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PLreg: An R Package for Modeling
Bounded Continuous Data
by Francisco F. Queiroz and Silvia L.P. Ferrari

Abstract The power logit class of distributions is useful for modeling continuous data on the unit
interval, such as fractions and proportions. It is very flexible and the parameters represent the median,
dispersion and skewness of the distribution. Based on the power logit class, Queiroz and Ferrari
(2023b, Statistical Modelling) proposed the power logit regression models. The dependent variable
is assumed to have a distribution in the power logit class, with its median and dispersion linked to
regressors through linear predictors with unknown coefficients. We present the R package PLreg which
implements a suite of functions for working with power logit class of distributions and the associated
regression models. This paper describes and illustrates the methods and algorithms implemented in
the package, including tools for parameter estimation, diagnosis of fitted models, and various helper
functions for working with power logit distributions, including density, cumulative distribution,
quantile, and random number generating functions. Additional examples are presented to show the
ability of the PLreg package to fit generalized Johnson SB, log-log, and inflated power logit regression
models.

1 Introduction

Continuous proportion data frequently appear in areas including medicine, biology, and economics.
Some concrete examples are vegetation cover fraction, mortality rate, and body fat percentage. Fre-
quently, the interest lies in predicting or explaining the behaviour of proportions from a set of other
variables. A natural approach is to use a regression model in which the response variable takes values
on the unit interval. The most frequently employed model for bounded data is the beta regression
model (Ferrari and Cribari-Neto, 2004) and its extensions. Other models used for bounded continuous
data include, for example, rectangular beta (Bayes et al., 2012), simplex (Barndorff-Nielsen and Jør-
gensen, 1991; Zhang and Qiu, 2014), log-Lindley (Gómez-Déniz et al., 2014), CDF-quantile (Smithson
and Shou, 2017), generalized Johnson SB (GJS; Lemonte and Bazán (2016)). Some of these models are
implemented in R. For instance, the beta, simplex, and CDF-quantile regression models can be fitted
using the packages betareg (Zeileis et al., 2021), simplexreg (Zhang et al., 2016), and cdfquantreg
(Shou and Smithson, 2022), respectively. The gamlss (Stasinopoulos and Rigby, 2007) package can also
be used to fit beta and simplex regression models.

Recently, Queiroz and Ferrari (2023b) proposed a new class of regression models useful for
modeling continuous data with bounded support. The models employ a new class of distributions
called power logit (PL), indexed by the median, dispersion and skewness parameters. The PL
distributions are constructed from standard symmetric distributions assigned to the power logit
transformation of the variable that has support on (0, 1). The power logit transformation is defined in
Queiroz and Ferrari (2023b) as t(y; λ) = log[yλ/(1 − yλ)], for λ > 0 and y ∈ (0, 1); it reduces to the
logit transformation when λ = 1. The PL distributions may also depend on an extra parameter that
indexes the underlying symmetric distribution; for example, the degrees-of-freedom parameter of
the Student-t distribution. The extra parameter adds extra flexibility, which can be used, for example,
to deal with outliers. The PL distributions are more flexible than two-parameter distributions, such
as the beta, simplex, and CDF-quantile distributions. The class of PL regression models has the GJS
regression models as a particular case (λ = 1), with the advantage that the skewness parameter λ
provides extra flexibility to fit highly skewed data. Applications in real data presented in Queiroz and
Ferrari (2023b) reveal that the PL regression models are helpful for modeling continuous proportions.

The new R package PLreg provides a broad set of tools for fitting PL regression models and
performing diagnostic analysis. The package is implemented in R and available from the Compre-
hensive R Archive Network (CRAN) at https://CRAN.R-project.org/package=PLreg. This paper
describes and illustrates the methods and algorithms implemented in the package. It also presents
some examples to demonstrate the ability of the package to fit generalized Johnson SB, log-log, and
inflated power logit regression models.

The remaining of this paper is organized as follows. Section 2.2 presents the PL distributions and
the associated regression models. Section 2.3 describes the implementation of the PL distributions and
the PL regression models in the PLreg package. Section 2.4 gives detailed illustrations of the use of the
PLreg package for modeling continuous bounded data in different scenarios. The paper closes with a
brief discussion outlining the features of the PLreg package.
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2 Power logit regression models

2.1 Power logit distributions

The PL distributions (Queiroz and Ferrari, 2023b) are defined from a transformation of a continuous
random variable whose distribution is standard symmetric with probability density function r(z2),
z ∈ R, in which r(z) > 0, for z ≥ 0, with

∫ ∞
0 z−1/2r(z)dz = 1. The function r(·) is called the density

generator function. Let Y be a continuous random variable with support (0, 1) and let:

Z = h(Y; µ, σ, λ) =
1
σ

[
log

(
Yλ

1 − Yλ

)
− log

(
µλ

1 − µλ

)]
,

where 0 < µ < 1, σ > 0, and λ > 0. If Z has a standard symmetric distribution with density generator
function r(·), we say that Y has a PL distribution with parameters µ, σ and λ, and density generator
function r(·). We write Y ∼ PL(µ, σ, λ; r). The density generator function r(·) may depend on an
extra parameter, denoted here by ζ. The distribution of Y depends on the distribution chosen for Z.
For instance, if Z has a standard normal distribution, then Y has a PL normal distribution; if Z has
a standard Student-t distribution with ζ degrees-of-freedom, then Y has a PL Student-t distribution
with extra parameter ζ.

The probability density function (pdf) of Y ∼ PL(µ, σ, λ; r) is:

fY(y; µ, σ, λ) =
λ

σy(1 − yλ)
r(z2), y ∈ (0, 1),

where z = h(y; µ, σ, λ). The cumulative distribution function (cdf) of Y is FY(y; µ, σ, λ) = R(z), where
R(·) is the cdf of Z.

