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Bayesian Inference for Multivariate
Spatial Models with INLA
by Francisco Palmí-Perales, Virgilio Gómez-Rubio, Roger S. Bivand, Michela Cameletti, and Håvard
Rue

Abstract Bayesian methods and software for spatial data analysis are well-established now in the
broader scientific community generally and in the spatial data analysis community specifically. Despite
the wide application of spatial models, the analysis of multivariate spatial data using the integrated
nested Laplace approximation through its R package (R-INLA) has not been widely described in the
existing literature. Therefore, the main objective of this article is to demonstrate that R-INLA is a
convenient toolbox to analyse different types of multivariate spatial datasets. This will be illustrated
by analysing three datasets which are publicly available. Furthermore, the details and the R code
of these analyses are provided to exemplify how to fit models to multivariate spatial datasets with
R-INLA.

1 Introduction

In recent times, spatial data analysis has increased in popularity due to the widespread availability
of different types of geo-referenced data. Spatial models will exploit the geographical information
in the data so that spatial dependence is exploited, among other things, to build better predictive
models. There is also a growing interest (and application) of multivariate models as often spatial
data incorporates multiple variables. For instance, healthcare, econometrics, climate and other fields
require multivariate models. One of the main advantages of multivariate models is their ability to find
similar spatial patterns in the different response variables. This is the main motivation of this work.

Analysing spatial data poses a number of methodological and computational challenges. In this
regard, Bayesian inferece has been particularly successfull as it has provided data analysts with both a
modelling framework and estimation methods for spatial data analysis (see, for example, Banerjee
et al., 2014). Bayesian inference for spatial models has often relied upon Markov Chain Monte Carlo
(MCMC, Gilks et al., 1995) algorithms, which provide samples from the joint posterior distribution of
the model parameters. However flexible, MCMC algorithms have proved slow when dealing with
large datasets or highly parameterized models.

For this reason, the integrated nested Laplace approximation (INLA, Rue et al., 2009) has become
an alternative approach to fit Bayesian hierarchical models. The advantage of INLA is its ability to
approximate the marginal posterior distribution of the different hyperparameters and latent effects
of a model that could be parametrised as a latent Gaussian model (Rue and Held, 2005) in less time
than MCMC algorithms. This methodology has been implemented in the INLA R package. To avoid
confusion between the INLA methodology and the INLA R package, we refer to the package as
R-INLA (Rue et al., 2020).

The different spatial models which can be fit with R-INLA have been summarised by several
authors (Lindgren et al., 2015; Blangiardo and Cameletti, 2015; Bakka et al., 2018). For a recent review,
the reader is referred to Chapter 7 of Gómez-Rubio (2020). Krainski et al. (2019) provide an exhaustive
tutorial about how to fit advanced spatial models in R-INLA using the stochastic partial differential
equation approach (SPDE, Lindgren et al., 2011) to estimate continuous processes. Additionally, INLA
can be combined with other algorithms such as Markov Chain Monte Carlo (MCMC, Gilks et al.,
1995) techniques in order to fit models which can not be fit solely with INLA (Gómez-Rubio and
Palmí-Perales, 2019).

Therefore, the main objective of this article is to describe how to analyse any multivariate spatial
dataset using R-INLA in a Bayesian framework. Multivariate spatial models have been studied by
several authors. For example, Van Lieshout and Baddeley (1999) describe dependence between multi-
variate point patterns by proposing novel summary statistics. Additionally, multivariate log-Gaussian
Cox processes have been used to analyse multivariate point patterns (Diggle et al., 2013; Waagepetersen
et al., 2016; Gómez-Rubio et al., 2015). Furthermore, several studies have been published for analysing
multivariate lattice data. For example, in MacNab (2018) an insight into the generalization of uni-
variate models to multivariate models is extensively discussed and in Martínez-Beneito et al. (2017)
a framework to analyse multiple response variables is proposed in the context of disease mapping.
A review of the multivariate spatial models in disease mapping is performed in Martínez-Beneito
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and Botella-Rocamora (2019). These works rely on MCMC methods to develop their examples. In the
context of spatial modeling, these methods can lead to a high computational burden.

