
CONTRIBUTED RESEARCH ARTICLE 257

Updates to the R Graphics Engine: One
Person’s Chart Junk is Another’s Chart
Treasure
by Paul Murrell

Abstract Starting from R version 4.1.0, the R graphics engine has gained support for gradient fills,
pattern fills, clipping paths, masks, compositing operators, and stroked and filled paths. This document
provides a basic introduction to each of these new features and demonstrates how to use the new
features in R.

1 Introduction

Figure 1 shows a data visualization with a subtle feature on each circle.1 The border of each circle in
the visualization is semi-transparent and the border of each circle becomes more transparent from
left to right. We could argue about whether circles are the best representation of these values and
whether the semi-transparent gradient is particularly helpful, but for the purposes of this paper, this
image represents a specific example of a general problem: does R graphics allow us to produce the
exact final image that we desire, or do the limitations of the R graphics engine force us to use external,
manual software like Adobe Illustrator to perform additional modifications? Over the past few years,
a number of capabilities have been added to the R graphics engine with the aim of being able to
produce the exact final image that we desire entirely within R code.

Figure 1: A diagram with a semi-transparent linear gradient on each circle border.

For example, it is now possible to define a linear gradient in R. The following code defines a
horizontal linear gradient from a light gray on the left to a very light gray on the right.

library(grid)
linearbg <- linearGradient(grey(c(.8, .99)),

x1=0, x2=1, y1=.5, y2=.5)

The following code uses the linearbg gradient defined above to add a subtle linear gradient back-
ground to a ggplot2 plot (Wickham 2016) by setting the fill in the plot.background (see Figure 2).

library(ggplot2)
ggplot(mtcars) +

geom_point(aes(disp, mpg)) +
theme(plot.background=element_rect(fill=linearbg, colour=NA),

plot.margin=unit(c(1, 1, .25, .25), "cm"),
panel.background=element_rect(fill=NA, colour="black"),
panel.grid=element_blank())

Only some of the new graphics features are available at this stage via high-level interfaces like
ggplot2, as in the example above, so Section 2 will introduce the new features via a number of
lower-level examples using the grid package. Section 2 will serve two purposes: to explain what the
new features are and to show how they can be used (at least with grid). Section 3 will provide some
examples of how to integrate the lower-level grid usage with higher-level packages like ggplot2, lattice,

1This image was inspired by a post on stack overflow.

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=lattice
https://stackoverflow.com/questions/69755844/is-it-possible-to-draw-the-following-diagram-in-r

CONTRIBUTED RESEARCH ARTICLE 258

Figure 2: A ggplot2 plot with a subtle linear gradient background.

and base graphics plots. Section 4 provides a discussion of important limitations of the new features,
how the new features relate to the capabilities of existing R packages, and pointers to further readings.
For readers unfamiliar with the organization of R graphics systems, for example, the relationship
between grid and ggplot2, the Appendix provides a brief overview.

2 The new graphics features

In this section, we introduce the new graphics features one by one. The aim is to explain each feature,
show what it can do, and show how to use the feature with the grid package. Since grid will not
be familiar for many R users, the examples will be kept as simple as possible and will involve only
drawing basic shapes; Section 3 will provide some more complicated examples involving complete
plots.

2.1 Gradient fills

There are new functions in the grid package for defining gradient fills. For example, we can use the
linearGradient() function to define a linear gradient based on a start point, an end point, and a set
of colors to transition between (along the straight line between the start and end point).

In the following code, we use the rgb() function to define two R colors, both blue, but one almost
opaque and one almost completely transparent.

blues <- rgb(0, 0, 1, alpha=c(.8, .1))
blues

#> [1] "#0000FFCC" "#0000FF1A"

Next we define a linear gradient that transitions horizontally, left-to-right, between these two
colors. In grid, we can specify positions relative to a variety of coordinate systems, but the default is a
“normalized” system where 0 means left/bottom and 1 means right/top (and .5 means the center).

gradient <- linearGradient(blues, x1=0, x2=1, y1=.5, y2=.5)

The code above does not draw anything; it just defines a linear gradient. In order to draw the
gradient, we provide this object as the “fill color” to a function that does draw something. For example,

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=ggplot2

CONTRIBUTED RESEARCH ARTICLE 259

as we saw in the introduction, we can pass that linear gradient object as the fill argument to the
element_rect() function so that ggplot2 will fill a rectangle with the gradient.

In grid, we can draw a shape with a fill color by calling a function like grid.circle() and
specifying the fill argument to the gpar() function. For example, the following code draws a circle
with a "blue" fill. By default, the circle is drawn in the center of the image and r=.3 means that the
radius of the circle is 30% of the width of the image. All of the images in this section will have a light
gray checkerboard pattern in the background so that we can properly see any semi-transparency in
what we draw.

grid.circle(r=.3, gp=gpar(col=NA, fill="blue"))

The following code draws a circle and uses the linear gradient that we defined at the start of this
section as the fill. Notice that the location x1=0 in the linear gradient definition refers to the “left”
of the circle and x2=1 refers to the “right” of the circle. In other words, the gradient is relative to the
bounding box of the shape that is being filled. There are many other possibilities, including using
the unit() function to specify the locations of the start and end points of the gradient in absolute
units like inches (though still relative to the shape’s bounding box) and we can also set the fill on a
grid viewport rather than on individual shapes. The Further reading Section provides links to several
technical reports that demonstrate a wider range of examples.

grid.circle(r=.3, gp=gpar(col=NA, fill=gradient))

There is also a radialGradient() function for defining a gradient that is based on a start circle
and an end circle and a set of colors to transition between. For example, the following code defines a
radial gradient that starts with radius r1=.5 and ends with radius r2=0, transitioning from an almost
opaque blue to almost fully transparent blue.

