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multiocc: An R Package for
Spatio-Temporal Occupancy Models for
Multiple Species
by Staci Hepler and Robert Erhardt

Abstract Spatio-temporal occupancy models are used to model the presence or absence of a species at
particular locations and times, while accounting for dependence in both space and time. Multivariate
extensions can be used to simultaneously model multiple species, which introduces another dimension
to the dependence structure in the data. In this paper we introduce multiocc, an R package for fitting
multivariate spatio-temporal occupancy models. We demonstrate the use of this package fitting the
multi-species spatio-temporal occupancy model to data on six species of birds from the Swiss MHB
Breeding Bird Survey.

1 Introduction

Occupancy models are commonly used in ecological applications to model presence or absence of
a species of interest across a geographical region over a period of study, or season. The goal is often
to determine the likelihood that a species was present, and to study how that likelihood relates to
environmental features. Occupancy models account for imperfect detection in a binary response
variable Y by treating the true presence as a latent binary process Z. These methods have been
used across a variety of applications including estimating the geographical distribution of species
such as caribou in northern Ontario, Canada (Johnson et al., 2013) and of red fox and coyote in
the eastern United States (Rota et al., 2016). Rahman et al. (2021) and Guillera-Arroita et al. (2019)
used multispecies occupancy models to estimate the richness of mammal species in Bangladesh
and breeding birds in Switzerland, respectively. Recently, occupancy models have been utilized in
public health applications to estimate the risk or prevalence of imperfectly detected diseases such as
Histoplasmosis (Hepler et al., 2022) and SARS-CoV-2 (Sanderlin et al., 2021).

A number of R packages exist for fitting specific types of occupancy models. Here, we highlight
a few of the existing packages, and refer the reader to Doser et al. (2022) for a more comprehensive
list. The package unmarked fits a variety of models using likelihood-based methods; however these
models do not account for spatial dependence in the data. stocc fits single-species spatial occupancy
models in the Bayesian framework (Johnson et al., 2013). Recent attention on joint species distribution
models have highlighted the importance of jointly analyzing species that may be related. Recently,
spOccupancy was developed to fit single-species and multi-species spatial occupancy models (Doser
et al., 2022). However, the multi-species model implemented in spOccupancy accounts for cross-
species dependence by assuming regression coefficients for different species arise from a shared
community prior. While this model is reasonable when studying groups of species that are expected
to respond to the environment similarly, it might not be suitable to all applications. Additionally,
this package does not apply to multi-season occupancy models. gjam can analyze multivariate
presence/absence data and assumes an unstructured covariance matrix to capture species dependence;
however, it does not account for any spatio-temporal dependence (Clark et al., 2017). Hmsc includes a
variety of joint species distribution models for analyzing presence/absence data of species within a
community (Tikhonov et al., 2020; Ovaskainen et al., 2017). However, it does not account for imperfect
detection in the binary observations.

In this paper, we present multiocc, an R package that implements the multivariate spatio-temporal
occupancy model developed by Hepler and Erhardt (2021). This model can be used to analyze pres-
ence/absence data for S ≥ 1 species across T ≥ 1 seasons. Briefly, this model accounts for dependence
across space, across seasons, and also between the species being jointly modeled. Thus, this R package
overcomes limitations of the existing packages mentioned above and can be applied to more general
study designs. As noted by Taylor-Rodriguez et al. (2017), modeling species independently ignores
residual dependence between species and can yield misleading results. Guisan and Rahbek (2011)
found independently modeling species predicted too many species per location, and Clark et al. (2014)
found that prediction was improved by using a multivariate approach that exploits information from
other species. Pollock et al. (2014) proposed a multivariate model for presence/absence data that
captures residual correlation through a covariance matrix, Σ, and applied their method to data on frog
and eucalyptus species, but the model does not account for spatio-temporal dependence or imperfect
detection. The multivariate, spatio-temporal occupancy model of Hepler and Erhardt (2021) that is
implemented in this package similarly accounts for residual species correlation through a matrix, Σ,
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but also accounts for spatio-temporal dependence and imperfect detection. In addition, this model
has been shown to yield more accurate estimates of occupancy model parameters as compared to
single-species models.

Additionally, this model and package can be used in the single-survey setting for occupancy
models provided the number of seasons is “large enough", regardless of the number of species of
interest. This has important implications for study design, since previous research has stated that
parameter estimation in standard occupancy models requires multiple surveys for each period of time
where the occupancy status is unchanged (MacKenzie et al., 2002). The assumption of an unchanging
occupancy field across surveys can be unreasonable for many applications. Further, inference can be
biased if this assumption is violated, but standard occupancy models are often fit regardless (Rota
et al., 2009). The model implemented here in multiocc allows researchers to assume that multiple,
dependent seasons are observed with even just a single survey per season. This is less restrictive, as
occupancy status does not need to remain static from one observation to the next, and inference is
reliable provided there are enough seasons.

In the next section, we review the statistical details of the model and discuss the study designs
under which this model is recommended. Then, we describe the core functions of the multiocc
package. Lastly, we illustrate the implementation of the package’s functionality by fitting the model to
data on six species of birds from the Swiss MHB Breeding Bird Survey.

