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Inference for Network Count Time Series
with the R Package PNAR
by Mirko Armillotta, Michail Tsagris, and Konstantinos Fokianos

Abstract We introduce a new R package useful for inference about network count time series. Such
data are frequently encountered in statistics and they are usually treated as multivariate time series.
Their statistical analysis is based on linear or log-linear models. Nonlinear models, which have been
applied successfully in several research areas, have been neglected from such applications mainly
because of their computational complexity. We provide R users the flexibility to fit and study nonlinear
network count time series models which include either a drift in the intercept or a regime switching
mechanism. We develop several computational tools including estimation of various count Network
Autoregressive models and fast computational algorithms for testing linearity in standard cases
and when non-identifiable parameters hamper the analysis. Finally, we introduce a copula Poisson
algorithm for simulating multivariate network count time series. We illustrate the methodology by
modeling weekly number of influenza cases in Germany.

1 Introduction

Many data examples are frequently observed as multivariate counting processes recorded over a
time-span and with known relations among observations (e.g epidemiological data with geographical
distances between different areas). An important objective then is to study the effect of a known
network to the observed data. This motivates a great amount of interest to network time series models;
see Zhu et al. (2017) who developed continuous Network Autoregressive models (abbreviated as NAR).
For these models, the observed variable Y, for the node i at time t, is denoted by Yi,t, and it is assumed
to depend on the past value of the variable for the node itself, say Yi,t−1, and on the historical averages
of its neighboring variables. The unknown parameters of the model are estimated by Least Squares
estimation (LS). This work was advanced by Armillotta and Fokianos (2023a) who developed linear
and log-linear Poisson Network Autoregression model (PNAR) for multivariate count distributed
data. The joint dependence among different variables is specified by a copula construction (Fokianos
et al., 2020, Sec. 2). In addition, Armillotta and Fokianos (2023a) have further established parametric
estimation under the framework of quasi maximum likelihood inference (see Wedderburn (1974)
Gourieroux et al. (1984)) and associated asymptotic theory when the network dimension increases. In
the context of epidemiology, related applied work has been developed by Held et al. (2005) for the
linear model only, and it was extended by Paul et al. (2008); Paul and Held (2011); Held and Paul
(2012); Meyer and Held (2014) and Bracher and Held (2020).

The previous contributions impose linearity (or log-linearity) of the model, which can be a restric-
tive assumption for real world applications. For example, existence of different underlying states (e.g.
exponentially expanding pandemic/ dying out pandemic) implies that different regime switching data
generating processes should be applied and this fits the framework we consider. Recently, Armillotta
and Fokianos (2023b) specified a general nonlinear Network Autoregressive model for both continuous
and discrete-valued processes, establishing also related theory. In addition, the authors study testing
procedures for examining linearity of NAR model against specific nonlinear alternatives by means
of a quasi score test statistic. This methodology was developed with and without the presence of
identifiable parameters under the null hypothesis.

Even though there exists sufficient statistical methodology for PNAR models, there has been a
lack of up-to-date software for implementing their analyses. The aim of this work is to fill this gap by
introducing the new package PNAR (Tsagris et al., 2023) and to demonstrate its usefulness for count
network data analysis. Related R packages do not provide tools for estimating nonlinear models and
applying associated testing procedures. The package GNAR (Leeming et al., 2023; Knight et al., 2020)
studies Generalized NAR models (GNAR); this is a linear NAR model which takes into account the
effect of several connection layers between the network nodes. This package deals with continuous-
valued time series and does not contain tools for testing linearity. PNAR complements GNAR as it
provides additional methodology for testing and inference about nonlinear discrete-valued network
models.

Package surveillance (Höhle et al., 2022; Meyer et al., 2017) fits only linear models for spatial-
temporal disease counts with Poisson or Negative Binomial distribution and with an autoregressive
network effect. The package does accommodate various structural break-point tests but it does not
contains functions for testing linearity and for log-linear model fitting. Moreover, standard errors of
estimated parameters are computed by considering the quasi-likelihood as the true likelihood of the
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model (Paul et al., 2008, Sec. 2.3). However, if the count time series are cross-sectional dependent, as it
is usually the case, the likelihood function is misspecified and the obtained standard errors are not
consistently estimated.

The PNAR package provides several advancements to the state of the art software: i) efficient
estimation of (log-)linear models with proper robust standard errors accounting for possible model
misspecification; ii) appropriate functions for testing linearity when a parameter is either identifiable of
non-identifiable, under then null hypothesis, by providing appropriate p-value bounds and bootstrap
approximations; iii) new algorithms for generating (log-)linear and nonlinear network count time
series models.

The paper is organized as follows. The next section introduces linear and log-linear network time
series autoregressive models for count data. Details about inference for unknown model parameters
are provided. An application to estimation of weekly number of influenza A & B cases from two
Southern German states is given and some further model aspects are discussed. Then we focus on
non-linear models and associated testing theory. Results concerning score tests for testing linearity in
NAR models are discussed and applied to influenza data. We also address the issue of computational
speed. A short section discussing simulation of network count time series shows the usefulness of this
methodology. The paper concludes with a short discussion.

2 Poisson network models

Consider a known network with N nodes, indexed by i = 1, . . . N. The neighborhood structure of
such a network is completely described by its adjacency matrix, say A = (aij) ∈ RN×N where aij = 1,
if there is a directed edge from i to j, say i → j, and 0 otherwise. Undirected graphs are allowed
(A = A′), which means that the edge between two nodes, i and j, has no specific direction (say i ∼ j).
This is common in geographical and epidemic networks (e.g. district i shares a border with district j,
patient i has a contact with patient j). Self-relationships are excluded i.e. aii = 0 for any i = 1, . . . , N.

