
CONTRIBUTED RESEARCH ARTICLE 198

A Comparison of R Tools for Nonlinear
Least Squares Modeling
by John C. Nash and Arkajyoti Bhattacharjee

Abstract Our Google Summer of Code project “Improvements to nls()” investigated rationalizing R
tools for nonlinear regression and nonlinear estimation tools by considering usability, maintainability,
and functionality, especially for a Gauss-Newton solver. The rich features of nls() are weakened by
several deficiencies and inconsistencies such as a lack of stabilization of the Gauss-Newton solver.
Further considerations are the usability and maintainability of the code base that provides the func-
tionality nls() claims to offer. Various packages, including our nlsr, provide alternative capabilities.
We consider the differences in goals, approaches, and features of different tools for nonlinear least
squares modeling in R. Discussion of these matters is relevant to improving R generally as well as its
nonlinear estimation tools.

1 The nls() function

nls() is a Comprehensive R Archive Network (CRAN: https://cran.r-project.org) tool that has
remarkable and wide-ranging features for estimating nonlinear statistical models that are expressed as
formulas. The function dates to the 1980s and the work related to D. M. Bates and Watts (1988) in S
(see https://en.wikipedia.org/wiki/S_%28programming_language%29).

In particular, we note that it

• can call calculations in other programming languages
• allows weighted or subset data
• can estimate bound-constrained parameters
• provides partially linear model handling mechanism
• permits parameters to be indexed over a set of related data
• produces measures of variability (i.e., standard error estimates) for the estimated parameters
• has related profiling capabilities for exploring the likelihood surface as parameters are changed
• links to many pre-coded (selfStart) models that do not require initial parameter values.

Due to its extensive range of features and prolonged history, the code has become untidy and overly
patched, making it challenging to maintain and ripe for improvement in its underlying methods.

2 Scope of our comparison

Besides the base-R nls() function, we will pay particular attention to nlsr (John C. Nash and Murdoch
(2023)), minpack.lm (Elzhov et al. (2012)), and gslnls (Chau (2023)) which are general nonlinear
least-squares solvers in the CRAN repository. While we will provide capsule comments for some
other CRAN packages, those in the Bioconductor (Gentleman et al. (2004)) collection are more
specialized, and those on repositories such as GitHub (https://github.com) and Gitlab (https:
//about.gitlab.com), while interesting, do not have the checking applied to CRAN packages.

Our work aimed at unifying nonlinear modeling functionality in R, ideally in a refactored nls()
function. The primary messages from this work are:

• For R users, we would advise that it is most efficient to carry out nonlinear modeling or least
squares by adapting working scripts, preferably those with documentation and using recent
tools. If there is a suspicion that there may be ill-conditioning, package nlsr or the example
we give in the section “Comparison notes for formula-setup solutions” below of how to find
singular values of the Jacobian allow these diagnostics to be calculated.

• For R developers, we invite and encourage discussion of the design choices, since these have
downstream implications for ease of use, adaptation to new features, and efficiency of ongoing
maintenance.

3 Some other CRAN packages for nonlinear modeling

onls (Spiess, Andrej-Nikolai (2022)) is used for optimising and estimating nonlinear models by
minimizing the sum of squares of orthogonal residuals rather than vertical residuals. The objec-

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://cran.r-project.org
https://en.wikipedia.org/wiki/S_%28programming_language%29
https://github.com
https://about.gitlab.com
https://about.gitlab.com

CONTRIBUTED RESEARCH ARTICLE 199

tive is therefore different and involves nontrivial extra calculation. A vignette with the package
and the blog article https://www.r-bloggers.com/2015/01/introducing-orthogonal-nonlinear-
least-squares-regression-in-r/ give some description with illustrative graphs. onls appears
to be limited to problems with one independent and one dependent variable. The Wikipedia article
https://en.wikipedia.org/wiki/Total_least_squares presents an overview of some ideas, with
references to the literature. The approach needs a wider discussion and tutorial examples to allow its
merits to be judged than can be included here.

crsnls (Tvrdík (2016)) – This package allows nonlinear estimation by controlled random search via
two methods. There is unfortunately no vignette. A modest trial we carried out showed nlsr::nlxb()
gave the same results in a small fraction of the time required by either of the methods in crsnls. The
method discussed in Josef Tvrdík and Ivan Křivý and Ladislav Mišík (2007) claims better reliability
in finding solutions than a Levenberg-Marquardt code (actually from Matlab), but the tests were
conducted on the extreme NIST examples mentioned next.

NISTnls (D. M. Bates (2012)) – This package provides R code and data for a set of (numerically
ill-conditioned) nonlinear least squares problems from the U.S. National Institute for Standards and
Technology. These may not represent real-world situations.

nlshelper (Duursma (2017)) – This package, which unfortunately lacks a vignette, provides a
few utilities for summarizing, testing, and plotting non-linear regression models estimated with nls(),
nlsList() or nlme() that are linked or grouped in some way.

nlsic (Sokol (2022)) – This solves nonlinear least squares problems with optional equality and/or
inequality constraints. It is clearly not about modeling, and the input and output are quite different
from class nls methods. However, there do not appear to be other R packages with these capabilities.

nlsMicrobio (Baty and Delignette-Muller (2014)) – Data sets and nonlinear regression models
dedicated to predictive microbiology, including a vignette, by authors of the nlstools package.

nlstools (Baty and Delignette-Muller (2013)) – This package provides several tools for aiding the
estimation of nonlinear models, particularly using nls(). The vignette is actually a journal article, and
the authors have considerable experience in the subject.

nlsmsn (Prates, Lachos, and Garay (2021)) – Fit univariate non-linear scale mixture of skew-normal
(NL-SMSN) regression, with details in Garay, Lachos, and Abanto-Valle (2011). The problem here is to
minimize an objective that is modified from the traditional sum of squared residuals.

nls.multstart (Padfield and Matheson (2020)) – Non-linear least squares regression using AIC
scores with the Levenberg-Marquardt algorithm using multiple starting values for increasing the
chance that the minimum found is the global minimum.

nls2 (Grothendieck (2022)) – Nonlinear least squares by brute force has similar motivations to
nls.multstart, but uses nls() within multiple trials. The author has extensive expertise in R.

nlstac (Rodriguez-Arias et al. (2020)) – A set of functions implementing the algorithm described
in Torvisco, Rodriguez-Arias, and Sanchez (2018) for fitting separable nonlinear regression curves.
The special class of problem for which this package is intended is an important and difficult one. No
vignette is provided, unfortunately.

easynls – Fit and plot some nonlinear models. Thirteen models are treated, but there is minimal
documentation and no vignette. Package nlraa is to be preferred.

nlraa (Miguez (2021)) – a set of nonlinear selfStart models, primarily from agriculture. Most
include analytic Jacobian code.

optimx (John C. Nash and Varadhan (2011)) – This provides optimizers that can be applied to
minimize a nonlinear function which could be a nonlinear sum of squares. Not generally recommended
if nonlinear least squares programs can be easily used, but provides a check and alternative solvers.

4 An illustrative example

The Hobbs weed infestation problem (John C. Nash (1979, 120)) is a growth-curve modeling task. Its
very succinct statement provides the “short reproducible example” much requested on R mailing lists.
The problem is small and seemingly straightforward, yet presents such difficulties that optimization
researchers have asked if it is contrived rather than a real problem from a field researcher. The data
and graph follow.

weed <- c(5.308, 7.24, 9.638, 12.866, 17.069, 23.192, 31.443,
38.558, 50.156, 62.948, 75.995, 91.972)

tt <- 1:12
weeddf <- data.frame(tt, weed)

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://www.r-bloggers.com/2015/01/introducing-orthogonal-nonlinear-least-squares-regression-in-r/
https://www.r-bloggers.com/2015/01/introducing-orthogonal-nonlinear-least-squares-regression-in-r/
https://en.wikipedia.org/wiki/Total_least_squares

CONTRIBUTED RESEARCH ARTICLE 200

plot(weeddf, main="Hobbs weed infestation data")

2 4 6 8 10 12

20
40

60
80

Hobbs weed infestation data

tt

w
ee

d

While model estimation is increasingly automated, nonlinear regression should use background
knowledge and graphs to obtain an understanding of the general magnitude of the parameters. Indeed,
the “visual fitting” approach (John C. Nash and Velleman (1996)) mentioned later accords with this
viewpoint, as does use of the Logistic3T variant of the model, as well as discussions in Ross (1990),
Seber and Wild (1989), D. M. Bates and Watts (1988), and Gallant (1987). Our emphasis on the software
resilience to starting parameters that are, in the sense of statistical modeling, “silly” comes from over
half a century of dealing with users whose interests and understanding are very far from those of
statistical modelers. Thus, we seek methods and codes that obtain reasonable answers under highly
unfavourable conditions. Nevertheless, a proper approach to nonlinear modeling is to apply all
available knowledge to the task.

