Supplementary materials are available in addition to this article. It can be downloaded at
RJ-2023-087.zip
C. Anderson-Bergman.
icenReg: Regression models for interval censored data in
R.
Journal of Statistical Software, 81(12): 1–23, 2017. URL
https://doi.org/10.18637/jss.v081.i12.
N. N. Basu, S. Ingham, J. Hodson, F. Lalloo, M. Bulman, A. Howell and D. G. Evans. Risk of contralateral breast cancer in
BRCA1 and
BRCA2 mutation carriers: A 30-year semi-prospective analysis.
Familial Cancer, 14(4): 531–538, 2015. URL
https://doi.org/10.1007/s10689-015-9825-9.
K. M. Beyene and A. El Ghouch.
cenROC: Estimating time-dependent ROC curve and AUC for censored data. 2023. URL
https://CRAN.R-project.org/package=cenROC. R package version 2.0.0.
K. M. Beyene and A. El Grouch. Smoothed time-dependent receiver operating characteristic curve for right censored survival data.
Statistics in Medicine, 39(24): 3373–3396, 2020. URL
https://doi.org/10.1002/sim.8671.
P. Blanche, J. F. Dartigues and H. Jacqmin-Gadda. Review and comparison of
ROC curve estimators for a time-dependent outcome with marker-dependent censoring.
Biometrical Journal, 55(5): 687–704, 2013a. URL
https://doi.org/10.1002/bimj.201200045.
P. Blanche, J.-F. Dartigues and H. Jacqmin-Gadda. Estimating and comparing time-dependent areas under receiver operating characteristic curves for censored event times with competing risks.
Statistics in Medicine, 32(30): 5381–5397, 2013b. URL
https://doi.org/10.1002/sim.5958.
L. Chambles and G. Diao. Estimation of time-dependent area under
ROC curve for long-term risk prediction.
Statistics in Medicine, 20(25): 3474–3486, 2006. URL
https://doi.org/10.1002/sim.2299.
D. R. Cox. Regression models and life-tables.
Journal of the Royal Statistical Society. Series B (Methodological), 34(2): 187–220, 1972. URL
https://doi.org/10.1111/j.2517-6161.1972.tb00899.x.
S. Díaz-Coto, N. O. Corral-Blaco and P. Martínez-Camblor. Two-stage receiver operating-characteristic curve estimator for cohort studies.
The International Journal of Biostatistics, 17: 117–137, 2021. URL
https://doi.org/10.1515/ijb-2019-0097.
S. Díaz-Coto, P. Martínez-Camblor and N. O. Corral-Blanco. Cumulative/dynamic
ROC curve estimation under interval censorship.
Journal of Statistical Computation and Simulation, 90(9): 1570–1590, 2020a. URL
https://doi.org/10.1080/00949655.2020.1736071.
S. Díaz-Coto, P. Martínez-Camblor and S. Pérez-Fernández. Smooth
ROCtime: An
R package for time-dependent
ROC curve estimation.
Computational Statistics, 2020b. URL
https://doi.org/10.1007/s00180-020-00955-7.
J. I. Epstein, L. Egevad, M. B. Amin, B. Delahunt, J. R. Srigley, P. A. Humphrey and the-Grading-Comittee. The 2014 international society of urological pathology
(ISUP) consensus conference on gleason grading of prostatic carcinoma.
The American Journal of Surgical Pathology, 40(2): 244–252, 2016. URL
https://doi.org/10.1097/PAS.0000000000000530.
R. Etzioni, M. Pepe, G. Longton, C. Hu and G. Goodman. Incorporating the time dimension in receiver operating characteristic curves: A case study of prostate cancer.
Medical Decision Making, 19(3): 242–251, 1999. URL
https://doi.org/10.1177/0272989X9901900303.
P. M. Farrell, B. J. Rosenstein, T. B. White, F. J. Accurso, C. Castellani, G. R. Cutting, P. R. Durie, V. A. LeGrys, J. Massie, R. B. Parad, et al. Guidelines for diagnosis of cystic fibrosis in newborns through older adults: Cystic fibrosis foundation consensus report.
The Journal of Pediatrics, 153(2): S4–S14, 2008. URL
https://doi.org/10.1016/j.jpeds.2008.05.005.
E. R. Ferreirós, C. P. Boissonnet, R. Pizarro, P. F. Merletti, G. Corrado, A. Cagide and O. O. Bazzino. Independent prognostic value of elevated
C-reactive protein in unstable angina.
Circulation, 100(19): 1958–1963, 1999. URL
https://doi.org/10.1161/01.CIR.100.19.1958.
D. M. Finkelstein. A proportional hazards model for interval-censored failure time data.
Biometrics., 42(4): 845–854, 1986. URL
https://doi.org/10.2307/2530698.