Let Y be a count variable measured on each node of the network (i = 1, . . . , N), over a window
of time (t = 1, . . . , T). The data is a N-dimensional vector of time series Yt = (Y1,t, . . . , Yi,t, . . . YN,t)

′,
which is observed over the domain t = 1, 2 . . . , T; in this way, a univariate time series is observed for
each node, say Yi,t, with corresponding conditional expectation λi,t. Denote by λt = E(Yt|Ft−1) with
λt = (λ1,t, . . . , λi,t, . . . , λN,t)

′ the conditional expectation vector of the counts with respect to their
past history Ft−1. The following linear autoregressive network model takes into account the known
relations between nodes

Yi,t|Ft−1 ∼ Poisson(λi,t), λi,t = β0 + β1n−1
i

N

∑
j=1

aijYj,t−1 + β2Yi,t−1 , (1)

where ni = ∑j ̸=i aij is the total number of connections starting from the node i, such that i → j;
called out-degree. We call (1) linear Poisson Network Autoregression of order 1, abbreviated by
PNAR(1); (Armillotta and Fokianos, 2023a). From the left hand side equation of (1), we observe that
the process Yi,t is assumed to be marginally Poisson but the joint process depends upon a copula
function described in simulations at the end of the paper. Note that β0, β1, β2 > 0 since the conditional
mean of the Poisson is positive. Model (1) postulates that, for every single node i, the marginal
conditional mean of the process is regressed on:

• the average count of the other nodes j ̸= i which have a connection with i; the parameter β1 is
called network effect, as it measures the average impact of node i’s connections;

• the past count of the variable itself for i; the coefficient β2 is called autoregressive effect because
it provides an estimator for the impact of past count Yi,t−1.

Model (1) implies that only nodes directly followed by the focal node i (i.e. i → j), possibly, have an
impact on its mean process of counts. It is a reasonable assumption in many applications; for example,
in a social network the activity of node k, which satisfies aik = 0, does not affect node i. Hence, (1)
measures the effect of a network to the observed multivariate count time series. Moreover, the model
accommodates different types of network connectivity i.e. ai,j does not necessarily take the values 1-0
(connected-not connected). For example, ai,j = 1/di,j where di,j is some measure of distance between
node i and node j and ai,i = 0. In this way the network effect becomes a spatial network component;
see the last paragraph of Knight et al. (2020, p.3) for a discussion about a similar set of weights.

More generally, the counts Yi,t can be assumed to depend on the last p lagged values and q
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covariates. Then consider the PNAR(p, q) model

λi,t = β0 +
p

∑
h=1

β1h

n−1
i

N

∑
j=1

aijYj,t−h

+
p

∑
h=1

β2hYi,t−h +
q

∑
l=1

δl Zi,l , (2)

where β0, β1h, β2h ≥ 0, for all h = 1 . . . , p, δl ≥ 0, l = 1, 2, . . . , q and Zi,l are non-negative covariates
measured for each node i = 1, . . . , N. If p = 1 and q = 0 set β11 = β1, β21 = β2 to obtain (1). Model
(2) is stationary if ∑

p
h=1(β1h + β2h) < 1 (Armillotta and Fokianos, 2023a).

The linear form of (2) offers a great advantage interpreting the parameters but it accommodates
positive covariates. A real valued covariate enters (2) through suitable transformations that ensure
positivity (e.g. include exp(Z) instead of directly Z). This restriction is bypassed by the log-linear
model (Armillotta and Fokianos, 2023a):

νi,t = β0 +
p

∑
h=1

β1h

n−1
i

N

∑
j=1

aij log(1 + Yj,t−h)

+
p

∑
h=1

β2h log(1 + Yi,t−h) +
q

∑
l=1

δl Zi,l , (3)

where νi,t = log(λi,t) and the observation are still marginally Poisson, Yi,t|Ft−1 ∼ Poisson(exp(νi,t)),
for every i = 1, . . . , N. Then the model parameters are real-valued since νi,t ∈ R and the covariates
can take any real values. The stationarity condition turns out to be ∑

p
h=1(|β1h|+ |β2h|) < 1. Moreover,

the interpretation of coefficients is similar to the case of linear model (1) but on the log-scale.

2.1 Inference

Model (2), or (3), depends on the m-dimensional vector of unknown parameters θ = (β0, β11, . . . , β1p,
β21, . . . , β2p, δ1, . . . , δq)′, with m = 1 + 2p + q. We use of quasi-maximum likelihood methodology for
estimation of θ; see Wedderburn (1974) and Gourieroux et al. (1984). The Quasi Maximum Likelihood
Estimator (QMLE) is the vector of parameters θ̂ maximizing the function

lT(θ) =
T

∑
t=1

N

∑
i=1

(
Yi,t log λi,t(θ)− λi,t(θ)

)
, (4)

which is the so called pooled Poisson log-likelihood (up to a constant). Note that (4) is not necessarily
the true log-likelihood of the process but it serves as an approximation. In particular, (4) is the
log-likelihood function that would have been obtained if all time series were contemporaneously
independent. However, the QMLE is not computed under the assumption of independence because (4)
is simply a working log-likelihood function. The choice of maximizing (4) is justified for several reasons:
i) full likelihood based on the joint process is complex (see the last section); ii) the optimization of (4)
guarantees consistency and asymptotic normality of QMLE for the true parameter vector θ0; iii) the
QMLE is asymptotically equivalent to the MLE if the true probability mass function belongs to the
linear exponential family (Gourieroux et al., 1984); iv) simplified computations entailing increased
speed for estimation. Robustness of the QMLE in finite samples has been verified by Armillotta and
Fokianos (2023a) through extensive simulation studies.