Three suggested models for this data are (with names to allow for easy reference)

Logistic3U:
y ≈ b1/(1 + b2 ∗ exp(−b3 ∗ t))

Logistic3S:
y ≈ 100 ∗ c1/(1 + 10 ∗ c2 ∗ exp(−0.1 ∗ c3 ∗ t))

Logistic3T:
y ≈ Asym/(1 + exp((xmid − t)/scal))

where we will use weed for y and tt for t. The functions above are equivalent, but the first is
generally more awkward to solve numerically due to its poor scaling. The parameters of the three
forms are related as follows:

Asym = b1 = 100 ∗ c1

exp(xmid/scal) = b2 = 10 ∗ c2

1/scal = b3 = 0.1 ∗ c3

To allow for a simpler discussion, let us say that the parameters form a (named) vector p and the
model function is called model(p) with r = y − model(p).

We wish to minimize the sum of squared residuals, which is our loss (or objective) function.
Starting with some guess for the parameters, we aim to alter these parameters to obtain a smaller loss
function. We then iterate until we can make no further progress.

Let us consider there are n parameters and m residuals. The loss function is

S(p) = r′r =
m

∑
i=1

r2
i

The gradient of S(p) is
g = 2 ∗ J′r

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 201

where the Jacobian J is given by elements

Ji,j = ∂ri/∂pj

and the Hessian is defined by elements

Hi,j = ∂2S(p)/∂pi∂pj

If we expand the Hessian for nonlinear least squares problems, we find

0.5 ∗ Hi,j =
m

∑
k=1

Jk,i Jk,j +
m

∑
k=1

rk ∗ ∂rk/∂pi∂pj

Let us use Di,j for the elements of the second term of this expression. What is generally called Newton’s
method for function minimization tries to set the gradient to zero (to find a stationary point of the
function S(p)). This leads to Newton’s equation

Hδ = −g

Given a set of parameters p, we solve this equation for δ, adjust p to p + δ and iterate, hopefully to
converge on a solution. Applying this to a sum of squares problem gives

0.5 ∗ Hδ = (J′ J + D)δ = −J′r

In this expression, only the elements of D have second partial derivatives. Gauss, attempting to model
planetary orbits, had small residuals, and noted that these multiplied the second partial derivatives of
r, so he approximated

0.5 ∗ H ≈ J′ J

by assuming D ≈ 0. This results in the Gauss-Newton method where we solve

J′ Jδ = −J′r

though we can avoid some loss of accuracy by not forming the inner product matrix J′ J and solving
the linear least squares matrix problem

Jδ ≈ −r

by one of several matrix decomposition methods.

In reality, there are many problems where D should not be ignored, but the work to compute it
precisely is considerable. Many work-arounds have been proposed, of which the Levenberg-Marquardt
stabilization (Levenberg (1944), Marquardt (1963)) is the most commonly used. For convenience, we
will use “Marquardt”, as we believe he first incorporated the ideas into a practical computer program.

The usual suggestion is that D be replaced by a multiple of the unit matrix or else a multiple of the
diagonal part of J′ J. In low precision, some elements of J′ J could underflow to zero (John C. Nash
(1977)), and a linear combination of both choices is an effective compromise. Various choices for D, as
well as a possible line search along the direction δ rather than a unit step (Hartley (1961)), give rise to
several variant algorithms. “Marquardt’s method” is a family of methods. Fortunately, most choices
work well.

4.1 Problem setup

Let us specify in R the three model formulas and set some starting values for parameters. These
starting points are not equivalent and are deliberately crude choices. Workers performing many
calculations of a similar nature should try to provide good starting points to reduce computation time
and avoid finding a false solution.

model formulas
frmu <- weed ~ b1 / (1 + b2 * exp(-b3 * tt))
frms <- weed ~ 100 * c1/(1 + 10* c2* exp(-0.1 * c3* tt))
frmt <- weed ~ Asym / (1 + exp((xmid - tt) / scal))
#
Starting parameter sets
stu1 <- c(b1 = 1, b2 = 1, b3 = 1)
sts1 <- c(c1 = 1, c2 = 1, c3 = 1)
stt1 <- c(Asym = 1, xmid = 1, scal = 1)

One of the useful features of nls() is the possibility of a selfStart model, where starting pa-

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 202

rameter values are not required. However, if a selfStart model is not available, nls() sets all the
starting parameters to 1. This is tolerable but could be improved by using a set of values that are all
slightly different, which, in the case of the example model y ∼ a ∗ exp(−b ∗ x) + c ∗ exp(−d ∗ x)
would avoid a singular Jacobian because b and d were equal in value. Program modifications to give a
sequence like 1.0, 1.1, 1.2, 1.3 for the four parameters are fairly obvious.

It is also possible to provide R functions for the residual and Jacobian. This is usually much more
work for the user if the formula setup is possible. To illustrate, we show the functions for the unscaled
3 parameter logistic. The particular form of these explicit residual and Jacobian functions comes from
their translation from BASIC codes of the 1970s, as adapted in John C. Nash and Walker-Smith (1987).
The use of the Laplace form of the residual and the inclusion of data within the functions reflects
choices of that era that are at odds with current practice. Some users still want or need to provide
problems as explicit functions, particularly for problems that are not regressions. For example, the
Rosenbrock banana-valley test problem can be provided this way, where the two “residuals” are
different functional forms.

Logistic3U
hobbs.res <- function(x){ # unscaled Hobbs weeds problem -- residual
if(length(x) != 3) stop("hobbs.res -- parameter vector n!=3")
y <- c(5.308, 7.24, 9.638, 12.866, 17.069, 23.192, 31.443,

38.558, 50.156, 62.948, 75.995, 91.972)
tt <- 1:12
res <- x[1] / (1 + x[2] * exp(-x[3] * tt)) - y
Note: this form of the residual, from Laplace (1788) in the form
of "fitted - observed" has been used in our software for half
a century, but sometimes concerns users of the more traditional
"observed - fitted" form

}

hobbs.jac <- function(x) { # unscaled Hobbs weeds problem -- Jacobian
jj <- matrix(0.0, 12, 3)
tt <- 1:12
yy <- exp(-x[3] * tt)
zz <- 1.0 / (1 + x[2] * yy)
jj[tt, 1] <- zz
jj[tt, 2] <- -x[1] * zz * zz * yy
jj[tt, 3] <- x[1] * zz * zz * yy * x[2] * tt
attr(jj, "gradient") <- jj
jj

}

5 Estimation of models specified as formulas

Using a formula specification was a principal advantage made with nls() when it became available in
S sometime in the 1980s. It uses a Gauss-Newton (i.e., unstabilized) iteration with a step reduction line
search. This works very efficiently as long as J is not ill-conditioned. Below we see nls() does poorly
on the example problem. To save page space, we use 1-line result display functions from package
nlsr, namely pnls() and pshort().

#> Error in nls(formula = frmu, start = stu1, data = weeddf) :
#> singular gradient

#> Error in nls(formula = frms, start = sts1, data = weeddf) :
#> singular gradient

#> Error in nls(formula = frmt, start = stt1, data = weeddf) :
#> singular gradient

Here we see the infamous “singular gradient” termination message of nls(). Users should, of
course, be using the SSlogis selfStart tool, but ignorance of this possibility or a slight variant in the
model can easily lead to outcomes similar to those seen here.

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 203

5.1 Solution attempts with nlsr

#> unlx1:residual sumsquares = 2.5873 on 12 observations
#> after 19 Jacobian and 25 function evaluations
#> name coeff SE tstat pval gradient JSingval
#> b1 196.186 11.31 17.35 3.167e-08 -4.859e-09 1011
#> b2 49.0916 1.688 29.08 3.284e-10 -3.099e-08 0.4605
#> b3 0.31357 0.006863 45.69 5.768e-12 2.305e-06 0.04714

#> snlx1 -- ss= 2.5873 : c1 = 1.9619 c2 = 4.9092 c3 = 3.1357; 34 res/ 23 jac

#> tnlx1 -- ss= 2.5873 : Asym = 196.19 xmid = 12.417 scal = 3.1891; 36 res/ 27 jac

Though we have found solutions, the Jacobian is essentially singular as shown by its singular
values. Note that these are displayed by package nlsr in a single column in the output to provide a
compact layout, but the values do not correspond to the individual parameters in whose row they
appear; they are a property of the whole problem.

