state Cox model. Using the terminology in de Wreede
et al. (2011), a Cox model is termed a ‘clock-reset’ model when

αij (t | z, s) = λ
(0)
ij (s) exp

[
β⊺

ij z
]

, (1)

and it is termed a ‘clock-forward’ model when

αij (t | z) = α
(0)
ij (t) exp

[
β⊺

ij z
]

. (2)

In both cases, i, j ∈ S , with i ̸= j; βij is an unknown vector of regression coefficient parameters, and
both λ(0)

ij (·) and α(0)

ij (·) are unknown (baseline hazard) functions, non-negative on R+. When, as in
equation 1, αij (t|z, s) is the same for all t ≥ s, we simplify its notation to λij (s|z). As can be seen
from equations 1 and 2, the ‘clock-reset’ and ‘clock-forward’ models are models for how the transition
hazard rates are affected by time. In the former case, the only relevant time scale is the time s spent
in the current state, whereas in the latter only the time t since the initiating event matters. While the
‘clock-forward’ model is arguably the default one in multi-state survival analysis (Andersen et al., 1993;
Aalen et al., 2008), in some cases the ‘clock-reset’ model is more appropriate. For example, in some
forms of cancer, it can be sensible to assume that the transition hazards from the state of complete
remission depend on the sojourn time, rather than on the time since the initial diagnosis.

2.1 Relative transition hazards

The parametric component of the transition hazard from i to j, written exp
[

β⊺
ij z

]
, is termed the

relative transition hazard. In mstate and ebmstate, estimating the relative transition hazard amounts
to estimating the regression coefficient vector βij . In mstate, these parameters are assumed to be
non-random. With ebmstate, the following prior distributions can be imposed.

Define P as the set of all pairs of states between which a direct transition is possible. Let {βij}, for
all (i, j) ∈ P , be a partition of β, a vector containing the regression coefficients for all direct transitions
allowed. Each βij is further partitioned into {βijk}, for k ∈ {1, 2, ..., nij}. In ebmstate, the most general
model regarding the prior distribution of β makes two assumptions: a) the scalar components of
β are independent and normally distributed; b) the scalar components of βijk have a common (and
undetermined) mean µijk and a common (and also undetermined) variance σ2

ijk .

The purpose of the framework just described is to allow the clustering of covariate effects according
to their prior distribution. If there is no prior knowledge about how this clustering should be done,
a single Gaussian prior can be imposed on all regression coefficients at once. If prior knowledge
allows the grouping of effects according to the transition they refer to, a different Gaussian prior
can be assigned to the coefficients of each transition. Even within each transition, different groups
of coefficients can be assigned different prior distributions. In the analysis of biomedical data, for
example, there can be a split between genes which are known to affect the transition hazard, and other
genes whose effect is unknown.
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2.2 Cumulative transition hazard functions

Our package imports from mstate a Breslow estimator of two types of cumulative transition hazard:
one on a global time scale, defined as

Aij (t | z) :=
∫ t

0
α
(0)
ij (u) exp

[
β⊺

ij z
]

du ,

and another on a sojourn time scale, defined as

Λij(s | z) :=
∫ s

0
λ
(0)
ij (u) exp

[
β⊺

ij z
]

du .

Note that, in either case, the covariate vector is assumed to remain constant.

2.3 State occupation probabilities

By state occupation probability, we mean the probability that a patient in state i at time 0 finds herself
in state j at time t. The estimates of these probabilities can be seen as functionals of the estimated
cumulative transition hazard functions. For this reason, the restriction to models with time-fixed
covariates, which was just seen to be applicable to the estimators of cumulative transition hazards,
carries over to the estimation of state occupation probabilities.

When conditioning on a given covariate path (time-fixed or not), state occupation probability
estimates are not valid unless the covariates are external (Cortese and Andersen, 2010; Aalen et al.,
2008, p. 142). Note that a vector of covariates {Z⃗(u)}u≥0 is said to be external if, for all t ∈ [0, ∞),
each transition hazard at t, conditional on Z⃗(t), is independent of {Z⃗(u)}u>t (i.e. independent of the
future path of the covariate). Otherwise, it is said to be internal (for more details on the distinction
between internal and external covariates, see Kalbfleisch and Prentice, 2002, chapter 6). When one
does not wish (or is not possible due to Z⃗ being internal) to condition on a future covariate path of
the covariate process, the uncertainty introduced by this process needs to be accounted for. This can
be done by extending the state space of the disease process, so that it includes information on the
disease and the covariate process (Andersen et al., 1993, p. 170). For example, to include a dichotomous
transplant covariate (an internal covariate) in a simple survival model with two states, the state space
is expanded from {alive, deceased} to {alive without transplant, alive with transplant, deceased}.
One can then either assume that transplanted patients have a different baseline death hazard or, more
simply, that transplantation scales the death hazard by some constant exp (γ). A similar but more
detailed example can be found in de Wreede et al. (2010, section 2.3.2, ‘model 3’ ).

3 Estimation

In the current section, we present the estimation methods underlying the extensions of mstate imple-
mented in ebmstate.

3.1 Relative and cumulative hazard functions

Let µij, with (i, j) ∈ P (the set of direct transitions allowed), denote a vector whose scalar components
are the parameters µijk, k ∈ {1, 2, ..., nij}. Similarly, let σ2

ij be composed of the parameters
{

σ2
ijk

}
k. The

estimation of β, µ := {µij} and σ2 := {σ2
ij} relies on the restricted maximum-likelihood (REML) type

algorithm described in Perperoglou (2014), and introduced by Schall (1991). The resulting estimate
of β is a maximum a posteriori estimate; the estimates of µ and σ2 are empirical Bayes estimates. In
ebmstate, the estimator based on this algorithm is implemented in the function CoxRFX . The results
of a simulation study showing its consistency are included in the Supporting Scripts and Data (file
ESM_1.html, section 1).

The computation of cumulative hazard rates for given covariate values and an estimated regression
coefficient vector relies on the function msfit_generic, which is essentially a wrapper for the function
mstate::msfit (see section Computing cumulative transition hazard estimates). For the mathematical
details of this computation, we refer therefore the reader to de Wreede et al. (2010).
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3.2 State occupation probabilities

The package mstate includes a simulation-based estimator that can take as input either Âij (· | z)
or Λ̂ij (· | z) to generate estimates of state occupation probabilities under the clock-forward or the
clock-reset model respectively. Another available estimator, an Aalen-Johansen-type estimator based
on product integration, is far more efficient computationally and takes as input Âij (· | z) only. As the
scope of this estimator has been restricted to clock-forward Cox models (Andersen et al., 1993; Aalen
et al., 2008), in our package we implemented a convolution-based estimator as a computationally
efficient alternative (for models with a transition structure that has no cycles).