When considering the linear model (2), the score function is

ST(θ) =
T

∑
t=1

N

∑
i=1

(
Yi,t

λi,t(θ)
− 1

)
∂λi,t(θ)

∂θ
=

T

∑
t=1

st(θ) . (5)

Define ∂λt(θ)/∂θ′ the N × m matrix of derivatives, Dt(θ) the N × N diagonal matrix with elements
equal to λi,t(θ), for i = 1, . . . , N and ξt(θ) = Yt − λt(θ) is the error sequence. Then, the empirical
Hessian and conditional information matrices are given, respectively, by

HT(θ) =
T

∑
t=1

N

∑
i=1

Yi,t

λ2
i,t(θ)

∂λi,t(θ)

∂θ

∂λi,t(θ)

∂θ′
, BT(θ) =

T

∑
t=1

∂λ′
t(θ)

∂θ
D−1

t (θ)Σt(θ)D−1
t (θ)

∂λt(θ)

∂θ′
, (6)

where Σt(θ) = E (ξt(θ)ξ
′
t(θ) | Ft−1) is the conditional covariance matrix evaluated at θ. Under

suitable assumptions, Armillotta and Fokianos (2023a) proved that
√

NT(θ̂ − θ0)
d−→ N(0, H−1BH−1),

when N → ∞ and T → ∞, where H and B are the theoretical limiting Hessian and information
matrices, respectively, evaluated at the true value θ = θ0. Then, a suitable estimator for the standard
errors of θ is the square-rooted main diagonal of the empirical "sandwich" covariance matrix, i.e.

SE(θ̂) =
{

diag
[
HT(θ̂)

−1BT(θ̂)HT(θ̂)
−1]}1/2. Closely related works to ours have employed (4) for

inference ; Paul et al. (2008) and Paul and Held (2011), among others. However, in such works (4) is
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viewed as the true log-likelihood of the model and standard errors are computed by using the naive

approach SEH(θ̂) =
{

diag
[
HT(θ̂)

−1]}1/2 which underestimates the real source of variation of the
parameters when cross-section dependence among counts is present; see (6) which depends on the
conditional covariance matrix of the process Yt. The package PNAR returns robust standard errors
as independence among counts is not assumed for their calculation. Similar theory holds for the
log-linear model (3); details can be found in the aforementioned works.

2.2 Influenza data

To illustrate the use of PNAR we apply the methodology to the dataset fluBYBW from the surveillance
package (Meyer et al., 2017). This dataset includes information about the weekly number of influenza
A & B cases in the 140 districts of the two Southern German states Bavaria and Baden-Wuerttemberg,
for the years 2001 to 2008 (416 time points). The response variable Y = (Y1, . . . , Yt, . . . YT)

′ is then a
416 × 140 matrix of collective disease counts. Figure 1 illustrates the data in these two regions during
2007. We model these data by a linear PNAR model as we discuss next.

(a) 1st Quarter of 2007 (b) 2nd Quarter of 2007

(a) 3rd Quarter of 2007 (b) 4th Quarter of 2007

Figure 1: Quarterly flu cases in two Southern German states Bavaria and Baden-Wuerttemberg for
2007.

library(PNAR)
library(surveillance)
data(fluBYBW)
flu <- fluBYBW@observed
A_flu <- fluBYBW@neighbourhood
pop <- as.matrix(t(fluBYBW@populationFrac)[,1])

After loading PNAR we load surveillance for obtaining the 140 × 416 matrix of collective disease
counts flu. The network adjacency matrix A_flu of dimension 140 × 140 has been obtained by linking
two districts if they share (at least) a border. A covariate vector consisting of fraction of population in
each district is introduced (pop). Model estimation for (2) when p = 1 and p = 2 are obtained below
by using the function lin_estimnarpq() as follows:

est1.z <- lin_estimnarpq(y = flu, W = A_flu, p = 1, Z = pop)
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est2.z <- lin_estimnarpq(y = flu, W = A_flu, p = 2, Z = pop)

Any type of non-negative matrix with zero main diagonal can be used as a valid adjacency matrix
W. For instance consider weighted networks or inverse distance matrices, etc; see the last section
for some alternatives when generating data. Optimization of (4) is implemented under the non-
negativity constraint of coefficients satisfying the stationary condition. This is a nonlinear constrained
optimization problem solved by means of a Sequential Quadratic programming (SQP) gradient-based
algorithm (Kraft, 1994) of package nloptr (Ypma and Johnson, 2022). By default, the optimization
is constrained in the stationary region; this can be removed by setting the option uncons = TRUE
although this is not suggested because large sample properties of the estimators have been developed
within the stationary region. The function lin_estimnarpq() has three additional features:

• maxeval: the maximum number of iterations for the optimization (the default is 100);

• xtol_rel: relative tolerance for the optimization termination condition (the default is 1e-8);

• init: starting value of the optimization (the default is NULL).

When init = NULL starting values are computed internally by ordinary LS using a lower barrier value
of 0.01 because the regression coefficients cannot assume negative values. However, users can provide
their own initial values through the argument init.

The function lin_estimnarpq returns as output a list consisting of the estimated coefficients,
their associated standard errors, a z-test statistics with p-values, the score function evaluated at the
optimum, the maximized log-likelihood, and the usual Akaike and Bayesian Information Criteria
(AIC, BIC) accompanied by the Quasi IC (QIC) (Pan, 2001) which takes into account the fact that the
log-likelihood (4) is a quasi log-likelihood; see Table 1 for the results, which are obtained in less than
a second (see also Table 2). The score computed at the optimum values is of order 1e-5, on average,
indicating successful convergence of the algorithm.

Table 1: Estimation of linear PNAR model (2) for p = 1, 2 and Z = pop. Standard errors of coefficients
are given in parentheses.

p β0 β1,1 β1,2 β2,1 β2,2 δ AIC BIC QIC

1 0.0118 0.2862 - 0.6302 - 2.0027 -6041.20 -6025.08 -5886.16
(0.0022) (0.0204) (0.0345) (0.4475)

2 0.0081 0.2303 0.0136 0.5459 0.1445 1.7609 -7447.48 -7423.30 -7240.56
(0.0018) (0.0218) (0.006) (0.0379) (0.0183) (0.3998)

All the estimated coefficients are positive and significantly different from 0. The autoregressive
effect β2,h shows higher magnitude with respect to the network effects β1,h since past counts of
the same district are, in general, more informative than the neighboring cases. Both network and
autoregressive parameters when p = 1 have a larger magnitude when compared to the corresponding
coefficients at p = 2. This can be explained since influenza has an incubation period of only 1-4 days
(with an average of 2 days) and a patient is still contagious for no more than 5-7 days after becoming
sick1 so the case counts at first lag are more informative than the ones at second lag which are still
important. The population covariate is significant with positive effect. Standard errors are computed
by using the sandwich estimator.