The GJS class of distributions is a particular case of the PL distributions when λ = 1. Other
particular cases are the logit normal distribution (Johnson, 1949), the L-Logistic distribution (da Paz
et al., 2019), and the logit slash distribution (Korkmaz, 2020), obtained by taking λ = 1 and Z as a
standard normal, type II logistic, and slash random variable, respectively.

The PL distributions have some interesting properties. For instance, the parameters µ, σ and λ
represent the median, dispersion and skewness of the distributions, and they have as a limiting case
when λ → 0+, the class of log-log distributions, defined in Queiroz and Ferrari (2023b).

2.2 Power logit regression models

The PL regression models are defined as follows. Let Y1, . . . , Yn be n independent random variables,
where Yi ∼ PL(µi, σi, λ; r), for i = 1, . . . , n, and

d1(µi) = x⊤i β = η1i,

d2(σi) = s⊤i τ = η2i,
(1)

where β = (β1, . . . , βp)⊤ ∈ Rp, τ = (τ1, . . . , τq)⊤ ∈ Rq and λ > 0 are the unknown parameters, which
are assumed to be functionally independent and p + q + 1 < n; η1i and η2i are the linear predictors;
xi = (xi1, . . . , xip)

⊤ and si = (si1, . . . , siq)
⊤ are the covariates. We assume that X = [x1, . . . , xn]⊤ and

S = [s1, . . . , sn]⊤ have column rank p and q, respectively. In addition, we assume that the link functions
d1 : (0, 1) → R and d2 : (0, ∞) → R are strictly monotonic and twice differentiable. Some examples of
link functions for the median submodel are: d1(µ) = log{µ/(1 − µ)} (logit); d1(µ) = Φ−1(µ) (probit),
where Φ−1(·) is the cdf of a standard normal random variable; d1(µ) = − log{− log µ} (log-log);
and d1(µ) = log{− log(1 − µ)} (complementary log-log). For the dispersion submodel, the log link,
d2(σ) = log σ, is the natural choice.

The log-log regression models are a limiting case of the PL regression models when λ → 0+. The
GJS regression models (Lemonte and Bazán, 2016) are obtained by taking λ = 1.

The estimation of θ = (β⊤, τ⊤, λ)⊤ is based on the maximum likelihood approach. The log-
likelihood function of θ for the observed sample y1, . . . , yn is:

ℓ(θ) =
n

∑
i=1

ℓi(µi, σi, λ),

where ℓi = ℓi(µi, σi, λ) = log λ − log σi − log{1− yλ
i }+ log{r(z2

i )}+ c, zi = h(yi; µi, σi, λ), and c does
not depend on θ. The maximum likelihood estimate (mle) of θ, denoted by θ̂, can be obtained by
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solving simultaneously the nonlinear system of equations U(θ) = 0p+q+1, which does not have a
closed form, where U(θ) is the score function and 0p+q+1 denotes a (p + q + 1)-dimensional vector of
zeros. Queiroz and Ferrari (2023b) also proposed a penalized maximum likelihood estimator (pmle),
which is recommended when the sample size is small. The pmle, denoted by θ̃, is computed through
numerical optimization as follows.

i. Compute λ̃ such that:
λ̃ = argmax

λ>0
ℓ∗p(λ),

where ℓ∗p(λ) is the penalized profile log-likelihood for λ; see Queiroz and Ferrari (2023b, Equa-
tion 7).

ii. Compute β̃ and τ̃ by maximizing ℓ(β, τ, λ̃).

The extra parameter ζ, if any, is selected by minimizing the overall goodness-of-fit measure Υζ ,
defined as:

Υζ = n−1
n

∑
i=1

|Φ−1[R(z̃(i))]− υ(i)|,

where z̃(i) is the ith order statistic of z̃, υ(i) is the mean of the ith order statistic in a random sample
of size n of the standard normal distribution and Φ(·) is the cdf of the standard normal distribution.
Alternatively, ζ may be selected by maximizing ℓ(θ̃).

Some diagnostic tools for the PL regression models are presented in Queiroz and Ferrari (2023b),
including quantile, deviance, and standardized residuals, local influence methods, and a generalized
leverage measure. Applications and further details on inference methods are found in Queiroz and
Ferrari (2023b).

3 R implementation

The PLreg package allows fitting the PL regression models. The package is organized in a similar
way to other packages for fitting regression models, such as betareg and simplexreg. The estimation
process is based on the likelihood theory, and two estimators are available: the mle and the pmle.
Diagnostic tools for evaluating the fitted model are also implemented. Currently, the package includes
methods for computing three types of residuals: quantile, deviance, and standardized residuals. Local
influence measures, leverage measures, and goodness-of-fit statistics are also available. Additionally,
the package supports PL regression models with the skewness parameter λ fixed, i.e., the package
also allows fitting GJS and log-log regression models.

3.1 Power logit distributions in the PLreg package

Currently, the PLreg package includes seven distributions of the PL class: the PL normal, PL Student-t,
PL power exponential, PL slash, PL hyperbolic, PL sinh-normal, and PL type II logistic distributions.
PLreg provides the dPL(), pPL(), and qPL() functions to compute the probability density function,
cumulative distribution function and quantile function of the PL distributions. Also, the rPL() function
may be used to generate random samples of variables with a PL distribution. The basic usages of these
functions are:

dPL(x, mu, sigma, lambda, zeta = 2, family, log = FALSE)

pPL(q, mu, sigma, lambda, zeta = 2, family, lower.tail = TRUE, log.p = FALSE)

qPL(p, mu, sigma, lambda, zeta = 2, family, lower.tail = TRUE, log.p = FALSE)

rPL(n, mu, sigma, lambda, zeta = 2, family)