2 Scientific Background

This package implements the multivariate spatio-temporal occupancy model proposed in Hepler
and Erhardt (2021), which is briefly summarized here. The aim is to determine the likelihood that
species s was present at location i during time period t, and how environmental features relate to the
likelihood. However, imperfect detection implies that the observed data only confirms detection, and
not necessarily true presence. Occupancy models differentiate between observed binary detection and

latent true occupancy. Let Z(s)
it denote the true occupancy (Z(s)

it = 1 indicates presence and Z(s)
it = 0

absence) of species s = 1, ..., S at location i ∈ It during season t = 1, ..., T, where It denotes the set of
locations of interest during season t with cardinality |It| = nt. A season is defined to be a time period
over which the true occupancy is unchanged. One feature of this R package is the ability to incorporate
multiple independent observations, or surveys per season, but further to allow different number of
surveys between sites.

Let Vit be the number of surveys of the occupancy field at location i during a season t. Let the

observed binary detection be denoted with Y such that Y(s)
itv = 1 indicates species s was detected at

location i during the vth survey (v = 1, ..., Vit) in season t and Y(s)
itv = 0 indicates it was not detected.

The proposed occupancy model assumes there are no false positives, so Z(s)
it = 0 implies Y(s)

itv = 0 for

all v; if the species is actually present (Z(s)
it = 1), it may be detected during a survey (Y(s)

itv = 1) or not

(Y(s)
itv = 0).

Royle and Dorazio (2008) introduced the hierarchical model[
Y(s)

itv |Z
(s)
it , p(s)itv

]
= Bernoulli

(
Z(s)

it p(s)itv

)
[

Z(s)
it |ψ(s)

it

]
= Bernoulli

(
ψ
(s)
it

)
,

(1)

where ψ
(s)
it denotes the probability of occupancy for species s at location i during time t and p(s)itv the

probability of detection given occupancy during survey v. Hepler and Erhardt (2021) specified the
detection probability as

p(s)itv = Φ
(

W′
itvβ(s)

)
, (2)

where Φ(·) is the cumulative distribution function of the standard normal distribution, Witv is a pD-
dimensional vector of covariates related to detectability, and β(s) is a vector of regression coefficients.
Note that the vector of covariates is assumed to be the same for all S species, but the regression
coefficients are species-specific. For occupancy, Hepler and Erhardt (2021) specified the probability as

ψ
(s)
it = Φ

(
X′

itα
(s) + η

(s)
it

)
, (3)

where Xit is a pO-dimensional vector of covariates related to occupancy and is assumed to be the

same for all species, α(s) is a species-specific vector of regression coefficients, and η
(s)
it is a multivariate

spatio-temporal random effect.
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To reduce dimensionality and alleviate confounding with fixed effects, we use a restricted spatial
regression model as in Hughes and Haran (2013) and Bradley et al. (2015). More specifically, if

η
(s)
t ≡ {η

(s)
it , i ∈ It} is the vector of random effects for species s and time t, then we assume η

(s)
t =

Ktγ
(s)
t , where Kt is a nt × q matrix of known spatial basis functions such that K

′
tKt = Iq and γ

(s)
t is a

q-dimensional multivariate random effect. Letting ηt ≡
(

η
(1)
t , ..., η

(S)
t

)
be the ntS-dimensional vector

of random effects, we have ηt = K∗
t γt, where K∗

t = IS ⊗ Kt is the ntS × qS block diagonal matrix

whose (s, s) block is Kt, and γt =
(

γ
(1)
t , ..., γ

(S)
t

)
. An intrinsic multivariate conditional autoregressive

(MCAR) structure is used to capture multivariate and spatial dependence, with temporal dependence
captured through an autoregressive model of order 1 (Mardia, 1988). More specifically, this dependence
framework is captured within the restricted spatial regression model by assuming

γt ∼

N
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)
for t = 1

N
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Mγt−1, K∗′
t QtK∗

t

)
for t = 2, ..., T,

(4)

where Qt = Σ−1 ⊗ (Dt − At) is the intrinsic MCAR precision matrix, Σ is an S × S matrix that
captures conditional dependence (positive or negative) among the species, At is an nt × nt adjacency
matrix, Dt is a diagonal matrix whose (i, i)th element is the number of neighbors of location i, and
M = diag(ρ1, ..., ρS)⊗ Iq is the propagator matrix such that ρs accounts for temporal autocorrelation
for species s. Following the work of Bradley et al. (2015), Hepler and Erhardt (2021) used spatio-
temporal Moran’s I (MI) basis functions for Kt. More specifically, the MI operator for time t is defined
as

I(Xt, At) =
(
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tXt
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t

)
At

(
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(
X′

tXt
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t

)
. (5)

The q columns in Kt are chosen to be the q eigenvectors of I(Xt, At) that correspond to the largest
eigenvalues.