To select the model order p, for the PNAR model (2), PNAR includes a function for estimating
model parameters for a range of lag values. By default p ∈ {1, 2, . . . , 10}. This function returns the
scatter plot of any IC (default is QIC) versus the lag order, for example

lin_ic_plot(y = flu, W = A_flu, p = 1:10, Z = pop, ic = "AIC")

Figure 2 shows the output of lin_ic_plot() for the case of AIC. Plots for the cases of BIC and QIC are
similar and not shown. All information criteria point to the model with p = 9. However, from the
corresponding estimation results reported in the Appendix, almost all β coefficients, which correspond
to lags p ≥ 3, are close to zero and non significant. Therefore, we decide to retain p = 2, for parsimony.

We compare estimation of standard errors after fitting the linear PNAR model to influenza data
using PNAR and surveillance packages (covariate Z is excluded). The latter follows the standard
error estimation according to the approach described in Paul et al. (2008) and Paul and Held (2011).
The estimation of model (1) with PNAR gives

est1 <- lin_estimnarpq(y = flu, W = A_flu, p = 1)
summary(est1)

1https://www.cdc.gov/flu/about/disease/spread.htm
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Figure 2: Scatter plot of AIC for PNAR(p) model versus p.

Coefficients:
Estimate Std. Error z value Pr(>|z|)

beta0 0.02460691 0.002722673 9.037777 1.598906e-19 ***
beta11 0.28952683 0.020393106 14.197289 9.522500e-46 ***
beta21 0.63082409 0.034462519 18.304642 7.598940e-75 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Using surveillance, the same model is fitted by the following lines of code:

stsObj <- fluBYBW
ni <- rowSums(neighbourhood(stsObj))
control <- list( ar = list(f = ~ 1),
ne = list(f = ~ 1, weights = neighbourhood(stsObj) == 1,
offset = matrix(1/ni, nrow(stsObj), ncol(stsObj), byrow=TRUE)),
end = list(f = ~ 1),
family = "Poisson", keep.terms = TRUE)
fit1 <- hhh4(stsObj, control)
coefSE <- coef(fit1, idx2Exp = TRUE, se = TRUE)
coefSE

Estimate Std. Error
exp(ar.1) 0.63082409 0.0066281675
exp(ne.1) 0.28952683 0.0052551614
exp(end.1) 0.02460691 0.0007619529

Comparing the above outputs, note that estimated coefficients are identical (subject to rounding errors)
but standard errors, obtained by surveillance package, underestimate their value as it was explained
at the end of the inference section. In addition, PNAR is more user-friendly for fitting (2) and it is
almost twice as fast. Indeed, the average estimation time over 10 calls of the same function is 0.42
seconds in comparison to 0.22 by the PNAR package (see Table 2).

The usefulness of the PNAR package is not limited to epidemiological data. For example,
the dataset crime, which is already built in the package, contains monthly number of burglaries
within the census blocks on the south side of Chicago during 2010-2015 and includes a network
matrix, called crime_W, connecting two blocks sharing a border. The documentation of the functions
lin_estimnarpq() and log_lin_estimnarpq() provides an example of PNAR models applied to crime
data.

3 Extending Linearity

In this section, we give some motivating examples of nonlinear models for time series of networks
as introduced by Armillotta and Fokianos (2023b). In addition, we provide testing procedures for

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 261

testing the linearity assumption. For ease of presentation, denote by Xi,t = n−1
i ∑N

j=1 aijYj,t the average
neighbor network mean. When a drift in the intercept term of (2) is introduced, the following nonlinear
Intercept Drift model, ID-PNAR(p, q), is obtained

λi,t =
β0

(1 + Xi,t−d)γ
+

p

∑
h=1

(
β1hXi,t−h + β2hYi,t−h

)
+

q

∑
l=1

δl Zi,l , (7)

where γ ≥ 0. Model (7) shares similar to a linear model when the parameter γ takes small values
and for γ = 0 reduces to (2). Instead, when γ takes values away from zero, model (7) introduces a
perturbation, deviating from the linear model, which depends on the network mean at lag (t − d),
where d is an additional delay parameter such that d = 1, 2, . . . , p. Model (7) is directly applicable
when the baseline effect, β0, varies over time as a function of the network.

Another interesting class of nonlinear models are regime switching models, i.e. models allowing
for the dynamics of the count process to depend on different regimes (e.g. exponentially expanding
pandemic/ dying out pandemic). We give two such examples of models whose specification is based
either on a smooth distortion or an abrupt transition. With the same notation as before, the Smooth
Transition PNAR model, ST-PNAR(p, q) assumes a smooth transition between two regimes and it is
defined by

λi,t = β0 +
p

∑
h=1

(
β1hXi,t−h + β2hYi,t−h + αhe−γX2

i,t−d Xi,t−h

)
+

q

∑
l=1

δl Zi,l , (8)

where γ ≥ 0 and αh ≥ 0, for h = 1, . . . , p. This models introduces a smooth regime switching behavior
of the network effect making it possible to vary smoothly from β1,h to β1,h + αh, as γ varies from large
to small values. The additional delay parameter d determines the time of nonlinear transition that
can be chosen. When αh = 0, for h = 1, . . . , p in (8), the linear PNAR model (2) is recovered. In some
applications the transition between regimes may be abrupt (e.g. financial market crashes). For this
reason, we consider the Threshold PNAR model, T-PNAR(p, q), which is defined by

λi,t = β0 +
p

∑
h=1

(
β1hXi,t−h + β2hYi,t−h +

(
α0 + α1hXi,t−h + α2hYi,t−h

)
I
(
Xi,t−d ≤ γ

))
+

q

∑
l=1

δl Zi,l , (9)

where I(·) is the indicator function and γ ≥ 0 is now threshold parameter. Moreover, α0, α1,h, α2,h ≥ 0,
for h = 1, . . . , p. When α0 = α11 = ... = α2p = 0, model (9) reduces to (2).