The main arguments for these functions are mu, sigma, lambda and family, specifying the parameters
µ, σ, and λ and the corresponding density generator function r(·), that is, the distribution of the
symmetric distribution Z. If lambda = 0, those functions provide results for the log-log distributions.
If the density generator function depends on an extra parameter, its value must be specified in the
zeta argument. On the other hand, if it does not depend on an extra parameter, the argument zeta is
ignored. The arguments x and q are the vector of quantiles, p is a vector of probabilities, and n is the
number of random numbers to be generated. Other arguments are log, log.p and lower.tail. If log
= TRUE, then the logarithm of the probability density function will be returned. If log.p = TRUE, then
the logarithm of the cumulative distribution function will be returned and the quantile function will
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Figure 1: Histograms of random numbers of the PL hyperbolic distributions with ζ = 1.2 with
different values for µ, σ, and λ. First line: µ = (0.1, 0.5, 0.9), σ = 1, λ = 1.5; second line: µ = 0.5,
σ = (0.2, 1, 3), λ = 1.5; third line: µ = 0.3, σ = 1, λ = (0.01, 1, 5). Solid lines are corresponding to the
respective PL hyperbolic density.

be computed for exp(p). If lower.tail = FALSE, then one minus the cumulative distribution function
will be returned and the quantile function will be computed for 1 − p.

In the following, we present the density generator function of all PL distributions implemented in
the PLreg package:

• PL normal (family = "NO"): r(z) = (2π)−1/2 exp(−z/2);

• PL Student-t (family = "TF"): r(z) = ζζ/2B(1/2, ζ/2)−1(ζ + z)−(ζ+1)/2, ζ > 0 and B(·, ·) is the
beta function;

• PL type II logistic (family = "LO"): r(z) = exp{−z1/2}(1 + exp{−z1/2})−2;

• PL power exponential (family = "PE"): r(z) = ζ/[p(ζ)21+1/ζ Γ(1/ζ)]×
exp

{
−zζ/2/(2p(ζ)ζ)

}
, ζ > 0 and p(ζ)2 = 2−2/ζ Γ(1/ζ)/Γ(3/ζ);

• PL slash (family = "SLASH"): r(z) = (ζ/
√

2π) (z/2)−(ζ+1/2) G (ζ + 1/2, z/2), for z > 0, and
r(z) = 2ζ/[(2ζ + 1)

√
2π], for z = 0, where ζ > 0 and G(a, x) =

∫ x
0 ta−1e−tdt is the lower

incomplete gamma function. When ζ = 1 the slash distribution coincides with the canonical
slash distribution;

• PL hyperbolic (family = "Hyp"): r(z) = exp
{
−ζ

√
1 + z

}
/(2ζK1(ζ)), with Ks(ζ) =

∫ ∞
0

xs−1

2 ×
exp{− ζ

2

(
x + 1

x

)
}dx, is the modified Bessel function of third-order and index s.

• PL sinh-normal (family = "SN"): r(z) = 1/(ζ
√

2π) cosh(z1/2) exp
[
−2/ζ2 sinh2(z1/2)

]
, where

ζ > 0 and sinh(·) and cosh(·) represent the hyperbolic sine and cosine functions, respectively.

Figure 1 illustrates the use of the rPL() and dPL() functions showing the distribution of random
numbers generated from PL hyperbolic distributions with ζ = 1.2.

3.2 Power logit regression models

The main model-fitting function of the PLreg package is PLreg(), which is similar to the other functions
for implementing regression models in R. The basic usage of the PLreg() function is:

PLreg(formula, data, subset, na.action,
family = c("NO", "LO", "TF", "PE", "SN", "SLASH", "Hyp"), zeta = NULL,
link = c("logit", "probit", "cloglog", "cauchit", "log", "loglog"),
link.sigma = NULL, type = c("pML", "ML"), control = PLreg.control(...),
model = TRUE, y = TRUE, x = FALSE, ...)
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The argument formula may comprise three parts (separated by the symbols “ ” and “|”), namely:
the observed response variable with values on (0, 1), the linear predictor of the median submodel
and the linear predictor of the dispersion submodel (for further details about the formula argument,
see Zeileis and Croissant (2010)). For instance, formula = y x1 + x2 + x3 | z1 + z2 describes y
for the response variable, x1, x2, and x3 for the median submodel, and z1 and z2 for the dispersion
submodel. The model is fitted with constant dispersion if the third part of the argument formula is
omitted. So, a PL regression model with constant dispersion may be specified either by formula =
y x1 + x2 + x3 or formula = y x1 + x2 + x3 | 1. The available link functions for the median
submodel are "logit", "probit", "cloglog", "cauchit", and "loglog". For the dispersion submodel,
two link functions are allowed: "log" and "sqrt". The default link functions are "logit" for the
median submodel and "log" for the dispersion submodel. There are two other important arguments:
family and zeta. The argument family specifies the symmetric distribution used for generating the
PL model; the currentlu supported families are "NO, "LO", "TF", "PE", "Hyp", "SN", and "SLASH". For
the "TF", "PE", "Hyp", "SN", and "SLASH" families the extra parameter must be specified in the zeta
argument.

The estimation process is carried out via optim() with control options set in PLreg.control(). It
is based on the maximum likelihood method. Currently, two estimators are supported: the usual
maximum likelihood estimator ("ML") and a penalized maximum likelihood estimator ("pML"); this
should be specified in the type argument. If the skewness parameter (λ) is fixed, only the usual
maximum likelihood estimator is supported. In this case, a value should be specified in the control
argument through the PLreg.control() function. For instance, control = PLreg.control(lambda =
1) and control = PLreg.control(lambda = 0) lead to the GJS and the log-log regression models,
respectively; note that λ = 0 represents λ → 0+. Also, if type = "ML", optim() uses analytical
gradients in the iterative process; if type = "pML", analytical gradients are used only in the iterative
process to estimate the parameters of the median and dispersion submodels. By default, the starting
values are chosen as described in Queiroz and Ferrari (2023b), but they may be user-supplied through
the PLreg.control() function.