5.2 Solution attempts with minpack.lm

#> unlm1 -- ss= 2.5873 : b1 = 196.19 b2 = 49.092 b3 = 0.31357; 17 itns

#> snlm1 -- ss= 2.5873 : c1 = 1.9619 c2 = 4.9092 c3 = 3.1357; 7 itns

#> Error in nlsModel(formula, mf, start, wts) :
#> singular gradient matrix at initial parameter estimates

5.3 Solution attempts with gslnls

#> ugslnls1 -- ss= 2.5873 : b1 = 196.19 b2 = 49.092 b3 = 0.31357; 25 itns

#> sgslnls1 -- ss= 2.5873 : c1 = 1.9619 c2 = 4.9092 c3 = 3.1357; 9 itns

#> tgslnls1 -- ss= 9205.4 : Asym = 35.532 xmid = 20846 scal = -1745.2; 47 itns

5.4 Comparison notes for formula-setup solutions

nlsr::nlxb() uses print() to output standard errors and singular values of the Jacobian (for diagnos-
tic purposes). By contrast, minpack.lm::nlsLM() and nls() use summary(), which does not display
the sum of squares, while print() gives the sum of squares, but not the standard error of the residuals.

The singular values allow us to gauge how “nearly singular” the Jacobian is at the solution, and
the ratio of the smallest to largest of the singular values is a simple but effective measure. The ratios
are 4.6641e-05 for Logistic3U, 0.021022 for Logistic3S, and 0.001055 for Logistic3T, so Logistic3S is the
“least singular”.

The results from nlsLM and gsl_nls for the transformed model Logistic3T have a very large sum
of squares, which may suggest that these programs have failed. Since nls(), nlsLM(), and gsl_nls()
do not offer singular values, we need to extract the Jacobian and compute its singular values. The
following script shows how to do this, using as Jacobian what is called the gradient element in the
returned solution for these solvers.

for nlsLM
if (inherits(tnlm1, "try-error")) {

print("Cannot compute solution -- likely singular Jacobian")
} else {
JtnlsLM <- tnlm1mgradient() # actually the Jacobian
svd(JtnlsLM)$d # Singular values

}

#> [1] "Cannot compute solution -- likely singular Jacobian"

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 204

for gsl_nls
if (inherits(tgslnls1, "try-error")) {

cat("Cannot compute solution -- likely singular Jacobian")
} else {

JtnlsLM <- tgslnls1mgradient()
svd(JtnlsLM)$d # Singular values

}

#> [1] 3.4641e+00 9.8541e-09 3.8249e-11

We see that there are differences in detail, but the more important result is that two out of three
singular values are essentially 0. Our Jacobian is singular, and no method of the Gauss-Newton type
should be able to continue. Indeed, from the parameters reported at this saddle point, nlsr::nlxb()
cannot proceed.

stspecial <- c(Asym = 35.532, xmid = 43376, scal = -2935.4)
badstart <- try(nlxb(formula = frmt, start = stspecial, data = weeddf))
if (! inherits(badstart, "try-error")) print(badstart)

#> residual sumsquares = 9205.4 on 12 observations
#> after 2 Jacobian and 2 function evaluations
#> name coeff SE tstat pval gradient JSingval
#> Asym 35.5321 NA NA NA -9.694e-09 3.464
#> xmid 43376 NA NA NA -1.742e-09 2.61e-10
#> scal -2935.4 NA NA NA -2.4e-08 7.12e-16

6 Functional specification of problems

We illustrate how to solve nonlinear least squares problems using a function to define the residual. Note
that gsl_nls() requires a vector y that is the length of the vector returned by the function supplied,
e.g., hobbs.res(). gsl_nls uses a numerical approximation for the Jacobian if the argument jac is
missing. Note function nlsr::pnlslm() for a 1-line display of the results of minpack.lm::nls.lm().

#> hobnlfb<-nlfb(start=stu1, resfn=hobbs.res, jacfn=hobbs.jac)

#> hobnlfb -- ss= 2.5873 : b1 = 196.19 b2 = 49.092 b3 = 0.31357; 25 res/ 19 jac

#> hobnlm<-nls.lm(par=stu1, fn=hobbs.res, jac=hobbs.jac)

#> hobnlm -- ss= 2.5873 : b1 = 196.19 b2 = 49.092 b3 = 0.31357; 17 itns

#> hobgsln<-gsl_nls(start=stu1, fn=hobbs.res, y=rep(0,12))

#> hobgsln -- ss= 2.5873 : b1 = 196.19 b2 = 49.092 b3 = 0.31357; 25 itns

#> hobgsl<-gsl_nls(start=stu1, fn=hobbs.res, y=rep(0,12), jac=hobbs.jac)

#> hobgsl -- ss= 2.5873 : b1 = 196.19 b2 = 49.092 b3 = 0.31357; 25 itns

7 Design goals, termination tests, and output objects

The output object of nlxb() is smaller than the class nls object returned by nls(), nlsLM(), and
gsl_nls(). Package nlsr emphasizes the solution of the nonlinear least squares problem rather than
the estimation of a nonlinear model that fits or explains the data. The object of class nls allows for a
number of specialized modeling and diagnostic extensions. For compatibility, the nlsr package has
the function wrapnlsr(), for which nlsr() is an alias. This uses nlxb() to find good parameters, then
calls nls() to return the class nls object. Unless particular modeling features are needed, the use of
wrapnlsr() is unnecessary and wasteful of resources.

The design goals of the different tools may also be revealed in the so-called “convergence tests”
for the iterative solvers. In the manual page for nls() in R 4.0.0, there was the warning:

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 205

> Do not use nls on artificial “zero-residual” data
with the suggested addition of small perturbations to the data. This admits nls() could not solve
well-posed problems unless data is polluted with errors. Zero-residual problems are not always
artificial, since problems in function approximation and nonlinear equations can be approached with
nonlinear least squares. Fortunately, a small adjustment to the “termination test” for the program,
rather than for the “convergence” of the underlying algorithm, fixes the defect. The test is the Relative
Offset Convergence Criterion (see D. M. Bates and Watts (1981)). This scales an estimated reduction in
the loss function by its current value. If the loss function is very small, we are close to a zero-divide.
Adding a small quantity to the divisor avoids trouble. In 2021, one of us (J. Nash) proposed that
nls.control() have an additional parameter scaleOffset with a default value of zero. Setting it to a
small number – 1.0 is a reasonable choice – allows small-residual problems (i.e., near-exact fits) to be
dealt with easily. We call this the safeguarded relative offset convergence criterion, and it has been in
nlsr since it was introduced. The default value gives the legacy behavior. This improvement has been
in the R distributed code since version 4.1.0.

Additional termination tests can be used. nlsr has a small sum of squares test (smallsstest) that
compares the latest evaluated sum of squared (weighted) residuals to e4 times the initial sum of
squares, where e4 <- (100*.Machine$double.eps)ˆ4 is approximately 2.43e-55.

Termination after what may be considered excessive computation is also important. nls() stops
after maxiter “iterations”. The meaning of “iteration” may require an examination of the code for the
different algorithms. nlsr terminates execution when the number of residual or Jacobian evaluations
exceed set limits. Generally, we prefer larger limits than the default maxiter = 50 of nls() to avoid
stopping early, though this may result in some unnecessary computations.

7.1 Returned results of nls() and other tools

As mentioned, the output of nls(), minpack.lm::nlsLM(), or gslnls::gsl_nls() is an object of class
“nls” which has a quite rich structure described in the manual files or revealed by applying the str()
function to the result of nls(). The complexity of this object is a challenge to users. Let us use for
example result <- snlm1 as the returned object from nlsLM() for the Logistic3S problem. The data
return element is an R symbol. To actually access the data from this element, we need to use the syntax:

eval(parse(text = result$data))

However, if the call is made with model = TRUE, then there is a returned element model which
contains the data, and we can list its contents using:

ls(result$model)

and if there is an element called xdata, then it can be accessed as result$model$xdata.