For convenience, let the sequence of states from 0 to n have the labels 0, 1, 2, ..., n , where 0 is the
initial state by definition, and n is some state that might (eventually) be reached by the process. In
addition, define X0 := X(0) and T0 := 0, and let (Xi, Ti), i ∈ {1, 2, ...}, denote the marked point
process associated with {X(t)}, so that Ti is the time of the ith transition and Xi is the state the process
jumps to at time Ti. The inter-transition times are denoted by τij := Tj − Ti, for j > i. We can write the
probability that a patient in state 0 at time 0 finds herself in state n at time t, conditional on Z⃗(u) = z
for all u ≥ 0, as

P
[

X(t) = n | X(0) = 0 , Z⃗(u) = z, u ≥ 0
]

= P
[

Xn = n, τ0,n < t, τn,n+1 ≥ t − τ0,n|X0 = 0 , Z⃗(u) = z, u ≥ 0
]

.

Recall that λi,i+1 (s | z) denotes the hazard rate of a transition to state i + 1 at time s since arrival
in state i, for a patient that has covariate vector z. The cumulative hazard for the same transition
between sojourn times 0 and s, if the patient’s covariate vector remains constant at z, is represented by
Λi,i+1 (s | z) :=

∫ s
0 λi,i+1 (x | z)dx. Similarly, we let λi (s | z) represent the hazard rate of going to any

state that can be reached directly from i, at time s since arrival in state i, for a patient with covariate
vector z. The cumulative hazard for the same event between sojourn times 0 and s, if the patient’s
covariate vector remains constant at z, is represented by Λi (s | z). The expressions Λ̂i (s | z) and
Λ̂i,i+1 (s | z) denote the Breslow estimators of the cumulative hazards just defined. In what follows, all
references to probabilities, hazard rates and cumulative hazards are to be understood as conditional
on Z⃗(u) = z , for u ≥ 0: this condition is omitted to simplify the notation.

In ebmstate, the function probtrans_ebmstate generates a set of state occupation probability
estimates at equally spaced time points:

{ p̂0n (k)}k :=
{

P̂ [Xn = n, τ0,n < tk, τn,n+1 ≥ tk − τ0,n | X0 = 0]
}

k , k = 0, 1, 2, ..., K ; tk = k × ∆t .

The number K of time intervals is 10, 000 by default and tK is a parameter set by the user. Defining the
functions

qij (k) := P
[

Xj = j, τij ∈ [tk, tk+1) | Xi = i
]

and

ri (k) := P
[
τi,i+1 > tk | Xi = i

]
,

and the finite difference

∆Λ̂i,i+1 (tk) := Λ̂i,i+1 (tk+1)− Λ̂i,i+1 (tk) ,

the algorithm behind probtrans_ebmstate can be described as follows:

1. For j = 1, 2, ..., n, compute

q̂j−1,j (k) := exp
[
−Λ̂j−1 (tk)

]
∆Λ̂j−1,j (tk) (3)

for k = 0, 1, ..., K − 1.

2. For j = 2, 3, ..., n, compute (iteratively)

q̂0j (k) :=
k−1

∑
l=0

q̂j−1,j (k − l − 1) q̂0,j−1 (l) (4)

for k = 0, 1, ..., K − 1.
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3. Finally, use the estimates obtained in the last iteration of step 2 to compute

p̂0n (k) :=
k−1

∑
l=0

r̂n (k − l − 1) q̂0,n (l) (5)

for k = 0, 1, ..., K, where r̂n (·) := exp
[
−Λ̂n (t(·))

]
.

Substituting := for ≈ and removing the ‘hats’ in definitions 3 to 5, we get the approximate equalities
that justify the algorithm. These approximate equalities are derived in the Supporting Scripts and
Data (file ESM_1.html, section 2).

Apart from probtrans_ebmstate, the function probtrans_fft is also based on the convolution
argument just shown. However, this function makes use of the convolution theorem, i.e., of the fact
that the convolution of two (vectorized) functions in the time domain is equivalent to a pointwise
product of the same functions in the frequency domain. The estimation of state occupation probabilities
is thus simplified to

p̂0n :=F−1 {q̂0,1 · q̂1,2 · ... · q̂n−1,n · r̂n} ,

where F denotes the discrete Fourier transform, q̂j−1,j := F (q̂j−1,j) and r̂n := F (r̂n). Conversion
to and from the frequency domain is carried out using the fast Fourier transform algorithm imple-
mented in the fft function of the base package stats. The Supporting Scripts and Data contain a
short simulation study checking that state occupation probabilities can be accurately estimated with
probtrans_ebmstate and probtrans_fft (see file ESM_1.html, sections 3 and 4).

Figure 2 consists of a grid of plots with estimated curves of state occupation probabilities. It
compares, in terms of speed and accuracy, the estimator in probtrans_fft with an estimator in
mstate::mssample that has the same target, but is simulation-based. Each plot contains a black curve
and a superimposed red curve. The red curves in any given column of the grid are all based on the
same run of a function: columns 1 to 3 are based on runs of mssample with the number of samples n
equal to 100, 1000 and 10.000 respectively, while column 4 is based on a run of probtrans_fft. Each
column in the grid reproduces the same 4 black curves. These are based on a single run of mssample
with n = 100.000 and serve as benchmark. All function runs are based on the same input: a set of
cumulative transition hazard estimates for a multi-state model with the ‘linear’ transition structure
given in the leftmost diagram of figure 3. Plots in a given row refer to the same state of the model.
The running times on top of each column refer to the estimation of red curves. The main conclusion
suggested by this analysis of simulated data is that probtrans_fft is as accurate as mssample with
n = 10.000, but it is almost 100 times faster (columns 3 and 4). With n = 1000, mssample achieves a
good approximation to the true state occupation probabilities, but is still roughly 9 times slower. The
details on how figure 2 and its underlying data were generated are given in the Supporting Scripts
and Data (file ESM_1.html, section 5).