For all nonlinear models, estimation of the unknown parameters is based on QMLE, following the
discussion in the inference section. Therefore, analogous conclusions about estimation of regression
parameters, their standard errors and model selection apply to the case of nonlinear models (7)–(9).
Further details can be found in Armillotta and Fokianos (2023b).

3.1 Standard implementation of testing linearity

Testing linearity against several specific alternatives offers guidance about the type of nonlinear model
to be fitted. Moreover, in certain cases where the linear model is nested within a nonlinear model,
some nonlinear parameters may be inconsistently estimated (see the case ST-PNAR and T-PNAR
models below) so testing linearity prevents incorrect estimation.

Consider model (7) and the hypothesis testing problem H0 : γ = 0 vs. H1 : γ > 0 which is
a hypothesis between the linear PNAR (2) null assumption versus ID-PNAR alternative model (7).
Consider the vector of all the parameters of ID-PNAR model (7), θ = (β0, β11, . . . , β2p, δ1, . . . , δq, γ)′.
Define the partition of the parameters θ = (θ(1)′, θ(2)′)′, where θ(1) = (β0, β11, . . . , β2p, δ1, . . . , δq)′ is
the sub-vector of parameters associated with the linear part of model. Let θ(2) be the sub-vector of
θ which corresponds to nonlinear parameters; for model (7), θ(2) = γ. Denote further by ST(θ) =

(S(1)′
T (θ), S(2)′

T (θ))′ the corresponding partition of the quasi score function (5). We develop a quasi
score test statistic based on the quasi log-likelihood (4). This is a convenient choice, because the score
test requires estimation of model under the null hypothesis, i.e. under the linear model. Then the
restricted estimator is denoted by θ̃ = (β̃0, β̃11, . . . , β̃2p, δ̃1, . . . , δ̃q)′ and it is usually simpler to compute.
The quasi score test statistic is given by

LMT = S(2)′
T

(
θ̃
)

Σ−1
T

(
θ̃
)

S(2)
T

(
θ̃
)

, (10)

with ΣT(θ̃) = J̃H−1
T (θ̃) J̃′

(
J̃H−1

T (θ̃)BT(θ̃)H−1
T (θ̃) J̃′

)−1
J̃H−1

T (θ̃) J̃′, where J̃ = (Om2×m1 , Im2 ), Is is a

s × s identity matrix and Oa×b is a a × b matrix of zeros. ΣT(θ̃) is a the estimator for the unknown

covariance matrix Σ = Var[S(2)
T (θ̃)]. It can be proved that the quasi score test (10) converges, asymp-
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totically, to a χ2
m2

distribution, where m2 is the number of nonlinear parameter tested (Armillotta and
Fokianos, 2023b). Then, in case of model (7), m2 = 1 and we can compute the p-value of the test
statistic (10) by p = P(χ2

1 ≥ M), where M is the observed value of the test statistic LMT .

3.2 Non-standard implementation of testing linearity

Suppose now we wish to test linearity against (8). Then, considering the hypotheses H0 : α1 = · · · =
αp = 0 versus H1 : αh ̸= 0 for some h = 1, . . . , p, we note that this testing problem is non-standard
because it is not possible to estimate the value of γ under H0. Note that the parameter γ exists in the
partition of the score function (5) related to nonlinear parameters, in particular in ∂λi,t(θ)/∂αh, and
its associated covariance matrix. Hence, all relevant quantities for computing (10) are functions of

γ; that is S(2)
T (θ̃, γ), ΣT(θ̃, γ) and LMT(γ). The model is then subject to non-identifiable parameter γ

under the null. So if the true model is the linear PNAR model but a ST-PNAR is estimated instead the
smoothing parameter γ will not be consistently estimated. Analogous conclusions hold for testing
linearity against the T-PNAR model (9), where the threshold parameter γ is not identifiable under
the null. When this issue arises, the standard theory does not apply and a chi-square type test is not
suitable any more; see Davies (1987), Hansen (1996) and Armillotta and Fokianos (2023b), among
others. It is clear that the value of the test changes by varying γ ∈ Γ, where Γ is some domain. A
summary function of the test, computed under different values of γ, is then routinely employed
in applications; a typical choice is gT = supγ∈Γ LMT(γ); see Armillotta and Fokianos (2023b) who
established the convergence of gT to g = supγ∈Γ LM(γ), where g is a function of a chi-square process,
LM(γ). The values of the latter asymptotic distribution cannot be tabulated, as they depends on
unknown values of γ. Hence, we give methodology for computing p-values of such sup-type test
statistic since they cannot be obtained otherwise.

Davies’ bound. Since the space Γ = [γL, γU ] is usually assumed to be a closed interval, in practice,
we take ΓF = (γL, γ1, . . . , γl , γU) i.e. a grid of values for the non-identifiable parameter γ, and the
sup-test is obtained as the maximum of the tests LMT(γ) computed over ΓF. Davies (1987) showed
that that the p-value of the sup-test is approximately bounded by

P

[
sup
γ∈ΓF

LM(γ) ≥ M

]
≤ P(χ2

m2
≥ M) + VM

1
2 (m2−1) exp(− M

2 )2−
m2
2

Γ(m2
2 )

, (11)

where M is the value of the sup-test statistic computed in the available sample, Γ(·) is the gamma
function, and V is the approximated total variation

V = |LM
1
2
T (γ1)− LM

1
2
T (γL) + |LM

1
2
T (γ2)− LM

1
2
T (γ1)|+ · · ·+ |LM

1
2
T (γU)− LM

1
2
T (γl)|.

