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glmmPen: High Dimensional Penalized
Generalized Linear Mixed Models
by Hillary M. Heiling, Naim U. Rashid, Quefeng Li, and Joseph G. Ibrahim

Abstract Generalized linear mixed models (GLMMs) are widely used in research for their ability to
model correlated outcomes with non-Gaussian conditional distributions. The proper selection of fixed
and random effects is a critical part of the modeling process since model misspecification may lead to
significant bias. However, the joint selection of fixed and random effects has historically been limited
to lower-dimensional GLMMs, largely due to the use of criterion-based model selection strategies.
Here we present the R package glmmPen, one of the first to select fixed and random effects in higher
dimension using a penalized GLMM modeling framework. Model parameters are estimated using a
Monte Carlo Expectation Conditional Minimization (MCECM) algorithm, which leverages Stan and
RcppArmadillo for increased computational efficiency. Our package supports the Binomial, Gaussian,
and Poisson families and multiple penalty functions. In this manuscript we discuss the modeling
procedure, estimation scheme, and software implementation through application to a pancreatic
cancer subtyping study. Simulation results show our method has good performance in selecting both
the fixed and random effects in high dimensional GLMMs.

1 Introduction

Generalized linear mixed models (GLMMs) are utilized in many disciplines, including the social
sciences (Schmidt-Catran and Fairbrother, 2016), biomedical sciences (Fitzmaurice et al., 2012), public
health and epidemiology (Szyszkowicz, 2006; Kleinman et al., 2004; Dean and Nielsen, 2007), natu-
ral sciences including ecology and evolution (Bolker et al., 2009), and economics (Langford, 1994).
GLMMs are an extension of generalized linear models (GLMs) where the predictors within the model
can have “fixed” or “random” effects. Coefficients corresponding to fixed effects predictors can
be considered to describe population-level relationships between the predictors and the outcome.
Random effects predictors pertain to variables whose relationships with the outcome are presumed to
vary randomly across “groups” of observations within the data, leading to group-specific coefficient
estimates (Fitzmaurice et al., 2012). In practical applications, these “groups” may pertain to clusters
of samples, repeated measures within the same individual, or observations resulting from nested
designs. Multiple studies have shown that omitting important random effects can lead to bias in the
estimated variance of the fixed effects; conversely, including unnecessary random effects may lead to
computational difficulties (Thompson et al., 2017; Gurka et al., 2011; Bondell et al., 2010). As a result,
proper specification of fixed and random effects is a critical step in the application of GLMMs.

In many low dimensional settings, researchers may have a priori knowledge about which variables
are fixed or random. For instance, researchers may reasonably expect treatment effects in multi-site
clinical trials to vary by site (Feaster et al., 2011). However, in high dimensional settings, it is often not
known a priori which variables should be specified as fixed or random in the model. In such settings,
the feature space may also be sparse, with many variables unrelated to the outcome. Therefore,
variable selection approaches are employed to evaluate and select from a set of candidate models. R
packages such as lme4 (Bates et al., 2015), mcemGLM (Archila, 2020), and MCMCglmm (Hadfield,
2010) allow users to fit a pre-specified set of models, which may then be compared using model
selection criteria such as the profile conditional AIC (Donohue et al., 2011), the BIC-ICQ criterion
(Ibrahim et al., 2011), the hybrid Bayesian information criterion, BICh (Delattre et al., 2014), or other
criteria developed for mixed effects models. However, criterion-based all-subsets selection or direct
model comparison strategies are not feasible even in small dimensions, as with p predictors there are
22p possible combinations of fixed and random effects to be evaluated.

Packages such as glmnet (Friedman et al., 2010), ncvreg (Breheny and Huang, 2011), and grpreg
(Breheny and Huang, 2015) avoid this limitation for GLMs via coordinate-descent based penalized
likelihood methods for variable selection, and therefore scale much better with respect to p. Unfortu-
nately, none of these methods can account for random effects in their variable selection procedure.
Other packages such as glmmLasso (Groll, 2017) and glmmixedLASSO (Schelldorfer et al., 2014)
alternatively allow the inclusion of random effects in the model while performing variable selection,
but only allow for variable selection on the fixed effects. Prior work has shown that simultaneous
selection of fixed and random effects is desirable because improper specification of the random effects
can significantly affect the selection of the fixed effects, and vice versa (Bondell et al., 2010). In addition,
there may not be a priori knowledge of which variables have effects that vary randomly across groups.
Therefore, the specification of random effects may be difficult in practical applications, particularly as
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the dimension of the data grows.

To address these limitations in performing variable selection in high-dimensional GLMMs, we
present the glmmPen R package. This package allows for the simultaneous selection of fixed and
random effects predictors in higher dimensions through the use of penalized generalized linear mixed
models (pGLMMs). Similar to ncvreg and glmnet, this package focuses on variable selection for the
purpose of creating prediction models, and does not provide methods for statistical inference. The
package leverages Monte Carlo Expectation Conditional Minimization (MCECM) in combination
with several techniques to improve the computational efficiency of the algorithm. In the MCECM
E-step, glmmPen utilizes the Stan software implemented in the rstan package to efficiently sample
from the posterior distribution of the random effects, and a Majorization-Minimization coordinate
descent algorithm is utilized to update model parameters in the M-step. The glmmPen package
utilizes the fast looping capabilities within Rcpp and RcppArmadillo in order to recalculate large
matrices within intermediate computing steps without needing to store them, improving memory use.
The glmmPen package is also able to improve the speed of the overall variable selection procedure by
strategic coefficient initialization (see Section “Initialization and convergence”) and strategic restriction
of random effects (see Section “Tuning parameter selection strategy”).

The main estimation functions of the package are glmmPen and glmm, where the latter can be used
to fit traditional generalized linear mixed models without penalization. The user interface and output
of the glmmPen and glmm functions were designed to be very similar to those from the functions lmer
and glmer to facilitate ease of use. Specifically, glmmPen outputs a pglmmObj object which, like the
merMod object from lme4, can facilitate the application of common S3 method functions used by lme4
such as logLik, fixef, ranef, and others. In addition, multiple types of penalties and information
criteria for selecting optimal penalties are available in the package, and the package supports the
Binomial, Gaussian, and Poisson distributional families.

Our manuscript is organized as follows. We begin in Section 2 by reviewing the pGLMMs
modeling framework, first described in Rashid et al. (2020). Section 3 describes the MCECM algorithm
used by glmmPen to fit pGLMM models. Section 4 describes the variable selection procedure of
the package and the Bayesian information criterion (BIC) type selection criteria available for use.
Section 5 illustrates a practical application of the glmmPen R package using data from a recent
cancer subtyping study. Section 6 provides some simulation results. Finally, we provide concluding
comments in Section 7. The package is available from the Comprehensive R Archive Network (CRAN)
at https://cran.r-project.org/package=glmmPen. The replication of all code content, tables, and
figures presented in this paper can be found in the GitHub repository https://github.com/hheiling/
paper_glmmPen_RJournal. Supplementary results mentioned but not reported in this paper can also
be found in this GitHub repository.

2 Generalized linear mixed models

We review the notation and model formulation of our approach, first introduced in Rashid et al. (2020).
We consider the case where we want to analyze data from K independent groups of any kind. For
instance, we could be interested in analyzing data from K different studies, or longitudinal data
from K individuals. For each group k = 1, ..., K, there are nk observations for a total sample size of
N = ∑K

k=1 nk. For the kth group, let yk = (yk1, ..., yknk
)⊤ be the vector of nk independent responses,

let xki = (xki,1, ..., xki,p)
⊤ be the p-dimensional vector of predictors, and let Xk = (xk1, ..., xknk

)⊤.
Although the glmmPen package allows for different nk for the K groups, we will set {nk}K

k=1 = n
to simplify the notation within the equations presented in this paper. In GLMMs, we assume that
the conditional distribution of yk given Xk belongs to the exponential family and has the following
density:

f (yk|Xk, αk; θ) =
n

∏
i=1

c(yki) exp[τ−1{ykiηki − b(ηki)}], (1)

where c(yki) is a constant that only depends on yki, τ is the dispersion parameter, b(·) is a known link
function, and ηki is the linear predictor. The glmmPen algorithm currently allows for the Gaussian,
Binomial, and Poisson families with canonical links.

In the GLMM, the linear predictor has the form

ηki = x⊤ki β + z⊤ki Γαk, (2)

where β = (β1, ..., βp)⊤ is a p-dimensional vector for the fixed effects coefficients (including the inter-
cept), αk is a q-dimensional vector of unobservable random effects (including the random intercept), zki
is a q-dimensional subvector of xki, and Γ is a lower triangular matrix. In this notation, zki represents
the random effects predictors, i.e. the subset of the total predictors (xki) that have predictor effects that
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randomly vary across levels of the grouping variable.

In Rashid et al. (2020), the random effects vector αk is assumed to follow Nq(0, I) so that Γαk
follows N(0, ΓΓ⊤). In this way, the random component of the linear predictor has variance Var(Γαk) =
ΓΓ⊤.