By contrast, nlsr::nlxb() returns a much simpler structure of 11 items in one level. Moreover,
nlxb explicitly returns the sum of squares, the residual vector, Jacobian, and counts of evaluations.

7.2 When to compute ancillary information

Tools that produce a class nls output object create a rich set of functions and structures that are then
used in a variety of modeling tasks, including the least squares solution. By contrast, nlsr computes
quantities as they are requested or needed, with additional features in separate functions. For example,
the singular values of the Jacobian are actually computed in the print and summary methods for the
result. These two approaches lead to different consequences for performance and how features are
provided. nlsr has antecedents in the methods of John C. Nash (1979), where storage for data and
programs was at a ridiculous premium in the small computers of the era. Thus, the code in nlsr is
likely of value for workers to copy and modify for customized tools.

8 Jacobian calculation

Gauss-Newton/Marquardt methods all need a Jacobian matrix at each iteration. By default, nlsr::nlxb()
will try to evaluate this using analytic expressions using symbolic and automatic differentiation tools.
When using a formula specification of the model, nls(), minpack.lm::nlsLM() and gslnls::gsl_nls()
use a finite difference approximation to compute the Jacobian, though gsl_nls() does have an option
to attempt symbolic expressions. Package nlsr provides, via appropriate calling syntax, four numeric

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 206

approximation options for the Jacobian, with a further control ndstep for the size of the step used
in the approximation. These options allow programming choices to be examined. Users can largely
ignore them.

Using the “gradient” attribute of the output of the Jacobian function to hold the Jacobian matrix
lets us embed this in the residual function as well, so that the call to nlsr::nlfb() can be made with
the same name used for both residual and Jacobian function arguments. This programming trick saves
a lot of trouble for the package developer, but it can be a nuisance for users trying to understand the
code.

As far as we can understand the logic in nls(), the Jacobian computation during parameter
estimation is carried out within the called C-language program and its wrapper R code function
numericDeriv(), part of ./src/library/stats/R/nls.R in the R distribution source code. This is
used to provide Jacobian information in the nlsModel() and nlsModel.plinear() functions, which
are not exported for general use. gsl_nls() also appears to use numericDeriv().

numericDeriv() uses a simple forward difference approximation of derivatives, though a central
difference approximation can be specified in control parameters. We are unclear why numericDeriv()
in base R calls C_numeric_deriv, as we were easily able to create a more compact version entirely in R.
See https://github.com/nashjc/RNonlinearLS/tree/main/DerivsNLS.

minpack.lm::nlsLM() invokes numericDeriv() in its local version of nlsModel(), but it appears
to use an internal approximate Jacobian code from the original Fortran minpack code, namely, lmdif.f.
Such differences in approach can lead to different behavior, usually minor, but sometimes annoying
with ill-conditioned problems.

• A pasture regrowth problem (Huet et al. (2004), page 1, based on Ratkowsky (1983)) has a poorly
conditioned Jacobian and nls() fails with “singular gradient”. Worse, numerical approximation
to the Jacobian gives the error “singular gradient matrix at initial parameter estimates” for
minpack.lm::nlsLM so that the Marquardt stabilization is unable to take effect, while the analytic
derivatives of nlsr::nlxb give a solution.

• Karl Schilling (private communication) provided an example where a model specified with the
formula y ~ a * (x ^ b) causes nlsr::nlxb to fail because the partial derivative w.r.t. b is
a * (x ˆ b * log(x)). If there is data for which x = 0, the derivative is undefined, but the
model can be computed. In such cases, we observed that nls() and minpack.lm::nlsLM found
a solution, though this seems to be a lucky accident.

8.1 Jacobian code in selfStart models

Analytic Jacobian code can be provided to all the solvers discussed. Most selfStart models that
automatically provide starting parameters also include such code. There is documentation in R
of selfStart models, but their construction is non-trivial. A number of such models are included
with base R in ./src/library/stats/R/zzModels.R, with package nlraa (Miguez (2021)) providing a
richer set. There are also some in the now-archived package NRAIA. These provide the Jacobian in the
“gradient” attribute of the “one-sided” formula that defines each model, and these Jacobians are often
the analytic forms.

The nls() function, after computing the “right-hand side” or rhs of the residual, checks to see if
the “gradient” attribute is defined, otherwise using numericDeriv() to compute a Jacobian into that
attribute. This code is within the nlsModel() or nlsModel.plinear() functions. The use of analytic
Jacobians almost certainly contributes to the good performance of nls() on selfStart models.

The use of selfStart models with nlsr is described in the “Introduction to nlsr” vignette. How-
ever, since nlsr generally can use very crude starting values, we have rarely needed them, though it
should be pointed out that our work is primarily diagnostic. If we were carrying out a large number
of similar estimations, such initial parameters are critical to efficiency.

In considering selfStart models, we noted that the base-R function SSlogis is intended to solve
problem Logistic3T above. When this function is used via getInitial() to find starting values, it
actually calls nls() with the ‘plinear’ algorithm and finds a (full) solution. It then passes the solution
coefficients to the default algorithm unnecessarily. Moreover, the implicit double call is, in our view,
prone to creating errors in code maintenance. To provide simpler starting parameters, the function
SSlogisJN is now part of the package nlsr, but is most useful for nls().

Users may also want to profit from the Jacobian code of selfStart models but supply explicit
starting values other than those suggested by getInitial(). This does not appear to be possible with
nls(). nlsr::nlxb() always requires starting parameters, and can either use getInitial() to find
them from the selfStart model or provide explicit values, but the formula used in the call to nlxb()
still involves the selfStart function.

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://github.com/nashjc/RNonlinearLS/tree/main/DerivsNLS

CONTRIBUTED RESEARCH ARTICLE 207

We are also surprised that the analytic expressions for the Jacobian (“gradient”) in the SSLogis
function and others save quantities in “hidden” variables, i.e., with names preceded by “.”. These are
then not displayed by the ls() command, making them difficult to access by users who may wish to
create their own selfStart model via copy and edit. Interactive tools, such as “visual fitting” (John C.
Nash and Velleman (1996)) might be worth considering as another way to find starting parameters,
but we know of no R capability of this type.

As a side note, the introduction of scaleOffset in R 4.1.1 to deal with the convergence test for
small residual problems now requires that the getInitial() function have dot-arguments (...) in
its argument list. This illustrates the entanglement of many features in nls() that complicate its
maintenance and improvement.

9 Bounds constraints on parameters

For many problems, we know that parameters cannot be bigger or smaller than some externally known
limits. Such limits should be built into models, but there are some important details for using the tools
in R.

• nls() can only impose bounds if the algorithm = "port" argument is used in the call. Unfor-
tunately, the documentation warns us:
The algorithm = “port” code appears unfinished, and does not even check that the starting value is within
the bounds. Use with caution, especially where bounds are supplied.

• gsl_nls() does not offer bounds.

• bounds are part of the default method for package nlsr.

• nlsLM() includes bounds in the standard call, but we have observed cases where it fails to get
the correct answer. From an examination of the code, we believe the authors have not taken
into account all possibilities, though all programs have some weakness regarding constrained
optimization in that programmers have to work with assumptions on the scale of numbers, and
some problems will be outside the scope envisaged.

Start MUST be feasible i.e. on or within bounds
anlshob1b <- try(nls(frms, start = sts1, data = weeddf, lower = c(0,0,0),

upper = c(2,6,3), algorithm = 'port'))
if (! inherits(anlshob1b, "try-error")) pnls(anlshob1b) # check the answer (short form)

#> anlshob1b -- ss= 9.4726 : c1 = 2 c2 = 4.4332 c3 = 3; 12 itns

nlsLM seems NOT to work with bounds in this example
anlsLM1b <- try(nlsLM(frms, start = sts1, data = weeddf, lower = c(0,0,0), upper = c(2,6,3)))
if (! inherits(anlsLM1b, "try-error")) pnls(anlsLM1b)

#> anlsLM1b -- ss= 881.02 : c1 = 2 c2 = 6 c3 = 3; 2 itns

also no warning if starting out of bounds, but gets a good answer!!
st4 <- c(c1 = 4, c2 = 4, c3 = 4)
anlsLMob <- try(nlsLM(frms, start = st4, data = weeddf, lower = c(0,0,0), upper = c(2,6,3)))
if (! inherits(anlsLMob, "try-error")) pnls(anlsLMob)

#> anlsLMob -- ss= 9.4726 : c1 = 2 c2 = 4.4332 c3 = 3; 4 itns

Try nlsr::nlxb()
anlx1b <- try(nlxb(frms, start = sts1, data = weeddf, lower = c(0,0,0), upper = c(2,6,3)))
if (! inherits(anlx1b, "try-error")) pshort(anlx1b)

#> anlx1b -- ss= 9.4726 : c1 = 2 c2 = 4.4332 c3 = 3; 12 res/ 12 jac

9.1 Philosophical considerations

Bounds on parameters raise some interesting questions about how uncertainty in parameter estimates
should be computed or reported. That is, the traditional “standard errors” are generally taken to imply
symmetric intervals about the point estimate in which the parameter may be expected to be found

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 208

with some probability under certain assumptions. Bounds change those assumptions and hence the
interpretation of estimates of uncertainty, whether by traditional approximations from the J′ J matrix
or from methods such as profile likelihood or bootstrap. At the time of writing, nlsr::nlxb() does
not compute standard errors nor their derived statistics when bounds are active to avoid providing
misleading information.