Once the model has been fitted, an object of S3 class ‘PLreg’ is produced. A list of some of the
components of this object is presented in Table 1. The complete list can be obtained in the reference
manual of the package (Queiroz and Ferrari, 2023a). Several methods are available for objects of class
‘PLreg’. The summary() method presents a standard output, with coefficient estimates, standard errors,
partial Wald statistics and p values for the regression coefficients, as well as the overall goodness-of-fit
measure (Υζ ), the pseudo R2, and other metrics. The argument type in summary() specifies the type
of residuals included in the output: "standardized", "quantile" or "deviance". The plot() method
draws graphs for diagnostic and influence analyses. Table 2 presents a list with all the available
functions and methods.

The extra.parameter() function can be used to select the extra parameter of some PL models.
The basic use is as follows:

extra.parameter(object, lower, upper, grid = 10)

This function provides a graph of -2loglik and Υζ as functions of ζ, the extra parameter. The object
argument is an object of class ‘PLreg’; lower and upper are the lower and upper limits of the interval
for the extra parameter, respectively; and grid is the number of values of the extra parameter for
which the measures are evaluated.

4 Examples using the PLreg package

We present some examples to illustrate the features of the PLreg package. We use a simulated dataset
and three datasets available in the package: bodyfat_Aeolus, Firm, and PeruVotes. These analyses
were conducted using R version 4.2.2.

4.1 bodyfat_Aeolus data: IID setting

For a simple illustration of the PLreg package, we consider the bodyfat_Aeolus data reported in Cheng
et al. (2019). The dataset used here has 159 observations and was collected in Aeolus Cave, located
in East Dorset, Vermont, in the USA. The bats were sampled during the winter of 2009 (covering
the winter season from October 2008 to April 2009) and 2016 (October 2015 to April 2016). Here, the
interest lies in modeling the proportion of body fat of little brown bats (percentfat) using the PL
distributions. The data can be loaded by:

R> data("bodyfat_Aeolus", package = "PLreg")
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Component Description
coefficients list of the fitted model coefficients.
residuals vector of raw residuals.
fitted.values vector of the fitted values (fitted median for each observation).
optim list with the optim() output. For unfixed λ, if type = "pML", the

output is based on the iterative process for estimating β and γ; and,
if type = "ML", it is based on the iterative process for estimating the
whole parameter vector.

family character specifying the underlying symmetric distribution.
method optimization method used in optim(). Default is "BFGS".
control control arguments passed to optim().
start vector with the starting values used to initialize the optimization

process.
nobs number of observations.
df.null residual degrees of freedom in the null model (constant median and

dispersion).
df.residual residual degrees of freedom in the fitted model.
lambda value of the skewness parameter λ (NULL when λ is not fixed).
loglik log-likelihood of the fitted model.
loglikp penalized profile log-likelihood for λ.
vcov covariance matrix of all the parameters.
pseudo.r.squared pseudo R-squared value.
Upsilon.zeta an overall goodness-of-fit measure.
link a list with elements "median" and "dispersion" containing the link

objects for the respective models.
converged logical value indicating whether the optimization converged suc-

cessfully.
zeta a numeric specifying the value of ζ used in the estimation process.
type a character specifying the estimation method used.
v a vector with the v(z) values for all the observations; see Queiroz

and Ferrari (2023b) for details.

Table 1: List of the components of an object of the ‘PLreg’ class.
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Figure 2: Histogram (left side) and boxplot (right side) of the response variable – bodyfat_Aeolus
data.

and the histogram and boxplot of the response variable are presented in Figure 2. Some summary
measures of percentfat are presented below. Note that the distributions of this variable is right-
skewed and have some values close to zero, with range 2.5% − 32%.
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Function Description
print() prints the coefficients estimates.
summary() output for the fitted model. Returns an object of class

"summary.PLreg" containing the relevant information about the fit
and has a print() method.

coef() extracts the coefficients of the fitted model.
vcov() variance and covariance matrix.
logLik() extracts the fitted log-likelihood function.
model.matrix() extracts model matrix of model components.
AIC() computes information criteria (AIC, BIC, . . . ).
residuals() extracts residuals for the fitted model (quantile, standardized and

deviance). Default is the standardized residual.
plot() presents some diagnostic plots. Currently, seven types of plots are

available: index plot of residuals, local influence plot based on the
case-weight perturbation scheme, scatter plot of the generalized
leverage versus the predicted values, scatter plot of the residuals
versus the linear predictors, normal probability plot of the residuals,
scatter plot of the predicted values versus the observed values, and
a scatter plot of the v(z) function versus the residuals (for some
PL models, v(z) may be interpreted as weights in the estimation
process).

influence() provides two influence measures and the generalized leverage for
PL regression models.

envelope() returns a normal probability plot with simulated envelopes for the
residuals.

extra.parameter() provides plots for selecting the extra parameter, if any.
CI.lambda() provides plot of the profile (penalized) likelihood ratio statistics for

λ. Used to obtain confidence intervals for λ.
sandwich() provides an estimate for the asymptotic variance and covariance

matrix of the parameter estimators of the PL regression models
based on the sandwich estimator.

Table 2: List with the methods and functions of an object of the ‘PLreg’ class.

R> summary(bodyfat_Aeolus$percentfat)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.02544 0.06658 0.09565 0.12168 0.16371 0.32336

We now fit the percentfat variable using the PL normal and PL sinh-normal distributions. For
the PL sinh-normal distribution, we first fit the distribution with a fixed value of ζ, e.g., ζ = 1, and
then we use the extra.parameter() function to select an optimal value for ζ. In the PLreg package, it
can be done via:

R> PLNO <- PLreg(percentfat ~ 1, data = bodyfat_Aeolus, family = "NO")
R> PLSN.aux <- PLreg(percentfat ~ 1, data = bodyfat_Aeolus, family = "SN",
+ zeta = 1)
R> extra.parameter(PLSN.aux, lower = 1, upper = 4, grid = 10)

Estimates for zeta are:
zeta.Ups = 1.67
zeta.loglik = 2

> PLSN <- PLreg(percentfat ~ 1, data = bodyfat_Aeolus, family = "SN",
+ zeta = 1.67)

The extra.parameter() returns the optimal values for ζ based on two measures and plots these
measures as functions of ζ; see Figure 3. We choose zeta = 1.67.