Since the model is fit within the Bayesian paradigm, prior distributions are chosen for all remaining
hyperparameters. The prior distributions for the regression coefficients α and β are improper and uni-
form over the real line. The temporal autocorrelation parameters ρ1, ..., ρS are assumed to be uniform
over (0, 1). The cross-species covariance matrix Σ has an inverse Wishart prior distribution with S + 2
degrees of freedom and identity scale matrix. To assist in computation, the data augmentation strategy
of Albert and Chib (1993) is implemented in the Markov chain Monte Carlo (MCMC) algorithm. The
model specification results in all known full conditional distributions, and thus a Gibbs sampling
algorithm is used to simulate from the posterior distribution. Derivations of the full conditional
distributions needed to implement the Gibbs sampling algorithm can be found in the supplementary
material of Hepler and Erhardt (2021).

3 The multiocc package

The entry point for the package is the function multioccbuild(detection = ..., occupancy = ...,
coords = ..., DataNames = ..., threshold = ...). This function accepts raw data as inputs, and
it outputs all ordered matrices and the adjacency information needed to run the MCMC algorithm
and sample from the posterior distribution. This is intentionally split off as a separate function, rather
than written internally as a precursor step in the MCMC algorithm. This structure allows the user to
specify subsets of covariates, seasons, surveys, and/or locations for different model runs and receive
informative errors (or confirmation) that the specification will lead to a valid model fit. The single
output list produced by multioccbuild() contains an internally consistent set of ordered data frames
as well as species and covariates names used, and helps the user avoid confusion by collecting all
model inputs into a single list rather than requiring multiple specifications across objects which may
be internally inconsistent. The five required arguments are:

• ‘detection’ is a data frame with one row for each site/season/survey combination for a total
of ∑T

t=1 ∑i∈It
Vit rows. The first three columns should identify the ’site’, ’season’, and ’survey’,

and be named as such. Site can be a character vector. For each of the S species there is a column
of binary detection (1=yes, 0=no) for that particular species during the site/season/survey
combination. Titles of these columns are chosen by the user, but are commonly the names of
the S species. Next are the set of possible detection covariates used in W. Titles of these are
chosen by the user, and there is no need to include an intercept column in this data frame as
one is automatically added by multioccbuild(). It is strongly encouraged that the quantitative
explanatory variables be standardized to assist with chain mixing. Not every variable included
in detection will necessarily be included in the model, as the DataNames argument described
below is what defines the covariates to be used in W.
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• ‘occupancy’ is a data frame with one row for each site/season combination (note there is no
survey for occupancy, as the species either is or is not present for all surveys). The number of
rows is therefore ∑T

t=1 nt, where T is the number of seasons, and nt is the number of locations of
interest (either observed or where predictions are desired) during season t. The first two columns
are ’site’ and ’season’ and must be named as such. Site can be a character vector but must be
consistent with how ’site’ is specified in detection. Next are the set of possible occupancy
covariates used in X. Titles of these are chosen by the user, and there is no need to include an
intercept column in this data frame as one is automatically added by multioccbuild(). It is
strongly encouraged that the quantitative explanatory variables be standardized to assist with
chain mixing. Not every variable included in occupancy will necessarily be included in the
model, as the DataNames argument described below is what defines the covariates to be used in
X.

• ‘coords’ is a data frame with one column for the site name — which must be consistent with the
naming of ’site’ in occupancy and detection — and two columns for the numeric coordinates
of the site location. Column names must be ’site’, ’x’, and ’y’. The number of rows is equal to
the number of unique locations in the study. Units are arbitrary, but must be the same in both
location columns ’x’ and ’y’ for a valid Euclidean distance measure.

• ‘DataNames’ is a list with three elements, always titled ’species’, ’detection’, and ’occupancy’.
Each element is a vector specifying the precise titles of the S species, and the names of the
covariates for detection and occupancy. The names in these vectors must correspond to the
names of the corresponding columns in the detection and occupancy data frames. An intercept
is added by default. DataNames is required because it allows the user to model a subset of species
and/or a subset of all variables in the objects occupancy and detection, and therefore it is very
easy to run multiple versions of the model with distinct covariates on the same data. If the user
desires to have no covariates for detection , they can either write detection=c() or leave the
argument detection out as an input. Similarly, if the user does not want any covariates to be
included in occupancy, they can either write occupancy=c() or leave the argument occupancy
out as an input.

• ‘threshold’ is a number which determines whether or not two sites are considered neighbors
in the adjacency structure of the model. If the (Euclidean) distance between two sites is less
than threshold, they are neighbors; if not, they are not neighbors. This is used to identify the
non-zero entries in the adjacency matrices, At.

A few points of clarification are needed. First, the data frame occupancy should only have columns
named ‘site’, ‘season’, and names of covariates which may appear in ‘DataNames$occupancy’. The
data frame ‘detection’ should only have columns named ‘site’, ‘season’, ‘survey’, names for species
detection data which also appear in ‘DataNames$species’, and names of detection covariates which
may appear in ‘DataNames$detection’. The ordering of ‘DataNames$species’ will determine the
ordering of all results shown by species. Internal checks in multioccbuild() include a scan for
duplicated site/season combinations in occupancy, or site/season/survey combinations in detection.
The presence of either type of duplication halts the function. The function also scans to ensure all
entries for detections y are 0, 1, or NA. Also, if there are any site/season combinations in detection
but not occupancy, they are removed from detection with a warning shown, but the function still
runs. If there are any site/season combinations in occupancy but not detection, corresponding rows
are added to detection with NAs for all variables, which enables prediction of occupancy for those
site/season combinations.