radial <- radialGradient(blues, r1=.5, r2=0)

In the following code, the radial gradient is used to fill a circle. The radii of the start and end circles
of the gradient are relative to the bounding box of the circle that is being filled, so r1=.5 corresponds
to the circumference of the circle being filled and r2=0 corresponds to the center of the circle being
filled.

grid.circle(r=.3, gp=gpar(col=NA, fill=radial))

Any shape can be filled with either a linear or radial gradient. For example, the following code
fills a rectangle with the radial gradient defined above.

grid.rect(width=.6, height=.6, gp=gpar(col=NA, fill=radial))

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=ggplot2

CONTRIBUTED RESEARCH ARTICLE 260

2.2 Pattern fills

It is now also possible to fill a shape with a pattern fill with the help of the pattern() function from
the grid package. The first argument to this function describes what to draw for the pattern and
subsequent arguments describe the size of the pattern - the extent of the pattern tile - along with what
happens outside of the pattern tile. As an example, we will look at the construction of the checkerboard
pattern that is being used as the background for the images in this section.

The first step is to describe the shape for the pattern. In this case, we use a call to rectGrob() to
describe two rectangles, both .1 inches square and filled with light gray, with one rectangle just above
and to the right of center and one just below and to the left of center. The grid function unit() is used
to associate a value with a coordinate system. In the "npc" coordinate system, 0 means left/bottom, 1
means right/top, and .5 means the center, and in the "in" coordinate system, values are in inches.
The image below the code shows what this shape looks like drawn on its own.

bgRect <- rectGrob(x=unit(.5, "npc") + unit(c(0, -.1), "in"),
y=unit(.5, "npc") + unit(c(0, -.1), "in"),
just=c("left", "bottom"),
width=.1, height=.1, default.units="in",
gp=gpar(col="gray80", fill="gray80"))

The following code creates a pattern based on this shape. The size of the tile is .2” square and the
tile will be repeated to fill a region (extend="repeat"). The image below the code shows the pattern
tile (without repetition); the extent of the tile is indicated by a red rectangle.

bg <- pattern(bgRect,
width=unit(.2, "in"),
height=unit(.2, "in"),
extend="repeat")

As with the linearGradient() and radialGradient() functions, the result of a call to pattern()
is just an object that describes a pattern; nothing is drawn. We supply this pattern object as the fill
for a shape that is to be drawn.

For example, the object that we created with a call to pattern() can be used as the fill graphical
parameter in grid functions. The following code draws a rectangle that is the size of the entire image
and fills it with the bg pattern. The pattern tile is drawn in the center of the rectangle and then repeated
to fill the entire rectangle.

grid.rect(gp=gpar(fill=bg))

As with gradient fills, we can use the pattern to fill any shape. For example, the following code
fills a circle with the checkerboard pattern.

grid.circle(gp=gpar(fill=bg))

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 261

2.3 Clipping paths

A clipping region describes an area within which drawing will be visible. By default, everything
that we draw within the limits of an image is visible, but we can set a clipping region to limit what
gets drawn. Rectangular clipping regions have been available in R graphics for a very long time. For
example, in scatter plots, the data symbols are usually clipped to the (rectangular) plot region. The
code below produces a ggplot2 plot with the x-axis scale set to exactly the range of the disp variable
so that the left-most and right-most data symbols are centered on the left and right edge of the plot
region. The ggplot2 package clips the drawing of the data symbols to the plot region so only half of
the left-most and right-most data symbols are drawn (see Figure 3).

ggplot(mtcars) +
geom_point(aes(disp, mpg), size=3) +
scale_x_continuous(expand=c(0, 0)) +
theme(plot.margin=unit(c(1, 1, .25, .25), "cm"),

panel.background=element_rect(fill=NA, colour="black"),
panel.grid=element_blank())

Figure 3: A ggplot2 plot with the left-most and right-most data symbols clipped to the edges of the
plot region.

In grid, a clipping region can be defined when we push a viewport. A viewport is a rectangular
region that defines a temporary coordinate system for drawing, plus some other parameters like
the clipping region. For example, the plot region on a ggplot2 plot is a grid viewport that provides
coordinates for drawing data symbols, with clipping turned on so that nothing is drawn outside the
plot region.

The following code provides a simple demonstration of a viewport. First, we describe two circles,
one centered on the left edge of the image and one centered on the right edge of the image. The
circleGrob() function is similar to the grid.circle() function, except that it just creates a description
of a circle and does not draw anything. The grid.draw() function draws the circles. Because the
circles are centered on the edges of the image, we can only see half of each circle.

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=ggplot2

CONTRIBUTED RESEARCH ARTICLE 262

gradient2 <- linearGradient(blues, x1=0, x2=1, y1=.5, y2=.5,
group=FALSE)

circles <- circleGrob(x=0:1, r=.5, gp=gpar(col=NA, fill="blue"))
grid.draw(circles)

In the following code, the viewport() function describes a viewport that is only 50% of the width
and 50% of the height of the image. The pushViewport() function creates that viewport on the image.
We then call the grid.draw() function to draw the circles again, but now we are within the viewport,
so the circles are drawn centered on the left and right edges of the viewport. Furthermore, the radius
of the circles (.5) now means 50% of the width of the viewport, so the circles are also drawn smaller
than before. Notice that the circles extend beyond the edges of the viewport because, by default, there
is no clipping region. The popViewport() function removes the viewport from the image (so further
drawing would be at full size). In the image below, a red rectangle has been drawn just to show the
extent of the viewport, but normally nothing is drawn when a viewport is created.

pushViewport(viewport(width=.5, height=.5))
grid.draw(circles)
popViewport()