3.3 Interval estimation

Under any model estimated by ebmstate – as in general under a Bayesian model –, one can, if the
sample size is large enough, approximate the posterior by a normal distribution with mean equal
to the maximum a posteriori estimate and covariance matrix equal to the inverse of the generalised
observed Fisher information (see, for example, Gelman et al., 2014, p. 83-84). This approximation
has first-order accuracy and is thus outperformed by Laplace’s method, which has second-order
accuracy (Carlin and Louis, 2009, p. 110-111). However, as Carlin and Louis (2009, p. 112) observe,
“for moderate- to high-dimensional θ (say, bigger than 10), Laplace's method will rarely be of sufficient
accuracy[...]”. Carlin and Louis (2009, p. 244-251) also describe three methods of interval estimation
in empirical Bayes settings, but all of them are designed for fully parametric models. These reasons,
along with the fact that regularised methods such as the one implemented ebmstate are typically used
to fit models with more than a dozen covariates, led us to choose the non-parametric bootstrap as
the interval estimation method in ebmstate. Note that the non-parametric bootstrap can be given a
Bayesian interpretation. Its interval estimates are approximately the same as those of a Bayesian model
that assumes: a) a multinomial distribution for the data; and b) a non-informative Dirichlet prior
distribution for the probability assigned to each category in the multinomial distribution. This is a
specific case of the so-called Bayesian bootstrap (Hastie et al., 2009, p. 272). Further research is needed
to determine the theoretical properties of the non-parametric bootstrap in the present setting, but this
falls beyond the scope of the present paper. Interval estimates of regression coefficients, cumulative
hazards and state occupation probabilities are implemented in the function boot_ebmstate.
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4 Estimator performance

It is a well-documented fact in the statistical literature that standard least-squares or maximum-
likelihood estimators can often be improved by regularisation or shrinkage (see, for example, Sam-
worth, 2012). This improvement comes about when the model dimensionality is high enough that
the bias introduced by regularisation is outweighed by the reduction in the estimator variance. In the
current setting, one might therefore ask: what kind of dimensionality does a semi-parametric, multi-
state Cox model need to have to be outperformed by its empirical Bayes counterpart? A simulation
study we carried out offers a tentative answer to this question, by comparing estimators under both
Cox models for an increasing number of covariates. The study also features a third method, based
on a fully non-parametric model, as a null model method. This was included to give an idea of how
many covariates the empirical Bayes model can deal with before it becomes no better than a simple
non-regressive model.

4.1 Simulation setup

We assessed the performance of all estimators defined by the tuple [a, m, G, n, p(n)], where a ∈
{regression coefficients, relative hazards, state occupation probabilities} is the target of estima-
tion, m ∈ {standard Cox, empirical Bayes Cox, null} is the assumed hazard model, G ∈ {linear,
competing risks, ‘m’ structure} is the transition structure of the model (illustrated in figure 3) and
n ∈ {100, 1000} is the number of patients/disease histories in the training data set; the variable p
denotes the number of coefficients/covariates per transition in the true model and its range depends
on n: p (100) ∈ {10, 40, 70, 100} whereas p (100) ∈ {10, 100, 200, 300, 400, 500}. By ‘relative hazards’
and ‘state occupation probabilities’, we mean here the relative transition hazards of an out-of-sample
patient, and her state occupation probabilities at 7 chosen time points. We generated a batch of 300
independent absolute error observations (‘NA’ estimates included) for each estimator, where each
observation is recorded after training the estimator on a newly simulated data set. Each boxplot in
figures 6 (n = 100) and 7 (n = 1000) is based on one of these batches. As all estimators are vector
estimators, each absolute error is actually an average absolute error, where the average is taken over
the components of the vector.

All training data sets were simulated from clock-reset Cox models. Apart from G (the model
transition structure), n and p, also the true baseline hazards are held fixed within each batch of
300 training data sets. The coefficient vectors used in the simulation are always non-sparse and

are scaled by
√

10
p to keep the log-hazard variance constant when the dimensionality grows. All

covariates are dichotomous and mutually independent. To compute the coefficient errors for the
non-parametric (null) model method, we think of it as a degenerate Cox model in which all regression
coefficient estimates are fixed at zero. The estimation of regression coefficients under the standard Cox
and the empirical Bayes Cox models was performed with survival::coxph and ebmstate::CoxRFX
respectively; the estimation of state occupation probabilities is based on mstate::probtrans for the
null model and on ebmstate::probtrans_fft for both the standard Cox and the empirical Bayes Cox
models.

The reason we did not consider simulation scenarios with more than 500 covariates per transition,
in data sets of 1000 patients, was simply computational cost. For example, generating the data and
error observations for the scenario with n = 1000, p = 100 and G =‘m’ structure took less than one
hour to generate using 20 CPU cores in parallel; the same scenario but with p = 500 took 6.5 days
using 25 CPU cores. More details about the simulation setup can be found in the Supporting Scripts
and Data (file ESM_1.html, section 6, subsection ‘sample script’).

4.2 Missing values

Whenever an estimator was able to compute a valid estimate of its target for each training data set,
i.e., when it did not return any ‘NA’ estimates, its boxplots are based on 300 valid error observations.
This was always the case with non-parametric estimators: the estimates of regression coefficients
and relative hazards of this type of estimators are trivial (fixed at zero and one respectively) and
hence it is also straightforward to compute absolute errors. It also happened that non-parametric
estimators of state occupation probabilities had no ‘NA’ estimates (see file ESM_1.html, section 6,
figure 6.3, in the Supporting Scripts and Data). The situation was similar for the empirical Bayes
Cox model estimators, which showed no more than 5% missing estimates in any of the simulation
scenarios studied (ibid., figures 6.1 and 6.2). However, for the standard Cox model ones, the number
of ‘NA’ estimates depends to a large extent on the number of patients in the data set, as well as on the
dimensionality and transition structure of the model (figures 4 and 5). In data sets of 100 patients, it
fares well in models with fewer than 10 covariates per transition, or in models with up to 40 covariates,
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if the transition structure is linear. Otherwise its failure rates range from roughly 25% to nearly 100%.
In data sets of 1000 patients, the proportion of ‘NA’ estimates is never above 10%, if the transition
structure is linear, but it can climb above 60% for other transition structures.

