Supplementary materials are available in addition to this article. It can be downloaded at
RJ-2023-070.zip
S. C. Ahn and A. R. Horenstein. Eigenvalue ratio test for the number of factors.
Econometrica, 81(3): 1203–1227, 2013. URL
https://doi.org/10.3982/ECTA8968.
L. Alessi, M. Barigozzi and M. Capasso. Improved penalization for determining the number of factors in approximate factor models.
Statistics & Probability Letters, 80(23-24): 1806–1813, 2010. URL
https://doi.org/10.1016/j.spl.2010.08.005.
M. Avarucci, M. Cavicchioli, M. Forni and P. Zaffaroni. The main business cycle shock(s): Frequency-band estimation of the number of dynamic factors. 2022. URL
https://dx.doi.org/10.2139/ssrn.3970658.
J. Bai. Inferential theory for factor models of large dimensions.
Econometrica, 71(1): 135–171, 2003. URL
https://doi.org/10.1111/1468-0262.00392.
J. Bai and S. Ng. Determining the number of factors in approximate factor models.
Econometrica, 70: 191–221, 2002. URL
https://doi.org/10.1111/1468-0262.00273.
P. Bai.
LSVAR: Estimation of low rank plus sparse structured vector auto-regressive (VAR) model. 2021. URL
https://CRAN.R-project.org/package=LSVAR. R package version 1.2.
M. Barigozzi and C. Brownlees. Nets: Network estimation for time series.
Journal of Applied Econometrics, 34: 347–364, 2019. URL
https://doi.org/10.1002/jae.2676.
M. Barigozzi, H. Cho and D. Owens. FNETS: Factor-adjusted network estimation and forecasting for high-dimensional time series.
Journal of Business & Economic Statistics, 1–13, 2023. URL
https://doi.org/10.1080/07350015.2023.2257270.
S. Basu and G. Michailidis. Regularized estimation in sparse high-dimensional time series models.
The Annals of Statistics, 43: 1535–1567, 2015. URL
10.1214/15-AOS1315.
A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems.
SIAM Journal on Imaging Sciences, 2(1): 183–202, 2009. URL
https://doi.org/10.1137/080716542.
C. Bergmeir, R. J. Hyndman and B. Koo.
A note on the validity of cross-validation for evaluating autoregressive time series prediction.
Computational Statistics & Data Analysis, 120: 70–83, 2018.
M. Berkelaar et al.
lpSolve: Interface to “lpsolve” v. 5.5 to solve linear/integer programs. 2020. URL
https://CRAN.R-project.org/package=lpSolve. R package version 5.6.15.
B. S. Bernanke, J. Boivin and P. Eliasz. Measuring the effects of monetary policy: A factor-augmented vector autoregressive (FAVAR) approach.
The Quarterly journal of economics, 120(1): 387–422, 2005. URL
https://doi.org/10.1162/0033553053327452.
M. Billio, M. Getmansky, A. W. Lo and L. Pelizzon. Econometric measures of connectedness and systemic risk in the finance and insurance sectors.
Journal of Financial Economics, 104(3): 535–559, 2012. URL
https://doi.org/10.1016/j.jfineco.2011.12.010.
C. Brownlees.
Nets: Network estimation for time series. 2020. URL
https://CRAN.R-project.org/package=nets. R package version 0.9.1.
T. T. Cai, W. Liu and H. H. Zhou. Estimating sparse precision matrix: Optimal rates of convergence and adaptive estimation.
The Annals of Statistics, 44(2): 455–488, 2016. URL
10.1214/13-AOS1171.
T. Cai, W. Liu and X. Luo. A constrained
\(\ell_1\) minimization approach to sparse precision matrix estimation.
Journal of the American Statistical Association, 106(494): 594–607, 2011. URL
https://doi.org/10.1198/jasa.2011.tm10155.
E. Candes and T. Tao. The dantzig selector: Statistical estimation when p is much larger than n.
The Annals of Statistics, 35(6): 2313–2351, 2007. URL
10.1214/009053606000001523.
J. Chen and Z. Chen. Extended bayesian information criteria for model selection with large model spaces.
Biometrika, 95(3): 759–771, 2008. URL
https://doi.org/10.1093/biomet/asn034.