To simplify the procedure of estimating Γ, we consider a vector γ containing all of the nonzero
elements of Γ such that γt is a t x 1 vector consisting of nonzero elements of the tth row of Γ and
γ = (γ⊤

1 , ..., γ⊤
q )⊤. We can then reparameterize the linear predictor (Chen and Dunson, 2003; Ibrahim

et al., 2011) to

ηki = x⊤ki β + z⊤ki Γαk =
(

x⊤ki (αk ⊗ zki)
⊤ Jq

)(
β
γ

)
(3)

where Jq is a matrix that transforms γ to vec(Γ) such that vec(Γ) = Jqγ. Jq is of dimension q2 × q(q +
1)/2 when the random effects covariance matrix ΓΓ⊤ is unstructured; alternatively, Jq is of dimension
q2 × q when the random effects covariance matrix has an independence structure (i.e., diagonal). The
vector of parameters θ = (β⊤, γ⊤, τ)⊤ are the main parameters of interest. We denote the true value
of θ as θ∗ = (β∗⊤, γ∗⊤, τ∗)⊤ = argminθEθ[−ℓ(θ)] where ℓ(θ) is the observed marginal log-likelihood
across all K groups such that ℓ(θ) = ∑K

k=1 ℓk(θ), ℓk(θ) = (1/n) log
∫

f (yk|Xk, αk; θ)ϕ(αk)dαk.

Let us consider the high dimensional case where we want to select the true nonzero fixed effects
and true nonzero random effects. In other words, we aim to identify the set

S = S1 ∪ S2 = {j : β∗j ̸= 0} ∪ {t : ||γ∗
t ||2 ̸= 0},

where the set S1 represents the selection of true nonzero fixed effects and the set S2 represents the
selection of true nonzero random effects. When γt = 0, this sets row t of Γ entirely equal to 0,
indicating that effect of covariate t is fixed across the K groups.

We aim to solve the following penalized likelihood:

θ̂ = argminθ − ℓ(θ) + λ0

p

∑
j=1

ρ0

(
β j

)
+ λ1

q

∑
t=1

ρ1 (||γt||2) , (4)

where ℓ(θ) is the observed marginal log-likelihood for all K groups defined earlier, ρ0(t) and ρ1(t)
are general folded-concave penalty functions, and λ0 and λ1 are positive tuning parameters. In
the glmmPen package, the ρ0(t) penalty function options include the least absolute shrinkage and
selection operator (LASSO) L1 penalty, the minimax concave penalty (MCP), and the smoothly clipped
absolute deviation (SCAD) penalty (Friedman et al., 2010; Breheny and Huang, 2011). For the ρ1(t)
penalty, we treat the elements of γt as a group and penalize them in a groupwise manner using the
group LASSO, group MCP, or group SCAD penalties presented by Breheny and Huang (2015). These
groups of γt are then estimated to be either all zero or all nonzero. In this way, we select covariates to
have varying effects (γ̂t ̸= 0) or fixed effects (γ̂t = 0) across the K groups.

Similar to other variable selection packages such as package ncvreg (Breheny and Huang, 2011), in
glmmPen we standardize the fixed effects covariates matrix X = (X⊤

1 , ..., X⊤
K )⊤ such that

∑K
k=1 ∑nk

i=1 xki,j = 0 and N−1 ∑K
k=1 ∑nk

i=1 x2
ki,j = 1 for j = 1, ..., p; this process is performed automati-

cally within the algorithm. Although the package grpreg (Breheny and Huang, 2015) orthogonalizes
grouped effects, we have found through simulations during early package testing that first standardiz-
ing the fixed effects and then using subsets of these standardized fixed effects for the random effects
(recall: zki is a q-dimensional subvector of xki) is sufficient. During the selection procedure, the fixed
effects intercept and the variance of the random effects intercept remain unpenalized.

3 MCECM algorithm

We solve Equation 4 for a specific (λ0, λ1) penalty parameter combination using a Monte Carlo Expec-
tation Conditional Minimization (MCECM) algorithm (Garcia et al., 2010). The MCECM algorithm
described in this section uses many of the steps and assumptions described in Rashid et al. (2020),
but here we provide further practical details about the E-step, M-step, initialization, and conver-
gence. Additionally, the implementation outlined in this paper has several improvements to the
implementation used in Rashid et al. (2020). In glmmPen, the E-step allows for several possible
sampling schemes, including the fast and efficient No-U-Turn Hamiltonian Monte Carlo sampling
procedure (NUTS HMC) from the Stan software (Carpenter et al., 2017; Hoffman and Gelman, 2014).
The glmmPen package was also able to reduce the required memory usage of the MCECM algorithm.
In the M-step, we utilized the fast looping capability of packages Rcpp and RcppArmadillo to allow
for fast recalculation of large matrices (see Step 3 of the M-step presented in Algorithm 1) and avoid
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their storage, improving model scalability.

During the MCECM algorithm, we aim to evaluate (E-step) and minimize (M-step) the following
penalized Q-function in the sth iteration of the algorithm:

Qλ(θ|θ(s)) =
K

∑
k=1

E
{
− log( f (yk, Xk, αk; θ|Do; θ(s)))

}
+ λ0

p

∑
j=1

ρ0

(
β j

)
+ λ1

q

∑
t=1

ρ1 (||γt||2)

= Q1(θ|θ(s)) + Q2(θ
(s)) + λ0

p

∑
j=1

ρ0

(
β j

)
+ λ1

q

∑
t=1

ρ1 (||γt||2) ,

(5)

where (yk, Xk, αk) gives the complete data for group k, Dk,o = (yk, Xk) gives the observed data for
group k, and Do represents the entirety of the observed data. In other words, we aim to evaluate and
minimize the penalized expectation of the negative joint log-likelihood with respect to the observed
data. From Rashid et al. (2020), the expectation can be written as the sum of the following terms:

Q1(θ|θ(s)) = −
K

∑
k=1

∫
log[ f (yk|Xk, αk; θ)]ϕ(αk|Dk,o; θ(s))dαk, (6)

Q2(θ
(s)) = −

K

∑
k=1

∫
log[ϕ(αk)]ϕ(αk|Dk,o; θ(s))dαk (7)

The Q1(θ|θ(s)) function expresses the conditional model of the observed data given the latent (random)
variables and integrates over the latent variables. Using the Q1(θ|θ(s)) function, we aim to derive
the fixed and random effect coefficient estimates during the M-step of the algorithm. During the
E-step, we aim to approximate the integral in the Q1(θ|θ(s)) function by incorporating samples from
the posterior distribution of the latent variables.

3.1 Monte Carlo E-step

The integrals in the Q-function do not have closed forms when f (yk|Xk, α
(s,m)
k ; θ) is assumed to be

non-Gaussian, and become difficult to approximate as q (the number of random effect predictors)
increases. Consequently, we approximate these integrals using a Markov chain Monte Carlo (MCMC)
sample of size M from the posterior density ϕ(αk|Dk,o; θ(s)). The glmmPen package can draw samples
from this posterior using one of several techniques: the No-U-Turn Hamiltonian Monte Carlo sampling
procedure (NUTS HMC) implemented by the Stan software, which glmmPen calls using the rstan
package (Carpenter et al. (2017); default, and strongly recommended for its speed and efficiency);
Metropolis-within-Gibbs with an adaptive random walk sampler (Roberts and Rosenthal, 2009); and
Metropolis-within-Gibbs with an independence sampler (Givens and Hoeting, 2012). Each sampler

type uses a standard normal candidate distribution. Let α
(s,m)
k be the mth simulated value, m = 1, ..., M,

at the sth iteration of the algorithm for group k. The integral in Equation 6 can then be approximated as

Q1(θ|θ(s)) ≈ − 1
M

M

∑
m=1

K

∑
k=1

log f (yk|Xk, α
(s,m)
k ; θ).

Although the optimal number of MCMC samples M(s) in the E-step at EM iteration s is not well
defined, the general consensus is that a smaller sample size of the posterior is suitable for the start of
the algorithm but larger sample sizes are needed later in the algorithm (Booth and Hobert, 1999). We
set the default number of MCMC samples in the first iteration of the MCECM algorithm M(1) = 250
when q ≤ 10, and M(1) = 100 otherwise (we decrease the initial sampling size when the number of
random effects predictors is large in order to help speed up the algorithm). Then, in a manner similar to
the mcemGLM package (Archila, 2020), the MCMC sample size is increased by a multiplicative factor
v at each step of the algorithm such that M(s) = v × M(s−1) until either the value of M(s) reaches its
maximum allowed value or the EM algorithm converges. In glmmPen, the default maximum allowed
value is dependent on the the number of random effects in the model, q (see the documentation of
optimControl for more details). For the first 15 iterations of the EM algorithm, the value of v is set to
1.1. For the remaining steps of the algorithm, v is set to 1.2.
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3.2 M-step

In the M-step of the algorithm, we aim to minimize

Q1,λ(θ|θ(s)) = Q1(θ|θ(s)) + λ0

p

∑
j=1

ρ0

(
β j

)
+ λ1

q

∑
t=1

ρ1 (||γt||2) (8)

with respect to θ = (β⊤, γ⊤, τ)⊤. The minimization of Equation 8 with respect to β and γ is performed
using a Majorization-Minimization approach. For the general exponential family, Rashid et al. (2020)
suggested minimizing with respect to τ using the standard optimization algorithm Newton-Raphson.
In glmmPen, the only family implemented with a dispersion parameter is the Gaussian family, and
the variance σ2 can be estimated directly from a derivation of the Q function conditional on the most
recent updates of β(s) and γ(s):

σ2 =
1

M × N

M

∑
m=1

K

∑
k=1

nk

∑
i=1

(yki − η
(s,m)
ki )2, (9)

where η
(s,m)
ki is the linear predictor ηki evaluated with β(s), γ(s), and sample α

(s,m)
k .