4.3 Comparison of estimators

With respect to the performance of the three methods studied, the boxplots in figures 6 and 7 suggest
the following conclusions:

• As p/n grows, the empirical Bayes estimators quickly outperform the standard Cox model ones.
They already fare substantially better at p/n = 0.1 for both n = 100 and n = 1000 and for all
estimation targets. At the same time, the relative performance of the empirical Bayes method
with respect to the null model one decreases. At p/n = 0.5, the difference between these two
methods is already rather small for all simulation scenarios.

• The relative performance of the empirical Bayes method with respect to the null method
decreases as the number of co-occurring transition hazards in the model grows. All other things
equal, the empirical Bayes method has the best performance under the ‘linear’ structure model,
which has no competing transitions; it performs less well under the ‘m’ structure transition
model, where two transition hazards can co-occur; and has the worse relative performances
under the ‘competing risks’ model, where three transition hazards co-occur. This trend is clearer
for n = 100 (figure 6) but can also be detected in the relative hazard errors for n = 1000 (figure
7). In any case, the empirical Bayes method seems to be far more robust than the standard Cox
model against increases in the number of co-occurring transition hazards.

• Having as target the regression coefficients or the state occupation probabilities, instead of
relative hazards, makes the empirical Bayes method better in comparison to the null method.
In fact, as p/n grows, the empirical Bayes method is never outperformed by the null method
except in the estimation of relative hazards.

5 Survival analysis workflow

The features of mstate were illustrated in de Wreede et al. (2010) using a simple workflow. The starting
point of this workflow is a data set in ‘long format’. Such data set can be fed into survival::coxph to
obtain estimates of the regression coefficients of a multi-state Cox model. The resulting model fit object
can be passed on to mstate::msfit, along with a vector of covariates of a particular patient, to get
personalised estimates of the cumulative hazard functions. Finally, state occupation probabilities for
the same patient can be estimated if the object created by mstate::msfit is fed into mstate::probtrans.
In this section, we describe how ebmstate extends the scope of this workflow, i.e., how it uses the
packages survival and mstate to generate estimates under a multi-state empirical Bayes Cox model. A
diagram summarising the extension is shown in figure 8. In the Model assessment subsection, we give
some recommendations on how to assess and compare models, but for more detailed tutorials on how
to analyse multi-state data using models defined by transition hazards, we refer the reader to Putter
et al. (2007) and Putter (2011).

The main steps of the ebmstate workflow are here illustrated using a data set of patients with
myelodysplastic syndromes (MDS) which has been described and studied in Papaemmanuil et al.
(2013). A myelodysplastic syndrome is a form of leukemia in which the bone marrow is not able
to produce enough mature blood cells, and which sometimes develops into a cancer of white blood
cells with a quick and aggressive progression, i.e., into acute myeloid leukemia (AML). Figure 9a
illustrates an illness-death type model for MDS patients and also gives a breakdown of the number of
transition events. The conversion to a model with a transition structure that has no cycles (i.e., that
can be handled by our convolution-based estimators) is shown in figure 9b. The data set used for
model estimation, obtained after a number of pre-processing steps, contains the disease history of 576
patients, as well as measurements on 30 covariates. Of these 30 covariates, 11 are mutation covariates
and the remaining are clinical or demographic (see figure 9c). The running time for the estimation
of relative transition hazards does not exceed 10 seconds in a standard laptop computer. The same
holds for the estimation of cumulative transition hazards or state occupation probabilities for a given
patient. The complete R code underlying the data analysis in the current section can be found in the
Supporting Scripts and Data (file ESM_2.html). For running only the R snippets shown below and
reproduce their results, the best option is to use the R script in file ESM_3.R of the Supporting Scripts
and Data.
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id from to trans Tstart Tstop time status strata ASXL1 DNMT3A [...]
77 1 2 1 0 2029 2029 0 1 0 0 .
77 1 3 2 0 2029 2029 1 2 0 0 .
78 1 2 1 0 332 332 1 1 1 0 .
78 1 3 2 0 332 332 0 2 1 0 .
78 2 4 3 332 1449 1117 1 3 1 0 .

Table 1: A 5-row fragment of the MDS data set (in long format)

5.1 Input data

Table 1 shows a fragment of the MDS data set. The data is in ‘long format’, which means that each
row refers to a period of risk for a given transition and patient. For example, row i tells us that, at
time Tstart[i], patient id[i] entered state from[i], and thereby began to be at risk for transition
trans[i], i.e., at risk of going from state from[i] to state to[i]. If the first transition of patient id[i]
after time Tstart[i] occurs before the last follow-up time for this patient, Tstop[i] records the time
of this transition (regardless of whether the patient moved to state to[i] or not). Otherwise, Tstop[i]
is set to the last follow-up time. The value of status[i] is set to 1 if and only if the first transition of
patient id[i] after Tstart[i] is to state to[i] and occurs before the last follow-up (otherwise it is set
to 0). The value of time[i] is defined simply as Tstop[i]−Tstart[i], and strata[i] is the stratum
of the baseline hazard for transition trans[i] (more about this variable in the following section). For
x ∈ { ASXL1, DNMT3A, . . . }, x[i] denotes the level of covariate x between Tstart[i] and Tstop[i] in
patient id[i]. (In the MDS data set, we assume that the relative hazard of a patient is determined by
her covariate vector at t = 0, i.e., we assume all covariates to be time-fixed.) If a patient enters a new
state, and this state communicates directly with n other states, then, as long as the patient actually
spends time in the new state (i.e. the time of transition is not the same as the last follow-up time), n
rows must be added to the data set, with each row corresponding to a different possible transition.

From table 1, we know that patient 77 entered state 1 (‘MDS’) at time 0 and remained in this state
until time 2029, when she moved to state 3 (‘death before AML’). There are no rows to describe the
evolution of patient 77 after entering state 3, as this state is an absorbing state. As to patient 78, she
remained in state 1 until time 332, and moved from there to state 2 (‘AML’). She lived with AML for
1117 days and moved to state 4 (‘death after AML’) at time 1449.

5.2 Fitting an empirical Bayes Cox model

Once the data is in ‘long format’, the estimation of an empirical Bayes model can be carried out using
the function CoxRFX. A simple example of the first argument of CoxRFX, denoted ‘Z’, is a data frame
gathering the trans, strata and covariate columns of the data in long format:

outcome_covs <- c("id","from","to","trans","Tstart","Tstop","time","status",
"strata")

Z <- mstate_data[!names(mstate_data) %in% outcome_covs]
#(`mstate_data' has the data in long format)

The strata column determines which baseline hazard functions are assumed to be equal. In table 1,
each transition is assumed to have a (potentially) different baseline hazard. The model’s assumptions
regarding how covariates affect the hazard are reflected on the format of the covariate columns of
Z. When the Z argument is the one created in the previous block of code, CoxRFX returns a single
regression coefficient estimate for each covariate. In other words, the impact of any covariate is
assumed to be the same for every transition.