G. Csardi, T. Nepusz, et al.
The igraph software package for complex network research.
InterJournal, complex systems, 1695(5): 1–9, 2006.
R. Dahlhaus. Graphical interaction models for multivariate time series.
Metrika, 51(2): 157–172, 2000. URL
https://doi.org/10.1007/s001840000055.
Douglas Nychka, Reinhard Furrer, John Paige and Stephan Sain. Fields: Tools for spatial data. 2021. URL
https://github.com/dnychka/fieldsRPackage. R package version 14.1.
M. Eichler. Granger causality and path diagrams for multivariate time series.
Journal of Econometrics, 137(2): 334–353, 2007. URL
http://dx.doi.org/10.1016/j.jeconom.2005.06.032.
S. Epskamp, L. J. Waldorp, R. Mõttus and D. Borsboom. The gaussian graphical model in cross-sectional and time-series data.
Multivariate Behavioral Research, 53(4): 453–480, 2018. URL
https://doi.org/10.1080/00273171.2018.1454823.
J. Fan, Y. Liao and M. Mincheva. Large covariance estimation by thresholding principal orthogonal complements.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 75(4): 2013. URL
https://doi.org/10.1111/rssb.12016.
M. Forni, M. Hallin, M. Lippi and L. Reichlin. The generalized dynamic factor model: One-sided estimation and forecasting.
Journal of the American statistical association, 100(471): 830–840, 2005. URL
https://doi.org/10.1198/016214504000002050.
M. Forni, M. Hallin, M. Lippi and L. Reichlin. The generalized dynamic-factor model: Identification and estimation.
Review of Economics and Statistics, 82(4): 540–554, 2000. URL
http://dx.doi.org/10.1162/003465300559037.
M. Forni, M. Hallin, M. Lippi and P. Zaffaroni. Dynamic factor models with infinite-dimensional factor space: Asymptotic analysis.
Journal of Econometrics, 199(1): 74–92, 2017. URL
https://doi.org/10.1016/j.jeconom.2017.04.002.
M. Forni, M. Hallin, M. Lippi and P. Zaffaroni. Dynamic factor models with infinite-dimensional factor spaces: One-sided representations.
Journal of Econometrics, 185(2): 359–371, 2015. URL
https://doi.org/10.1016/j.jeconom.2013.10.017.
M. Hallin and R. Liška. Determining the number of factors in the general dynamic factor model.
Journal of the American Statistical Association, 102(478): 603–617, 2007. URL
https://doi.org/10.1198/016214506000001275.
F. Han, H. Lu and H. Liu. A direct estimation of high dimensional stationary vector autoregressions.
Journal of Machine Learning Research, 16(97): 3115–3150, 2015. URL
http://jmlr.org/papers/v16/han15a.html.
L. Han, I. Cribben and S. Trueck. Extremal dependence in australian electricity markets.
arXiv preprint arXiv:2202.09970, 2022. URL
https://doi.org/10.48550/arXiv.2202.09970.
J. M. Haslbeck and L. J. Waldorp. Mgm: Estimating time-varying mixed graphical models in high-dimensional data.
Journal of Statistical Software, 93: 1–46, 2020. URL
https://doi.org/10.18637/jss.v093.i08.
C. Kirch, B. Muhsal and H. Ombao. Detection of changes in multivariate time series with application to EEG data.
Journal of the American Statistical Association, 110: 1197–1216, 2015. URL
https://doi.org/10.1080/01621459.2014.957545.
M. Knight, K. Leeming, G. Nason and M. Nunes.
Generalized network autoregressive processes and the GNAR package.
Journal of Statistical Software, 96: 1–36, 2020.
A. B. Kock and L. Callot. Oracle inequalities for high dimensional vector autoregressions.
Journal of Econometrics, 186(2): 325–344, 2015. URL
https://doi.org/10.1016/j.jeconom.2015.02.013.
G. M. Koop. Forecasting with medium and large bayesian VARs.
Journal of Applied Econometrics, 28(2): 177–203, 2013. URL
https://doi.org/10.1002/jae.1270.
J. Krampe and L. Margaritella. Dynamic factor models with sparse VAR idiosyncratic components.
arXiv preprint arXiv:2112.07149, 2021. URL
https://doi.org/10.48550/arXiv.2112.07149.