The following code demonstrates the idea of clipping to a viewport. We push a viewport again,
but this time the viewport has clipping turned on (clip=TRUE). A purple rectangle shows the extent of
this viewport. When we draw the circles within this viewport, drawing is limited to the extent of the
viewport, so half of the left circle and half of the right circle are clipped.

pushViewport(viewport(width=.5, height=.5, clip=TRUE))
grid.draw(circles)
popViewport()

This idea of a clipping region has now been extended to a clipping path so that we can limit
drawing to a region that is any shape at all, not just a rectangle. For example, the following code
describes a diamond shape that we will use as a clipping path. This code does not draw anything, but
the shape is shown below the code anyway just so that we know what it looks like.

diamondPath <- polygonGrob(c(0, .5, 1, .5), c(.5, 1, .5, 0))

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 263

The following code pushes a viewport again, but this time sets the clipping region for the viewport
to be the diamond shape that we defined above. Now, when we draw the two circles within this
viewport, only the parts of the circles that lie within the diamond-shaped clipping path are visible. Just
as a guide, a red rectangle has been drawn to show the extent of the viewport that we have pushed,
and a purple diamond has been drawn to show the extent of the clipping path. Notice that the location
and size of the diamond path is relative to the viewport, so 0 is the left/bottom of the viewport and 1 is
the right/top of the viewport.

pushViewport(viewport(width=.5, height=.5, clip=diamondPath))
grid.draw(circles)
popViewport()

2.4 Masks

Masks are similar to clipping paths in that they constrain what parts of a shape are visible. However, a
mask provides greater flexibility because it allows intermediate levels of semi-transparency; a clipping
path effectively only allows either fully opaque or fully semi-transparent masking.

A mask, like a clipping path, can be based on any shape. For example, the following code describes
a diamond shape (that is filled black). This code does not draw anything, but the diamond is shown
below the code anyway so that we know what it looks like.

diamondMask <- polygonGrob(c(0, .5, 1, .5), c(.5, 1, .5, 0),
gp=gpar(fill="black"))

Also like clipping paths, we can enforce a mask when we push a viewport. The following code
pushes a viewport that is half the width and half the height of the total image and enforces the mask
defined above and then draws the two blue circles. The mask works by transferring its opacity to the
circles. Where the mask is opaque, the circles are drawn normally and where the mask is transparent,
the circles are not drawn at all. The effect of this mask is exactly the same as the clipping path example
from the previous section.

pushViewport(viewport(width=.5, height=.5, mask=diamondMask))
grid.draw(circles)
popViewport()

The additional flexibility that is available with masks comes from the fact that the mask may
have fully opaque areas and fully transparent areas and areas of semi-transparency. For example, the
following code defines a more complex shape. This shape is a square with opaque corners and a
semitransparent diamond in the middle (again, the shape is shown below the code just for reference;
the code does no actual drawing). In this code, the grobTree() function is used to describe a mask
that is made up from two shapes: a polygonGrob() that describes the semitransparent diamond and a
pathGrob() that describes the opaque corners.

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 264

alphaMask <- grobTree(polygonGrob(c(0, .5, 1, .5), c(.5, 1, .5, 0),
gp=gpar(fill=rgb(0,0,0,.5))),

pathGrob(c(0, 0, 1, 1, 0, .5, 1, .5),
c(0, 1, 1, 0, .5, 1, .5, 0),
id=rep(1:2, each=4),
rule="evenodd",
gp=gpar(fill="black")))

When we push a viewport with this mask, and draw the two circles, the result is the original
circles where the mask is opaque and a semitransparent version of the circles where the mask is
semitransparent.

pushViewport(viewport(width=.5, height=.5, mask=alphaMask))
grid.draw(circles)
popViewport()

The masks used above are examples of alpha masks. They work by transferring the “alpha channel”,
or opacity, of the mask to the shape that is being drawn. It is also possible to define luminance masks.
With a luminance mask, areas of the mask that are white mean that drawing will occur normally, areas
that are black mean that no drawing will occur, and areas that are gray produce semi-transparent
drawing.

2.5 Stroked and filled paths

Another new feature in R graphics is the ability to stroke and/or fill a path, where the path is defined
by one or more other shapes. As an example, we will look at producing the “square with opaque
corners” from the previous section on masks.

The code below is similar to the code used in the previous section (and the shape that it draws is
shown below the code). This code uses the grid.path() function and it is relatively complex because
it has explicit x and y locations to describe the corners of a square followed by the corners of a diamond
and an id argument to divide the x and y locations into separate shapes (square and diamond). The
rule="evenodd" argument means that the interior of the path (that is filled with black) is inside the
square, but not inside the diamond.

grid.path(c(0, 0, 1, 1, 0, .5, 1, .5),
c(0, 1, 1, 0, .5, 1, .5, 0),
id=rep(1:2, each=4),
rule="evenodd",
gp=gpar(fill="black"))

The idea with stroked and filled paths is that we can describe more complex shapes like this by
combining simpler shapes instead of having to specify explicit x and y locations. For example, the

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 265

following code draws the same shape using grid.fillStroke(), which allows us to describe the
shape as a combination of a simple rectangle, with rectGrob(), and the diamondPath that we defined
earlier.

grid.fillStroke(grobTree(rectGrob(), diamondPath),
rule="evenodd",
gp=gpar(fill="black"))

The following code shows a similar example, this time creating a square with rounded corners by
combining a rectangle with a circle. This shape would be much harder to describe using pathGrob()
and explicit x and y locations.

grid.fillStroke(grobTree(rectGrob(), circleGrob()),
rule="evenodd",
gp=gpar(fill="black"))