Equation (11) shows how to approximate the p-values of the sup-type test in a straightforward way.
Indeed, by adding to the tail probability of a chi-square distribution a correction term, which depends
on the total variation of the process, we obtain the desired bound. This method is attractive for its
simplicity and speed even when the dimension N of the network is large. However, the method
approximate p-values with their bound (11) leading to a conservative test. In addition, (11) cannot be
applied to the T-PNAR model (9), because the total variation requires differentiability of the asymptotic
distribution LM(γ) under the null hypothesis (Davies, 1987, p. 36), a condition that is not met for the
case of T-PNAR models.

Bootstrapping the test statistic. Based on the previous arguments, we suggest an alternative p-value
approximation of the test statistic employing stochastic permutations (Hansen, 1996; Armillotta and
Fokianos, 2023b)-see Algorithm 1.

An approximation of the p-values is obtained from step 10 of Algorithm 1, where gT is the value
of the sup-test statistic computed on the available sample. When the number of bootstrap replications
J is large enough, pJ

T provides a good approximation to the unknown p-values of the test. Then, the
null hypothesis H0 is rejected if pJ

T is smaller than a given significance level.

3.3 Revisiting the influenza data

We now apply the testing methodology described in the previous sections to influenza data. Consider
testing linearity of the PNAR(2) model against the nonlinear ID-PNAR(2) (7) with d = 1. Analogous
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Algorithm 1 Score bootstrap

1: Obtain the constrained QMLE of the linear model (2), say θ̃
2: for j = 1, . . . , J do
3: for t = 1, . . . , T do
4: Generate νt,j ∼ N(0, 1)
5: end for
6: Compute S

νj
T (θ̃, γ) = ∑T

t=1 st(θ̃, γ)νt,j

7: Compute the test LM
νj
T (γ) = S

νj(2)′
T (θ̃, γ)Σ−1

T (θ̃, γ)S
νj(2)
T (θ̃, γ)

8: Optimize LM
νj
T (γ) for γ and take gj

T = supγ∈Γ LM
νj
T (γ)

9: end for
10: Compute pJ

T = J−1 ∑J
j=1 I(gj

T ≥ gT)

results have been obtained for d = 2 and therefore are omitted. The quasi score test (10) is computed
by

id2.z <- score_test_nonlinpq_h0(b = est2.z$coefs[, 1], y = flu, W = A_flu,
p = 2, d = 1, Z = pop)
id2.z

Linearity test against non-linear ID-PNAR(p) model

data: coefficients of the PNAR(p, q)/time series data/order/lag/covariates/
chi-square-test statistic = 7.2318, df = 1, p-value = 0.007162
alternative hypothesis: True gamma parameter is greater than 0

where the first argument requires estimates under the null hypothesis H0 : γ = 0 which have been
obtained already. The rest of arguments follow previous syntax. For this testing problem the test is
asymptotically chi-square distributed with 1 degree of freedom. The output lists the test statistic value
and its corresponding p-value. There is strong indication to reject the linear model in favour of model
(7).

Next consider testing linearity against the ST-PNAR(2) alternative (8). In this case, the test behaves
in a non-standard way so we will be using the Davies’ bound p-value (DV) for the sup-type test (11)
and the bootstrap p-value approximation. First, the DV is computed by calling the following function

dv2.z <- score_test_stnarpq_DV(b = est2.z$coefs[, 1], y = flu, W = A_flu,
p = 2, d = 1, Z = pop)

Extreme values for the range of γ ∈ ΓF are computed internally in such a way that γU and γL are
those values of γ where, on average, the smoothing function exp(−γX2

i,t−d) is equal to 0.1 and 0.9,
respectively. In this way, during the optimization procedure, the extremes of the function domain are
excluded. For more details see the PNAR manual (Tsagris et al., 2023). The user can specify different
values for γL and γU using the arguments gama_L, gama_U and the number of grid values len (the
default is 100). Results suggest again a deviation from linearity of the model, i.e.

dv2.z

Test for linearity of PNAR(p) versus the non-linear ST-PNAR(p)

data: coefficients of the PNAR(p, q)/time series data/order/lag/covariates
/lower gamma/upper gamma/length
chi-square-test statistic = 35.074, df = 2, p-value = 9.076e-08
alternative hypothesis: At least one coefficient of the non-linear component
is not zero

Next, we apply Algorithm 1 to compute the bootstrap p-values for the sup-type test statistic. In this
case, the observed value of supγ∈Γ LM(γ) has to be computed. Initially, perform a global optimization
of the LMT(γ) for the ST-PNAR(p) model, with respect to the nuisance scale parameter γ by using
Brent’s algorithm (Brent, 1973) in the interval [gama_L to gama_U], (see previous discussion for their
computation). To ensure global optimality, the optimization is performed on runs at len-1 consecutive
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equidistant sub-intervals and the global optimum is determined by the maximum over those sub-
intervals. The default value for len is 10. Then using the function global_optimise_LM_stnarpq with
the same arguments we obtain the optimal γ value and the corresponding value of the test statistic:

go1.z2 <- global_optimise_LM_stnarpq(b = est2.z$coefs[, 1], y = flu, W = A_flu,
p = 2, d = 1, Z = pop)
go1.z2$gama
[1] 8.387526
go1.z2$supLM
[1] 35.07402

This information is used as follows

boot1.z2 <- score_test_stnarpq_j(supLM = go1.z2$supLM, b = est2.z$coefs[, 1],
y = flu, W = A_flu, p = 2, d = 1, Z = pop,
J = 499, ncores = 7, seed = 1234)

which implements Algorithm 1 using J = 499 bootstrap replicates. The function uses a parallel
processing option; the user can set the number of cores ncores (the default is no parallel). The seed for
random number generation assures reproducibility of the results.

boot1.z2$pJ
[1] 0.002004008
boot1.z2$cpJ
[1] 0.004

The above output gives (among other information) pJ
T of step 10 of Algorithm 1 and an alternative

corrected unbiased estimator for the p-value which is cpJ
T = (J + 1)−1

[
∑J

j=1 I(gj
T ≥ gT) + 1

]
. Like in

the case of DV p-value, linearity is rejected.