9.2 Fixed parameters (masks)

Let us try to fix (mask) the first parameter in the first two example problems.

Hobbsmaskx.R -- masks with formula specification of the problem
require(nlsr); require(minpack.lm); traceval <- FALSE
stu <- c(b1 = 200, b2 = 50, b3 = 0.3) # a default starting vector (named!)
sts <- c(c1 = 2, c2 = 5, c3 = 3) # a default scaled starting vector (named!)
fix first parameter
anxbmsk1 <- try(nlxb(frmu, start = stu, data = weeddf, lower = c(200, 0, 0),

upper = c(200, 60, 3), trace=traceval))
if (! inherits(anxbmsk1, "try-error")) print(anxbmsk1)

#> residual sumsquares = 2.6182 on 12 observations
#> after 4 Jacobian and 4 function evaluations
#> name coeff SE tstat pval gradient JSingval
#> b1 200U M NA NA NA 0 NA
#> b2 49.5108 1.12 44.21 8.421e-13 -2.887e-07 1022
#> b3 0.311461 0.002278 136.8 1.073e-17 0.0001635 0.4569

anlM1 <- try(nlsLM(frmu, start = stu, data = weeddf, lower = c(200, 0, 0),
upper=c(200, 60, 3), trace = traceval))

if (! inherits(anlM1, "try-error")) pnls(anlM1)

#> anlM1 -- ss= 2.6182 : b1 = 200 b2 = 49.511 b3 = 0.31146; 4 itns

anlsmsk1 <- try(nls(frmu, start = stu, data = weeddf, lower = c(200, 0, 0),
upper = c(200, 60, 3), algorithm = "port", trace = traceval))

if (! inherits(anlsmsk1, "try-error")) pnls(anlsmsk1)

#> anlsmsk1 -- ss= 2.6182 : b1 = 200 b2 = 49.511 b3 = 0.31146; 5 itns

Hobbs scaled problem with bounds, formula specification
anlxmsks1 <- try(nlxb(frms, start = sts, data = weeddf, lower = c(2, 0, 0),

upper = c(2, 6, 30)))
if (! inherits(anlxmsks1, "try-error")) print(anlxmsks1)

#> residual sumsquares = 2.6182 on 12 observations
#> after 4 Jacobian and 4 function evaluations
#> name coeff SE tstat pval gradient JSingval
#> c1 2U M NA NA NA 0 NA
#> c2 4.95108 0.112 44.21 8.421e-13 -2.981e-06 104.2
#> c3 3.11461 0.02278 136.8 1.073e-17 1.583e-05 4.482

anlshmsk1 <- try(nls(frms, start = sts, trace = traceval, data = weeddf,
lower = c(2, 0, 0), upper = c(2, 6, 30), algorithm = 'port'))

if (! inherits(anlshmsk1, "try-error")) pnls(anlshmsk1)

#> anlshmsk1 -- ss= 2.6182 : c1 = 2 c2 = 4.9511 c3 = 3.1146; 5 itns

anlsLMmsks1 <- try(nlsLM(frms, start = sts, data = weeddf, lower = c(2,0,0),
upper = c(2,6,30)))

if (! inherits(anlsLMmsks1, "try-error")) pnls(anlsLMmsks1)

#> anlsLMmsks1 -- ss= 2.6182 : c1 = 2 c2 = 4.9511 c3 = 3.1146; 4 itns

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 209

Test with all parameters masked
anlxmskall <- try(nlxb(frms, start=sts, data=weeddf, lower=sts, upper=sts))
if (! inherits(anlxmskall, "try-error")) print(anlxmskall)

#> residual sumsquares = 158.23 on 12 observations
#> after 0 Jacobian and 1 function evaluations
#> name coeff SE tstat pval gradient JSingval
#> c1 2U M NA NA NA NA NA
#> c2 5U M NA NA NA NA NA
#> c3 3U M NA NA NA NA NA

nlsr has an output format that indicates the constraint status of the parameter estimates. For nlsr,
we have chosen to suppress the calculation of approximate standard errors in the parameters when
constraints are active because their meaning under constraints is unclear, though we believe this policy
worthy of discussion and further investigation.

10 Stabilization of Gauss-Newton computations

All four major tools illustrated solve some variant of the Gauss-Newton equations. nls() uses a
modification of an approach suggested by Hartley (1961), while nlsr, gslnls, and minpack.lm use
flavors of Marquardt (1963). gslnls offers an accelerated Marquardt method and three alternative
methods which we have not investigated. Control settings for nlxb() or nlfb() allow exploration
of Hartley and Marquardt algorithm variants. In general, the Levenberg-Marquardt stabilization is
important in obtaining solutions in methods of the Gauss-Newton family, as nls() terminates too
frequently and unnecessarily with singular gradient errors.

10.1 Programming language

An important choice made in developing nlsr was to code entirely within the R programming
language. nls() uses a mix of R, C, and Fortran, as does minpack.lm. gslnls is an R wrapper to
various C-language routines in the GNU Scientific Library (Galassi et al. (2009)). Generally, keeping to
a single programming language can allow for easier maintenance and upgrades. It also avoids some
work when there are changes or upgrades to libraries for the non-R languages. R is usually considered
slower than most computing environments because it keeps track of objects and because it is usually
interpreted. In recent years, the performance penalty for using code entirely in R has been much
reduced with the just-in-time compiler and other improvements. All-R computation may now offer
acceptable performance. In nlsr, the use of R may be a smaller performance cost than the aggressive
approach to a solution, which can cause more iterations to be used.

11 Data sources for problems

nls() can be called without specifying the data argument. In this case, it will search in the available
environments (i.e., workspaces) for suitable data objects. We do not like this approach, but it is “the R
way”. R allows users to leave many objects in the default (.GlobalEnv) workspace. Moreover, users
have to actively suppress saving this workspace (.RData) on exit, otherwise any such file in the path
will be loaded on startup. R users in our acquaintance avoid saving the workspace because of lurking
data and functions that may cause unwanted results.

11.1 Feature: Subsetting

nls() and other class nls tools accept an argument subset. This acts through the mediation of
model.frame, which is not obvious in the source code files /src/library/stats/R/nls.R and
/src/library/stats/src/nls.C. Having subset at the level of the call to a function like nls() saves
effort, but it does mean that the programmer of the solver needs to be aware of the origin (and value)
of objects such as the data, residuals and Jacobian. By preference, we would implement subsetting by
zero-value weights, with observation counts (and degrees of freedom) computed via the numbers of
non-zero weights. Alternatively, we would extract a working dataframe from the relevant elements in
the original.

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 210

11.2 Feature: na.action (missing value treatment)

na.action is an argument to the nls() function, but it does not appear obviously in the source code, of-
ten being handled behind the scenes after referencing the option na.action. This feature also changes
the data supplied to our nonlinear least squares solver. A useful, but possibly dated, description is
given in: https://stats.idre.ucla.edu/r/faq/how-does-r-handle-missing-values/. The typical
default action, which can be seen by using the command getOption("na.action") is na.omit. This
option removes from computations any observations containing missing values (i.e. any row of a data
frame containing an NA). na.exclude does much of the same for solver computations, but keeps the
rows with NA elements so that predictions are in the correct row position. We recommend that workers
test output to verify the behavior is as wanted. See https://stats.stackexchange.com/questions/
492955/should-i-use-na-omit-or-na-exclude-in-a-linear-model-in-r. As with subset, our con-
cern with na.action is that users may be unaware of the effects of an option they may not even be
aware has been set. Should na.fail be the default?