We can also use stroked and filled paths to stroke the outline of text. Normally, we can only draw
filled text in R, but the new grid.stroke() function treats its first argument as just a path to draw the
outline of. For example, the following code strokes the outline of the text “path”.

grid.stroke(textGrob("path", gp=gpar(cex=2.5)))

2.6 Compositing operators

Normally when we draw two shapes in R, the second shape is drawn on top of the first shape; if the
two shapes overlap, the second shape will obscure the first shape. For example, the following code
defines two concentric circles, a larger one with a blue fill and a smaller one with a black fill.

circle1 <- circleGrob(r=.35, gp=gpar(col=NA, fill="blue"))

circle2 <- circleGrob(r=.25, gp=gpar(col=NA, fill="black"))

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 266

If we draw these circles, one after the other, the black circle partially obscures the blue circle. In
technical terms, the black circle is composited with the blue circle using an “over” operator.

grid.draw(circle1)
grid.draw(circle2)

The grid.group() function in R allows us to select a different compositing operator. For example,
the following code draws the two circles again, but this time using a “dest.out” operator, which means
that, instead of drawing the black circle on top of the blue circle, the blue circle is removed where it is
overlapped by the black circle (and the black circle is not drawn at all).

grid.group(circle2, "dest.out", circle1)

The ability to control the compositing operator provides us with one way to draw a circle with a
semi-transparent gradient border that we saw in the very first example in the Introduction. First, we
define two circles, one with a semi-transparent gradient fill and one with a black fill.

dst <- circleGrob(r=.35, gp=gpar(col=NA, fill=gradient))

src <- circleGrob(r=.25, gp=gpar(col=NA, fill="black"))

Then we composite the black circle with the semi-transparent circle, using "dest.out", which
creates a hole in the semi-transparent circle. The result is a circle with a semi-transparent gradient
border.

grid.group(src, "dest.out", dst)

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 267

The full set of Porter-Duff compositing operators (Porter and Duff 1984) are available along with a
set of “blend modes” from the PDF language specification (Adobe Systems Incorporated 2001).

3 Integrating with higher-level interfaces

In this section we look at several more complex examples to show how the new graphics features
might be used as part of a high-level plot.

Some features are already accessible via high-level interfaces like ggplot2 and its extension pack-
ages. We saw one example of adding a background linear gradient to a ggplot2 plot in Figure 2.
Furthermore, the following code demonstrates that some ggplot2 extension packages also already
make use of the new graphics features. In this case, we are using the stat_gradientinterval()
function from the ggdist package (Kay 2023) to draw linear gradients that represent within-group
variability (see Figure 4). 2 In theory, any package that extends ggplot2 can potentially make use of
the new features because extending ggplot2 involves writing grid code.

library(ggdist)
library(distributional)
ggplot(TGsummary) +

stat_gradientinterval(aes(x=dose, ydist=dist_normal(len.mean, len.sd))) +
facet_wrap("supp")

Figure 4: A ggdist plot that uses linear gradients to represent variability within groups.

3.1 Integrating with ggplot2

Where there is no interface yet for new graphics features in ggplot2 or its extension packages, it is
possible to access the new graphics features using the gggrid package (Murrell 2022a). For example,

2Code that generates the data, in this case TGsummary, will not be shown in this section, but it is available as part
of the supplementary materials for this article.

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=ggdist
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=gggrid

CONTRIBUTED RESEARCH ARTICLE 268

the following example uses gggrid to access the new feature for drawing stroked paths in order to
draw outlined text within a ggplot2 plot.

The first step is to write a function that generates a description of something to draw. The following
code first creates a textGrob() and then creates a strokeGrob() that will draw the outline of the text
with a thick white line. The function returns a grobTree() that will draw the original text on top of
the thick white outline.

library(gggrid)
outlineLabel <- function(data, coords) {

text <- textGrob(paste0(data$percent[2], "%"), gp=gpar(cex=3))
grobTree(strokeGrob(text, gp=gpar(col="white", lwd=10)),

text)
}

The following code draws a faceted ggplot2 plot, where each panel consists of an array of yellow
and gray tiles.3 The call to grid_panel() means that the outlineLabel() function that we defined
above is called for each panel of the plot, which adds the outlined text to each panel (see Figure 5).

ggplot(judges) +
geom_tile(aes(x, y, fill=race), color="white", lwd=.7) +
grid_panel(outlineLabel, aes(percent=Freq), data=judgeCounts) +
facet_wrap("president") +
scale_fill_manual(values=c(white="#F8C216", other="grey80")) +
theme_void() +
theme(aspect.ratio=1,

legend.position="none")

Figure 5: Outlined text on a ggplot2 plot produced with the gggrid package and stroked paths.

This particular result (outlined text) can also be produced using the shadowtext package (Yu 2022).
However, that package currently produces outlined text by drawing 17 different copies of the text
(slightly offset from each other) to get the final result. This is an example where an existing package
may be able to gain some efficiencies by adopting some of the new graphics features.

3.2 Integrating with lattice

The lattice package (Sarkar 2008) provides an alternative high-level plotting system. For example, the
following code uses lattice to draw a line plot representing two mathematical functions. The plot has
a transparent background and heavy grid lines, which creates a problem where the legend overlaps
with the grid lines (see Figure 6).

library(lattice)
key <- list(text=list(expression(y1 == x^2, y2 == x^3)),

lines=list(col=2:3, lwd=3),
padding.text=3,
border=TRUE,
x=.5, y=.75, corner=c(.5, .5))

3This example is based on a stackoverflow post, which itself is based on a post on fivethirtyeight.com

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=gggrid
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=shadowtext
https://CRAN.R-project.org/package=lattice
https://CRAN.R-project.org/package=lattice
https://stackoverflow.com/questions/70529987/outlined-letters-in-text-ggplot2-538-style
https://fivethirtyeight.com/features/trump-made-the-federal-courts-whiter-and-more-conservative-and-that-will-be-tough-for-biden-to-reverse/

CONTRIBUTED RESEARCH ARTICLE 269

xyplot(y1 + y2 ~ x, type="l", lwd=3, col=2:3,
panel=function(...) {

panel.grid(h=-1, v=-1, col="black")
panel.xyplot(...)