Let s represent the iteration of the MCECM algorithm, and h represent the iteration within a
particular M-step of the MCECM algorithm. The M-step of the sth iteration of the MCECM algorithm
proceeds as in Algorithm 1.

Algorithm 1 M-step of the s-th iteration of the MCECM algorithm

1. Coefficient parameter estimates from the previous M-step, θ(s−1), are used to initialize
the coefficient parameters of the current M-step at M-step iteration h = 0, denoted θ(s,0).

2. Conditional on γ(s,h−1) and τ(s−1), each β
(s,h)
j for j = {1, ..., p} is given a single update

using the Majorization-Minimization algorithm specified by Breheny and Huang (2015).

3. For each group k in k = {1, ..., K}, the augmented matrix z̃ki = (α̃
(s)
k ⊗ zki)Jq is created

for i = 1, ..., nk where α̃
(s)
k = ((α

(s,1)
k )⊤, ..., (α(s,M)

k )⊤)⊤. This augmented matrix is used in
the random effect portion of the linear predictor specified in Equation 3. The dimension of
z̃ki is M× q(q+ 1)/2 for an unstructured covariance matrix and M× q for an independent
covariance matrix. This augmented matrix is used to calculate Equation 2.9 in Breheny
and Huang (2015).

4. Conditional on the τ(s−1) and the recently updated β(s,h), each γ
(s,h)
t for t = {1, ..., q}

is updated using the Majorization-Minimzation coordinate descent grouped variable
selection algorithm specified by Breheny and Huang (2015), except the residuals are not
updated after every γ

(s,h)
t coefficient update.

5. Steps 2 through 4 are repeated until the M-step convergence criteria specified in
Equation 10 are reached or until the M-step reaches its maximum number of iterations:

max
{

max
j

|β(s,h+1)
j − β

(s,h)
j |, max

t,l
|γ(s,h+1)

tl − γ
(s,h)
tl |

}
< δ, (10)

where γtl is an individual element of γt. The default value of δ is 0.0005.

6. Conditioning on the newly updated β(s) and b(s), τ(s) is updated (generically, using
the Newton-Raphson algorithm; for Gaussian family, using Equation 9).

Algorithm 1 recomputes the augmented matrices z̃ki for k = 1, ..., K and i = 1, ..., nk in step 3 of
every M-step iteration h for several reasons. These repeat calculations prevent the M-step from having
to store the augmented matrix Z̃ = (Z̃⊤

1 , ..., Z̃⊤
K )⊤ where Z̃k = (z̃⊤k1, ..., z̃⊤knk

)⊤. This full augmented
matrix is of dimension (M× N)× q(q+ 1)/2 or (M× N)× q depending on whether the random effect
covariance matrix is unstructured or independent, respectively. As the MCMC sample size increases
throughout the MCECM algorithm and as q increases, saving this Z̃ becomes more and more memory
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prohibitive even when utilizing large matrix implementation tools such as the package bigmemory
(Kane et al., 2013). During testing, we found that recomputing the z̃ki matrices during each M-step
iteration utilizing Rcpp (Eddelbuettel and François, 2011) and RcppArmadillo (Eddelbuettel and
Sanderson, 2014) significantly reduced the time and memory required to compute each M-step.

In step 4 of the M-step, the residuals are not updated after every update to the random effects

coefficients γ
(s,h)
t for t = 1, ..., q in order to speed up computation. Otherwise, this would require

re-calculation of the augmented matrix specified in step 3 for each of the q random effects within each
M-step iteration. When q is large, this makes the M-step prohibitively time-consuming. Based on early
package testing, simplifying step 4 with no residual updates speeds up the computation time in high
dimensional settings and was found to have negligible impact on estimation accuracy.

The full MCECM algorithm then proceeds in Algorithm 2.

Algorithm 2 Full MCECM algorithm for single (λ0, λ1) penalty combination

1. Fixed and random effects β(0) and γ(0) are initialized as discussed in Section “Initializa-
tion and convergence”.

2. E-step: In each E-step for EM iteration s, a burn-in sample from the posterior distribution
of the random effects is run and discarded. A sample of size M(s) from the posterior is
then drawn and retained for the M-step (see Section “Monte Carlo E-step” for details on
default burn-in sample size, default M(s), and other E-step details).

3. M-step: Parameter estimates β(s), γ(s), and τ(s) are then updated as described in
Algorithm 1.

4. Steps 2 and 3 are repeated until the average Euclidean distance between the vector
containing the current coefficients β(s) and γ(s) and the vector containing the coefficients
from t EM iterations prior (default t = 2) is less than ϵ (default ϵ = 0.0015) for at least two
consecutive EM iterations or until the maximum number of EM iterations is reached (see
Section “Initialization and convergence” for additional details).

5. Using the estimates of β, γ, and τ at EM convergence, a final sample from the posterior
distribution of the random effects is drawn for use in the calculation of the marginal
log-likelihood as well as for diagnostics of the MCMC chain. The marginal log-likelihood
is used for model selection and is discussed in detail in Section 2.4.

3.3 Initialization and convergence

The initial values of the fixed effects β(0) and the Cholesky decomposition of the random effects
covariance matrix γ(0) for MCECM iteration s = 0 are chosen in one of two ways. We discuss first
the initialization procedure used when the package glmmPen is used to fit a single model (glmm
function) or the first model in the sequence of models fit for variable selection (glmmPen function).
In this scenario, the fixed effects β(0) are initialized by fitting a ‘naive’ model using the coordinate
descent techniques of Breheny and Huang (2011) assuming no random effects, and the random effects
covariance matrix is initialized as a diagonal matrix with positive variance. This approach is similar to
the mcemGLM package.

By default, this starting variance is initialized in an automated fashion. First, a GLMM composed
of only a fixed and random intercept is fit using the lme4 package. The random intercept variance
from this model is then multiplied by 2, and this value is set as the starting values of the diagonal
of the random effects covariance matrix. We use this approach so that the starting variance of the
random effects is sufficiently large, which helps improve the stability of the algorithm (Misztal, 2008).

The MCMC chain used in the E-step of the algorithm, which approximately samples from the
posterior density ϕ(αk|Dk,o; θ(s)) for groups k = {1, ..., K}, is initialized in iteration s = 1 with draws
from the standard normal distribution. For all following iterations s > 1, the MCMC chain is initialized
with the last draw from the previous EM iteration s − 1.

When the algorithm performs variable selection using the glmmPen function, the model pertaining
to the first tuning parameter combination evaluated is initialized using approach described above. For
all subsequent tuning parameter combinations evaluated in the sequence, the fixed effects, random
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effects covariance matrix, and random effects MCMC chain are initialized using results from the
previous tuning parameter fit. More details about initialization for variable selection is discussed in
Section “Tuning parameter selection”.

The EM algorithm runs until is the algorithm converges, defined as meeting the condition given in
Equation 11 at least 2 consecutive times (default), or until the maximum number of EM iterations is
reached:

||(β(s)⊤, γ(s)⊤)⊤ − (β(s−t)⊤, γ(s−t)⊤)⊤||22/cs−t < ϵ (11)

where the superscript (s − t) indicates the EM iteration t iterations prior, ||.||22 represents the L2 norm,
and cs−t equals the total number of non-zero (β⊤, γ⊤)⊤ coefficients in iteration (s − t). In other
words, the algorithm computes the average Euclidean distance between the current coefficient vector
(β⊤, γ⊤)⊤ and the coefficient vector from t EM iterations prior (default t = 2) and compares it with ϵ,
which has a default value of 0.0015.

This MCECM algorithm is able to handle much larger dimensions of p fixed effect predictors and q
random effect predictors relative to prior methods for simultaneous fixed and random effects variable
selection (Bondell et al., 2010; Ibrahim et al., 2011). When the number of random effect predictors is
greater than or equal to 10, we recommend approximating the random effect covariance matrix ΓΓ⊤

as a diagonal matrix. In the mixed model setting, Fan and Li (2012) demonstrated both theoretical
and empirical advantages to estimating the random effects covariance matrix in this manner as the
number of random effect predictors q grows. Empirically, they found that this approximation had a
relatively low impact on the overall bias of the coefficients and resulted in a relatively large reduction
of accumulated estimation error since many fewer covariance parameters needed to be estimated. This
simplification also has the advantage of enabling the package to have greater computational efficiency
when fitting higher-dimensional models. The above-mentioned recommendation to switch from an
unstructured to an independent random effect covariance matrix at the 10 random effect predictor
mark is an ad hoc recommendation determined by our experience creating and testing this package.

The MCECM algorithm outlined in Algorithm 2 describes how the glmmPen package estimates
the model parameters for a single set of penalty parameters (λ0, λ1). Section “Tuning parameter
selection” discusses how the package chooses optimal set of tuning parameters during the model
selection procedure.

4 Tuning parameter selection

This section provides details on how the glmmPen function selects the set of optimal tuning parameters
from a prespecific grid of values. Section “Software” provides further details on how to use both the
glmmPen and glmm functions, where the latter function allows the user to fit a single model without
performing variable selection on the fixed and random effects.