11.3 Feature: model frame

model is an argument to the nls() and related functions, which is documented as:

model logical. If true, the model frame is returned as part of the object. Default is FALSE.

Indeed, the argument only gets used when nls() is about to return its result object, and the
element model is NULL unless the calling argument model is TRUE. Using the same name for both
function argument and object element could be confusing. Despite this, the model frame is used within
the function code in the form of the object mf. We feel that users could benefit from more extensive
documentation and examples of its use since it is used to implement features like subset.

11.4 Weights on observations

All four main tools we consider here allow a weights argument that specifies a vector of fixed weights
the same length as the number of residuals. Each residual is multiplied by the square root of the
corresponding weight. Where available, the values returned by the residuals() function are weighted,
and the fitted() or predict() function are used to compute raw residuals.

While fixed weights may be useful, there are many problems for which we want weights that are
determined at least partially from the model parameters, for example, a measure of the standard devi-
ation of observations. Such dynamic weighting situations are discussed in the vignette “Introduction
to nlsr” of package nlsr in section Weights that are functions of the model parameters. minpack.lm offers a
function wfct() to facilitate such weighting. Care is advised in applying such ideas.

11.5 Weights in returned functions from nls()

The function resid() (an alias for residuals()) gives weighted residuals like resultmresid(). The
function nlsModel() allows us to compute residuals for particular coefficient sets. We have had to
extract nlsModel() from the base R code and include it via a code chunk (not echoed here for space)
because it is not exported to the working namespace, We could also explicitly source() this code.

wts <- 0.5 ^ tt # simple weights
frmlogis <- weed ~ Asym / (1 + exp((xmid - tt)/scal))
Asym <- 1; xmid <- 1; scal <- 1
nowt <- try(nls(weed ~ SSlogis(tt, Asym, xmid, scal))) # UNWEIGHTED
if (! inherits(nowt, "try-error")) {
rnowt <- nowtmresid() # This has UNWEIGHTED residual and Jacobian. Does NOT take coefficients.
attr(rnowt, "gradient") <- NULL

} else rnowt <- NULL
rnowt

#> [1] -0.011900 0.032755 -0.092030 -0.208782 -0.392634 0.057594 1.105728
#> [8] -0.715786 0.107647 0.348396 -0.652592 0.287569

usewt <- try(nls(weed ~ SSlogis(tt, Asym, xmid, scal), weights = wts))
if (! inherits(usewt, "try-error")) {
rusewt <- usewtmresid() # WEIGHTED. Does NOT take coefficients.

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://stats.idre.ucla.edu/r/faq/how-does-r-handle-missing-values/
https://stats.stackexchange.com/questions/492955/should-i-use-na-omit-or-na-exclude-in-a-linear-model-in-r
https://stats.stackexchange.com/questions/492955/should-i-use-na-omit-or-na-exclude-in-a-linear-model-in-r

CONTRIBUTED RESEARCH ARTICLE 211

attr(rusewt, "gradient") <- NULL
} else rusewt <- NULL
rusewt

#> [1] 0.0085640 0.0324442 -0.0176652 -0.0388479 -0.0579575 0.0163623
#> [7] 0.1042380 -0.0411766 0.0052509 0.0084324 -0.0194246 -0.0024053

source("nlsModel.R") # or use {r nlsmodelsource, echo=FALSE} code chunk
nmod0 <- nlsModel(frmlogis, data = weeddf, start = c(Asym = 1, xmid = 1, scal = 1), wts = wts)
rn0 <- nmod0$resid() # Parameters are supplied in nlsModel() `start` above.
attr(rn0, "gradient") <- NULL; rn0 # weighted residuals at starting coefficients

#> [1] 3.3998 3.2545 3.0961 2.9784 2.8438 2.7748 2.6910 2.3474 2.1724 1.9359
#> [11] 1.6572 1.4214

nmod <- nlsModel(frmlogis, data = weeddf, start = coef(usewt), wts = wts)
rn <- nmod$resid()
attr(rn,"gradient")<-NULL; rn # same as rusewt

#> [1] 0.0085640 0.0324442 -0.0176652 -0.0388479 -0.0579575 0.0163623
#> [7] 0.1042380 -0.0411766 0.0052509 0.0084324 -0.0194246 -0.0024053

12 Minor issues with nonlinear least-squares tools

12.1 Interim output from the “port” algorithm

As the nls() man page states, when the “port” algorithm is used with the trace argument TRUE, the
iterations display the objective function value which is 1/2 the sum of squares (or deviance). The
trace display is likely embedded in the Fortran of the nlminb routine that is called to execute the “port”
algorithm, but the factor of 2 discrepancy is nonetheless unfortunate for users.

12.2 Failure to return the best result achieved

If nls() reaches a point where it cannot continue but has not found a point where the relative offset
convergence criterion is met, it may simply exit, especially if a “singular gradient” (singular Jacobian)
is found. However, this may occur AFTER the function has made considerable progress in reducing
the sum of squared residuals. Here is an abbreviated example:

time <- c(1, 2, 3, 4, 6 , 8, 10, 12, 16)
conc <- c(0.7, 1.2, 1.4, 1.4, 1.1, 0.8, 0.6, 0.5, 0.3)
NLSdata <- data.frame(time,conc)
NLSstart <- c(lrc1 = -2, lrc2 = 0.25, A1 = 150, A2 = 50) # a starting vector (named!)
NLSformula <- conc ~ A1 * exp(-exp(lrc1) * time) + A2 * exp(-exp(lrc2) * time)
tryit <- try(nls(NLSformula, data = NLSdata, start = NLSstart, trace = TRUE))

#> 61216. (3.56e+03): par = (-2 0.25 150 50)
#> 2.1757 (2.23e+01): par = (-1.9991 0.31711 2.6182 -1.3668)
#> 1.6211 (7.14e+00): par = (-1.9605 -2.6203 2.5753 -0.55599)
#> Error in nls(NLSformula, data = NLSdata, start = NLSstart, trace = TRUE) :
#> singular gradient

if (! inherits(tryit, "try-error")) print(tryit)

Note that the sum of squares has been reduced from 61216 to 1.6211, but unless trace is invoked,
the user will not get any information about this. Changing this in the nls() function could be useful
to R users, and would be almost trivial.

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 212

13 Estimating models that are partially linear

The variable projection method (Golub and Pereyra (1973), O’Leary and Rust (2013)) is usually much
more effective than general approaches in finding good solutions to nonlinear least squares problems
when some of the parameters appear linearly. In our logistic examples, the asymptote parameters are
an illustration. However, identifying which parameters are linear and communicating this information
to estimating functions is not a trivial task. nls() has an option algorithm = "plinear" that allows
some partially linear models to be solved. The other tools, as far as we are aware, do not offer any
such capability. The nlstac package uses a different algorithm for similar goals.

Within nls() itself we must, unfortunately, use different specifications with different algorithm
options. For example, the explicit model y ~ a * x + b does not work with the linear modeling
function lm(), which requires this model to be specified as y ~ x. Within nls(), consider the following
FOUR different specifications for the same problem, plus an intuitive choice, labeled fm2a, that does
not work. In this failed attempt, putting the Asym parameter in the model causes the plinear algorithm
to try to add another term to the model. We believe this is unfortunate, and would like to see a
consistent syntax. At the time of writing, we do not foresee a resolution for this issue. In the example,
we have not evaluated the commands to save space.