},
key=key)

Figure 6: A plot of two mathematical functions drawn with the lattice package. The checkerboard
pattern is there to show that the plot itself has a transparent background.

The lattice package, like ggplot2, is based on grid, and we can easily access the grid interface
to new graphics features by calling grid functions from within the panel function in the xyplot()
call. We will use this to access the new masking feature so that the drawing of the grid lines does not
overlap with the legend.

The first step is to use the draw.key() function from lattice, which gives us a grid object that
describes the legend that lattice will draw.

keygrob <- draw.key(key=key, vp=viewport(x=.5, y=.75))

The following code defines a mask, based on that keygrob, that is a black rectangle with a hole
where the legend will be drawn. This uses a filled path that is based on a much larger rectangle with
the keygrob inside it to create the hole.

keyMask <- fillGrob(as.path(grobTree(rectGrob(width=2, height=2),
keygrob),

rule="evenodd",
gp=gpar(fill="black")))

Now we can draw the lattice plot again, but this time we push a grid viewport that enforces the
keyMask and draw the grid lines within that viewport. This means that the grid lines are not drawn
where they overlap with the legend (see Figure 7).

xyplot(y1 + y2 ~ x, type="l", lwd=3, col=2:3,
panel=function(...) {

limits <- current.panel.limits()
pushViewport(viewport(mask=keyMask,

xscale=limits$xlim,

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=lattice
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=lattice
https://CRAN.R-project.org/package=lattice
https://CRAN.R-project.org/package=lattice

CONTRIBUTED RESEARCH ARTICLE 270

yscale=limits$ylim))
panel.grid(h=-1, v=-1, col="black")
popViewport()
panel.xyplot(...)

},
key=key)

Figure 7: A lattice plot with a mask used to only draw the grid lines where they do not overlap with
the legend. The checkerboard pattern is there to show that the plot itself has a transparent background.

3.3 Integrating with base graphics

There is no interface to the new graphics features for the base graphics system (the graphics package)
or packages that build on it. However, the gridGraphics package (Murrell and Wen 2020) can be used
to convert base graphics to grid and then the grid interface can be used to access the new graphics
features.

For example, the following code uses base graphics to draw a map with a set of contour regions
overlaid (see the map on the left in Figure 8).

library(maps)
par(mar=rep(2, 4))
map("nz")
invisible(mapply(function(c, col, fill) {

polygon(cx, cy, default.units="native",
border=col, col=fill)

},
contours, colours, fills))

The following code redraws the map, but uses the new clipping paths feature to clip the contour
regions with the map boundary as the clipping path. The first step is to draw the map as before, but
this time we also record the coordinates of the map outline and use them to create a clipping path.
Next, we use the grid.echo() function from the gridGraphics package to convert the map into a grid
drawing, which includes a set of grid viewports. We navigate to the viewport where the map was
drawn ("graphics-window-1-0A") so that we have the correct coordinate system and then we push
a viewport with the clipping path. Finally, we draw the contour regions, which are clipped to the
outline of the map (see the map on the right of Figure 8).

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=gridGraphics
https://CRAN.R-project.org/package=gridGraphics

CONTRIBUTED RESEARCH ARTICLE 271

Figure 8: Left: A set of contours drawn on top of a map using base graphics; Right: The same map,
converted to grid graphics using the gridGraphics package, with the contours clipped by using the
boundary of the map as the clipping path.

par(mar=rep(2, 4))
outline <- map("nz")
clipPath <- polylineGrob(outline$x, outline$y, default.units="native")
library(gridGraphics)
grid.echo()
downViewport("graphics-window-1-0A")
cvp <- current.viewport()
pushViewport(viewport(xscale=cvp$xscale, yscale=cvp$yscale,

clip=clipPath))
invisible(mapply(function(c, col, fill) {

grid.polygon(cx, cy, default.units="native",
gp=gpar(col=col, fill=fill))

},
contours, colours, fills))

grid.draw(clipPath)
popViewport()

3.4 Drawing with grid

In some cases, it can be easier to produce a complete plot just using grid, rather than using a high-level
system like lattice or ggplot2. With this approach, all of the new graphics features are available. For
example, the following code draws the original example from Figure 1 (reproduced again in Figure 9).

First, we define a linear gradient (gray that becomes more transparent from left to right) and then
we define a function that draws a circle with that linear gradient as its border (as described in the
section on compositing operators).

library(grid)
grad <- linearGradient(rgb(0, 0, 0, c(.5, .1)),

y1=.5, y2=.5)
gradientCircle <- function(y, r) {

circle1 <- circleGrob(y=unit(y, "native"),
r=unit(r, "native") + unit(1.5, "mm"),
gp=gpar(col=NA, fill=grad))

circle2 <- circleGrob(y=unit(y, "native"),
r=unit(r, "native") - unit(1.5, "mm"),
gp=gpar(fill="white"))

grid.group(circle2, "dest.out", circle1)
}

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=lattice
https://CRAN.R-project.org/package=ggplot2

CONTRIBUTED RESEARCH ARTICLE 272

The main plot is drawn by dividing up the image into columns, using a grid.layout(), with each
column the correct width for one of the circles. We then run a loop and, for each circle, we push a
viewport into one of the layout columns, call the gradientCircle() function to draw a circle, add a
text label at the center of the circle, add another label above the circle, and draw a line segment that
starts just above the first label and ends just below the second label (see Figure 9).