To select between the PL normal and PL sinh-normal distributions, we compute the Υζ and the
AIC for both fits:

R> PL_NO <- round(c(PLNO$Upsilon.zeta, AIC(PLNO)), 3)
R> PL_SN <- round(c(PLSN$Upsilon.zeta, AIC(PLSN)), 3)
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Figure 3: Plot returned by the extra.parameter() for selecting an optimal value for ζ of the fit of the
PL sinh-normal distribution – bodyfat_Aeolus data.

R> measures <- rbind(PL_NO, PL_SN)
R> colnames(measures) <- c("Upsilon", "AIC")
R> measures

Upsilon AIC
PL_NO 0.114 -443.771
PL_SN 0.082 -453.942

Since the values of Υζ and AIC for the PL sinh-normal fit are smaller than those of the PL normal fit,
we select the PL sinh-normal distribution. The summary output of the PL sinh-normal fit is presented
in the following:

R> summary(PLSN)

Call:
PLreg(formula = percentfat ~ 1, data = bodyfat_Aeolus, family = "SN",

zeta = 1.67)

Standardized residuals:
Min 1Q Median 3Q Max

-2.4654 -0.8318 -0.2065 0.7453 2.0551

Coefficients (median model with logit link):
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.11477 0.05416 -39.05 <2e-16 ***

Sigma coefficients (dispersion model with log link):
Estimate Std. Error z value Pr(>|z|)

(sigma) 0.2107 0.4506 0.468 0.64

Lambda coefficient:
Estimate Std. Error

(lambda) 1.438 0.764
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Family: PL - SN ( 1.67 ) (Power logit sinh-normal)
Estimation method: pML (penalized maximum likelihood)
Log-likelihood: 230 on 3 Df
Upsilon statistic: 0.08151
AIC: -453.9
Number of iterations in BFGS optimization: 9
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Figure 4: Normal probability plot of the quantile residual with simulated envelope for the PLSN fit
and the histogram of percentfat with the estimated density – bodyfat_Aeolus data.

The estimated median of the body fat proportion based on the fit is exp(−2.11477)/[1+ exp(−2.11477)] ≈
10.8%, close to the sample median. Figure 4 presents the normal probability plot of the quantile resid-
ual with simulated envelope for the PLSN fit and the histogram of percentfat with the estimated
density. These plots can be obtained as follows:

R> set.seed(180123)
R> envelope(PLSN)
R> hist(bodyfat_Aeolus$percentfat, main = " ",
+ xlab = "proportion of body fat", prob = TRUE, ylim = c(0, 10))
R> curve(dPL(x, PLSN$fitted.values[1], exp(PLSN$coefficients$dispersion),
+ PLSN$coefficients$skewness, zeta = 1.67, family = "SN"), 0 , 1,
+ add = TRUE, lwd = 2, col= "blue")

Using the delta method, an approximated 95% confidence interval for the median of the body fat
proportion is: [

µ̃ ∓ 1.96 × se(β̃)
exp(β̃)

[1 + exp(β̃)]2

]
= [0.097, 0.118].

4.2 Firm data: PL regression model

We now use the Firm data to replicate the application presented in Queiroz and Ferrari (2023b, Section
6.2). The dataset was introduced by Schmit and Roth (1990) and presents information on the risk
management practices of 73 firms. The response variable is firmcost, defined as premiums plus
uninsured losses as a percentage of the total assets. It is a measure of the firm’s risk management cost-
effectiveness. Queiroz and Ferrari (2023b) start the analysis with the PL slash regression model with
varying dispersion, employing two covariates: sizelog, the logarithm of total assets, and indcost, a
measure of the firm’s industry risk. This model can be fitted via:

R> data("Firm", package = "PLreg")

R> Firm_slash2 <- PLreg(firmcost ~ indcost + sizelog | indcost + sizelog,
+ data = Firm, family = "SLASH", zeta = 2)
R> extra.parameter(Firm_slash2, lower = 1, upper = 2.5, grid = 30)

Estimates for zeta are:
zeta.Ups = 1.88
zeta.loglik = 1.93

R> Firm_slash <- PLreg(firmcost ~ indcost + sizelog | indcost + sizelog,
+ data = Firm, family = "SLASH", zeta = 1.88)
R> summary(Firm_slash)
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Call:
PLreg(formula = firmcost ~ indcost + sizelog | indcost + sizelog,

data = Firm, family = "SLASH", zeta = 1.88)

Standardized residuals:
Min 1Q Median 3Q Max

-2.1220 -0.6253 0.0251 0.6548 4.6194

Coefficients (median model with logit link):
Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.8223 1.0196 3.749 0.000178 ***
indcost 2.3117 0.8062 2.867 0.004140 **
sizelog -0.9082 0.1225 -7.416 1.21e-13 ***

Sigma coefficients (dispersion model with log link):
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.56915 0.78874 -0.722 0.471
indcost 0.36623 0.54062 0.677 0.498
sizelog 0.07455 0.09979 0.747 0.455

Lambda coefficient:
Estimate Std. Error

(lambda) 2.035 1.196
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Family: PL - SLASH ( 1.88 ) (Power logit slash)
Estimation method: pML (penalized maximum likelihood)
Log-likelihood: 123 on 7 Df
Pseudo R-squared: 0.4177
Upsilon statistic: 0.06723
AIC: -232.1
Number of iterations in BFGS optimization: 10

The standard errors presented in the summary() output is computed from the observed information
matrix. Queiroz and Ferrari (2023b) employ the sandwich matrix to obtain standard errors. Standard
errors are computed from the sandwich matrix by using the sandwich() function in the PLreg package
as follows:

R> sand.matrix <- sandwich(Firm_slash)
R> se <- sqrt(diag(sand.matrix))
R> se

(Intercept) indcost sizelog (sigma)_(Intercept)
1.30397074 1.05026082 0.16419123 0.54569178

(sigma)_indcost (sigma)_sizelog (lambda)
0.59534023 0.08767362 0.91164845

All the covariates are statistically significant for the median submodel but not for the dispersion
submodel. Then, the authors fit the PL slash regression model with constant dispersion and select
ζ = 2.29. The model can be fitted as follows:

R> Firm_slash.CD <- PLreg(firmcost ~ indcost + sizelog,
+ data = Firm, family = "SLASH", zeta = 2.29)
R> summary(Firm_slash.CD)

Call:
PLreg(formula = firmcost ~ indcost + sizelog,

data = Firm, family = "SLASH", zeta = 2.29)

Standardized residuals:
Min 1Q Median 3Q Max

-2.1133 -0.6590 0.0546 0.7168 5.9131

Coefficients (median model with logit link):
Estimate Std. Error z value Pr(>|z|)
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(Intercept) 3.8668 0.9994 3.869 0.000109 ***
indcost 2.1330 0.5836 3.655 0.000257 ***
sizelog -0.9053 0.1120 -8.082 6.38e-16 ***

Sigma coefficients (dispersion model with log link):
Estimate Std. Error z value Pr(>|z|)

(sigma) 0.1333 0.5331 0.25 0.803

Lambda coefficient:
Estimate Std. Error

(lambda) 1.788 1.01
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Family: PL - SLASH ( 2.29 ) (Power logit slash)
Estimation method: pML (penalized maximum likelihood)
Log-likelihood: 122 on 5 Df
Pseudo R-squared: 0.4162
Upsilon statistic: 0.06448
AIC: -234
Number of iterations in BFGS optimization: 15

Normal probability plots of the residuals with simulated envelopes as well as influence plots may
be obtained via envelope() and influence() functions, respectively. For instance, the plots presented
in Figure 5 are obtained as follows:

R> envelope(Firm_slash.CD, type = "quantile")
R> envelope(Firm_slash.CD, type = "deviance")
R> envelope(Firm_slash.CD, type = "standardized")
R> influence(Firm_slash.CD)

Note that one observation is highlighted in almost all the graphics in Figure 5. It is the case #15
and corresponds to a firm with the highest firmcost value. Queiroz and Ferrari (2023b) conclude that
this observation does not significantly influence the fitted model. In fact, the weight of this observation
in the estimation process is close to zero — it may be verified by plotting the weights against the
residuals. This plot is presented in Figure 6 and is obtained via:

R> plot(Firm_slash.CD, which = 7)

The PLreg package allows different link functions for the median submodel. In order to illustrate
it, we fit the model with the probit and cloglog link functions; for simplicity, we set zeta = 2.29. We
compare the fits through the values of the pseudo R2 and the Υζ measure as follows:

R> measures <- sapply(c("logit", "probit", "cloglog"),
+ function(x){
+ fit <- update(Firm_slash.CD, link = x)
+ round(c(fit$pseudo.r.squared, fit$Upsilon.zeta),3)
+ })
R> rownames(measures) <- c("pseudo R-squared", "Upsilon_zeta")
R> measures

logit probit cloglog
pseudo R-squared 0.416 0.379 0.482
Upsilon_zeta 0.064 0.071 0.069

No model simultaneously has the highest pseudo R2 and the smallest Υζ . Note that the values
for the fit with the logit and cloglog link functions are close. The probit link function leads to the
smallest pseudo R2 and the highest Υζ ; hence it is not recommended.

4.3 PeruVotes data: GJS regression models

Lemonte and Bazán (2016) use the GJS Student-t regression model to model the proportion of blank
votes (votes) in the 2006 Peruvian general election of an electoral district as a function of the Human
Development Index (HDI). The PeruVotes dataset contains information on 194 electoral districts. Recall
that the PL regression models with λ = 1 reduce to the GJS regression models. The extra parameter ζ
of the GJS Student-t regression model may be selected using the extra.parameter() function as in
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Figure 5: Normal probability plot of the quantile, deviance and standardized residuals with simulated
envelope and influence plots for the Firm_slash.CD fit – Firm data.

the previous examples. However, to replicate the analysis in Lemonte and Bazán (2016) we fit the
PL Student-t regression model with ζ = 4 (and λ = 1). Using the control argument in the PLreg()
function, we set lambda = 1:

R> data("PeruVotes", package = "PLreg")
R> PV_GJSt <- PLreg(votes ~ HDI | HDI, data = PeruVotes, family = "TF",
+ zeta = 4, control = PLreg.control(lambda = 1))
R> summary(PV_GJSt)

Call:
PLreg(formula = votes ~ HDI | HDI, data = PeruVotes, family = "TF",

zeta = 4, control = PLreg.control(lambda = 1))

Standardized residuals:
Min 1Q Median 3Q Max

-5.1247 -0.5838 0.0024 0.5821 4.1666

Coefficients (median model with logit link):
Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.3054 0.2086 11.05 <2e-16 ***
HDI -6.8075 0.3780 -18.01 <2e-16 ***

Sigma coefficients (dispersion model with log link):
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.7560 0.7008 -3.933 8.4e-05 ***
HDI 2.1667 1.2422 1.744 0.0811 .

Fixed skewness parameter (lambda = 1).
---
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Figure 6: Plot of the v(z) function against the standardized residual for the Firm_slash.CD fit – Firm
data.

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Family: PL - TF ( 4 ) (Power logit Student-t)
Estimation method: ML (maximum likelihood)
Log-likelihood: 352.8 on 4 Df
Pseudo R-squared: 0.5822
Upsilon statistic: 0.06836
AIC: -697.5
Number of iterations in BFGS optimization: 9

As mentioned before, for fixed λ, the estimation is based on the usual maximum likelihood
estimator. The output of the summary() function may be used to replicate part of Table 2 of Lemonte
and Bazán (2016). The GJS distribution in their paper has a median-precision parameterization, while
we use a median-dispersion parameterization. As we are using the logarithmic link function for the
dispersion parameter, the estimates for the precision submodel are the negative of those obtained here
for the dispersion submodel.