DNase1 <- subset(DNase, Run == 1) # select the data
using a selfStart model - do not specify the starting parameters
fm1 <- try(nls(density ~ SSlogis(log(conc), Asym, xmid, scal), DNase1))
if (! inherits(fm1, "try-error")) summary(fm1)

using conditional linearity - leave out the Asym parameter
fm2 <- try(nls(density ~ 1 / (1 + exp((xmid - log(conc)) / scal)),

data = DNase1, start = list(xmid = 0, scal = 1),
algorithm = "plinear"))

if (! inherits(fm2, "try-error")) summary(fm2)

without conditional linearity
fm3 <- try(nls(density ~ Asym / (1 + exp((xmid - log(conc)) / scal)),

data = DNase1,
start = list(Asym = 3, xmid = 0, scal = 1)))

if (! inherits(fm3, "try-error")) summary(fm3)

using Port's nl2sol algorithm
fm4 <- try(nls(density ~ Asym / (1 + exp((xmid - log(conc)) / scal)),

data = DNase1, start = list(Asym = 3, xmid = 0, scal = 1),
algorithm = "port"))

if (! inherits(fm4, "try-error")) summary(fm4)

using conditional linearity AND Asym does not work
fm2a <- try(nls(density ~ Asym / (1 + exp((xmid - log(conc)) / scal)),

data = DNase1, start = list(Asym=3, xmid = 0, scal = 1),
algorithm = "plinear", trace = TRUE))

if (! inherits(fm2a, "try-error")) summary(fm2a)

14 Models with indexed parameters

Some models have several common parameters and others that are tied to particular cases. The man
file for nls() includes an example of a situation in which parameters are indexed but which uses the
“plinear” option as an added complication. Running this example reveals that the answers for the
parameters are not indexed as in a vector. That is, we do not see a[1], a[2], a[3] but a1, a2, a3.
This is no doubt because programming for indexed parameters is challenging. We note that there are
capabilities in packages for mixed-effects modeling such as nlme (Pinheiro et al. (2013)), bbmle (Bolker
and Team (2013)), and lme4 (D. Bates et al. (2015)) for estimating models of such type.

15 Tests and use-case examples

Maintainers of packages need suitable tests and use-case examples in order

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 213

• to ensure packages work properly, in particular, giving results comparable to or better than the
functions they are to replace.

• to test individual solver functions to ensure they work across the range of calling mechanisms,
that is, different ways of supplying inputs to the solver(s);

• to pose “silly” inputs to see if these bad inputs are caught by the programs.

Such goals align with the aims of unit testing (e.g., https://towardsdatascience.com/unit-
testing-in-r-68ab9cc8d211, Wickham (2011), Wickham et al. (2021) and the conventional R package
testing tools). In our work, one of us (AB) has developed a working prototype package at https://
github.com/ArkaB-DS/nlsCompare . A primary design objective of this is to allow the summarization
of multiple tests in a compact output. The prototype has a vignette to illustrate its use.

16 Documentation and resources

In our investigation, we built several resources, which are now part of the repository https://github.
com/nashjc/RNonlinearLS/. Particular items are:

• A BibTex bibliography for use with all documents in this project, but which has wider applica-
tion to nonlinear least squares projects in general (https://github.com/nashjc/RNonlinearLS/
blob/main/BibSupport/ImproveNLS.bib).

• MachID.R offers a suggested concise summary function to identify a particular computational
system used for tests. A discussion of how it was built and the resources needed across platforms
is given in at https://github.com/nashjc/RNonlinearLS/tree/main/MachineSummary.

• John C. Nash and Bhattacharjee (2022) is an explanation of the construction of the nlspkg from
the nls() code in R-base.

• As the 2021 Summer of Code period was ending, one of us (JN) was invited to prepare a review
of optimization in R. Ideas from the present work have been instrumental in the creation of John
C. Nash (2022).

17 Future of nonlinear model estimation in R

Given its importance to R, it is possible that nls() will remain more or less as it has been for the past
several decades. If so, the focus of discussion should be the measures needed to secure its continued
operation for legacy purposes and how that may be accomplished. We welcome an opportunity to
participate in such conversations.

To advance the stability and maintainability of R, we believe the program objects (R functions) that
are created by tools such as nls() should have minimal cross-linkages and side-effects. The aspects of
nls() that concern us follow.

• R tools presume data and parameters needed are available in an accessible environment. This
provides a compact syntax to invoke the calculations, but the wrong data can be used if the
internal search finds a valid name that is not the object we want, or if subset or na.action
settings modify the selection, or weights are applied.

• Mixing of R, C and Fortran code adds to the burden of following the program logic.

• The class nls structure simplifies calls with its rich set of functions, but also adds to the task of
understanding what has been done. A design that isolates the setup, solution, and post-solution
parts of complicated calculations reduces the number of objects that must be kept in alignment.

Given the existence of examples of good practices such as analytic derivatives, stabilized solution
of Gauss-Newton equations, and bounds-constrained parameters, base R tools should be moving to
incorporate them. These capabilities are available now by using several tools, but it would be helpful
if they were unified.

18 Acknowledgments

Hans Werner Borchers was helpful in developing the GSoC project motivating this article and in
comments on this and related work. Heather Turner co-mentored the project and helped guide the
progress of the work. Exchanges with Fernando Miguez helped to clarify aspects of selfStart models
and instigated the “Introduction to nlsr” vignette. Colin Gillespie (package benchmarkme) has been

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://towardsdatascience.com/unit-testing-in-r-68ab9cc8d211
https://towardsdatascience.com/unit-testing-in-r-68ab9cc8d211
https://github.com/ArkaB-DS/nlsCompare
https://github.com/ArkaB-DS/nlsCompare
https://github.com/nashjc/RNonlinearLS/
https://github.com/nashjc/RNonlinearLS/
https://github.com/nashjc/RNonlinearLS/blob/main/BibSupport/ImproveNLS.bib
https://github.com/nashjc/RNonlinearLS/blob/main/BibSupport/ImproveNLS.bib
https://github.com/nashjc/RNonlinearLS/tree/main/MachineSummary

CONTRIBUTED RESEARCH ARTICLE 214

helpful in guiding our attempts to succinctly summarize computing environments. We thank one of
the referees for pointing out that it is important to use background knowledge and graphs to guide
modeling. Simon Urbanek gave some important practical help with preparing files for publication.

References

Bates, Douglas M. 2012. NISTnls: Nonlinear least squares examples from NIST. https://CRAN.R-project.
org/package=NISTnls.

Bates, Douglas M., and Donald G. Watts. 1981. “A Relative Offset Orthogonality Convergence
Criterion for Nonlinear least Squares.” Technometrics 23 (2): 179–83.

———. 1988. Nonlinear Regression Analysis and Its Applications. Wiley.
Bates, Douglas, Martin Mächler, Ben Bolker, and Steve Walker. 2015. “Fitting Linear Mixed-Effects

Models Using lme4.” Journal of Statistical Software 67 (1): 1–48. https://doi.org/10.18637/jss.
v067.i01.

Baty, Florent, and Marie-Laure Delignette-Muller. 2013. Nlstools: Tools for Nonlinear Regression Diagnos-
tics.

———. 2014. nlsMicrobio: Data Sets and Nonlinear Regression Models Dedicated to Predictive Microbiology.
Bolker, Ben, and R Development Core Team. 2013. Bbmle: Tools for General Maximum Likelihood

Estimation. http://CRAN.R-project.org/package=bbmle.
Chau, Joris. 2023. gslnls: GSL Nonlinear Least-Squares Fitting. https://CRAN.R-project.org/package=

gslnls.
Duursma, Remko. 2017. Nlshelper: Convenient Functions for Non-Linear Regression. https://CRAN.R-

project.org/package=nlshelper.
Elzhov, Timur V., Katharine M. Mullen, Andrej-Nikolai Spiess, and Ben Bolker. 2012. minpack.lm: R

interface to the Levenberg-Marquardt nonlinear least-squares algorithm found in MINPACK, plus support
for bounds. R Project for Statistical Computing. http://CRAN.R-project.org/package=minpack.
lm.

Galassi, Mark, Jim Davies, James Theiler, Brian Gough, and Gerard Jungman. 2009. GNU Scientific
Library - Reference Manual, Third Edition, for GSL Version 1.12 (3. ed.). Free Software Foundation.

Gallant, A. Ronald. 1987. Nonlinear Statistical Models. Wiley.
Gentleman, Robert C., Vincent J. Carey, Douglas M. Bates, Ben Bolstad, Marcel Dettling, Sandrine

Dudoit, Byron Ellis, et al. 2004. “Bioconductor: Open Software Development for Computational
Biology and Bioinformatics.” Genome Biology 5 (R80). https://doi.org/10.1186/gb-2004-5-10-
r80.

Golub, G. H., and V. Pereyra. 1973. “The Differentiation of Pseudo-Inverses and Nonlinear Least
Squares Problems Whose Variables Separate.” SIAM Journal of Numerical Analysis 10 (2): 413–32.

Grothendieck, G. 2022. Nls2: Non-Linear Regression with Brute Force. https://CRAN.R-project.org/
package=nls2.

Hartley, H. O. 1961. “The Modified Gauss-Newton Method for the Fitting of Non-Linear Regression
Functions by Least Squares.” Technometrics 3: 269–80.