We work analogously for testing the PNAR(2) model versus the T-PNAR(2) model (9). Note that
optimization of LMT(γ), in this case, is based on gama_L and gama_U which are obtained (by default) as
the mean over i = 1, . . . , N of 20% and 80% quantiles of the empirical distribution of the network mean
Xi,t for t = 1, . . . , T. In this way, during the optimization process, the indicator function I(Xi,t−d ≤ γ)
avoids values close to 0 or 1. Alternatively, their value can be supplied by the user. The functions used
are analogous to the functions used for the ST-PNAR(2).

tgo1.z2 <- global_optimise_LM_tnarpq(b = est2.z$coefs[, 1], y = flu, W = A_flu,
p = 2, d = 1, Z = pop)
tgo1.z2$gama
[1] 0.1257529
tgo1.z2$supLM
[1] 49.06505

tboot1.z2 <- score_test_tnarpq_j(supLM = tgo1.z2$supLM, b = est2.z$coefs[, 1],
y = flu, W = A_flu, p = 2, d = 1, Z = pop,
J = 499, ncores = 7, seed = 1234)
tboot1.z2$pJ
[1] 0.3907816
tboot1.z2$cpJ
[1] 0.392

The test does not reject the null hypothesis of linearity, in the case of a threshold model. Overall, the
analysis shows that the linear PNAR model may not be a suitable model to fit such epidemic data
and nonlinear alternatives should be considered. In particular, evidence of a nonlinear drift in the
intercept and of a regime switching mechanism is detected. In addition, it appears that a smooth
regime switching mechanism might be more appropriate for the data.

3.4 Computational Speed

Package PNAR is quite efficient in terms of computational speed, especially for estimation problems.
We have employed the Rfast and Rfast2 packages (Papadakis et al., 2023a,b) wherever possible to
ensure computational speed. We run each function 10 times and compute the average time required to
be executed. We use a laptop computer equipped with Intel Core i7 processor (3.00GHz) and 16 GB of
RAM. Results are given in Table 2. Estimation of linear PNAR model and standard testing (ID-PNAR
model) is fast. Computations of p-values, in the case of non-identifiable parameters, requires several
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evaluations of the test statistic on a grid of values for γ (Davies’ bound) or global optimization of
the test statistic (bootstrap). However both tasks are executed in a satisfactory amount of time. The
bootstrap approximation Algorithm 1 runs slower but it still executed within satisfactory time limits.
Computational speed, for both Davies’ bound and bootstrap p-values, can be further increased by
reducing the length of the γ grid for the former and the number of bootstrap replications for the latter.
Increasing the number of cores will provide faster bootstrap approximated p-values.

Table 2: Average computation times (in seconds) for the functions called in the text.

PNAR Estimation

p 1 2 4 9

No cov. 0.22 - - -
Cov. 0.39 0.57 0.89 1.26

Tests

Models χ2
1 DV Global opt. Bootstrap

ID-PNAR 0.43 - - -
ST-PNAR - 12.88 3.74 74.60
T-PNAR - - 1.30 75.20

4 Simulating network count time series

In this last section we present a further novel implementation of the PNAR package which can be
used to simulate network count time series from linear and nonlinear models with multivariate copula
Poisson distribution, as we explain next.

Equation (1) does not include information about the joint dependence structure of the PNAR(1)
model. Following Fokianos et al. (2020) the joint multivariate distribution of the vector count time
series Yt is defined as Yt = Nt(λt) where, {Nt} is a sequence of copula-Poisson processes, that is Nt(λt)
is a sequence of N-dimensional IID marginally Poisson count processes, with intensity 1, counting the
number of events in the interval of time [0, λ1,t]× · · · × [0, λN,t], and whose structure of dependence
is modeled through a copula function C(ρ) on their associated exponential waiting times random
variables. The algorithm is described below for model (1).

Consider a network matrix A and a set of values (β0, β1, β2)
′ for model (1). Moreover, define a

starting mean vector at time t = 0, say λ0 = (λ1,0, . . . , λN,0)
′.

1. Let Ul = (U1,l , . . . , UN,l)
′, for l = 1, . . . , K a sample from a N-dimensional copula C(u1, . . . , uN ; ρ),

where Ui,l follows a Uniform(0,1) distribution, for i = 1, . . . , N.

2. The transformation Ei,l = − log Ui,l/λi,0 follows the exponential distribution with parameter
λi,0, for i = 1, . . . , N.

3. If Ei,1 > 1, then Yi,0 = 0, otherwise Yi,0 = max
{

k ∈ [1, K] : ∑k
l=1 Xi,l ≤ 1

}
, by taking K large

enough. Then, Yi,0|λ0 ∼ Poisson(λi,0), for i = 1, . . . , N. So, Y0 = (Y1,0, . . . , YN,0)
′ is a set of

(conditionally) marginal Poisson processes with mean λ0.

4. By using the model (1), λ1 is obtained.

5. Return back to step 1 to obtain Y1, and so on.

In applications, choose K large , e.g. K = 100; its values generally depends on the magnitude of
observed data. Moreover, the copula C(ρ) depends on one or more unknown parameters, say ρ, which
capture the contemporaneous correlation among the variables. The proposed algorithm ensures that
all marginal distributions of Yi,t are univariate Poisson, conditionally to the past, as described in (1),
while it introduces an arbitrary dependence among them in a flexible and general way by the copula
construction through the parameter ρ. An analogous process is employed for generating log-linear
and nonlinear count network models by suitable modifications.