For glmmPen, we generally recommend that the user specify the ‘full model’, i.e., specify the set of
candidate random effects predictors to be equal to the set of candidate fixed effects predictors, and let
the algorithm select the best fixed and random effects using the procedure outlined in this section.
However, if the user has some prior knowledge about the form of the random effects, they can restrict
the random effects considered to an appropriate subset. As discussed in the previous section, the
package requires that the random effects be a subset of the fixed effects.

4.1 Penalty sequence specification

The glmmPen package calculates default sequences of penalty values for λ0 (penalizing the fixed
effects β) and λ1 (penalizing the random effects γ), but allows users to enter their own penalty
sequences if desired. We define the penalty parameter sequences for the fixed and random effects
as λ0 = (λ0,1, ..., λ0,ω0 ) and λ1 = (λ1,1, ..., λ1,ω1 ), respectively, where ω0 and ω1 are the length of the
fixed and random effect penalty sequences. These sequences are ordered from the minimum penalty
(λ0,1 = λ0,min and λ1,1 = λ1,min) to the maximum penalty (λ0,ω0 = λ0,max and λ1,ω1 = λ1,max). By
default, these sequences are calculated in a similar manner to the approach used by the package
ncvreg (Breheny and Huang, 2011). The maximum penalty parameter λmax is calculated using the
same procedure as ncvreg; this value is assumed to penalize all fixed and random effects coefficients
to 0. We then set the sequence of penalty parameters λ0 = λ1 such that λ0,max = λ1,max = λmax
and λ0,min = λ1,min = λmin, where the minimum penalty parameter λmin is a small portion of the
λmax. More details about these default sequences are given in Section “Software”. In Section “Tuning
parameter selection strategy”, we consider a generic case where the λ0 and λ1 sequences do not need
to be equal.
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4.2 Tuning parameter selection strategy

By default, the algorithm runs a computationally efficient two-stage approach to pick the optimal set
of tuning parameters. In the first stage, the algorithm fits a sequence of models where the fixed effect
penalty is kept constant at the minimum value of λ0, λ0,min, and the random effects penalty proceeds
from the minimum value of λ1, λ1,min, to the maximum value λ1,max. The optimal tuning parameter
from this first stage is then identified using Bayesian information criterion (BIC) type selection criteria,
described in more detail later in this section. This first stage identifies the optimal random effect
penalty value, λ1,opt. In the second stage, the algorithm fits a sequence of models where the random
effects penalty is kept fixed at λ1,opt and the fixed effects penalty λ0 proceeds from λ0,min to λ0,max.
The overall best model is chosen from the models in the second stage. In both stages, the results from
each model are used to initialize the coefficients in the subsequent model in the sequence.

Unlike other packages that perform variable selection, such as ncvreg and grpreg, we run the
λ0 and λ1 sequences from their minimum value to their maximum value and not the traditional
progression from their maximum value to their minimum value. In this mixed model setting, we
have found (through simulations conducted during early package testing) that this approach provides
better initialization of subsequent models in the tuning parameter sequence, giving an overall better
performance to the algorithm and improving algorithm speed. This progression of penalty sequences
also speeds up the overall variable selection procedure by restricting the random effects considered
during later penalty combinations within the variable selection procedure. Within stage one, if a
previous tuning parameter in the grid penalized out a set of random effects from the model, the
following model in the tuning parameter sequence will automatically ignore these random effects.
Within stage two, the random effects considered are restricted to the non-zero random effects from the
best model in stage one.

In the original MCECM algorithm implementation given in Rashid et al. (2020), the authors
searched for the best model by performing a ‘full grid search’ and evaluating all possible combinations
of λ0 and λ1. (We sometimes refer to the two-stage approach as the ‘abbreviated grid search’). While
the glmmPen package can perform this full grid search, we strongly recommend the two-stage
abbreviated grid search. Compared with the full grid search, the two-stage grid search significantly
reduces the required time to complete the algorithm, particularly when the number of random effects
predictors is large. Furthermore, we have found that the two-stage grid search works very well in
practice (see Section “Simulations” for performance results).

If users wish to perform a full grid search, the path of solutions is initialized by fitting a model
using the minimum penalty for both the fixed and random effects (λ0,1 = λ0,min, λ1,1 = λ1,min). The
algorithm then proceeds to estimate models over the full grid of λ0 and λ1. For each value of λ1,h ∈ λ1
that penalizes the random effects, the fixed effects penalty parameter sequence proceeds from the
minimum value λ0,min to the maximum value λ0,max while keeping λ1,h fixed. Each model is initialized
using the result from the model fit with the previous tuning parameter combination in the sequence.
The algorithm then updates the penalty parameter to the next λ1,h+1 and repeats the process. The
model with the penalty parameter combination (λ0,min,λ1,h+1) is initialized using the model from the
previous (λ0,min, λ1,h) penalty parameter combination.

4.3 Optimal tuning parameter selection

Once models have been fit pertaining to all tuning parameter combinations within the first and second
stages of the tuning parameter search strategy (or over the full tuning parameter grid search), the
glmmPen package chooses the best model from one of several BIC-type selection criteria options.
For simplification of notation, consider the generic penalty parameter combination λ = (λ0, λ1) that
penalizes the fixed and random effects, respectively. By default, the package uses the BIC-ICQ criterion
(Ibrahim et al., 2011), where the abbreviation ICQ stands for “Information Criterion based on the
Q-function”. This BIC-ICQ criteria is expressed below:

BICq(θλ) = 2{Q1(θλ|α0) + Q2(α0)}+ dλ log(N)

≈
{
− 2

M

M

∑
m=1

K

∑
k=1

[
log f (yk|Xk, α

(m)
0,k ; θλ) + log ϕ(α

(m)
0,k )

]}
+ dλ log(N),

(12)

where θλ are the coefficients of the model fit with the penalty λ = (λ0, λ1), α0 are the posterior samples
from a “minimal penalty model”—the model with either no penalty (when the number of random

effects predictors is less than 5) or a minimum penalty used on the fixed and random effects—and α
(m)
0,k

is the mth posterior sample for group k from such a minimal penalty model, Q1 and Q2 were defined
in Section “MCECM algorithm”, dλ is the number of nonzero coefficients for the model (all nonzero β
plus all nonzero γ), and N is the total number of observations in the data (Nobs).
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The package can also calculate the traditional BIC criterion as specified below:

BIC(θλ) = −2ℓ(θλ) + dλ log(N),

where θλ are the coefficients of the penalization model, ℓ(θλ) is the marginal log-likelihood for the
model, dλ is the number of nonzero coefficients for the model, and N can be either the total number of
observations in the data (Nobs) or the total number of independent observations (i.e., number of levels
within the grouping factor, Ngrps) in the data. The marginal log-likelihood is as follows:

ℓ(θ) =
K

∑
k=1

ℓk(θ) =
K

∑
k=1

1
nk

log
∫

f (yk|Xk, αk; θ)ϕ(αk)dαk. (13)

There is a lack of consensus regarding the use of log(Nobs) versus log(Ngrps) in the BIC penalty
term for mixed models. For instance, the log(Nobs) penalty is used in the R package nlme (Pinheiro
et al., 2021), and the log(Ngrp) penalty is used in SAS proc NLMIXED (SAS Institute Inc., 2008; Delattre
et al., 2014). In practice, the performance of the different versions of the BIC penalty term may depend
on the true underlying model (Lorah and Womack, 2019; Delattre et al., 2014), with Delattre et al. (2014)
observing that the log(Nobs) penalty performed better when the true model had very few random
components, and the log(Ngrp) penalty performed better when the true model had a large number of
random components. Both Delattre et al. (2014) and Lorah and Womack (2019) suggest using some
combination of these sample size definitions.

To this point, the package also allows the best model to be selected using a ‘hybrid’ BICh selection
criteria developed by Delattre et al. (2014):

BICh(θλ) = −2ℓ(θλ) + dλ,β log(Nobs) + dλ,γ log(Ngrps), (14)

where dλ,β and dλ,γ are the number of nonzero fixed and random effect coefficients, respectively.

In simulations not shown here (see content in GitHub repository https://github.com/hheiling/
paper_glmmPen_RJournal for details), we found that the BIC-ICQ gave the best performance in choos-
ing the correct set of fixed and random effects. The BIC and BICh methods tended to underestimate
the number of true fixed effects compared to BIC-ICQ in the simulations we considered. However, in
order to calculate the BIC-ICQ, a minimal penalty model needs to be fit using a small penalty (i.e., λmin)
on the fixed and random effects. Posterior samples from this minimal penalty model are then used
to calculate the BIC-ICQ value for each model fit in the variable selection procedure. Depending
on the size of the full model with all fixed and random effects predictors, this calculation can be
time-intensive since fitting the model with a small penalty will keep many fixed and random effects
predictors in the model.

Alternatively, the calculation of the BIC and BICh criteria require a calculation of the marginal
log-likelihood ℓ(θ) for each model. Since the integrals within ℓ(θ) are intractable, we estimate the
marginal log-likelihood using the corrected arithmetic mean estimator (CAME) described by Pajor
(2017). We have found this CAME estimator to be relatively quick and easy to calculate, as well as
consistent with the marginal log-likelihood estimate calculated by the package lme4 (Bates et al., 2015)
for a range of conditions (see content in GitHub repository https://github.com/hheiling/paper_
glmmPen_RJournal for details).