There are also internal checks to identify missing covariates in either X or W. There are two
cases of missing covariates which our model cannot accommodate. The first is any missingness
in X. The second is when y is observed (as either 0 or 1), but covariates for detection W for the
corresponding site/season/survey are missing. Both situations lead to a deletion of rows. If there
are missing covariates in X, then the row(s) are removed from X and the Vit corresponding rows
for the same site/season combination are removed from W. If there are missing covariates for any
site/season/survey combination of W for cases with non-missing y, then the value of y is changed
to NA which effectively removes the detection from the observed data but retains predictions of
occupancy for the corresponding site/season combination.

It is possible to use this package to predict occupancy for site/season combinations where no
observations were taken (meaning there are either no rows in ‘detection’ for that site/season, or the
rows in ‘detection’ have y with NA), provided the values of the occupancy covariates are available.
The site/season combinations of interest just need to be included as rows in the ‘occupancy’ and
‘coords’ data frames that are provided as input to multioccbuild(). The site/season combinations
that are in ‘occupancy’ but not ‘detection’ are identified, and the Gibbs Sampling algorithm will
simulate values of z from the posterior predictive distribution. We note that in other packages,
prediction is a two-step procedure where the site/seasons to be predicted are provided after the model
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fit. That is not the case here because computation of the Moran’s I basis functions requires the full set
of site/seasons at all locations - both observed and unobserved (Bradley et al., 2015).

From a modeling perspective, the primary decisions the researcher needs to make when executing
the multioccbuild() function are: (1) Which specific covariates belong in X and W to model occupancy
and detection? (2) Which species should be included? and (3) What threshold should be used to
determine the definition of neighbor in the adjacency matrix? This R package does not restrict the
type or number of covariates included in X and W, but it is worth noting the literature includes
discussions of possible difficulty identifying regression coefficients when there is only a single survey
per season. In the initial versions of occupancy models, MacKenzie et al. (2002) advised at least two
surveys for a single season when the occupancy rate and detection probability are sufficiently large
(0.7 and 0.3, respectively), and more surveys when these probabilities are smaller. Lele et al. (2012)
investigated the single-survey scenario further and found that occupancy and detection probabilities
can be estimated with a single survey when the number of spatial locations is large, provided they
depend on covariates with at least one numeric covariate in detection and the two sets of covariates
differ by at least one variable. Hepler et al. (2018) extended earlier work on occupancy models and
proposed a spatio-temporal occupancy model for the multiple-season scenario and found the model
could identify covariate effects in the single survey per season case, provided the number of seasons
was large enough. For the multivariate spatio-temporal model implemented in multiocc, Hepler
and Erhardt (2021) found the model could identify covariate effects in the single-survey case with at
least 10-20 seasons. Careful investigation of the posterior distributions for dependence across the two
parameters would be one way to investigate confounding and identifiability. Note that interactions
between two or more variables may also be used and defined in the usual way.

The definition of the threshold governs the structure of the adjacency matrix A. If two sites are
within this distance, then they are neighbors, and the corresponding element of the adjacency matrix
is 1. When the data are collected on a regular grid, it is common to use either a rook (shared edge)
or queen (shared edge or vertex) relationship to determine which grid points are neighbors. These
neighborhood specifications can be implemented in this package by determining the distance between
grid centroids and setting the threshold to be larger than that distance. In general, lower values
of ‘threshold’ result in fewer neighbors and a sparser matrix A, while larger values result in more
neighbors but a less sparse matrix A. There are computational advantages to a sparse adjacency matrix,
and a low threshold can mimic the first-order Markov dependence commonly used when modeling
aerial data (Gelfand et al., 2010).

The output of multioccbuild() is a list called ‘model.input’. This list contains the following
elements:

• ‘DataNames’, the precise list with three elements, always titled ’species’, ’detection’, and ’occu-
pancy’ that the user specified for the multioccbuild() function. These are used downstream in
the package.

• ‘X’, a matrix which serves as the design matrix for the occupancy portion of the model. The first
column is a column of all 1s, and latter columns are from ‘names$occupancy’. The matrix has
∑T

t=1 nt rows - one for each site/season combination.

• ‘W’, a matrix which serves as the design matrix for the detection portion of the model. The first
column is a column of all 1s, and latter columns are from ‘names$detection’. The matrix has
∑T

t=1 ∑i∈It
Vit rows - one for each site/season/survey combination.

• ‘y’, a ∑T
t=1 ∑i∈It

Vit × S matrix of the binary values of detection for the S species. The columns
are in the same order that the species are listed in in the vector ‘DataNames$species’.

• ‘A’, the symmetric adjacency matrix of 1s and 0s indicating which rows of ‘occupancy’ are
neighbors. ‘A’ is a block diagonal matrix, where the tth block is the nt × nt dimensional matrix
At.