There are however ways of relaxing this assumption. One can replace the ASXL1 column in Z (or
any other covariate column) by several ‘type-specific’ ASXL1 columns: the ASXL1 column specific for
type i would show the mutation status of ASXL1 in rows belonging to transition of type i, and show
zero in all other rows. This would force CoxRFX to estimate a (potentially) different ASXL1 coefficient
for each transition type. This process of covariate expansion by type can be based on any partition
of the set of transitions. When each type corresponds to a single transition, we refer to it simply as
‘covariate expansion by transition’. The output shown below illustrates the effect of expanding the
covariates in ‘mstate_data’ by transition.

# Columns `id' and `trans' from `mstate_data' together with the first
# two expanded covariates (patients 77 and 78):

id trans ASXL1.1 ASXL1.2 ASXL1.3 DNMT3A.1 DNMT3A.2 DNMT3A.3 [...]
77 1 0 0 0 0 0 0 .
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77 2 0 0 0 0 0 0 .
78 1 1 0 0 0 0 0 .
78 2 0 1 0 0 0 0 .
78 3 0 0 1 0 0 0 .

The example code given below shows how to use mstate to expand covariates by transition and
how to create a Z argument that makes CoxRFX estimate a regression coefficient for each covariate for
transitions 1 and 2, and assume a fully non-parametric hazard for transition 3.

# To expand covariates by transition using mstate::expand.covs,
# first set the class of `mstate_data' as
class(mstate_data) <- c("data.frame","msdata")

# then add the transition matrix as attribute:
attr(mstate_data,"trans") <- tmat
#(`tmat' is the output of mstate::transMat)

# Expand covariates by transition:
covariates_expanded_123 <- mstate::expand.covs(

mstate_data,
covs = names(mstate_data)[! names(mstate_data) %in% outcome_covs],
append = F

)

# remove all covariates for transition 3 from `covariates_expanded_123'
# to fit a fully non-parametric model on this transition:
covariates_expanded_12 <- covariates_expanded_123[

!grepl(".3",names(covariates_expanded_123),fixed = T)
]

#argument `Z' of coxrfx
Z_12 <- data.frame(covariates_expanded_12,strata = mstate_data$trans,

trans = mstate_data$trans)

The second argument of CoxRFX (‘surv’) is a survival object that can easily be built by feeding the
outcome variable columns of the data to the function Surv (from the package survival). Whether
CoxRFX fits a clock-forward model or a clock-reset model depends on the kind of survival object:

#argument `surv' for a clock-forward model
surv <- Surv(mstate_data$Tstart,mstate_data$Tstop,mstate_data$status)

#argument `surv' for a clock-reset model
surv <- Surv(mstate_data$time,mstate_data$status)

The argument groups of CoxRFX is a vector whose length equals the number of covariates in the
data. In other words, the length of groups is ncol(Z)-2, since the argument Z must include both the
covariate data and the strata and trans columns. If, for i ̸= j, groups[i]=groups[j] = ‘foo’, this
means that the regression coefficients of the ith and jth covariates of Z both belong to a group named
‘foo’ of coefficients with the same prior. For the Z object built above, the groups argument created
in the following block of code embodies the assumption that all coefficients associated with a given
transition have the same prior distribution. The final line of code fits the empirical Bayes model.

#argument `groups' of coxrfx
groups_12 <- paste0(rep("group",ncol(Z)-2),c("_1","_2"))

#fit random effects model
model_12 <- CoxRFX(Z_12,surv,groups_12,tmat)

Figure 10 shows regression coefficient point estimates for a clock-reset, empirical Bayes model
fitted with the code above. Also shown are 95% non-parametric bootstrap confidence intervals
computed using ebmstate::boot_ebmstate. The x-axis scale is logarithmic to allow estimates to be
read as relative hazards more easily. For example, a mutation in RUNX1 is associated with a twofold
increase in the hazard of progression from MDS to AML, and treatment centre 4 is associated with
a 3-fold increase in the hazard of dying before progressing to AML, when compared to the baseline
value of ‘treatment centre’ (treatment centre = 2 or 5). In covariates that have been log-transformed
(age, platelet count and neutrophil count) or logit-transformed (proportions of myeloblasts and ring
sideroblasts in the bone marrow), the interpretation of estimates is different. For example, an increase
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in age by a factor of e (≈ 2.72) almost triples the hazard of dying before AML; the same increase in the
ratio bm_blasts/(1− bm_blasts) (where bm_blasts is the proportion of myeloblasts in the bone marrow)
is associated with an increment in the hazard of dying before AML of approximately 16%.

5.3 Computing cumulative transition hazard estimates

The function msfit_generic is the generic function in ebmstate that computes cumulative transition
hazards for a given set of covariate values and an estimated Cox model. It calls a different method
according to the class of its object argument. The default method corresponds to the original
msfit function of the mstate package and is appropriate for objects of class coxph, i.e., objects that
contain the fit of a Cox model with fixed effects. The other available method for msfit_generic,
msfit_generic.coxrfx, is just the original msfit function, (slightly) adapted to deal with objects
generated by CoxRFX. Quite importantly, msfit_generic.coxrfx does not allow the variance of the
cumulative hazards to be computed, as this computation relies on asymptotic results which may not
be valid for an empirical Bayes model. As a result, it only has two other arguments apart from the
object of class coxrfx: a data frame with the covariate values of the patient whose cumulative hazards
we want to compute; and a transition matrix describing the states and transitions in the model (such as
the one that can be generated using transMat from the package mstate). The following block of code
exemplifies how these objects can be built and generates the msfit object containing the cumulative
transition hazard estimates for a sample patient. Note that the object with the patient data must
include a row for each transition, as well as a column specifying the transition stratum of each row of
covariates.