grid.rect(gp=gpar(col=NA, fill="grey95"))
pushViewport(viewport(width=unit(1, "npc") - unit(3, "mm"),

y=unit(1.5, "mm"), just="bottom",
layout=grid.layout(1, numCircles,

widths=circleWidths, heights=h,
respect=TRUE)))

for (i in 1:numCircles) {
pushViewport(viewport(layout.pos.col=i, yscale=c(0, h)))
gradientCircle(circleRadii[i], circleRadii[i])
amountGrob <- textGrob(paste0(amount[i], "%"),

unit(.5, "npc"),
unit(circleRadii[i], "native"),
gp=gpar(col=purple,

fontface="bold",
cex=1 + amount[i]/max(amount)))

labelGrob <- textGrob(toupper(label[i]),
.5, .7,
just="bottom",
gp=gpar(fontface="bold", cex=.7, lineheight=1))

grid.draw(amountGrob)
grid.draw(labelGrob)
grid.segments(.5,

grobY(amountGrob, 90) + unit(2, "mm"),
.5,
grobY(labelGrob, 270) - unit(2, "mm"),
gp=gpar(col=purple, lwd=2))

popViewport()
}

Figure 9: A diagram with a semi-transparent linear gradient on each circle border. This is a reproduc-
tion of the original image from the Introduction.

4 Discussion

Since R 4.1.0, support for a number of new graphics features has been added to the R graphics engine.
These features are available via functions in the grid package, with some higher-level interfaces also
appearing, for example in the ggplot2 package and its extensions.

A small number of examples have been provided to show how the new graphics features might be
useful within the context of a statistical plot, but it is hopefully clear that a very large range of other
graphical images could be generated with gradients, patterns, clipping paths, masks, compositing
operators, and stroked/filled paths.

The trick to solving a particular graphical problem is being able to express the problem in terms of
the graphical tools at our disposal. If we just want to draw a blue circle, we only have to know how to
draw a circle and how to specify the color blue.

grid.circle(r=.3, gp=gpar(col="blue", fill="blue"))

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=ggplot2

CONTRIBUTED RESEARCH ARTICLE 273

However, if we want to draw a circle with a thick semi-transparent gradient border, we cannot
express a solution in terms of circles and the color blue. We need additional tools, like knowing how
to describe a linear gradient and knowing what the "dest.out" compositing operator does, and how
to define a group with a specific compositing operator.

grid.group(src, "dest.out", dst)

By adding more graphical tools, we increase our ability to express problems in terms of our
graphical tools and we give ourselves a better chance of finding solutions to graphical problems. As
argued at the very beginning of this document, the ability to produce more complex and fine-detailed
images, entirely in code, means that we can avoid costly and inefficient manual fine-tuning of our final
images.

4.1 Limitations

It is important to note that not all of the new features in the R graphics engine are supported
on all graphics devices. Most features are fully supported on Cairo-based graphics devices, e.g.,
png(type="cairo") and svg(), though these devices do not support luminance masks. Most features
are also supported on the pdf() device, including luminance masks, but the Porter-Duff compositing
operators are not supported. Most features are supported by the quartz() device (on macOS) from R
version 4.3.0, though not alpha masks and not paths based on text. The grDevices::dev.capabilities()
function can be used to report on the level of support in the current graphics device.

Several R packages that provide graphics devices have also added at least some support for these
features. For example, the ragg package (Pedersen and Shemanarev 2022) and the svglite package
(Wickham et al. 2022) have support for gradients, patterns, clipping paths, and masks at least.

It is also important to note that some PDF viewers do not render features like masks correctly,
so it may appear that the pdf() device is not working when in fact it is a problem with the viewing
software.

4.2 Related and prior work

Although support for gradients, patterns, clipping paths, and masks has only been added to the
R graphics engine (and supported in some graphics devices, with a user interface in grid) since R
version 4.1.0, at least some of these capabilities have been available in some form via CRAN packages,
in some cases for many years. This section, acknowledges some of these packages and discusses the
advantages and disadvantages of having the capabilities available in the R graphics engine.

The gridSVG package (Murrell and Potter 2022) has provided an interface to many graphical
features of the SVG language (including gradients, patterns, clipping paths, and masks) since 2011.
Some advantages of this package are that it provides access to features that are still not available in
the R graphics engine, including filter effects (such as “blur”) and animation. The downsides to this
package include the fact that it can only generate SVG output and it can only work with graphics
drawn by grid, although the gridGraphics package can help with that.

The gridpattern and the ggpattern packages both provide ways to fill regions with a pattern.
These packages make use of the new features in the R graphics engine, e.g., to limit a pattern fill to a
region by setting a clipping path or mask. In other words, they build upon the new features that are
available in R itself. Some of the advantages of these packages include: a set of predefined patterns
and, in the case of ggpattern, a higher-level interface to pattern fills that is compatible with ggplot2.

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=ragg
https://CRAN.R-project.org/package=svglite
https://CRAN.R-project.org/package=gridSVG
https://CRAN.R-project.org/package=gridGraphics
https://CRAN.R-project.org/package=gridpattern
https://CRAN.R-project.org/package=ggpattern
https://CRAN.R-project.org/package=ggpattern

CONTRIBUTED RESEARCH ARTICLE 274

The ggfx package (Pedersen 2022) provides filter effects at both the grid and ggplot2 level. On
one hand, this package complements the new features in the R graphics engine by adding filter
effects. However, there is also a considerable overlap because several filters provide results similar
or identical to the graphics engine features. For example, ggfx::with_mask() provides masking and
ggfx::with_blend() provides compositing operators. The advantages of this package include filter
effects that are not available in R itself (such as “blur”) and a high-level interface that is integrated
with ggplot2. On the other hand, this package works only with raster images, whereas the graphics
engine is vector-based so it can produce better quality scalable images, at least on some devices.