To calculate the CAME, we focus on a single group k and define a set Ak ⊆ Θ as a subset of the
parameter space of the random effects for group k, where P(Ak) and P(Ak|yk, Xk; θ) are nonzero
probabilities. We first start with the knowledge

P(Ak|yk, Xk; θ) =
∫

Ak

ϕ(αk|yk, Xk; θ)dαk

=
∫

Θ

1
f (yk|Xk; θ)

f (yk|Xk, αk; θ)ϕ(αk)I(αk ∈ Ak)dαk,
(15)

where I(.) is an indicator function, f (yk|Xk; θ) =
∫

f (yk|Xk, αk; θ)ϕ(αk)dαk is the marginal likelihood
for group k, and all other terms are described in Section “Generalized linear mixed models”. The
above relationship allows us to obtain the result:

f (yk|Xk; θ) =
1

P(Ak|yk, Xk; θ)

∫
Θ

f (yk|Xk, αk; θ)ϕ(αk)I(αk ∈ Ak)dαk

=
1

P(Ak|yk, Xk; θ)

∫
Θ

f (yk|Xk, αk; θ)ϕ(αk)I(αk ∈ Ak)s(αk)dαk
s(αk)

,
(16)

where s(.) is an importance sampling function.

Suppose at the end of the MCECM algorithm we obtain M samples from the posterior distribution
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of the random effects for group k, α̃k = ((α
(1)
k )⊤, ..., (α(M)

k )⊤)⊤. Let us set Ak = α̃k; this reduces
P(Ak|yk, Xk; θ) to 1. Let us also set the importance sampling function s(.) to be a multivariate normal

distribution with a mean vector equal to the mean of the posterior samples 1
M ∑M

m=1 α
(m)
k and a

covariance matrix equal to the covariance matrix of a thinned subset of the posterior samples (to

obtain a pseudo-independent set of samples). If we draw M⋆ samples α⋆
k = ((α

⋆(1)
k )⊤, ..., (α⋆(M⋆)

k )⊤)⊤

from this importance sampling function, then Equation 16 indicates that we can estimate the marginal
likelihood for group k as

f (yk|Xk; θ) ≈ 1
M⋆

M⋆

∑
m=1

f (yk|Xk, α⋆m
k ; θ)ϕ(α⋆m

k )I(α⋆m
k ∈ Ak)

s(α⋆m
k )

. (17)

We repeat the estimation in Equation 17 for all K groups in order to calculate the full desired
marginal log-likelihood ℓ(θ). This final marginal log-likelihood is then used in the previously men-
tioned BIC and BICh calculations for each fitted model across the λ0 and λ1 grid search. We refer to
this marginal log-likelihood as the Pajor log-likelihood in later sections of the paper.

5 Software

The main function of the glmmPen package is glmmPen, which is used to perform fixed and random
effects variable selection after the specification of a full model with all candidate fixed and random
effects. The glmmPen package is also capable of fitting a GLMM with pre-specified fixed and random
effects (under no penalization) using the function glmm. Here we will use the basal dataset (Rashid
et al., 2020) to illustrate the use of the glmmPen function in practical applications.

5.1 Data example

The basal dataset is composed of four studies that contain gene expression data and tumor subtype
information from patients spanning three cancer types (Moffitt et al., 2015; Weinstein et al., 2013). Two
of these datasets contain gene expression data for subjects with Pancreatic Ductal Adenocarcinoma
(PDAC), one dataset contains data for subjects with Breast Cancer, and the last contains data for
subjects with Bladder Cancer. While each cancer type has separate sets of defined subtypes, all share a
common subtype defined as “basal-like”, which was shown to be similar in character across cancer
types and have an impact on survival (Moffitt et al., 2015). The goal of the original study was to select
features that are relevant in predicting the basal-like subtype. To increase the sample size, it was
proposed that samples were merged from each study into one large dataset.

Multiple approaches have been proposed to integrate gene expression data from multiple studies
to improve the accuracy of downstream prediction models (Riester et al., 2014; Ma et al., 2018; Patil
and Parmigiani, 2018). The pGLMM methodology from Rashid et al. (2020) was originally motivated
by the need to select genes that are predictive of cancer outcomes (e.g. cancer subtype), where the
effects of genes may vary randomly across studies. It was shown that accounting for this heterogeneity
improved the performance of gene selection after data merging.

Using glmmPen package, we fit a pGLMM that can accommodate a large number of features in
the model and account the hetereogeneity in gene effects across studies. It is unclear a priori which
features truly have a non-zero association with the outcome and which features truly have variation in
their effects across studies. Therefore, we will use the glmmPen function to simultaneously select fixed
and random effects from a set of candidate features. Rashid et al. (2020) integrated gene expression
data from each study using a binary rank transformation technique (Top Scoring Pairs or TSPs),
which we use as our covariates in this example. To illustrate the concept of TSPs, let gki,A and gki,B
be the raw expression of genes A and B in subject i of group k. For each gene pair (gki,A, gki,B), the
TSP is the indicator I(gki,A > gki,B) which specifies which gene of the two has higher expression in
the subject. We denote a TSP predictor as “GeneA_GeneB”. A total of 50 binary TSP covariates are
provided in the basal dataset available in the package. For illustration purposes, we randomly select
10 TSP covariates. Our goal is to identify TSPs that are associated with patient tumor subtype while
accounting for study-level heterogeneity in gene effects. In each study subtype is defined a binary
variable with two levels: basal-like or non-basal-like. Therefore, for this example, our example dataset
consists of our matrix of covariates X, our subtype vector y (a factor with two levels), and our study
membership vector (a factor with four levels).
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Summary information about the data is included below.

> library("glmmPen")
> data("basal")
> y = basal$y
> set.seed(1618)
> idx = sample(1:50, size = 10, replace = FALSE)
> idx = idx[order(idx)]
> X = basal$X[,idx]
> colnames(X)

[1] "GPR160_CD109" "SPDEF_MFI2" "CHST6_CAPN9" "SLC40A1_CDH3"
[5] "PLEK2_HSD17B2" "GPX2_ERO1L" "CYP3A5_B3GNT5" "LY6D_ATP2C2"
[9] "MYO1A_FGFBP1" "CTSE_COL17A1"

> group = basal$group
> levels(group)

[1] "UNC_PDAC" "TCGA_PDAC" "TCGA_Bladder" "UNC_Breast"

We will fit a penalized random effects logistic regression model using the glmmPen function to
model patient subtype, as it is unclear which of the 10 TSPs should be included in the model, and
which may also randomly vary across studies in their effects. We perform variable selection using the
following code:

> set.seed(1618)
> fitB = glmmPen(formula = y ~ X + (X | group),
+ family = "binomial", covar = "independent",
+ tuning_options = selectControl(BIC_option = "BICq",
+ pre_screen = TRUE,
+ search = "abbrev"),
+ penalty = "MCP", BICq_posterior = "Basal_Posterior_Draws")

Here we utilize the pre-screening and abbreviated grid search options, as well as select the optimal
tuning parameter using the BIC-ICQ model selection criteria (denoted “BICq”). Further details
about the pre-screening procedure is described in the Section “selectControl arugments” and the
consequences of this pre-screening procedure are illustrated through simulations and discussed in
Section “Pre-screening performance”. If we were instead interested in fitting a GLMM utilizing all 10
TSPs as fixed effects and assuming a random effect for each (without penalization), we could run the
following code:

> set.seed(1618)
> fit_glmm = glmm(formula = y ~ X + (X | group),
+ family = "binomial", covar = "independent",
+ optim_options = optimControl())

The set of random effects specified does not necessarily have to be equal to the set of fixed effects
as in the above example. Because of the number of random effects that we are considering in the
model, we approximate the random effects covariance matrix as an independent, or diagonal, matrix,
which we specify by using the argument option covar = "independent". Our reasoning for such an
approximation, as well as a discussion of the pros and cons of such an approximation, are given in
Section “Initialization and convergence.”

In the following subsections, we will discuss in detail the glmmPen (and glmm) arguments and
relevant output. We will also examine the output from the variable selection procedure given by the
glmmPen example.

5.2 Full model specification

The syntax for specifying the full model formula (the model with all relevant fixed and random effects
predictors) using the formula argument closely follows the formula syntax of the lme4 package (Bates
et al., 2015). The formula follows the form response ~ fix_expr + (rand_expr | factor) where the
fix_expr specifies the variables to use as the fixed effects, the rand_expr specifies the variables to use
as the random effects, and the factor specifies the grouping factor of the observations. When a data
frame is given for the data argument, the fixed and random effects can be specified using the column
names of the data frame. For higher-dimensional data, users may find it easier to directly specify the
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matrix containing the covariates of interest and the response vector, such as the y ~ X + (X | group)
formula given in the earlier glmmPen fit example. No specification of the data argument is needed in
this case. Similar to ncvreg, an intercept is always assumed and required, and therefore an intercept
column need not be specified in X or explicitly in the model formula; glmmPen will output an error if
the input predictor matrix X contains an intercept column.

Regarding the specification of random effects in formula, the glmmPen package currently does
not allow for multiple grouping factors. In addition, the random effects must be a subset of the fixed
effects, and a random intercept is always assumed and required in the model. Lastly, the structure of
the random effects covariance matrix is determined by the covar argument, which may take on the
value of ‘unstructured’ or ‘independent’ (diagonal). By default, the covar parameter is set to NULL.
This automatically selects the ‘independent’ option if the number of random effect predictors is 10
or more and selects ‘unstructured’ otherwise. For a large number of random effect predictors, it is
strongly recommend that the covariance structure to ‘independent’ in order to improve computational
efficiency.