# Build `patient_data' data frame with the covariate values for which
# cumulative hazards are to be computed (covariate values of patient 78):
patient_data <- mstate.data[mstate.data$id == 78,,drop = F][rep(1,3),]
patient_data$strata <- patient_data$trans <- 1:3
patient_data <- mstate::expand.covs(

patient_data,
covs = names(patient_data)[ ! names(patient_data) %in% outcome_covs],
append = T

)
patient_data <- patient_data[ ! grepl(".3",names(patient_data),fixed = T)]

# The `patient_data' data frame has only 3 rows (one for each transition).
# The output below shows its `id' and `trans' columns
# and expanded covariates ASXL1 and DNMT3A:

id trans ASXL1.1 ASXL1.2 DNMT3A.1 DNMT3A.2 [...]
78 1 1 0 0 0 .
78 2 0 1 0 0 .
78 3 0 0 0 0 .

# compute cumulative hazards
msfit_object_12 <- msfit_generic(model_12,patient_data,tmat)

Figure 11 shows three plots of estimated cumulative transition hazards for the sampled patient,
one for each transition in the model, along with 95% non-parametric bootstrap confidence intervals
(computed with ebmstate::boot_ebmstate). Throughout the plotted period, the ‘slope’ of the cumu-
lative hazard (i.e., the hazard rate) for the MDS to AML transition is lower than the one for the MDS to
death transition, and this in turn is lower than the one for the AML to death transition. It should be
recalled that the cumulative hazard estimate is strictly non-parametric for this last transition, i.e., it
is the same for all patients. The central plot of figure 11 suggests that, as time since diagnosis goes
by, the hazard of dying in MDS increases (possibly an effect of age). On the other hand, the hazard
of dying in AML seems to decrease (slightly) with time (rightmost plot). Conclusions regarding the
evolution of the AML hazard are hard to draw, since the confidence intervals for the corresponding
cumulative hazard curve are very wide (leftmost plot).

If an object generated by msfit_generic is fed to plot, and the package mstate is loaded, the
method mstate:::plot.msfit will be called. This is an efficient way of automatically plotting the
cumulative hazard estimates for all transitions, but confidence interval lines (separately estimated)
cannot be added.
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5.4 Computing state occupation probability estimates

The functions probtrans_mstate, probtrans_ebmstate and probtrans_fft compute estimates of
state occupation probabilities for a given msfit object. All three functions generate objects of
class probtrans that can be fed to the plot.probtrans method from the package mstate. The
first of these functions should only be used for clock-forward models, as it relies on product-
limit calculations. It calls the method probtrans_mstate.default, if the msfit object was gener-
ated by msfit_generic.default, or the method probtrans_mstate.coxrfx, if it was generated by
msfit_generic.coxrfx. Both methods are identical to the function probtrans in the mstate package,
with the reserve that probtrans_mstate.coxrfx does not allow the computation of the variances or
covariances of the state occupation probability estimator.

The functions probtrans_ebmstate and probtrans_fft are the functions in ebmstate for the
computation of state occupation probability estimates under clock-reset models with a transition
structure that has no cycles. When using probtrans_fft (the faster, but somewhat less stable, of
these two functions), three arguments must be supplied: the initial state of the process whose state
occupation probabilities one wishes to compute, the msfit object, and the upper time limit for the
generation of estimates (max_time). Both functions are based on a discrete-time approximation to a
series of convolutions. The default argument nr_steps controls the number of (equally spaced) time
steps used in this approximation. The arguments max_time and nr_steps should be increased until
the estimated curves become stable.

The following line of code computes point estimates of state occupation probabilities for the
sample patient.

probtrans_object_12 <- probtrans_fft("MDS",msfit_object_12, max_time = 4000)

Estimates are shown in figure 12, along with 95% non-parametric, bootstrap confidence intervals.
For this particular patient, the estimated probability of being dead after AML remains below 0.4
throughout a period of 10 years from the MDS diagnosis; if the patient does reach AML, death is
expected to happen quickly thereafter, as reflected in the very low estimates for the probability of
being in AML at any point in time. The following block of code shows how to compute confidence
intervals with boot_ebmstate:

# Creating the object arguments for boot_ebmstate()

# `groups' arguments was already created, but we need to add names to it
names(groups_12) <- names(covariates_expanded_12)

# `mstate_data_expanded' argument (similar to `covariates_expanded' but
# including outcome variables)
mstate_data_expanded <- cbind(
mstate_data[names(mstate_data) %in% outcome_covs],
covariates_expanded_12

)

# create the non-parametric bootstrap confidence intervals
boot_ebmstate_object <- boot_ebmstate(
mstate_data = mstate_data_expanded,
which_group = groups_12,
min_nr_samples = 100,
patient_data = patient_data,
tmat = tmat,
initial_state = "MDS",
time_model = "clockreset",
input_file = NULL,
coxrfx_args = list(max.iter = 200),
probtrans_args = list(max_time = 4000)

)

5.5 Model assessment

For any model fitted with ebmstate, two performance metrics can be easily computed: the concordance
statistic (Harrell et al., 1982; see also the help page of survival::concordance for the definition of
concordance) and the Bayesian Information Criterion (BIC) score (Schwarz, 1978). As an example of
how these two metrics can be obtained and used for model comparison, suppose we wish to compare
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‘model_12’ fitted above – which consists of a Cox regression including all covariates for transitions 1
and 2 and a fully non-parametric model for transition 3 – with a model that combines Cox regressions
of all covariates for each of the three transitions (denoted ‘model_123’ below). The following code
snippet shows how to fit this second model.

# arguments `groups' and `Z' for fitting a Cox regression model on all transitions
Z_123 <- data.frame(

covariates_expanded_123,
strata = mstate_data$trans,
trans = mstate_data$trans

)
groups_123 <- paste0(rep("group", ncol(Z_123) - 2), c("_1", "_2", "_3"))

# Fit a Cox regression model for all transitions
model_123 <- CoxRFX(Z = Z_123, surv = surv, groups = groups_123)

Running the concordance function in the survival package for each model yields the following output:

> concordance(model_12)
Call:
concordance.coxph(object = model_12)

n= 1210
Concordance= 0.8131 se= 0.01314

concordant discordant tied.x tied.y tied.xy
strata=1 18040 2783 0 1 0
strata=2 37919 9678 0 7 0
strata=3 0 0 1052 0 4

> concordance(model_123)
Call:
concordance.coxph(object = model_123)

n= 1210
Concordance= 0.8168 se= 0.01312

concordant discordant tied.x tied.y tied.xy
strata=1 18041 2782 0 1 0
strata=2 37920 9677 0 7 0
strata=3 784 268 0 4 0