• ‘detection.info’ is a data frame with the detection information containing the five columns
’siteID’ (a numeric index of the site), ’site’ (the factor identifier of the site), ’season’, ’survey’,
and an indicator variable named ’observations’ that indicates whether the survey result was
missing (indicated by an NA in the ‘y’ matrix) or not.

• ‘occupancy.info’ is a data frame with ‘siteID’, ‘site’, and ‘season’ columns as well as columns
for the x/y coordinates merged from ‘coords’.

The function GibbsSampler(M.iter,M.burn,M.thin,model.input,q,sv,every,WAIC,param2keep)
performs the Gibbs sampling MCMC algorithm to sample from the posterior distribution. This func-
tion is written entirely in R.

• ‘M.iter’ is a required input and is the number of iterations in the MCMC.

• ‘M.burn’ is the desired length of the burn in. Default is half of ‘M.iter’.
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• ‘M.thin’ is the desired thinning of the MCMC output. M.thin=1 is no thinning, M.thin=10 saves
every tenth, etc. Default is 1.

• ‘model.input’ is the output from the multioccbuild() function described above.
• ‘q’ is the number of Moran’s I spatial basis functions used in the restricted spatial regression

model. Default is 10 percent of the minimum number of locations in any season (rounded).
• ‘sv’ is a logical indicator controlling whether or not the chain should be saved at regular

iterations or not. The number of iterations is set by ‘every’. Default for ‘sv’ is FALSE.
• ‘every’ a numeric value controlling the frequency that the MCMC chain results are saved.

Default is 1000.
• ‘WAIC’ is a logical value indicating whether or not the MCMC should compute and save WAIC.

Defaults to false. Note that computing WAIC increases the computational storage required to fit
this model.

• ‘param2keep’ is a character vector that governs which outputs are saved. Permissible entries in
this vector are ‘alpha’, ‘beta’, ‘gamma’, ‘rho’, ‘sigma’, ‘psi’, ‘z’, ‘p’, and ‘loglik’. The default is to
save ‘alpha’, ‘beta’, ‘gamma’, ‘rho’, ‘sigma’, and ‘psi’.

A number of comments are needed to discuss issues with computational cost and computer
memory. First, including more parameters in ‘param2keep’ increases the amount of storage required.
In particular, saving the samples of ‘z’, ‘psi’, ‘p’, and ‘loglik’ can create storage issues depending on
the amount of available RAM. This can be avoided by not saving those quantities as they can easily
be computed based on their definitions provided ‘alpha’, ‘beta’, and ‘gamma’ are saved. For example,
the detection probabilities ‘p’ can be computed for each stored value of β as probit (Wβ). However,
it is also possible to store these outputs if memory is not a concern. If the user specifies WAIC=TRUE,
‘loglik’ will be created and computed but not stored by default; the user would additionally need
to add ‘loglik’ to ‘param2keep’ to store these values. This is a higher cost to memory, but allows the
user to perform other types of model assessment, e.g. leave-one-out cross-validation as in Vehtari et al.
(2017).

The output of GibbsSampler() is a list. Specifically, it contains the following elements.

• ‘samples’ is a list with one element for each of the items specified in ‘param2keep’. Each
individual element of this list is named according to ‘param2keep’ and is a valid MCMC object
defined from the coda package, and contains the saved samples of that object from the MCMC.

• ‘run.time’ saves the run time for the GibbsSampler() command.
• ‘WAIC’ is a vector of length S which contains WAIC values by species, if this argument was true.
• ‘basis.K’ is an ∑T

t=1 nt × q · T matrix of the basis functions created using the make.basis()
function.

Additionally, the list has elements ‘occupancy.info’, ‘detection.info’, ‘X’, ‘W’, and ‘y’ which are
the same quantities that were outputted by multioccbuild() and are saved as output here as well
for convenience. The ordering of the output in ‘psi’ corresponds to the site/season ordering in
‘occupancy.info’. Similarly, if ‘p’ and/or ‘loglik’ are included in ‘param2keep’ then the ordering of
the values in ‘samples’ corresponds to the site/season/survey ordering in ‘detection.info’.

There are several limitations of the model implemented in the current version of the multiocc
package. First, the code requires the same set of covariates are used for all species being modeled.
Second, the package currently does not allow the user to specify their own prior distributions or initial
values for model parameters. Third, the package currently requires the use of Moran’s I basis functions
and assumes an intrinsic, conditional autoregressive structure where the neighborhood matrix is
specific through a distance threshold. Fourth, while the use of basis functions makes the model
scalable in the number of spatial locations, the computational expense could still be prohibitive if the
number of species, S, or the number of seasons, T are very large. It also remains unclear how large
S can be before computational and identifiability issues arise with estimating Σ. Taylor-Rodriguez
et al. (2017) proposed a Dirichlet process approach to dimension reduction to overcome these issues
in settings where the number of species is large (∼ 103). In a simulation study, they found their
dimension reduced model outperformed a model using the full Σ when S = 100, although they noted
that both models still performed well. However, their model did not include multiple seasons, which
will improve estimation. It is important the user perform MCMC diagnostic checks to assess inferential
stability for the elements of Σ.