Multivariate Poisson-type distributions have typically complicated form and their covariance
matrix might not be appropriate (Fokianos et al., 2020); this inspired the adoption of this simulation
methodology. Imposing a copula directly on Poisson marginals can lead to identifiability issues
(Genest and Nešlehová, 2007). For further details see Fokianos et al. (2020), Armillotta and Fokianos
(2023a) and the recent review in Fokianos (2022).
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PNAR allows to generate multivariate count times from well-known network models like the
Erdős-Rényi Model (Erdös and Rényi, 1959), with the function adja_gnp(), or the Stochastic Block
Model (SBM) (Wang and Wong, 1987) with the function adja(). Such functions are based on the
igraph package (Csardi and Nepusz, 2006); see Tsagris et al. (2023) for details.

set.seed(1234)

W_SBM <- adja(N = 10, K = 2, alpha = 0.7, directed = TRUE)

sim1 <- poisson.MODpq(b = c(0.2,0.2,0.4), W = W_SBM, p = 1, TT = 100, N = 10,
copula = "gaussian", corrtype = "equicorrelation", rho = 0.5)
sim1$y

The first function randomly generates an adjacency matrix from the directed SBM model with 10
nodes and 2 groups. The second function generates a 100 × 10 time series matrix object of network
counts from the linear PNAR(1) model (1) where the joint dependence in the data generating process
is modeled by a Gaussian copula with ρ = 0.5. The "equicorrelation" option generates a correlation
matrix for the Gaussian copula where all the off-diagonal entries equal ρ. Another type of correlation
matrix which can be used is the "toeplitz" option that returns a correlation matrix whose generic
off-diagonal (i, j)-element is ρ|i−j|. Moreover, other copula functions can also be chosen as the t or
the Clayton copula. Some of the 10 simulated time series are plotted in Figure 3, for illustration.
Analogous functions are provided for generating synthetic data from log-linear or nonlinear Poisson
network model (Table 4 in the Appendix).
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Figure 3: Simulated count time series from the linear PNAR(1) model.

5 Conclusion

There exists R software for fitting Network Autoregressive models (GNAR, surveillance). However,
no published package includes functions for inference with nonlinear Network Autoregressive models.
PNAR fills this gap by providing users tools for efficient estimation of (log-)linear models with proper
robust standard errors, test statics and computational algorithms for testing model linearity and new
simulation methodology for generating (log-)linear and nonlinear network count time series models.
We showed that all these tasks are executed with a minimal computational effort.

There are a number of possible developments for PNAR. One possibility is to include several other
nonlinear models and develop related linearity tests. In addition, developing a negative binomial
quasi-likelihood estimation method offers more flexibility to model fitting. Alternative ways to
compute p-values, for example employing different bootstrap approximation, may also be considered.
Further simulation methods for generating network count time series are easily accommodated by
suitable modification of the copula Poisson algorithm. All these extensions provide users with new set
of tools for inference in the broad framework of multivariate discrete-valued time series models.

6 Appendix

Output from estimation of PNAR model (2) with lag p = 9 and population covariate:
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est9.z <- lin_estimnarpq(y = flu, W = A_flu, p = 9, Z = pop)
summary(est9.z)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

beta0 8.046948e-03 0.0018543147 4.339581e+00 1.427548e-05 ***
beta11 2.291637e-01 0.0222504112 1.029930e+01 7.097436e-25 ***
beta12 1.219436e-02 0.0058931749 2.069234e+00 3.852414e-02 *
beta13 2.880415e-08 0.0034601665 8.324498e-06 9.999934e-01
beta14 6.840207e-08 0.0047642557 1.435735e-05 9.999885e-01
beta15 4.994822e-08 0.0022529259 2.217038e-05 9.999823e-01
beta16 6.335964e-07 0.0023712114 2.672037e-04 9.997868e-01
beta17 1.096226e-06 0.0022836178 4.800390e-04 9.996170e-01
beta18 1.094862e-07 0.0018014328 6.077731e-05 9.999515e-01
beta19 1.230050e-07 0.0017010627 7.231070e-05 9.999423e-01
beta21 5.462136e-01 0.0389427608 1.402606e+01 1.079843e-44 ***
beta22 1.361396e-01 0.0179869627 7.568794e+00 3.767043e-14 ***
beta23 1.404481e-02 0.0053121667 2.643894e+00 8.195825e-03 **
beta24 1.764756e-08 0.0023065543 7.651051e-06 9.999939e-01
beta25 1.874096e-06 0.0016152031 1.160285e-03 9.990742e-01
beta26 2.036961e-05 0.0023094311 8.820187e-03 9.929626e-01
beta27 1.492721e-06 0.0019472654 7.665731e-04 9.993884e-01
beta28 6.414357e-08 0.0018167793 3.530620e-05 9.999718e-01
beta29 8.818047e-07 0.0009314276 9.467238e-04 9.992446e-01
delta1 1.412017e+00 0.3536615653 3.992566e+00 6.536216e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Log-likelihood value: 4324.057
AIC: -8608.114 BIC: -8527.5 QIC: -8362.176

Table 3: A brief overview of the main functions in PNAR.

Function Description

lin_estimnarpq() Fitting the linear PNAR(p, q) model.
log_lin_estimnarpq() Fitting the log-linear PNAR(p, q) model.
score_test_nonlinpq_h0() Score test of linear PNAR versus ID-PNAR model.
score_test_stnarpq_DV() Score test of linear PNAR versus ST-PNAR model by (11).
global_optimise_LM_stnarpq() Maximize test statistic of ST-PNAR for nuisance parameters.
score_test_stnarpq_j() Bootstrap score test of linear PNAR versus ST-PNAR model.
global_optimise_LM_tnarpq() Maximize test statistic of T-PNAR for nuisance parameters.
score_test_tnarpq_j() Bootstrap score test of linear PNAR versus T-PNAR model.

Table 4: A brief overview of functions simulating network count time series models in PNAR.

Function Description

poisson.MODpq() Generation from a linear PNAR(p) model with covariates.
poisson.MODpq.log() Generation from a log-linear PNAR(p) model with covariates.
poisson.MODpq.nonlin() Generation from a Intercept Drift PNAR(p) model with covariates.
poisson.MODpq.stnar() Generation from a Smooth Transition PNAR(p) model with covariates.
poisson.MODpq.tnar() Generation from a Threshold PNAR(p) model with covariates.
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