The output shows that modelling transition 3 with a Cox model, instead of a fully parametric one,
has a negligible impact on the overall concordance. However, this is due to the fact that there are
far fewer observations for this transition. The concordance for transition 3 only, which corresponds
to strata 3, is 0.5 under the fully parametric model (i.e., all patients are assigned the same transition
hazard) and considerably higher under the Cox regression (784/(784 + 268) = 0.75). Ideally, the
comparison of models of different complexity should be carried out on a test sample rather than on the
training data. For this purpose, the test data can be input into to the concordance function (argument
newdata). However, in the present case, only 61 patients were ever at risk of dying with AML (i.e. of
undergoing transition 3), and of these only 41 actually died, so we might prefer to keep all patients
in the training data, rather than saving a fraction of them for testing purposes. Such an option will
yield more accurate coefficient estimates, at the expense of not allowing the computation of unbiased
estimates of model performance. If the goal is only to compare models, we can make do without test
data, by using an information score that penalises model complexity, such as the BIC. To facilitate
model comparison, the BIC score is one of the attributes of the model fit object:

> model_12$BIC
[1] 2508.37

> model_123$BIC
[1] 2483.49

The best model is the one with the lowest score, so the choice of ‘model_123’ is confirmed.

6 Discussion

We have shown that ebmstate is suitable for higher-dimensional, multi-state survival analysis, and that
it is both efficient and easy-to-use. To a significant extent, the user-friendliness of ebmstate stems from
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the fact that it was not built ‘from the ground up’. Instead, we produced a package that is more easily
accessible to the many users of mstate by taking advantage of whichever features of this package
were useful to our method and by eliminating redundancies. The connection between ebmstate
and mstate is based on the fact that the function CoxRFX takes the same type of input and produces
the same type of output as coxph from the package survival, and the function probtrans_fft (or
probtrans_ebmstate) has the same type of input and output as probtrans from mstate (as shown in
figure 8).

We also sought to improve our package’s user-friendliness by making it as efficient as possible. The
reduction of computational cost is based on two features. First, our empirical Bayes method relies on
an expectation-maximisation algorithm that estimates both the parameters and the hyper-parameters
of the model, i.e., no further tuning of the model is required. Second, in ebmstate, the computation
of state occupation probability estimates relies on analytical results rather than on simulation: not
only for clock-forward models, where we import from mstate a product-limit estimator, but also for
clock-reset models, where we implement our own estimator based on a convolution argument and the
fast Fourier transform.

To our knowledge, ebmstate is the first R package to put together a framework for multi-state
model estimation that is complete and suitable for higher-dimensional data. It does so by implementing
point and interval estimators of regression coefficients, cumulative transition hazards and state
occupation probabilities, under regularised multi-state Cox models. In section Estimator performance,
the results of the simulation study suggest that for data sets with 100 patients or more and a ratio
of p (patients) to n (coefficients per transition) greater than 0.1, the standard Cox model estimator is
clearly outperformed by the empirical Bayes one when it comes to the estimation of relative hazards
and state occupation probabilities of an out-of-sample patient, or the regression coefficients of the
model. However, the same study suggests that using an empirical Bayes method instead of a fully
non-parametric one is of limited or no value in settings where p/n ≥ 1. This loss of usefulness
can already happen for p/n ≤ 1/2 when it comes to the estimation of the relative hazards of an
out-of-sample patient, especially for transition structures with multiple competing transitions.

As mentioned in previous sections, ebmstate imports a product-limit estimator from mstate that
targets the state occupation probabilities of patients with time-fixed covariate vectors. However, these
estimators are extendible to models with time-dependent covariates, as long as these are external and
the estimates are conditional on specific covariate paths (Aalen et al., 2008, p. 142). For piecewise
constant covariates, it is likely that such an adaptation could be obtained by combining transition
probability estimates obtained for each period in which the covariates are fixed. While no significant
theoretical obstacles are foreseen in this matter, the computer implementation for more than a single
piecewise constant covariate is likely to be a laborious task. We have left it therefore for future work.
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Figures