4 Example

The data are taken from the Swiss MHB ("Monitoring Häufige Brutvögel") Breeding Bird Survey
from the Swiss Ornithological Institute. This survey covers common bird species in Switzerland

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=coda


CONTRIBUTED RESEARCH ARTICLE 43

and first began in 1999. Specifically, we consider the presence or absence of six types of Swiss Tits
obtained at 267 locations over a ten year period (2004 - 2013). Each year is one season in our model.
These data are freely available as ‘SwissTits’ in the R package AHMbook (Kéry et al., 2017), and are
stored in our package multiocc as ‘detection’, ‘opccupancy’, and ‘coords’, which can be called with
data(detection), data(occupancy), data(coords). The locations ‘coords’ are 1km by 1km quadrats
roughly evenly spread across the entire country of Switzerland. Locations are shown in Figure 1.

Figure 1: Locations of the 267 1km by 1km square quadrats laid out across the entirety of Switzerland
in the MHB survey. In general, the spacing of locations supports the use of an areal data model with
neighbors defined through an adjacency matrix A.

The response is the observed detection (Y(s)
itv = 1) or not (Y(s)

itv = 0) of species s at location i, time
period t and survey v. There were 266 to 267 sites observed in each season, with the number of surveys
per season varying from 2 to 3. Covariates on occupancy in X include the standardized percentage of

forest cover at the location as well as the standardized elevation. The latent variable presence Z(s)
it = 1

indicates that species s was present at location i and time period t, with detection probability p(s)it
modeled with standardized covariate duration, which measures the length of the particular survey.
Histograms of the values for the covariates are shown in Figure 2. These same covariates are plotted
across space in Figure 3. The left column shows raw data, and the right column shows interpolated
covariates using a thin plate spline for ease of visualization only.

Figure 2: Histograms of the three covariates. Left: Percent forest cover across the 267 locations. Center:
Elevation of the 267 sites. Right: Durations of the unique surveys. Each coavariate is standardized and
therefore unitless on this scale.

To define the neighborhood structure used for the spatial random effect, we selected a threshold of
15000 (meters, as these are UTM coordinates) and defined any two locations whose distance is less
than 15000 to be neighbors. This threshold gave each location somewhere between 1 and 8 neighbors,
with an average of 4.23 neighbors. We assume q = 10 spatial basis functions in each season.

The multioccbuild(detection,occupancy,coords,DataNames,threshold) function takes five ar-
guments as input, and outputs ‘model.input’ which is then an argument for GibbsSampler() which
implements the Gibbs Sampling MCMC algorithm to simulate from the posterior distribution. Exam-
ples of the inputs ‘occupancy’, ‘detection’, ‘coords’, ‘DataNames’ and ‘threshold’ for our application
are shown below:
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Figure 3: Spatial plots of the three covariates forest cover, elevation, and duration. The left column
shows raw data, and the right column shows interpolated data using a thin plate spline for ease of
visualization only. Forest and Duration are shown for season one, as these two covariates vary in time.

> head(occupancy, n=4L)
site season forest elev

1 Q001 1 -1.148171612 -1.14938671
2 Q002 1 -0.496936229 -1.14938671
3 Q003 1 -0.098959051 -0.21468405
4 Q004 1 -0.931093151 -0.37046783

> head(detection, n=4L)
site season survey Great.tit Blue.tit Coal.tit Crested.tit Marsh.tit Willow.tit duration

1 Q001 1 1 NA NA NA NA NA NA 0.1563255
2 Q002 1 1 1 1 0 0 1 0 -0.9274962
3 Q003 1 1 1 0 1 0 1 0 -0.2605290
4 Q004 1 1 NA NA NA NA NA NA -0.8441253

Observe that some surveys have NAs for all detections. Our model and package can easily accommo-
date missing values for the detections, but our model cannot handle missing values for occupancy
covariates nor missing values for detection covariates when the corresponding ‘y‘ are not missing.
Missing values in the covariates will result in a warning when the multioccbuild() function is run,
and rows corresponding to those observations in ‘detection’ and possibly in ‘occupancy’ will be
removed. We suggest that all quantitative variables to be used as detection or occupancy covariates be
standardized to aid with mixing in the MCMC algorithm. The remainder of the input items are:

> head(coords, n=4L)
site x y

1 Q001 922942 63276
2 Q002 928942 79276
3 Q003 928942 103276
4 Q004 934942 95276

> DataNames = list("species"=colnames(detection)[4:9],"detection"=c("duration"),
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"occupancy"=c("forest","elev"))
> DataNames
$species
[1] "Great.tit" "Blue.tit" "Coal.tit" "Crested.tit" "Marsh.tit" "Willow.tit"

$detection
[1] "duration"

$occupancy
[1] "forest" "elev"

With each of these inputs properly defined, we run the main data function multioccbuild():

> model.input = multioccbuild(detection, occupancy, coords, DataNames, threshold = 15000)
Warning: Rows in detection with missing covariates have been removed for purposes of
fitting the model, but the site/season combination is retained in occupancy and therefore
predictions will be outputted.