S. Krantz and R. Bagdziunas.
Dfms: Dynamic factor models. 2023. URL
https://sebkrantz.github.io/dfms/. R package version 0.2.1.
B. Liu, X. Zhang and Y. Liu. Simultaneous change point inference and structure recovery for high dimensional gaussian graphical models.
Journal of Machine Learning Research, 22(274): 1–62, 2021. URL
https://www.jmlr.org/papers/volume22/20-327/20-327.pdf.
H. Lütkepohl.
New introduction to multiple time series analysis. Springer Science & Business Media, 2005.
K. Maciejowska and R. Weron. Forecasting of daily electricity spot prices by incorporating intra-day relationships: Evidence from the UK power market. In
2013 10th international conference on the european energy market (EEM), pages. 1–5 2013. IEEE. URL
10.1109/EEM.2013.6607314.
M. C. Medeiros and E. F. Mendes.
\(\ell_1\)-regularization of high-dimensional time-series models with non-gaussian and heteroskedastic errors.
Journal of Econometrics, 191(1): 255–271, 2016. URL
https://doi.org/10.1016/j.jeconom.2015.10.011.
Microsoft and S. Weston.
doParallel: Foreach parallel adaptor for the ’parallel’ package. 2022a. URL
https://CRAN.R-project.org/package=doParallel. R package version 1.0.17.
Microsoft and S. Weston.
Foreach: Provides foreach looping construct. 2022b. URL
https://CRAN.R-project.org/package=foreach. R package version 1.5.2.
L. Mosley, T.-S. Chan and A. Gibberd.
sparseDFM: An R package to estimate dynamic factor models with sparse loadings.
arXiv preprint arXiv:2303.14125, 2023. URL
https://doi.org/10.48550/arXiv.2303.14125.
E. Neuwirth.
RColorBrewer: ColorBrewer palettes. 2022. URL
https://CRAN.R-project.org/package=RColorBrewer. R package version 1.1-3.
W. B. Nicholson, I. Wilms, J. Bien and D. S. Matteson. High dimensional forecasting via interpretable vector autoregression.
Journal of Machine Learning Research, 21(166): 1–52, 2020. URL
https://jmlr.org/papers/v21/19-777.html.
W. Nicholson, D. Matteson and J. Bien. Bigvar: Tools for modeling sparse high-dimensional multivariate time series.
arXiv preprint arXiv:1702.07094, 2017. URL
https://doi.org/10.48550/arXiv.1702.07094.
J. Peng, P. Wang, N. Zhou and J. Zhu. Partial correlation estimation by joint sparse regression models.
Journal of the American Statistical Association, 104(486): 735–746, 2009. URL
10.32614/RJ-2021-023.
A. Shojaie and G. Michailidis. Discovering graphical granger causality using the truncating lasso penalty.
Bioinformatics, 26(18): i517–i523, 2010. URL
https://doi.org/10.1093/bioinformatics/btq377.
J. H. Stock and M. W. Watson. Forecasting using principal components from a large number of predictors.
Journal of the American Statistical Association, 97(460): 1167–1179, 2002. URL
https://doi.org/10.1198/016214502388618960.
B. Uniejewski, R. Weron and F. Ziel. Variance stabilizing transformations for electricity spot price forecasting.
IEEE Transactions on Power Systems, 33(2): 2219–2229, 2017. URL
http://dx.doi.org/10.1109/TPWRS.2017.2734563.
S. Vazzoler.
Sparsevar: Sparse VAR/VECM models estimation. 2021. URL
https://CRAN.R-project.org/package=sparsevar. R package version 0.1.0.
D. Wang and R. S. Tsay. Rate-optimal robust estimation of high-dimensional vector autoregressive models.
arXiv preprint arXiv:2107.11002, 2021. URL
https://doi.org/10.48550/arXiv.2107.11002.
I. Wilms, S. Basu, J. Bien and D. Matteson. Bigtime: Sparse estimation of large time series models. 2021. URL
https://cran.r-project.org/package=bigtime. R package version 0.2.1.
Y. Zheng. An interpretable and efficient infinite-order vector autoregressive model for high-dimensional time series.
arXiv preprint arXiv:2209.01172, 2022. URL
https://doi.org/10.48550/arXiv.2209.01172.