As the GJS regression models are a particular case of the PL regression models when λ = 1,
an inherent question is whether the dataset supports the assumption that λ = 1. A confidence
interval for λ may be constructed using the profile penalized likelihood ratio statistic defined by
W∗

p (λ) = 2{ℓ∗p(λ̃) − ℓ∗p(λ)}, that is asymptotically distributed as χ2
1 (Queiroz and Ferrari, 2023b).

The CI.lambda() function in the PLreg package provides a plot of W∗
p (λ) against λ and shows the

observed confidence interval for λ. As an illustration, we fit the PL Student-t regression model with
ζ = 4 and use the CI.lambda() function to obtain a 90% confidence interval for λ:

R> PV_PLt <- PLreg(votes ~ HDI | HDI, data = PeruVotes, family = "TF",
+ zeta = 4)
R> coefficients(PV_PLt, conf.coef = 0.9)

(Intercept) HDI (sigma)_(Intercept)
2.3050765 -6.8065881 -2.7445500

(sigma)_HDI (lambda)
2.0459250 0.9102018

R> CI.lambda(PV_PLt)

The confidence interval for lambda is: (0, 5.4).

The CI.lambda() function provides the plot presented in Figure 7; the horizontal dashed line
indicates the 90% confidence interval for λ. Note that the estimated λ is close to one, and the
confidence interval contains λ = 1. A diagnostic analysis not shown here indicates that the GJS
Student-t regression model with ζ = 4 suitably fits the data.
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Figure 7: Plot of the profile penalized likelihood ratio statistics for λ based on the PV_PLt fit –
PeruVotes data.

4.4 bodyfat_Aeolus data: log-log regression models

We now turn to the bodyfat_Aeolus data, introduced in Section 2.4.1. The interest lies in modelling
the proportion of body fat of little brown bats (percentfat) as a function of the year (year, 1 for 2016
and 0 for 2009), sex of the sampled bat (sex, 1 for male and 0 for female) and the hibernation time
(days), defined as the number of days since the fall equinox. First, we fit the PL normal regression
model and print the estimated skewness parameter:

R> bodyf_PL <- PLreg(percentfat ~ days + sex + year | days + sex + year,
+ data = bodyfat_Aeolus, family = "NO")
R> bodyf_PL$coefficients$skewness

(lambda)
0.0007122085

Note that the estimate of λ is close to zero. It may indicate the limiting model when λ → 0+

may be reasonable. The log-log normal regression model may be fitted by setting lambda = 0 in the
control argument of the PLreg() function as follows:

R> bodyf_loglog <- PLreg(percentfat ~ days + sex + year | days + sex + year,
+ data = bodyfat_Aeolus, family = "NO",
+ control = PLreg.control(lambda = 0))
R> summary(bodyf_loglog)

Call:
PLreg(formula = percentfat ~ days + sex + year | days + sex +

year, data = bodyfat_Aeolus, family = "NO",
control = PLreg.control(lambda = 0))

Standardized residuals:
Min 1Q Median 3Q Max

-2.7679 -0.6402 0.0664 0.6834 2.3130

Coefficients (median model with logit link):
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.1532851 0.0665887 -17.320 <2e-16 ***
days -0.0094255 0.0005409 -17.427 <2e-16 ***
sexM -0.0324633 0.0531725 -0.611 0.542
year2016 0.5039790 0.0581870 8.661 <2e-16 ***

Sigma coefficients (dispersion model with log link):
Estimate Std. Error z value Pr(>|z|)
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(Intercept) -1.9668123 0.1663712 -11.822 <2e-16 ***
days 0.0007478 0.0012223 0.612 0.5407
sexM -0.2873759 0.1145487 -2.509 0.0121 *
year2016 0.1088719 0.1314918 0.828 0.4077

Fixed skewness parameter (limiting case lambda -> 0).
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Family: log-log - NO (log-log normal)
Estimation method: ML (maximum likelihood)
Log-likelihood: 323.4 on 8 Df
Pseudo R-squared: 0.6755
Upsilon statistic: 0.05339
AIC: -630.8
Number of iterations in BFGS optimization: 28

Since the log-log normal regression model is more parsimonious than the PL normal regression
model, it should be used. One can also consider other models in the log-log class specifying a different
family in the family argument.

4.5 Simulated data: Inflated PL regression models

The PLreg package requires that the response variable values are all in the open interval (0, 1). It does
not allow values at the boundaries, i.e., equal to zero or one. The zero-or-one inflated PL regression
models may be employed when the response variable contains values at one of the boundaries. These
models may be fitted using the PLreg package in conjunction with the glm() function.

We say that Y has an inflated PL distribution with parameters α ∈ (0, 1), µ ∈ (0, 1), σ > 0, and
λ > 0 if P(Y = c) = α, with c = 0 or c = 1, and, with probability 1 − α, Y ∼ PL(µ, σ, λ; r). In other
words, an inflated PL distribution is a mixture of a PL distribution and a degenerate variable in a
known value c (c = 0 or c = 1). If c = 0, we have the zero-inflated PL distribution and if c = 1, the one-
inflated PL distribution. The parameters µ, σ, and λ represent the median, dispersion and skewness of
the conditional distribution of Y given that Y ∈ (0, 1) and α is the mixture parameter. When λ = 1
the inflated PL distributions reduce to the inflated GJS distributions (Queiroz and Lemonte, 2021). If
λ → 0+, we have the inflated log-log distributions as a limiting case.

In the inflated PL regression models, µ and σ are linked to the covariates through linear predictors
with unknown coefficients as in Equation 1. Likewise, the mixture parameter submodel is d0(αi) =
z⊤i κ = η0i.