The above message arises from cases in which we have NAs for covariates in detection W, but we
have actual observations of y for these same site/season/survey combinations. Our model cannot be
fit using rows with missing detection covariates but non-missing detections in y. There are 544 NAs in
the covariate, but only 4 of these cases have non-missing detections:

> sum(is.na(detection$duration))
[1] 544
> sum(!is.na(detection$Great.tit) & is.na(detection$duration))
[1] 4

One issue is site Q091, season 8:

> detection[detection$site == "Q091" & detection$season==8,]
site season survey Great.tit Blue.tit Coal.tit Crested.tit Marsh.tit Willow.tit duration

5698 Q091 8 1 0 0 1 1 0 1 -1.177609
5965 Q091 8 2 1 0 1 1 0 1 -1.094238
6232 Q091 8 3 0 0 1 1 0 1 NA

The second issue is site Q125, season 2:

> detection[detection$site=="Q125" & detection$season==2,]
site season survey Great.tit Blue.tit Coal.tit Crested.tit Marsh.tit Willow.tit duration

926 Q125 2 1 1 1 1 1 1 0 NA
1193 Q125 2 2 1 1 1 0 1 0 NA
1460 Q125 2 3 1 1 1 1 1 0 NA

The multioccbuild() function replaces the observed occupancy data y with NAs for these 4 cases.
The output is ‘model.input’:

model.input = list("DataNames"=DataNames,"X"=X,"W"=W,"y"=y,"A"=A,
"detection.info"=detection[,c("siteID","site","season","survey","observations")],
"occupancy.info"=occupancy[,c("siteID","site","season","x","y")])

Objects saved here reflect handling the missing data for the 4 rows described above:

>model.input$y[(model.input$detection.info$site == "Q091" &
model.input$detection.info$season == 8),]

Great.tit Blue.tit Coal.tit Crested.tit Marsh.tit Willow.tit
5698 0 0 1 1 0 1
5965 1 0 1 1 0 1
6232 NA NA NA NA NA NA

> model.input$y[(model.input$detection.info$site == "Q125" &
model.input$detection.info$season == 2),]

Great.tit Blue.tit Coal.tit Crested.tit Marsh.tit Willow.tit
926 NA NA NA NA NA NA
1193 NA NA NA NA NA NA
1460 NA NA NA NA NA NA
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The package reorders the data as site, then season, then survey, and ensures all matrices are in this
order. The resulting design matrices for occupancy X and detection W are

> head(model.input$X, n=4L)
forest elev

1 1 -1.14817161 -1.1493867
11 1 -0.49693623 -1.1493867
21 1 -0.09895905 -0.2146840
32 1 -0.93109315 -0.3704678

> nrow(model.input$X)
[1] 2670

> head(model.input$W, n=4L)
[,1] [,2]

[1,] 1 0.1563255
[2,] 1 1.1567763
[3,] 1 1.1567763
[4,] 1 -0.9274962

> nrow(model.input$W)
[1] 8010

The threshold is the Euclidean distance which defines whether or not two locations are neighbors.
In our, setting we set threshold = 15000 which results in the 2670 × 2670 block diagonal adjacency
matrix

> model.input$A[1:5,1:5]
1 11 21 32 41

1 0 0 0 0 0
11 0 0 0 0 0
21 0 0 0 1 1
32 0 0 1 0 0
41 0 0 1 0 0

Observe the detections y are reordered because all components of the data were reordered accord-
ing to site, season, and survey:

> head(model.input$y, n=4L)
Great.tit Blue.tit Coal.tit Crested.tit Marsh.tit Willow.tit

1 NA NA NA NA NA NA
268 NA NA NA NA NA NA
535 NA NA NA NA NA NA
2 1 1 0 0 1 0

> head(model.input$detection.info, n=4L)
siteID site season survey observations

1 1 Q001 1 1 0
268 1 Q001 1 2 0
535 1 Q001 1 3 0
2 2 Q002 1 1 1
> nrow(model.input$detection.info)
[1] 8010

> head(model.input$occupancy.info, n=4L)
siteID site season x y

1 1 Q001 1 922942 63276
11 2 Q002 1 928942 79276
21 3 Q003 1 928942 103276
32 4 Q004 1 934942 95276
> nrow(model.input$occupancy.info)
[1] 2670
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We ran our full analysis using the GibbsSampler(M.iter = 50000,M.burn = 20000,
M.thin = 10,model.input,q=10,sv=TRUE). This took 4.03 hours to run on a single node on the Wake
Forest University DEAC Cluster (Information Systems and Wake Forest University, 2021).

Results from the analysis are shown in Tables 1 and 2. It is important to note that we standardized
all covariates to aid with MCMC mixing, and so we focus on the relative ordering of parameter
estimates when comparing to other studies rather than absolute estimates. Table 1 shows the ordering
of elevation’s impact on occupancy as Willow Tit, Crested and Coal Tit, Great Tit, Blue Tit and Marsh
Tit. This ordering largely matches the ordering published in Tobler et al. (2019) (Table S2), which
considered the same data and six species in a somewhat similar Joint Species Distribution Model.
Chamberlain et al. (2016) published that Willow Tits occupy higher elevations than Coal Tits in a
nearby region of Italy, consistent with the ordering presented here. Turning to percent forest cover,
our results show higher occupancy with higher forest cover for the Willow, Coal and Crested Tits,
middlling occupancy for Marsh Tit, and lower occupancy for the Great and Blue Tits, again matching
the ordering of Tobler et al. (2019).