The glmmPen algorithm allows the Binomial, Gaussian, and Poisson families with canonical links.

5.3 Penalization and optimal tuning parameter selection

In glmm, the default is to fit the single model with user-specified fixed and random effects with no
penalization. Although it is generally not recommended, users have the option to specify a single
penalty parameter combination using
tuning_options = lambdaControl(lambda0,lambda1). In glmmPen, the arguments penalty,
gamma_penalty, alpha, fixef_noPen, and tuning_options all play a part in the variable selection
process. The following subsections discuss these argument options in detail and how the arguments
impact variable selection.

Penalty, gamma penalty, alpha parameters

To perform variable selection, glmmPen allows the fixed effect coefficients to be penalized using the
minimax concave penalty (MCP, the default), the smoothly clipped absolute deviation (SCAD) penalty,
or the least absolute shrinkage and selection operator (LASSO) penalty (Breheny and Huang, 2011;
Friedman et al., 2010) via the penalty argument, which takes as input the character strings “MCP”,
“SCAD”, or “lasso”. The random effects are then penalized using the grouped version of the selected
penalty type (Breheny and Huang, 2015), e.g., if the MCP penalty is used to penalize the fixed effects,
then the grouped MCP penalty is used to penalize the random effects covariance matrix coefficients.

In addition to the previously discussed penalty parameters (λ0, λ1), the MCP and SCAD penalties
also use a scaling factor (Breheny and Huang, 2011, 2015). The argument gamma_penalty specifies this
scaling factor, with the default of 3 and 4 for the MCP and SCAD penalties, respectively. Additionally,
the argument alpha allows for the elastic net estimator, controlling the relative contribution of the
MCP/SCAD/LASSO penalty and the ridge, or L2, penalty. Setting alpha to 1 (the default) is equivalent
to the regular penalty with no L2 contribution.

selectControl arguments

The grid search over the fixed effects and random effects penalty parameters λ0 and λ1 is controlled
by the arguments in selectControl(). The user can specify particular sequences for λ0 (fixed effects
penalty parameters) and λ1 (random effects penalty parameters) using the arguments lambda0_seq and
lambda1_seq, respectively; by default, a sequence of penalty parameters (of length nlambda, default 10)
are automatically calculated within glmmPen. These default sequences are calculated using the method
discussed in Section “Tuning parameter selection”. The minimum penalty λmin is a small fraction of
the λmax value; the argument lambda.min controls what fraction is used. By default, lambda.min = 0.01
so that λmin = 0.01(λmax).

The structure of the optimal tuning parameter search is specified by the argument search. If
search = “abbrev” (default), the algorithm performs the abbreviated two-stage tuning parameter
search specified in Section “Tuning parameter selection”. If search = “full_grid”, the algorithm looks
over the full grid search of length(lambda0_seq)×length(lambda1_seq) models before picking the best
model.

After all of the tuning parameters have been evaluated, the optimal combination of tuning
parameters can be selected using a BIC-type selection criteria, which can be specified using the
selectControl() argument BIC_option. Using the BIC_option argument, the user can select one of
four BIC-type selection criteria, given in Table 1, to select the best model.
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Selection criteria Description

BICq (Default) BIC-ICQ selection criteria (Ibrahim et al., 2011); requires
fitting the minimal penalty model

BICh Alternative BICh selection criteria specified by Delattre, Lavielle,
and Poursat (2014)

BIC Traditional BIC whose penalty term sets N to the number of total
observations in the data

BICNgrp Traditional BIC whose penalty term sets N to the number of inde-
pendent observations (i.e., number of levels of the grouping factor)

Table 1: BIC-type model selection criteria options for argument BIC_option.

Refer to the discussion in Section “Tuning parameter selection” for further details about these
BIC-type options as well as their respective pros and cons.

The argument pre_screen allows users to screen out some random effects at the start of the
algorithm. When pre_screen is set to TRUE (the default) and the number of random effects predictors
is 5 or more, a minimal penalty model is fit using a small penalty for the fixed and random effects
and relatively lax convergence criteria. If at the end of the pre-screening procedure the variance of a
random effect is penalized to 0 or is estimated to be less than 10−2, that predictor is restricted to have a
zero-valued random effect variance for all models fit by the algorithm. The pre-screening procedure is
not implemented if the number of random effects is less than five. This threshold of five random effect
predictors is an ad hoc choice by the authors; the purpose of the pre-screening procedure is to allow
the user to speed up the variable selection procedure when the full model contains a large number of
random effects.

The argument lambda.min.presc adjusts the value of the random effect penalty parameter λ1 used
in the pre-screening step and the minimal penalty model fit for the BIC-ICQ calculation, where the min-
imum penalty used for the random effects is lambda.min.presc ×λmax. See package documentation
for further details about this argument and other minor arguments not discussed here.

Additional selection arguments in glmmPen

The default variable selection procedure assumes that we have no prior knowledge of which fixed
effects should not be penalized during the model fitting procedure. In order to indicate that a covariate
should not be subject to penalization (and therefore always remain in the model), one can use the
fixef_noPen argument. See the glmmPen function documentation for further details.

After running an initial grid search over the default fixed and random effects penalty parameters,
users may desire to re-run the variable selection procedure using alternative settings, such as different
penalty sequences (e.g. a finer grid search) or different convergence criteria. In this scenario, re-
computing the the minimal penalty model for the BIC-ICQ criterion calculation can be time-consuming.
In order to save the minimal penalty model posterior samples needed for the BIC-ICQ calculation
and re-use these samples to compute the BIC-ICQ within a subsequent tuning parameter selection
grid search, the user can save the posterior samples as a file-backed big.matrix using the argument
BICq_posterior = “file_location/file_name”. This saves the backing file and the descriptor file as
‘file_location/file_name.bin’ and ‘file_location/file_name.desc’, respectively. If the file name is not specified,
then the posterior samples are automatically saved to the working directory with the file name
“BICq_Posterior_Draws”. These saved posterior samples can then be re-loaded in R as a big.matrix
using the attach.big.matrix function from the package bigmemory (Kane et al., 2013). In secondary
calculations using glmmPen, the recalculation of this minimal penalty model fit can be avoided and
these posterior samples can be used by calling BICq_posterior = “file_location/file_name”.

5.4 Examination of output

The glmm and glmmPen functions all output a reference class object of class pglmmObj. A full list of the
methods available for pglmmObj objects are provided in Table 2. These methods and their output were
designed to be very similar to the methods and output available for merMod objects used in the lme4
package. Further information about the output provided in a pglmmObj object and additional methods
documentation is available in the glmmPen package documentation (see ?pglmmObj).

When the pglmmObj object is created using the glmm function, the output from the methods listed
in Table 2 pertains to the single model fit specified by the glmm arguments. When the pglmmObj object
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Generic Brief description of return value

BIC Numeric vector returning the BIC, BICh, BICNgrp, and, if specified for model
selection, BIC-ICQ selection criteria evaluations for either the fitted glmm model
or the optimal fitted glmmPen model (i.e. the ‘best’ model according to the model
selection criteria)

coef Matrix reporting the sum of the fixed effects coefficients and the posterior modes of
the random effects for each variable at each level of the grouping factor

fitted Numeric vector of fitted values (the values of the linear predictor) based on either
the fixed effects only (recommended for most applications) or both the fixed effects
and the posterior modes of the random effects for each level of the grouping factor
(potentially useful for diagnostics)

fixef Numeric vector of the fixed effects coefficient estimates β̂
formula The mixed-model formula of the fitted model
logLik Estimated log-likelihood for the best model of the glmmPen procedure or the final

model from glmm evaluated using the Pajor (2017) marginal likelihood calculation
discussed in Section “Tuning parameter selection”

model.frame A data.frame object containing the output and predictors used to fit the model
model.matrix The fixed-effects model matrix
ngrps Number of levels in the grouping factor
nobs Number of total observations
plot Diagnostic plots for mixed-model fits
predict Predicted values based on either the fixed effects only (recommended) or the com-

bined fixed effects and posterior modes of the random effects for each variable and
each level of the grouping factor

print Basic printout of mixed-model objects
ranef Matrix of posterior modes of the random effects for each variable and each level of

the grouping factor
residuals Numeric vector of residual values: deviance (default), Pearson, response, or work-

ing residuals
sigma Random effect covariance matrix (ΓΓ⊤)
summary Summary of the mixed model results

Table 2: List of currently available methods for objects of class pglmmObj.

is created using the glmmPen function, the output from the methods pertains to the best model chosen
during the model selection procedure. Additional information about each model fit can be found in
the results_all field of the pglmmObj object. Using the basal output object fitB from the glmmPen
function, we illustrate the use of several of these methods in the remainder of this section.

Model summary

The summary method output the function call information such as the sampler used in the E-step (in
this case, Stan), the family, the model formula, the estimates of the fixed effects, the variance and
standard deviation estimates of the random effects, and a summary of the deviance residuals. (Note:
Due to the style of our formula specification using a matrix instead of column names of a data.frame,
all variable names begin with the name of the matrix, X.)