The magick package (Ooms 2021) is not entirely unlike ggfx in that it provides access to raster-
based image operations that include, for example, magick::image_flatten() for compositing oper-
ators, magick::image_composite(), which can perform masking, and magick::image_blur() for a
blur filter effect. A major difference is that magick works on entire images whereas ggfx can isolate
its effects to only specific elements of an image. A combination of magick and the rasterize package
(Murrell 2019) could be used to limit the effects to just elements of an image, but ggfx provides a more
convenient and higher-level interface.

The gridGeometry package (Murrell and Wong 2022) overlaps with some of the new masking,
compositing, and path-drawing features of the new graphics engine because it can combine several
paths to produce a single new path. For example, gridGeometry::grid.polyclip() can be used to
punch a hole in one shape using another shape. The advantage of this package is that, for the features
that it supports, it works entirely with vector images, including returning vector results.

4.3 Further reading

The graphical features introduced in this document are explained in much greater detail in the series
of technical reports listed below. Maintainers of R packages that provide third-party graphics devices
will find information about the graphics device interface to the new graphics features in these reports.

• “Catching Up with R Graphics: Gradients, Patterns, Clipping Paths, and Masks” (Murrell 2020)

• “Becoming an R Graphics Groupie: Groups, Compositing Operators, and Affine Transforma-
tions in R Graphics” (Murrell 2021a)

• “The Path to Path Enlightenment: Stroking and Filling Paths in R Graphics” (Murrell 2021c)

• “Luminance Masks in R Graphics” (Murrell 2021b)

• “Vectorised Pattern Fills in R Graphics” (Murrell 2022b)

• “Porter-Duff Compositing Operators in R Graphics” (Murrell, Pedersen, and Skintzos 2023)

5 Appendix: The structure of R graphics

This appendix gives a brief introduction to how the (static, 2D) graphics systems in R are organized
(see Figure 10).

R has two low-level graphics systems, which are provided by the graphics (“base graphics”)
and grid packages. These provide functions for drawing basic shapes and text. They both rely on
a “graphics engine”, roughly corresponding to the grDevices package, which provides facilities for
specifying things like colors and fonts.

The graphics package can also draw some high-level plots, such as scatter plots and bar plots, and
many other packages build on it to offer a much wider range of high-level plots. Similarly, several
packages build on top of grid to provide high-level plots, notably, ggplot2 and lattice.

Graphical output is generated by a set of “graphics devices”, some of which are provided with R,
with others provided by packages like ragg.

Typically, an R user will call functions from a package like ggplot2 or graphics to draw a high-level
plot.
Those packages will call lower-level functions, in graphics or grid, which in turn call functions in the
graphics engine. Finally, the graphics engine send instructions to a graphics device to do the actual
drawing.

The new graphics features described in this document have mostly involved changes to the
graphics engine and grid and some graphics devices, which means that users may have to call grid
functions to access the new features and the new features will only work on some graphics devices
(as indicated by the gray nodes in Figure 10). However, some of the new features are accessible from
ggplot2 and its extensions and some packages that provide graphics devices have added support (as
indicated by the nodes with gray gradients in Figure 10).

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=ggfx
https://CRAN.R-project.org/package=magick
https://CRAN.R-project.org/package=ggfx
https://CRAN.R-project.org/package=rasterize
https://CRAN.R-project.org/package=gridGeometry
https://stattech.blogs.auckland.ac.nz/2020/07/14/2020-04-catching-up-with-r-graphics/
https://stattech.blogs.auckland.ac.nz/2021/11/15/2021-02-groups-compositing-operators-and-affine-transformations-in-r-graphics
https://stattech.blogs.auckland.ac.nz/2021/11/15/2021-02-groups-compositing-operators-and-affine-transformations-in-r-graphics
https://stattech.blogs.auckland.ac.nz/2021/11/16/2021-03-stroking-and-filling-paths-in-r-graphics
https://stattech.blogs.auckland.ac.nz/2021/12/01/2021-04-luminance-masks-in-r-graphics
https://stattech.wordpress.fos.auckland.ac.nz/2022/06/01/2022-01-vectorised-pattern-fills-in-r-graphics/
https://stattech.wordpress.fos.auckland.ac.nz/2023/05/22/2023-02-porter-duff-compositing-operators-in-r-graphics/
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=lattice
https://CRAN.R-project.org/package=ragg
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=ggplot2

CONTRIBUTED RESEARCH ARTICLE 275

Figure 10: The structure of R graphics. The features described in this paper involved changes to the
grid and grDevices packages, plus some of the graphics devices that are provided with R. Some of the
features are becoming available via higher-level packages like ggplot2 and some of the features are
supported in external graphics devices like those provided by the ragg package.

References

Adobe Systems Incorporated. 2001. PDF Reference: Adobe Portable Document Format Version 1.4. 3rd ed.
https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/pdf_reference_archives/PDFReference.
pdf.

Kay, Matthew. 2023. ggdist: Visualizations of Distributions and Uncertainty. https://doi.org/10.5281/
zenodo.3879620.

Murrell, Paul. 2019. rasterize: Rasterize Graphical Output. https://CRAN.R-project.org/package=
rasterize.

———. 2020. “Catching up with R Graphics.” 2020-04. Department of Statistics, The University of
Auckland. https://doi.org/10.17608/k6.auckland.12649751.