Species Intercept Forest Elevation
Great Tit 0.847 (0.769, 0.930) -0.143 (-0.215, -0.072) -0.224 (-0.300, -0.149)
Blue Tit 0.639 (0.547, 0.729) -0.139 (-0.221, -0.058) -0.261 (-0.349, -0.177)
Coal Tit 0.996 (0.919, 1.076) -0.007 (-0.080, 0.066) -0.130 (-0.204, -0.055)

Crested Tit 0.764 (0.667 , 0.867) -0.014 (-0.097, 0.071) -0.138 (-0.223, -0.052)
Marsh Tit 0.611 (0.509 , 0.724) -0.124 (-0.219, -0.031) -0.283 (-0.386, -0.182)

Willow Tit 0.383 (0.267 , 0.506) 0.108 (0.013, 0.199) 0.068 (-0.028, 0.163)

Table 1: Posterior means and 95% credible intervals for the occupancy regression coefficients α.

Species Intercept Duration
Great Tit 0.593 (0.553, 0.633) -0.187 (-0.228, -0.147)
Blue Tit 0.109 (0.069, 0.149) -0.257 (-0.299, -0.214)
Coal Tit 0.738 (0.696, 0.779) 0.303 (0.263, 0.346)

Crested Tit -0.030 (-0.072, 0.011) 0.352 (0.309, 0.395)
Marsh Tit -0.307 (-0.351, -0.264) -0.090 (-0.133, -0.048)

Willow Tit -0.482 (-0.532, -0.434) 0.430 (0.377, 0.482)

Table 2: Posterior means and 95% credible intervals for the detection regression coefficients β

Turning next to the residual dependence structure, Figure 4 shows the posterior mean of the
correlation matrix computed from Σ for the six species, with notable differences across pairs of species.
We see a mixture of positive and negative correlations across different pairs of species, with, for
instance, a strong positive signal for the Coal and Crested Tits but a strong negative correlation for the
Willow and Marsh Tits. The positive correlation estimated here for Great tit and Blue tit is consistent
with Stenseth et al. (2015), who noted these species occupy the same geographical areas and compete
for resources, which can result in negative correlation for abundance, but positive correlation for
occupancy. Our estimated correlations for the six species somewhat differ from those estimated by
Tobler et al. (2019), who showed results on residual correlation of occupancy probability for the six tit
species for a single season, but computed under a latent factor model. Their results showed all positive
correlations among the six species, a result they noted with surprise. However, this is reflective of the
factor model structure in their assumed model which is less flexible than the multivariate random
effect we used here. They also assumed different covariates and only modeled a single season, and
as both model’s dependence structures are residual to covariate effects, the estimates are not readily
comparable.

Figures 5 and 6 show posterior means for occupancy probabilities ψ for seasons 1 and 7 for all six
species. Hollow circles show the actual detections of each species in each corresponding season. For
all T = 10 years, we observe a very strong relationship between predicted occupancy probabilities ψ
and species detections for all species and all seasons.

5 Conclusion

In this article, we introduced the R package multiocc for implementing the multivariate spatio-
temporal occupancy model proposed by Hepler and Erhardt (2021). This model overcomes many of
the limitations of occupancy models that can be implemented with already existing R packages. More
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Figure 4: Posterior mean of the correlation matrix computed from Σ. Plot shows examples of pairs
of strongly correlated species (e.g. Great Tit and Blue Tit), strongly negative correlated species (e.g.
Marsh Tit and Willow Tit), and largely uncorrelated species (e.g. Marsh Tit and Coal Tit).

specifically, this model can jointly analyze S ≥ 1 species over multiple seasons with a varying number
of surveys at each site per season. The use of spatial basis functions makes this method feasible even
with a large number of spatial locations.

Using this package to analyze imperfectly detected presence/absence data requires two main
steps. First, the multioccbuild() function takes the raw data and outputs all matrices required to run
the MCMC algorithm. Then, the GibbsSampler() function performs the Gibbs sampling algorithm to
generate samples from the posterior distribution which can then be used to perform inference. We
illustrated use of this package by analyzing occupancy data on six bird species in Switzerland from
2004 - 2013. The development of multiocc makes this multivariate spatio-temporal occupancy model
accessible to the large community of researchers who use R for their data analysis needs.
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Figure 5: An example of occupancy predictions for season 1. Colors show posterior means of ψ for
each location and species, interpolated across space using a thin plate spline for ease of visualization
only. Hollow circles show points with detections of the species in that particular season. As expected,
regions of higher posterior probability match regions with greater density of detections.
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Figure 6: An example of occupancy predictions for season 7. Colors show posterior means of ψ for
each location and species, interpolated across space using a thin plate spline for ease of visualization
only. Hollow circles show points with detections of the species in that particular season. As expected,
regions of higher posterior probability match regions with greater density of detections.
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