> summary(fitB)

Penalized generalized linear mixed model fit by Monte Carlo Expectation
Conditional Minimization (MCECM) algorithm (Stan) ['pglmmObj']
Family: binomial ( logit )

Formula: y ~ X + (X | group)

Fixed Effects:
(Intercept) XGPR160_CD109 XSPDEF_MFI2 XCHST6_CAPN9 XSLC40A1_CDH3

-1.1530 -0.7099 -0.7355 0.5082 -0.5831
XPLEK2_HSD17B2 XGPX2_ERO1L XCYP3A5_B3GNT5 XLY6D_ATP2C2 XMYO1A_FGFBP1

0.4337 -0.5895 0.0000 0.4620 -0.7411
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XCTSE_COL17A1
0.0000

Random Effects:
Group Name Variance Std.Dev.
group (Intercept) 0.8193 0.9052
group XGPR160_CD109 0.2036 0.4512
group XSPDEF_MFI2 0.684 0.827
group XCHST6_CAPN9 0 0
group XSLC40A1_CDH3 0 0
group XPLEK2_HSD17B2 0.0804 0.2835
group XGPX2_ERO1L 0.0842 0.2901
group XCYP3A5_B3GNT5 0 0
group XLY6D_ATP2C2 0 0
group XMYO1A_FGFBP1 0.1551 0.3938
group XCTSE_COL17A1 0.7596 0.8715
Number Observations: 938, groups: group, 4

Deviance residuals:
Min 1Q Median 3Q Max

-2.9338 -0.4026 -0.1512 0.3457 2.9630

We see that the best model included 9 TSPs with non-zero fixed effects and 6 TSPs with non-zero
random effects (i.e., 6 TSPs with varying predictor effects across the studies). The print method
supplies very similar information to the summary method minus the summary of the residuals.

The individual components of the print and summary outputs can be obtained using several acces-
sory functions described in Table 2. Similar to the package lme4, the fixed effects can be summarized
using fixef and the group-specific random effects can be summarized using ranef. The random effect
covariance matrix is summarized using sigma. In the case of the Gaussian family, sigma also provides
the residual standard error.

> fixef(fitB)
> ranef(fitB)
> sigma(fitB)

The residuals for the final model can be called using the residuals method. The different type
options for the residuals include “deviance”, “pearson”, “response”, and “working”, which correspond
to the deviance, Pearson, response, and working residuals, respectively.

> residuals(fitB, type = "deviance")

Predictions and fitted values

Using the predict method, we can make predictions using only the population level information
(i.e., the fixed effects only) or the group-specific level information (i.e., the fixed and random effects
results). The glmmPen package restricts predictions on new data to only use the fixed effects since it
is generally unlikely that the grouping levels within other datasets will exactly match the grouping
levels within the data used to create the prediction model. The predict method has the following
arguments:

• object: an object of class pglmmObj output from glmm or glmmPen.

• newdata: a data frame of new data that contains all of the fixed effects covariates from the model
fit. The variables provided in newdata must match the fixed effects used in the model fit.

• type: a character string specifying whether to output the linear predictor (“link”, default) or the
expected mean response (“response”).

• fixed.only: boolean value specifying if the prediction is made with only the fixed effects (TRUE,
default) or both the fixed and random effects (FALSE). Predictions are restricted to fixed.only =
TRUE for new data predictions.

The fitted method also includes the fixed.only argument, allowing the fitted values of the linear
predictor to be estimated with or without the random effects estimates.

> predict(object = fitB, newdata = NULL, type = "link", fixed.only = TRUE)
> fitted(object = fitB, fixed.only = TRUE)
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Diagnostics

The glmmPen package provides methods to perform diagnostics on the final model fit object. The
plot method plots the residuals against the fitted values. The plot function defaults to plotting the
Pearson residuals for the Gaussian family, and deviance residuals otherwise.

> plot(object = fitB)

The plot_mcmc function performs graphical MCMC diagnostics on the random effect posterior
samples. This command has six arguments with the first argument specifying the pglmmObj output
object. The second argument plots is used to specify which diagnostics plots to produce. The
plots argument is capable of creating sample path plots (“sample.path”, default), autocorrelation
plots (“autocorr”), cumulative sum plots (“cumsum”), and histograms (“histogram”) of the posterior
samples. The plots are output as faceted ggplot2 (Wickham, 2016) plots with the graphics arranged by
groups in the columns and variables in the rows. As objects of class ggplot, they are capable of being
edited as any other ggplot object. The plots argument can specify a vector of multiple plot types
or the choice of “all”, which automatically produces all four types of diagnostic plots. The function
outputs a list object containing the plots specified. The third and fourth arguments grps and vars
allow the user to restrict which groups and/or variables are summarized in the diagnostic plots. The
default values of “all” for these arguments give the results for all groups and variables. To request
specific groups and variables, provide vectors of character strings specifying the variable or group
names. The argument numeric_grp_order tells the function to order the group levels numerically
(default FALSE), and bin_width allows the user to manipulate the bin widths of the histograms (default
NULL results in geom_histogram defaults, only relevant if the “histogram” plot is requested).

The example code below specifies the names of three of TSP predictors with non-zero random
effects across the studies and then uses the plot_mcmc function to produce the sample path plots and
autocorrelation plots for the corresponding posterior samples. Some plot aesthetics are adjusted using
the ggplot2 package (Wickham, 2016). These sample path and autocorrelation plots can be seen in
Figure 1.

> TSP = c("XGPR160_CD109", "XSPDEF_MFI2", "XPLEK2_HSD17B2")
> plot_diag = plot_mcmc(object = fitB, plots = c("sample.path","autocorr"),
+ grps = "all", vars = TSP)
> library("ggplot2")
> plot_diag$sample_path + theme(axis.text.x = element_text(angle = 270))
> plot_diag$autocorr

5.5 Optimization

Additional optimization control options can be passed to the glmm and glmmPen functions using
the optim_options argument and the optimControl() control structure. Some default settings in
optimControl depend on the family of the data or the number of random effects. Descriptions of
several of the main optimControl() arguments and their defaults are listed below. Disclaimer: Some
optimization argument default values may be refined in future versions of the package if additional
package testing suggests that changes could improve package performance (e.g., adjustments for
certain data conditions or outcome families); please check the current glmmPen documentation for
the most up-to-date default information.

sampler: a character string specifying the sampling type used in the E-step of the MCECM
algorithm. The default sampler is “stan”, which requests the No-U-Turn Hamiltonian Monte Carlo
sampling performed by the rstan package (Stan Development Team, 2020; Carpenter et al., 2017). We
strongly recommend using this sampling method due to its speed and efficiency. Other options include
“random_walk”, which requests the Metropolis-within-Gibbs adaptive random walk sampler (Roberts
and Rosenthal, 2009), or “independence”, which requests the Metropolis-within-Gibbs independence
sampler (Givens and Hoeting, 2012).

var_start: either a character string “recommend” (default) or a positive numeric value. This
argument specifies the initial starting variance of the random effects covariance matrix. If var_start
is set to “recommend”, the function fits a fixed and random intercept only model using the lme4
package and sets the starting variance to the random intercept variance multiplied by 2. The random
effects covariance matrix is initialized as a diagonal matrix with the value of var_start as the diagonal
elements.

var_restrictions: either a character string “none” (default) or the character string “fixef”. This
argument can be used to restrict which random effects are considered at the start of the algorithm.
If this argument is set to “none”, then all random effect predictors are initialized to have a non-zero
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Figure 1: MCMC diagnostic plots for the basal best model results, created using the plot_mcmc func-
tion. Top: Sample path plots for the random slopes of three TSP covariates. Bottom: Autocorrelation
plots for the random slopes of three TSP covariates.

variance in the random effect covariance matrix. If this argument is set to “fixef”, then only the random
effect predictors that are initialized to have non-zero fixed effects estimates during the fixed effects
initialization procedure are given non-zero variances when initializing the random effect covariance
matrix. In effect, this restricts predictors that are initialized with zero-valued fixed effects coefficients
to not have random effects. See glmmPen simulation results utilizing this feature within the GitHub
repository https://github.com/hheiling/paper_glmmPen_RJournal. By using this restriction, the
user assumes that predictors penalized out of the naive model do not have random effects. While this
could be a strong assumption, using this restriction can be helpful in speeding up the algorithm by
removing excessive random effects at the start of the variable selection procedure.

conv_EM: a positive numeric value specifying the convergence threshold for the EM algorithm. The
argument conv_EM specifies the value of ϵ in Equation 11. The default value is 0.0015.

t: a positive integer that specifies the value of t in the EM algorithm convergence criteria specified
in Equation 11. The convergence critera is based on the average Euclidean distance between the most
recent coefficient estimate and the coefficient estimate from t EM iterations back. Default value is set
to 2.
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mcc: a positive integer indicating the number of times the EM convergence criteria must be met
before the algorithm is seen as having converged (mcc short for ‘meet condition counter’). Default
value is set to 2, and mcc is restricted to be no less than 2.

maxitEM: The maximum number of EM iterations allowed by the algorithm. When the default
value of NULL is input, maxitEM is set to a value that depends on the family type of the data. For the
Binomial and Poisson families, the default is set to 50. For the Gaussian family, the default is set to 100
(we have observed that the Gaussian family data generally takes longer to converge).

Additional optimization parameters include M-step convergence parameters (conv_CD, maxit_CD),
parameters specifying the number of posterior samples to acquire for the E-step throughout the
algorithm (nMC_burnin, nMC_start, and nMC_max), the number of posterior samples needed to calculate
the log-likelihood (M), and the number of posterior samples to save for diagnostics (nMC_report). Addi-
tional details about these parameters and their defaults can be found in the glmmPen documentation
of the function optimControl.