Y. Foucher, P. Daguin, A. Akl, M. Kessler, M. Ladrière, C. Legendre, H. Kreis, L. Rostaing, N. Kamar, G. Mourad, et al. A clinical scoring system highly predictive of long-term kidney graft survival.
Kidney International, 78(12): 1288–1294, 2010. URL
https://doi.org/10.1038/ki.2010.232.
D. Gohel and P. Skintzos.
Flextable: Functions for tabular reporting. 2023. URL
https://CRAN.R-project.org/package=flextable. R package version 0.9.3.
L. Gonçalves, A. Subtil, M. Rosário Oliveira and P. De Zea Bermudez.
ROC curve estimation: An overview.
Statistical Journal, 12(1): 1–20, 2014. URL
https://doi.org/10.57805/revstat.v12i1.141.
J. A. Hanley and B. McNeil. The meaning and use of the area under the receiver operating characteristic (
ROC) curve.
Radiology, 20(143): 29–36, 1982. URL
https://doi.org/10.1148/radiology.143.1.7063747.
F. E. Harrel. Regression modeling strategies: With applications to linear models, logistic and ordonal regression and survival analysis. Springer International Publishing, 2015.
F. E. Harrell Jr.
Rms: Regression modeling strategies. 2023. URL
https://CRAN.R-project.org/package=rms. R package version 6.7-1.
P. J. Heagerty, T. Lumley and M. S. Pepe. Time-
Dependent
ROC Curves for
Censored
Survival
Data and a
Diagnostic
Marker.
Biometrics., 56(2): 337–344, 2000. URL
https://doi.org/10.1111/j.0006-341x.2000.00337.x.
P. J. Heagerty and P. Saha-Chaudhuri.
survivalROC: Time-dependent ROC curve estimation from censored survival data. 2022. URL
https://CRAN.R-project.org/package=survivalROC. R package version 1.0.3.1.
F. Hsieh and B. W. Turnbull. Nonparametric and semiparametric estimation of the receiver operating characteristic curve.
The Annals of Statistics, 24(1): 25–40, 1996. URL
https://doi.org/10.1214/aos/1033066197.
H. Hung and C. Chiang. Optimal composite markers for time-dependent receiver operating characteristic curves with censored survival data.
Scandinavian Journal of Statistics, 20(37): 664–679, 2010. URL
https://doi.org/10.1111/j.1467-9469.2009.00683.x.
C. M. Hurvich, J. S. Simonoff and C.-L. Tsai. Smoothing parameter selection in nonparametric regression using an improved
Akaike information criterion.
Journal of the Royal Statistical Society, Series B (Statistical Methodology), 60(2): 271–293, 1998. URL
https://doi.org/10.1111/1467-9868.00125.
A. N. Kamarudin, T. Cox and R. Kolamunnage-Dona. Time-dependent
ROC curve analysis in medical research: Current methods and applications.
BMC Medical Research Methodology, 17(53): 2017. URL
https://doi.org/10.1186/s12874-017-0332-6.
L. Li, T. Greene and B. Hu. A simple method to estimate the time-dependent receiver operating characteristic curve and the area under the curve with right censored data.
Statistical Methods in Medical Research, 27(8): 2264–2278, 2018. URL
https://doi.org/10.1177/0962280216680239.
L. Li and C. Wu.
tdROC: Non-parametric estimation of time-dependent ROC curve for right censored survival data. 2016. URL
https://CRAN.R-project.org/package=tdROC.
J. Lin, Y. Wu, X. Wang and K. Owzar.
intcensROC: AUC estimation of interval censored survival data. 2021. URL
https://CRAN.R-project.org/package=intcensROC. R package version 0.1.3.
J. Long, Z. Yang, L. Wang, Y. Han, C. Peng, C. Yan and D. Yan. Metabolite biomarkers of
Type 2 diabetes mellitus and pre-diabetes: A systematic review and meta-analysis.
BMC Endocrine Disorders, 20(1): SP174, 2020. URL
https://doi.org/10.1186/s12902-020-00653-x.
M. López-Ratón, M. X. Rodríguez-Álvarez, C. Cadarso-Suárez and F. Gude-Sampedro. Optimal
Cutpoints: An
R package for selecting optimal cutpoints in diagnostic tests.
Journal of Statistical Software, 61(8): 1–36, 2014. URL
https://doi.org/10.18637/jss.v061.i08.
P. Martínez-Camblor.
Nonparametric cutoff point estimation for diagnostic decisions with weighted errors.
Revista Colombiana de Estadística, 34(1): 133–146, 2011. URL
https://doi.org/10.15446/rce.
P. Martínez-Camblor, G. F. Bayón and S. Pérez-Fernández. Cumulative/dynamic
ROC curve estimation.