One may use the maximum likelihood approach to estimate the parameters of the model, denoted
here by θ = (κ⊤, β⊤, τ⊤, λ)⊤. The likelihood function of θ factorizes in two terms, one that depends
only on κ (discrete part) and the other that depends on the remaining parameters (continuous part).
Thus, the inference of the discrete part and the continuous part is performed separately.

We present a brief example with simulated data. We generate 300 observations from the zero-
inflated PL normal regression model with a constant dispersion and logit link for the median and
mixture parameter submodels:

R> n <- 300
R> kappa <- c(-2, 0.5)
R> beta <- c(-1.0, -2.0)
R> sigma <- 0.5
R> lambda <- 2
R> set.seed(25012023)
R> x1 <- runif(n)
R> Z <- X <- matrix(c(rep(1,n), x1), ncol = 2, byrow = FALSE)
R> alpha <- exp(Z%*%kappa)/(1 + exp(Z%*%kappa))
R> mu <- exp(X%*%beta)/(1 + exp(X%*%beta))
R> prob <- runif(n)
R> y <- ifelse((prob <= alpha), 0, rPL(n, mu, sigma, lambda, family = "NO"))

The histogram and boxplot of the response variable y are presented in Figure 8. We consider fitting the
zero-inflated PL normal regression model in which the parameters α and µ are modeled as a function
of x1 through the logit link. To estimate the parameters associated with the discrete part, we fit a
binomial regression model in which the response variable is equal to one if y = 0 and is equal to zero
otherwise. The success probability for the i-th observation is αi. This model is fitted using the glm()
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Figure 8: Histogram (left side) and boxplot (right side) of the response variable y – simulated data.

function (Chambers and Hastie, 1992) of the stats package. The continuous part is modeled using the
PLreg package. The following code shows how the model is fitted:

R> Ind <- ifelse(y == 0, 1, 0)
R> fit.glm <- glm(Ind ~ x1, family = binomial())
R> fit.PL <- PLreg(y[Ind == 0] ~ x1[Ind == 0], family = "NO", type = "ML")

For estimating the parameters of the discrete part, we consider all the observations. In contrast, to
estimate the parameters of the continuous part (PL model), we only consider the observations in (0, 1).
The estimated coefficients are obtained as follows:

R> coefficients(fit.glm)

(Intercept) x1
-2.1812682 0.9445324

R> coefficients(fit.PL)

(Intercept) x1[Ind == 0] (sigma)_(sigma) (lambda)
-0.9608803 -2.1254449 0.3261416 5.3304235

Standard errors and further information may be obtained through the summary() function. As
expected, the estimates of the parameters are close to those used to generate the data. Diagnostic plots
for the discrete and continuous parts may be obtained separately by using the plot() method for
the fit.glm and fit.PL fits. The overall adequacy of the fitted model may be investigated using the
randomized quantile residual (Dunn and Smyth, 1996). For the inflated PL regression models, the
randomized quantile residuals are defined as:

ri =

{
Φ−1(ui), yi = c,

Φ−1
(

α̃iI[c,∞)(y) + (1 − α̃i)FY(yi; µ̃i, σ̃i, λ̃)
)

, yi ∈ (0, 1),

for i = 1, . . . , n, where c = 0 or c = 1 depending on the case. Also, ui is a random draw from the
uniform distribution on the interval (0, α̃i) if c = 0, and (1 − α̃i, 1) if c = 1. As the PLreg package
provides the pPL() function to obtain the cdf of the PL distributions, the randomized quantile residuals
can be easily computed. For the data under investigation, the code below provides the computation of
the residuals and the plots presented in Figure 9.

R> alpha <- fit.glm$fitted.values
R> mu <- fit.PL$link$median$linkinv(X%*%fit.PL$coefficients$median)
R> sigma <- fit.PL$link$dispersion$linkinv(fit.PL$coefficients$dispersion)
R> lambda <- fit.PL$coefficients$skewness
R> cdf <- alpha*as.numeric(y >= 0) + (1 - alpha)*pPL(y, mu, sigma, lambda,
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Figure 9: Scatter plot (left side) and quantile-quantile plot (right side) of the randomized quantile
residual – simulated data.

+ family = "NO")
R> res <- ifelse(y == 0, qnorm(runif(length(y), 0, alpha)), qnorm(cdf))
R> plot(res, ylab = "Randomized quantile residuals", pch = "+", ylim = c(-4, 4))
R> abline(h = 2.5, col = "gray", lty = 2)
R> abline(h = -2.5, col = "gray", lty = 2)
R> abline(h = 0, col = "gray", lty = 2)
R> qqnorm(res)
R> qqline(res, col = "gray")

We may also fit inflated GJS and inflated log-log regression models specifying lambda = 1 and
lambda = 0 in the control argument of the PLreg() function, respectively.

5 Concluding remarks

This paper presents the R implementation of the PL regression models available in the PLreg package.
The models are suitable for modeling continuous data observed in the open interval (0,1). The package
provides tools for likelihood-based inference and diagnostic analysis. Currently, the package includes
seven distributions in the PL class, two types of estimators, profile likelihood-based confidence
intervals for the skewness parameter, and procedures for selecting the extra parameter, if any. Different
residuals and influence methods for performing diagnostic analysis are implemented. The applications
in the previous sections illustrate the ability of the package to fit different PL regression models,
including the GJS and log-log models.

The response variable for using the PLreg package must lie in the open interval (0,1), as it is
an inherent assumption of the PL regression models. A possible approach when the data contain
observations in one of the boundaries is to employ the inflated PL regression models, that assume that
the response variable has a mixture of a PL distribution and a degenerate distribution at zero or one.
A relevant contribution of this paper is to show how the PLreg package can be used to fit and perform
diagnostic analysis for inflated PL regression models as well as inflated GJS and log-log regression
models.
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