6 Simulations

In this section, we present results from simulations in order to examine the performance of our package.
We use the glmmPen package to perform variable selection and examine the resulting fixed effects
estimates as well as the true and false positives for the fixed and random effects. All simulations are
performed using the default optimization settings discussed in Section “Optimization”. While the
performance of the original implementation of the pGLMM algorithm was demonstrated in Rashid
et al. (2020), here we confirm the performance of the computational improvements made since then as
well as newer features such as the pre-screening procedure.

6.1 Simulation set-up

We simulated binary responses from a logistic mixed-effects regression model with p predictors. Of p
total predictors, we assume that 2 predictors have truly non-zero fixed and random effects, and the
other p − 2 predictors have zero-valued fixed and random effects. Our aim in the simulations was to
select the true predictors.

In these simulations, we consider the following situations: predictor dimensions of p = {10, 50},
sample size N = 500, number of groups K = {5, 10}, and standard deviation of the random effects
σ = {1,

√
2}. As discussed in Section “Generalized linear mixed models”, we approximate the

covariance matrix of the random effects as a diagonal matrix for these higher dimensions. We further
consider the scenarios of moderate predictor effects, where the true fixed effects are β = (0, 1, 1)⊤.

For group k, we generated the binary response yki, i = 1, ..., nk such that yki ∼ Bernoulli(pki) where
pki = P(yki = 1|xki, zki, αk, θ) = exp(x⊤ki β + z⊤ki αk)/{1 + exp(x⊤ki β + z⊤ki αk)}, and αk ∼ N3(0, σ2 I3).
The fixed effect coefficients were set to β = (0, 1, 1)⊤ (moderate predictor effects). We also simulated
imbalance in sample sizes between the groups. Of the N samples, N/3 samples were given to study
k = 1 and the remaining 2N/3 samples were evenly distributed among the remaining studies. Each
condition was evaluated using 100 total simulated datasets.

For individual i in group k, the vector of predictors for the fixed effects was xki = (1, xki,1, ..., xki,p)
⊤,

and we set the random effects zki = xki, where xki,j ∼ N(0, 1) for j = 1, ..., p.

Setting the input random effects equal to the fixed effects represents the worst-case scenario where
we have no idea what predictors may or may not have random effects. This may be an extreme
assumption; in many real-world scenarios, users will have reason to set the input random effects to a
strict subset of the fixed effects.

In all of these simulations, we use the default settings discussed earlier, which includes using
the default λ0 and λ1 penalty sequences, BIC-ICQ for the selection criteria, pre-screening, and the
MCP penalty. For all simulations, we performed the abbreviated two-stage grid search as described
in Section “Tuning parameter selection”. The results for these simulations are presented in Table 3.
These results include the average coefficients, the average true positive and false positive percentages
for both fixed and random effects, and the median time for the simulations to complete. The true
positive percentages reflect the average percent of the true predictors included in the best models
chosen by the BIC-ICQ model selection criteria, which should ideally be near 100%. Likewise, the false
positive percentages reflect the average percent of the false predictors included in the best models,
which should ideally be near 0%. All simulations were completed on the UNC Longleaf computing
cluster (CPU Intel processors between 2.3Ghz and 2.5GHz).

By examining the simulation results, we can observe that the performance of the variable selection
procedure in glmmPen is impacted by the underlying structure of the data. As the magnitude of the
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N p K σ β̂1 β̂2 TP %
Fixed

FP %
Fixed

TP %
Random

FP %
Random

Tmedian

(hours)

500 10 5 1 1.02 1.12 89.0 2.1 90.5 3.5 0.20√
2 1.12 1.18 83.0 1.4 96.0 3.6 0.26

10 1 0.99 1.04 99.0 3.0 95.0 4.8 0.24√
2 1.02 1.11 91.0 1.8 99.5 7.0 0.32

500 50 5 1 1.18 1.14 84.5 1.2 83.5 2.2 8.07√
2 1.42 1.43 75.5 2.5 89.0 2.5 12.20

10 1 1.12 1.11 95.0 1.8 93.0 3.9 10.67√
2 1.33 1.31 84.5 2.4 95.5 6.2 15.75

Table 3: Variable selection simulation results with moderate predictor effects (slopes equal to 1).
Results include the estimated coefficients for true non-zero fixed effects, true positive (TP) percentages
for fixed and random effects, false positive (FP) percentages for fixed and random effects, and the
median time in hours for the algorithm to complete.

random effect variance increases, the true positive percentage of the fixed effects decreases and the
true positive percentage of the random effects increases. Additionally, as the number of groups K
increases, the true positive percentage of both the fixed and random effects increases. We see that
as the dimension of the total number of predictors increases (p = 10 to p = 50), the true positive
percentages of both the fixed and random effects decreases. In regards to the run time, Table 3 shows
that increases in the number of groups and increases in the variance of the random effects generally
increases the time for the algorithm to complete.

In simulations not presented in this paper, we saw that increases to the magnitude of the fixed
effects (e.g., increasing the true slope to 2, see content in GitHub repository https://github.com/
hheiling/paper_glmmPen_RJournal for details) increased the true positive fixed effects and generally
decreased the true positive random effects.

6.2 Pre-screening performance

The time it takes the package to complete the tuning parameter selection procedure depends strongly
on the number of random effects considered by the algorithm. Therefore, the pre-screening procedure,
which reduces the number of random effects considered within the variable selection algorithm, speeds
up the algorithm. Table 4 summarizes the performance of the pre-screening algorithm for the variable
selection simulations described above. This table reports the average percent of true positive and
false positive random effect predictors that remain under consideration within the variable selection
procedure after the pre-screening step has completed. The pre-screening settings were the default
settings described in Section “Software”, which include specifying lambda.min.presc = 0.01 for p = 10
and lambda.min.presc = 0.05 for p = 50 such that the minimum penalty on the random effects is
lambda.min.presc ×λmax. We note that there are currently no methods that are capable of scaling to
the values of q random effect predictors evaluated in our simulation for estimating and performing
variable selection in GLMMs.

N p K σ TP % FP %

500 10 5 1 98.0 25.8√
2 100.0 26.1

10 1 100.0 33.0√
2 100.0 32.2

500 50 5 1 96.0 24.6√
2 96.5 25.7

10 1 97.5 25.9√
2 98.5 27.3

Table 4: Pre-screening results for variable selection simulations with moderate predictor effects (slopes
equal to 1). Results include the true positive percentages and false positive percentages of the random
effect predictors remaining after pre-screening.
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Using this higher penalty in the p = 50 simulations helps reduce the false positive percentage of
the random effects after pre-screening and consequently helps speed up the time of the algorithm to
complete. However, we can see by comparing the p = 50 and p = 10 simulations that this approach
can also slightly decrease the true positive percentage. In general, increasing lambda.min.presc will
help decrease the number of false positive non-zero random effects in the pre-screening step, but it
may also decrease the number of true positive non-zero random effects. Decreasing lambda.min.presc
will generally have the opposite effect. We also see that the true positive percentage for the selection
of the random effects after pre-screening is generally higher when the magnitude of the true random
effect variance is higher.

7 Conclusion

This paper introduces the R package glmmPen for fitting penalized generalized linear mixed models,
including Binomial, Gaussian, and Poisson models. The glmmPen package’s main advantage over
other packages that estimate GLMMs is that it can perform variable selection on the fixed and random
effects simultaneously. The algorithm utilizes a Monte Carlo Expectation Conditional Minimization
(MCECM) algorithm. Several established MCMC sampling techniques are available for the E-step,
and a Majorization-Minimization coordinate descent algorithm is used in the M-step. The package
utilizes the established methods of Stan and RcppArmadillo to increase the computational efficiency
of the E-step and M-step, respectively. As a result, the glmmPen package can fit models with higher
dimensions compared to other packages that fit GLMMs, supporting models with 50 or more fixed
and random effects.

The glmmPen package employs several additional techniques to improve the speed of the algo-
rithm. Such techniques include initialization of subsequent models with the coefficients from the
previous model fit and pre-screening to remove unnecessary random effects.

The glmmPen package has several attributes that make it user-friendly. For one, the package was
designed to have an interface that is similar to the lme4 package, with which many users may be
familiar. Additionally, the glmmPen package has several automated procedures that make it more
convenient to use, including automated data-dependent initialization of the random effect covariance
matrix and automated recommendations for the penalization parameters.

A unique aspect of the package is the calculation of the marginal log-likelihood. The cor-
rected arithmetic mean estimator (CAME) calculation described by Pajor (Pajor, 2017) is relatively
simple and fast to calculate, and we have found that it performs well when compared with the
log-likelihood estimate used in the lme4 package (see content in the GitHub repository https:
//github.com/hheiling/paper_glmmPen_RJournal). This marginal log-likelihood calculation allows
the algorithm to perform tuning parameter selection using traditional BIC selection criterion as well
as other BIC-derived selection criteria. This gives users the option to forgo calculating the BIC-ICQ
selection criterion, which requires the minimal penalty model fit where a minimum penalty is applied
to both the fixed and random effects.

In its current implementation at the time of this paper’s publication, the glmmPen R package
can apply to Binomial, Gaussian, and Poisson families with canonical links. In the future, we plan to
extend the application of this package to survival data, to non-canonical links for the existing families,
and to additional families such as the negative binomial family.
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