Supplementary materials are available in addition to this article. It can be downloaded at
RJ-2023-094.zip
M. Armillotta and K. Fokianos. Count network autoregression.
Journal of Time Series Analysis, jtsa.12728: 2023a. URL
http://doi.org/10.1111/jtsa.12728.
M. Armillotta and K. Fokianos.
Nonlinear Network Autoregression.
The Annals of Statistics, 51(6): 2526–2552, 2023b. URL
https://doi.org/10.1214/23-AOS2345.
J. Bracher and L. Held. Endemic-epidemic models with discrete-time serial interval distributions for infectious disease prediction. International Journal of Forecasting, 38: 1221–1233, 2020.
R. Brent. Algorithms for minimization without derivatives. Prentice-Hall, 1973.
G. Csardi and T. Nepusz. The igraph software package for complex network research.
InterJournal, Complex Systems: 1695, 2006. URL
https://igraph.org.
R. Davies. Hypothesis testing when a nuisance parameter is present only under the alternative. Biometrika, 74: 33–43, 1987.
P. Erdös and A. Rényi. On random graphs I. Publicationes Mathematicae Debrecen, 6: 1959.
K. Fokianos. Multivariate count time series modelling. To appear in Econometrics and Statistics, 2022.
K. Fokianos, B. Støve, D. Tjøstheim and P. Doukhan. Multivariate count autoregression. Bernoulli, 26: 471–499, 2020.
C. Gourieroux, A. Monfort and A. Trognon. Pseudo maximum likelihood methods: theory. Econometrica, 52: 681–700, 1984.
B. Hansen. Inference when a nuisance parameter is not identified under the null hypothesis. Econometrica, 64: 413–430, 1996.
L. Held, M. Höhle and M. Hofmann. A statistical framework for the analysis of multivariate infectious disease surveillance counts. Statistical Modelling, 5: 187–199, 2005.
L. Held and M. Paul. Modeling seasonality in space-time infectious disease surveillance data. Biometrical Journal, 54: 824–843, 2012.
D. Kraft. Algorithm 733: TOMP–Fortran modules for optimal control calculations. ACM Transactions on Mathematical Software (TOMS), 20: 262–281, 1994.
K. Leeming, G. Nason, M. Nunes and J. Wei.
GNAR: Methods for fitting network time series models. 2023. URL
https://CRAN.R-project.org/package=GNAR. R package version 1.1.2.
S. Meyer and L. Held. Power-law models for infectious disease spread. The Annals of Applied Statistics, 8: 1612–1639, 2014.
S. Meyer, L. Held and M. Höhle. Spatio-temporal analysis of epidemic phenomena using the R package surveillance. Journal of Statistical Software, 77: 1–55, 2017.
W. Pan. Akaike’s information criterion in generalized estimating equations. Biometrics, 57: 120–125, 2001.
M. Papadakis, M. Tsagris, M. Dimitriadis, S. Fafalios, I. Tsamardinos, M. Fasiolo, G. Borboudakis, J. Burkardt, C. Zou, K. Lakiotaki, et al.
Rfast: A collection of efficient and extremely fast r functions. 2023a. URL
https://CRAN.R-project.org/package=Rfast. R package version 2.0.8.
M. Papadakis, M. Tsagris, S. Fafalios and M. Dimitriadis.
Rfast2: A collection of efficient and extremely fast r functions II. 2023b. URL
https://CRAN.R-project.org/package=Rfast2. R package version 0.1.5.1.
M. Paul and L. Held. Predictive assessment of a non-linear random effects model for multivariate time series of infectious disease counts. Statistics in Medicine, 30: 1118–1136, 2011.
M. Paul, L. Held and A. M. Toschke. Multivariate modelling of infectious disease surveillance data. Statistics in Medicine, 27: 6250–6267, 2008.
M. Tsagris, M. Armillotta and K. Fokianos.
PNAR: Poisson Network Autoregressive Models. 2023. URL
https://CRAN.R-project.org/package=PNAR. R package version 1.6.
Y. J. Wang and G. Y. Wong. Stochastic blockmodels for directed graphs. Journal of the American Statistical Association, 82: 8–19, 1987.
R. W. Wedderburn. Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method. Biometrika, 61: 439–447, 1974.
J. Ypma and S. G. Johnson.
Nloptr: R interface to NLopt. 2022. URL
https://CRAN.R-project.org/package=nloptr. R package version 2.0.3.
X. Zhu, R. Pan, G. Li, Y. Liu and H. Wang. Network vector autoregression. The Annals of Statistics, 45: 1096–1123, 2017.