———. 2021a. “Groups, Compositing Operators, and Affine Transformations in R Graphics.” 2021-02.
Department of Statistics, The University of Auckland. https://doi.org/10.17608/k6.auckland.
17009120.

———. 2021b. “Luminance Masks in R Graphics.” 2021-04. Department of Statistics, The University of
Auckland. https://doi.org/10.17608/k6.auckland.17102657.

———. 2021c. “Stroking and Filling Paths in R Graphics.” 2021-03. Department of Statistics, The
University of Auckland. https://doi.org/10.17608/k6.auckland.17019272.

———. 2022a. gggrid: Draw with ’grid’ in ’ggplot2’. https://CRAN.R-project.org/package=gggrid.
———. 2022b. “Vectorised Pattern Fills in R Graphics.” 2022-01. Department of Statistics, The

University of Auckland. https://doi.org/10.17608/k6.auckland.19945787.
Murrell, Paul, Thomas Lin Pedersen, and Panagiotis Skintzos. 2023. “Porter-Duff Compositing

Operators in R Graphics.” 2023-02. Department of Statistics, The University of Auckland. https:
//doi.org/10.17608/k6.auckland.23034641.

Murrell, Paul, and Simon Potter. 2022. gridSVG: Export ’grid’ Graphics as SVG. https://r-forge.r-
project.org/projects/gridsvg/.

Murrell, Paul, and Zhijian Wen. 2020. gridGraphics: Redraw Base Graphics Using ’grid’ Graphics.
https://CRAN.R-project.org/package=gridGraphics.

Murrell, Paul, and Jack Wong. 2022. gridGeometry: Polygon Geometry in ’grid’. https://CRAN.R-
project.org/package=gridGeometry.

Ooms, Jeroen. 2021. magick: Advanced Graphics and Image-Processing in R. https://CRAN.R-project.
org/package=magick.

Pedersen, Thomas Lin. 2022. ggfx: Pixel Filters for ’ggplot2’ and ’grid’. https://CRAN.R-project.org/
package=ggfx.

Pedersen, Thomas Lin, and Maxim Shemanarev. 2022. ragg: Graphic Devices Based on AGG. https:
//CRAN.R-project.org/package=ragg.

Porter, Thomas, and Tom Duff. 1984. “Compositing Digital Images.” SIGGRAPH Comput. Graph. 18
(3): 253–59. https://doi.org/10.1145/964965.808606.

Sarkar, Deepayan. 2008. Lattice: Multivariate Data Visualization with R. New York: Springer. http:
//lmdvr.r-forge.r-project.org.

Wickham, Hadley. 2016. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859

https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/pdf_reference_archives/PDFReference.pdf
https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/pdf_reference_archives/PDFReference.pdf
https://doi.org/10.5281/zenodo.3879620
https://doi.org/10.5281/zenodo.3879620
https://CRAN.R-project.org/package=rasterize
https://CRAN.R-project.org/package=rasterize
https://doi.org/10.17608/k6.auckland.12649751
https://doi.org/10.17608/k6.auckland.17009120
https://doi.org/10.17608/k6.auckland.17009120
https://doi.org/10.17608/k6.auckland.17102657
https://doi.org/10.17608/k6.auckland.17019272
https://CRAN.R-project.org/package=gggrid
https://doi.org/10.17608/k6.auckland.19945787
https://doi.org/10.17608/k6.auckland.23034641
https://doi.org/10.17608/k6.auckland.23034641
https://r-forge.r-project.org/projects/gridsvg/
https://r-forge.r-project.org/projects/gridsvg/
https://CRAN.R-project.org/package=gridGraphics
https://CRAN.R-project.org/package=gridGeometry
https://CRAN.R-project.org/package=gridGeometry
https://CRAN.R-project.org/package=magick
https://CRAN.R-project.org/package=magick
https://CRAN.R-project.org/package=ggfx
https://CRAN.R-project.org/package=ggfx
https://CRAN.R-project.org/package=ragg
https://CRAN.R-project.org/package=ragg
https://doi.org/10.1145/964965.808606
http://lmdvr.r-forge.r-project.org
http://lmdvr.r-forge.r-project.org

CONTRIBUTED RESEARCH ARTICLE 276

https://ggplot2.tidyverse.org.
Wickham, Hadley, Lionel Henry, Thomas Lin Pedersen, T Jake Luciani, Matthieu Decorde, and Vaudor

Lise. 2022. svglite: An SVG Graphics Device. https://CRAN.R-project.org/package=svglite.
Yu, Guangchuang. 2022. shadowtext: Shadow Text Grob and Layer. https://CRAN.R-project.org/

package=shadowtext.

Paul Murrell
The University of Auckland
Department of Statistics
38 Princes Street
Auckland
New Zealand
https://www.stat.auckland.ac.nz/~paul/
ORCiD: 0000-0002-3224-8858
paul@stat.auckland.ac.nz

The R Journal Vol. 15/3, September 2023 ISSN 2073-4859

https://ggplot2.tidyverse.org
https://CRAN.R-project.org/package=svglite
https://CRAN.R-project.org/package=shadowtext
https://CRAN.R-project.org/package=shadowtext
https://www.stat.auckland.ac.nz/~paul/
https://orcid.org/0000-0002-3224-8858
mailto:paul@stat.auckland.ac.nz

	Updates to the R Graphics Engine: One Person's Chart Junk is Another's Chart Treasure
	Introduction
	The new graphics features
	Gradient fills
	Pattern fills
	Clipping paths
	Masks
	Stroked and filled paths
	Compositing operators

	Integrating with higher-level interfaces
	Integrating with ggplot2
	Integrating with lattice
	Integrating with base graphics
	Drawing with grid

	Discussion
	Limitations
	Related and prior work
	Further reading

	Appendix: The structure of R graphics
	References