Journal of Statistical Computation and Simulation, 86(17): 3582–3594, 2016. URL
https://doi.org/10.1080/00949655.2016.1175442.
P. Martínez-Camblor and J. C. Pardo-Fernández. Smooth time-dependent receiver operating characteristic curve estimators.
Statistical Methods in Medical Research, 27(3): 651–674, 2018. URL
https://doi.org/10.1177/0962280217740786.
Microsoft and S. Weston.
Foreach: Provides foreach looping construct. 2022. URL
https://CRAN.R-project.org/package=foreach. R package version 1.5.2.
L. Ni and X. H. Wehrens. Cardiac troponin
I - more than a biomarker for myocardial ischemia?
Annals of Translational Medicine, Suppl 1(6): S17, 2018. URL
https://doi.org/10.21037/atm.2018.09.07.
M. S. Pepe. The Statistical Evaluation of Medical Tests for Classification and Prediction. Oxford Statistical Sciences Series, 2003.
S. Pérez-Fernández.
nsROC: Non-standard ROC curve analysis. 2017. URL
https://CRAN.R-project.org/package=nsROC.
S. Pérez-Fernández, P. Martínez-Camblor, P. Filzmoser and N. Corral. Ns
ROC:
An
R package for non-standard
ROC curve analysis.
The R Journal, 10(2): 55–77, 2018. URL
https://doi.org/10.32614/RJ-2018-043.
S. Potapov, W. Adler and M. Schmid.
survAUC: Estimators of prediction accuracy for time-to-event data. 2023. URL
https://CRAN.R-project.org/package=survAUC. R package version 1.2-0.
X. Robin, N. Turck, A. Hainard, N. Tiberti, F. Lisacek, J. C. Sánchez and M. Müller. P
ROC: An open-source package for
R and
S+ to analyze and compare
ROC curves.
BMC Bioinformatics, 12(3): 77, 2011. URL
https://doi.org/10.1186/1471-2105-12-77.
M. X. Rodríguez-Álvarez and V. Inácio.
ROCn
Reg: An
R package for receiver operating characteristic curve inference with and without covariates.
The R Journal, 13: 525, 2021. URL
https://doi.org/10.32614/RJ-2021-066.
M. C. Sachs. Plot
ROC: A tool for plotting
ROC curves.
Journal of Statistical Software, 79(2): 1–19, 2017. URL
https://doi.org/10.18637/jss.v079.c02.
T. Sing, O. Sander, N. Beerenwinkel and T. Lengauer.
ROCR: Visualizing classifier performance in
R.
Bioinformatics, 21(20): 7881, 2005. URL
https://doi.org/10.1093/bioinformatics/bti623.
X. Song and X. H. Zhou. A semiparametric approach for the covariate-specific
ROC curve with survival outcome.
Statistica Sinica, 18: 947–965, 2008. URL
http://www.jstor.org/stable/24308524.
Terry M. Therneau and Patricia M. Grambsch. Modeling survival data: Extending the Cox model. New York: Springer, 2000.
H. Uno, T. Cai, L. Tian and L. J. Wei. Evaluating prediction rules for t-year survivors with censored regression models.
Journal of the American Statistics Association, 478(102): 527–537, 2007. URL
https://doi.org/10.1198/016214507000000149.
J. R. Vidal-Castiñeira, A. López-Vázquez, P. Díaz-Bulnes, S. Díaz-Coto, L. Márquez-Kisinousky, J. Martínez-Borra, C. A. Navascues, P. Sanz-Cameno, A. A. Juan de la Vega, M. Rodríguez, et al. Genetic contribution of endoplasmic reticulum aminopeptidase 1 polymorphisms to liver fibrosis progression in patients with
HCV infection.
Journal of Molecular Medicine, 98: 1245–1254, 2020. URL
https://doi.org/10.1007/s00109-020-01948-1.
H. Wickham.
ggplot2: Elegant graphics for data analysis. Springer-Verlag New York, 2016. URL
https://ggplot2.tidyverse.org.
J. P. Willems, J. T. Saunders, D. E. Hunt and J. B. Schorling. Prevalence of coronary heart disease risk factors among rural blacks: A community-based study.
Southern Medical Journal, 90(8): 814–820, 1997. URL
https://doi.org/10.1097/00007611-199708000-00008.
Y. Wu, X. Wang, J. Lin, J. Beilin and K. Owzar. Predictive accuracy of markers or risk scores for interval censored survival data.
Statistics in Medicine, 39(18): 2437–2446, 2020. URL
https://doi.org/10.1002/sim.8547.
X.-H. Zhou, N. A. Obuchowski and D. K. McClish. Statistical Methods in Diagnostic Medicine. Wiley Blackwell, New York, 2002.