Figure 1: Summary of inputs and outputs of the package ebmstate. The input data set should be one
that violates the assumption – commonly used in survival analysis – that the number of observations
is much larger than the number of parameters to be estimated (a genomic-clinical data set is shown as
a typical example). The input model is a multi-state Cox model defined by a transition structure and a
prior distribution on the regression coefficients. This prior distribution is defined by partitioning the
vector of regression coefficients into groups of regression coefficients, with each group having its own
Gaussian prior with undetermined mean and variance. The outputs of ebmstate include estimates of
the relative transition hazards associated with each covariate, as well as estimates of the probability
that a specific patient (with specific covariate measurements) has of occupying each state of the model
over some time period. Estimates of cumulative transition hazards are omitted from the figure.
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Figure 2: Comparison of running times and estimation accuracy of mssample and probtrans_fft.
Each plot in the grid shows two estimated curves of state occupation probabilities. The black curves
are based on a single run of mstate::mssample with n = 100.000 observations (approximately 17
minutes of running time) and are the same across columns. They serve as benchmark for precision
assessment. In columns 1 to 3 of the grid, the superimposed red curves are based on a run of mssample
with respectively 100, 1000, and 10.000 observations. In the rightmost column, the red curves are
based on a run of probtrans_fft. All functions have as input the same set of cumulative transition
hazards. These were estimated using a non-parametric multi-state model and a data set of 1000
patients generated according to a clock-reset Cox model with a ‘linear’ transition structure (leftmost
diagram of figure 3). Plots in the same row refer to the same state of the model, while those in the
same column refer to the same run of a function. Running times and, where appropriate, number of
simulations (n) are given on top of each column.
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Figure 3: Model transition structures. We studied the performance of Cox model estimators, empirical
Bayes Cox model estimators and fully non-parametric estimators with respect to these 3 transition
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Figure 4: Proportions of valid, infinite and missing (‘NA’) estimates for the standard Cox model
estimators in the simulation study of figure 6 (100 patients per simulated data set).
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Figure 5: Proportions of valid, infinite and missing (‘NA’) estimates for the standard Cox model
estimators in the simulation study of figure 7 (1000 patients per simulated data set).
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Figure 6: Performance comparison of standard Cox, empirical Bayes Cox, and fully non-parametric
(null) estimators using training data sets with 100 observations each. In the figure grid there is
a boxplot corresponding to every tuple (a, m, G, p) such that a ∈ {regression coefficients, relative
hazards, state occupation probabilities} is the target of estimation, m ∈ {standard Cox, empirical
Bayes Cox, null} is the hazard model, G ∈ {linear, competing risks, ‘m’ structure} is the transition
structure of the model, and p ∈ {10, 40, 70, 100} is the number of coefficients/covariates per transition.
Each boxplot is based on at most 300 average absolute error observations. Figure 4, together with
figures 6.1 and 6.3 in file ESM_1.html of the Supporting Scripts and Data, show the proportion of
valid, missing and infinite estimates for each estimator. In each simulation scenario, the upper limit of
the plot’s y-axis defines a threshold above which observations are considered very large. Very large
observations were replaced by the y-axis upper limit before the boxplots were built.
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Figure 7: Performance comparison of standard Cox, empirical Bayes Cox, and fully non-parametric
(null) estimators using training data sets with 1000 observations each. In the figure grid there is
a boxplot corresponding to every tuple (a, m, G, p) such that a ∈ {regression coefficients, relative
hazards, state occupation probabilities} is the target of estimation, m ∈ {standard Cox, empirical
Bayes Cox, null} is the hazard model, G ∈ {linear, competing risks, ‘m’ structure} is the transition
structure of the model, and p ∈ {10, 100, 200, 300, 400, 500} is the number of coefficients/covariates
per transition. Each boxplot is based on at most 300 average absolute error observations. Figure 5,
together with figures 6.2 and 6.3 in file ESM_1.html of the Supporting Scripts and Data, show the
proportion of valid, missing and infinite estimates for each estimator. In each simulation scenario, the
upper limit of the plot’s y-axis defines a threshold above which observations are considered very large.
Very large observations were replaced by the y-axis upper limit before the boxplots were built.
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Figure 8: Extension of the mstate analysis framework by ebmstate. Arrows correspond to functions.
Boxes correspond to inputs or outputs of functions. Functions CoxRFX and probtrans_fft from
ebmstate compute point estimates only. Interval estimates can be obtained using the non-parametric
bootstrap algorithm implemented in the function ebmstate::boot_ebmstate.
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n=576
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a

MDS AML

death
before AML
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death
after AML

n=61

n=41n=177

c
covariate minimum maximum mean std  dev data type transformation
ASXL1 (point mutation) 0 1 0.13 0.33 binary (yes/no) none
DNMT3A (point mutation) 0 1 0.09 0.28 binary (yes/no) none
RUNX1  (point mutation) 0 1 0.07 0.26 binary (yes/no) none
SF3B1 (point mutation) 0 1 0.27 0.45 binary (yes/no) none
SRSF2 (point mutation) 0 1 0.14 0.35 binary (yes/no) none
TET2 (point mutation) 0 1 0.25 0.43 binary (yes/no) none
TP53 (point mutation) 0 1 0.05 0.22 binary (yes/no) none
U2AF1 (point mutation) 0 1 0.06 0.23 binary (yes/no) none
del5q mutation 0 1 0.1 0.31 binary (yes/no) none
complex mutations 0 1 0.11 0.31 binary (yes/no) none
other mutations 0 1 0.06 0.24 binary (yes/no) none
age 17 95 67.42 12.61 numeric (years) log
sex 0 1 0.44 0.5 binary (yes/no) none
peripheral blood cytopenias 0 1 0.5 0.5 binary (yes/no) none
hemoglobin level 3.2 17.6 9.88 1.96 numeric (g/dL) none
absolute neutrophil count 0 38.2 3.08 3.65 numeric (count per nanolitre) log
platelet count 5 1478 197 187.32 numeric (count per nanolitre) log
myeloblasts in bone marrow 0.03 0.64 0.07 0.07 numeric (proportion) logit
ring sideroblasts in bone marrow 0.03 0.93 0.17 0.23 numeric (proportion) logit
International Prognostic Scoring System 1 4 1.79 0.84 ordinal (score) none
WHO class RA 0 1 0.18 0.38 binary (yes/no) none
WHO class RARS 0 1 0.13 0.34 binary (yes/no) none
WHO class RCMD 0 1 0.16 0.37 binary (yes/no) none
WHO class RCMD.RS 0 1 0.1 0.3 binary (yes/no) none
WHO class RAEB 0 1 0.23 0.42 binary (yes/no) none
WHO class CMML 0 1 0.1 0.3 binary (yes/no) none
treatment center 1 0 1 0.12 0.33 binary (yes/no) none
treatment center 3 0 1 0.54 0.5 binary (yes/no) none
treatment center 4 0 1 0.28 0.45 binary (yes/no) none
date of diagnosis 15/04/1981 18/01/2012 04/08/2004 NA numeric time since 15/04/1981 

in units of 5 years

Figure 9: a: transition model implied by the data set of patients with myelodysplastic syndromes,
together with transition event numbers; b: conversion to a transition structure without cycles; c:
transformations applied to the MDS covariate data and summary statistics for the data before transfor-
mation. MDS stands for myelodysplastic syndromes; AML stands for acute myeloid leukemia.
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Figure 10: Point estimates of regression coefficients for the Cox model fitted to the MDS data, along
with 95% non-parametric bootstrap confidence intervals. The x-axis scale is logarithmic so that
coefficient estimates can be read as relative hazard estimates. If γij is the element of β̂ij associated with

a given covariate, exp
(

γij

)
is the estimated relative hazard for this covariate in transition (i, j). In

general, a relative hazard estimate r for a covariate z in transition (i, j) means that a one-unit increase
in z is associated with an r-fold increase in the hazard of this transition. If z was obtained by log-
transformation (as in age, platelet counts and neutrophil counts), a one-unit increase in z corresponds
to scaling the original covariate by e ≈ 2.72. In case z was obtained by logit-transformation (as in bone
marrow blasts and sideroblasts proportions), the same one-unit increase corresponds to scaling the
odds of the original covariate by e.
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Figure 11: Point estimates of cumulative transition hazards for a sample patient with MDS (black
curve), along with 95% non-parametric confidence intervals (dashed red lines).

Figure 12: Point estimates of state occupation probabilities for a sample patient with MDS (black
curve), along with 95% non-parametric confidence intervals (dashed red lines).
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