Huet, S., A. Bouvier, M.-A. Poursat, and E. Jolivet. 2004. Statistical Tools for Nonlinear Regression: A
Practical Guide with S-PLUS Examples, 2nd Edition. Berlin & New York: Springer-Verlag.

Josef Tvrdík and Ivan Křivý and Ladislav Mišík. 2007. “Adaptive Population-Based Search: Applica-
tion to Estimation of Nonlinear Regression Parameters.” Computational Statistics & Data Analysis
52 (2): 713–24. https://doi.org/10.1016/j.csda.2006.10.014.

Levenberg, Kenneth. 1944. “A Method for the Solution of Certain Non-Linear Problems in Least
Squares.” Quarterly of Applied Mathematics 2: 164–68.

Marquardt, Donald W. 1963. “An Algorithm for Least-Squares Estimation of Nonlinear Parameters.”
SIAM Journal on Applied Mathematics 11 (2): 431–41.

Miguez, Fernando. 2021. nlraa: Nonlinear Regression for Agricultural Applications. https://CRAN.R-
project.org/package=nlraa.

Nash, John C. 1977. “Minimizing a Nonlinear Sum of Squares Function on a Small Computer.” Journal
of the Institute for Mathematics and Its Applications 19: 231–37.

———. 1979. Compact Numerical Methods for Computers: Linear Algebra and Function Minimisation. Bristol:
Adam Hilger.

———. 2022. “Function minimization and nonlinear least squares in R.” WIREs Computational Statistics
14 (e1580). https://doi.org/https://doi.org/10.1002/wics.1580.

Nash, John C., and Arkajyoti Bhattacharjee. 2022. “Making a Package from Base R Files.” R-Bloggers,
January. https://www.r-bloggers.com/2022/01/making-a-package-from-base-r-files/.

Nash, John C, and Duncan Murdoch. 2023. nlsr: Functions for Nonlinear Least Squares Solutions.
Nash, John C, and Ravi Varadhan. 2011. Optimx: A Replacement and Extension of the optim() Function.

Nash Information Services Inc.; Johns Hopkins University.
Nash, John C., and Paul Velleman. 1996. “Nonlinear Estimation Combining Visual Fitting with

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=NISTnls
https://CRAN.R-project.org/package=NISTnls
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.18637/jss.v067.i01
http://CRAN.R-project.org/package=bbmle
https://CRAN.R-project.org/package=gslnls
https://CRAN.R-project.org/package=gslnls
https://CRAN.R-project.org/package=nlshelper
https://CRAN.R-project.org/package=nlshelper
http://CRAN.R-project.org/package=minpack.lm
http://CRAN.R-project.org/package=minpack.lm
https://doi.org/10.1186/gb-2004-5-10-r80
https://doi.org/10.1186/gb-2004-5-10-r80
https://CRAN.R-project.org/package=nls2
https://CRAN.R-project.org/package=nls2
https://doi.org/10.1016/j.csda.2006.10.014
https://CRAN.R-project.org/package=nlraa
https://CRAN.R-project.org/package=nlraa
https://doi.org/10.1002/wics.1580
https://www.r-bloggers.com/2022/01/making-a-package-from-base-r-files/

CONTRIBUTED RESEARCH ARTICLE 215

Optimization Methods.” In Proceedings of the Section on Physical and Engineering Sciences of the
American Statistical Association, 256–61. American Statistical Association.

Nash, John C., and Mary Walker-Smith. 1987. Nonlinear Parameter Estimation: An Integrated System in
BASIC. New York: Marcel Dekker.

O’Leary, Dianne P., and Bert W. Rust. 2013. “Variable Projection for Nonlinear Least Squares Problems.”
Computational Optimization and Applications 54 (3): 579–93.

Padfield, Daniel, and Granville Matheson. 2020. nls.multstart: Robust Non-Linear Regression using AIC
Scores. https://CRAN.R-project.org/package=nls.multstart.

Pinheiro, Jose, Douglas Bates, Saikat DebRoy, Deepayan Sarkar, and R Core Team. 2013. Nlme: Linear
and Nonlinear Mixed Effects Models.

Prates, Marcos, Victor Lachos, and Aldo Garay. 2021. nlsmsn: Fitting Nonlinear Models with Scale
Mixture of Skew-Normal Distributions. https://CRAN.R-project.org/package=nlsmsn.

Ratkowsky, David A. 1983. Nonlinear Regression Modeling: A Unified Practical Approach. New York;
Basel: Marcel Dekker Inc.

Rodriguez-Arias, Mariano, Juan Antonio Fernandez, Javier Cabello, and Rafael Benitez. 2020. Nlstac:
An r Package for Fitting Separable Nonlinear Models. https://CRAN.R-project.org/package=nlstac.

Ross, Gavin J. S. 1990. Nonlinear Estimation. New York etc.: Springer-Verlag.
Seber, G. A. F., and C. J. Wild. 1989. Nonlinear regression. New York: Wiley.
Sokol, Serguei. 2022. Nlsic: Non Linear Least Squares with Inequality Constraints. https://CRAN.R-

project.org/package=nlsic.
Spiess, Andrej-Nikolai. 2022. Onls: Orthogonal Nonlinear Least-Squares Regression. https://CRAN.R-

project.org/package=onls.
Torvisco, Juan Antonio Fernandez, Mariano Rodriguez-Arias, and Javier Cabello Sanchez. 2018.

“A New Algorithm to Fit Exponential Decays Without Initial Guess.” Faculty of Sciences and
Mathematics, University of Nis, Serbia. https://doi.org/10.2298/fil1812233t.

Tvrdík, Josef. 2016. crsnls: Nonlinear Regression Parameters Estimation by ’CRS4HC’ and ’CRS4HCe’.
https://CRAN.R-project.org/package=crsnls.

Wickham, Hadley. 2011. “testthat: Get Started with Testing.” The R Journal 3: 5–10. https://journal.
r-project.org/archive/2011-1/RJournal/_2011-1/_Wickham.pdf.

Wickham, Hadley, Jim Hester, Winston Chang, and Jennifer Bryan. 2021. devtools: Tools to Make
Developing R Packages Easier. https://CRAN.R-project.org/package=devtools.

John C. Nash
retired professor, University of Ottawa
Telfer School of Management
Ottawa ON Canada K1N 6N5
ORCiD: 0000-0002-2762-8039
profjcnash@gmail.com

Arkajyoti Bhattacharjee
Indian Institute of Technology
Department of Mathematics and Statistics
Kanpur
arkastat98@gmail.com

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=nls.multstart
https://CRAN.R-project.org/package=nlsmsn
https://CRAN.R-project.org/package=nlstac
https://CRAN.R-project.org/package=nlsic
https://CRAN.R-project.org/package=nlsic
https://CRAN.R-project.org/package=onls
https://CRAN.R-project.org/package=onls
https://doi.org/10.2298/fil1812233t
https://CRAN.R-project.org/package=crsnls
https://journal.r-project.org/archive/2011-1/RJournal/_2011-1/_Wickham.pdf
https://journal.r-project.org/archive/2011-1/RJournal/_2011-1/_Wickham.pdf
https://CRAN.R-project.org/package=devtools
https://orcid.org/0000-0002-2762-8039
mailto:profjcnash@gmail.com
mailto:arkastat98@gmail.com

	A Comparison of R Tools for Nonlinear Least Squares Modeling
	The nls() function
	Scope of our comparison
	Some other CRAN packages for nonlinear modeling
	An illustrative example
	Problem setup

	Estimation of models specified as formulas
	Solution attempts with nlsr
	Solution attempts with minpack.lm
	Solution attempts with gslnls
	Comparison notes for formula-setup solutions

	Functional specification of problems
	Design goals, termination tests, and output objects
	Returned results of nls() and other tools
	When to compute ancillary information

	Jacobian calculation
	Jacobian code in selfStart models

	Bounds constraints on parameters
	Philosophical considerations
	Fixed parameters (masks)

	Stabilization of Gauss-Newton computations
	Programming language

	Data sources for problems
	Feature: Subsetting
	Feature: na.action (missing value treatment)
	Feature: model frame
	Weights on observations
	Weights in returned functions from nls()

	Minor issues with nonlinear least-squares tools
	Interim output from the ``port'' algorithm
	Failure to return the best result achieved

	Estimating models that are partially linear
	Models with indexed parameters
	Tests and use-case examples
	Documentation and resources
	Future of nonlinear model estimation in R
	Acknowledgments
	References