The R programming (R Core Team, 2022) language offers a wide range of standalone packages for
analysing spatial datasets. Several of them focus on a particular type of spatial data. For instance, point
pattern analysis can be performed with spatstat (Baddeley et al., 2015) and spatialkernel (Gómez-
Rubio et al., 2017). Geostatistical data can be modeled using gstat (Pebesma and Wesseling, 1998;
Pebesma, 2004) or spBayes (Finley et al., 2007, 2015). Other R packages such as CARBayes (Lee, 2013)
are designed to analyse lattice data.

The remainder of the manuscript is organised as follows. First, a short introduction to the INLA
methodology and how the R-INLA package fits models to multivariate data is provided. Next, a
brief description of the different multivariate models is detailed in the case of areal, continuous and
point pattern data in three different sections. Each of these sections discusses the models to be fit,
including the prior distribution choice and the structure of the data, and includes an example on how
to analyse multivariate spatial data with R-INLA. Finally, a brief summary of the conclusions of this
work appears in the last part of this manuscript.

2 Integrated nested Laplace approximation

Bayesian inference has been usually performed with MCMC. However, these methods have a high
computational cost in a spatial modelling context, mainly because of the simulation-based approach
they use to estimate the large number of latent effects present in spatial models. A good alternative is
the integrated nested Laplace approximation (INLA, Rue et al., 2009) as it is is able to accurately and
efficiently approximate posterior distributions of high-dimensional models in a short computing time.

The INLA methodology focuses on the analysis of latent Gaussian models (Rue and Held, 2005).
In essence, a latent Gaussian model is a Bayesian hierarchical model in which the mean parameter
of the likelihood is linked to a linear predictor composed of different additive latent effects; the
distribution of the vector of latent effects follows a multivariate Gaussian distribution (more details
can be found in, for example, Chapter 2 of Rue and Held, 2005). Latent Gaussian models comprise
a large group of statistical models such as many spatial and spatio-temporal models. The R-INLA
package implements the INLA method in a flexible way, so that models with a number of latent effects
can be fit. Additionally, INLA can be combined with other algorithms in order to fit other models
(Gómez-Rubio and Palmí-Perales, 2019).

Gaussian Markov random fields (GMRF) with sparse precision matrices can be used to approxi-
mate Gaussian latent fields due to their conditional independence properties. The sparse precision
matrices allow computationally efficient methods (Rue and Held, 2005). This is the reason of the low
computational costs of INLA which is one of its main benefits. More details about how to implement
Bayesian inference with INLA can be found in (Gómez-Rubio, 2020).

Model fitting with R-INLA is done via the inla() function, which works like the glm() and gam()
functions. The model to fit is defined using a formula (that may include different types of random
effects in the right-hand side). For example, to fit a Poisson regression with response variable y and
covariate x, both in data frame d, the code is:

inla(y ~ x, family = "poisson", data = d)

The output includes the posterior marginal distribution of the model parameters, as well as
summmary statistics computed from these distributions. In its example, default priors have been used,
but R-INLA can work with a good number of prior distributions.

In the previous example, y represents the vector of observations of a single variable. However,
INLA can deal with multivariate responses so that they can be analyzed jointly. Fitting models with
a multivariate responses requires the storage of variables in a particular format. Let us consider the
simplest scenario in which a dataset with D variables have been measured in a study region divided
into n areas. In order to analyse this dataset with R-INLA, a matrix with D columns and D × n rows
has to be built. Specifically, this matrix will store the n values of the first variable in the first column,
from the first to the n-th row, then the following values of this column will be NA. Then, the data of the
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second variable would be placed in the second column between the n + 1 and the 2n rows. The rest of
the values of the second column will be filled with NA’s. Data for other variables will be added to the
matrix accordingly.

As a toy example, we will take n = 2 and D = 3, so that the original dataset is structured as a 2 × 3
matrix given by [

1 4 3
2 6 5

]
.

Following the above procedure, the matrix that should be passed to R-INLA would be the
following: 

1 NA NA
2 NA NA
NA 4 NA
NA 6 NA
NA NA 3
NA NA 5

 .

This data format must be used in the case of the multivariate response but also for multivariate
covariates. In particular, multivariate covariates will be included in the model so that values in a
particular column only affect values in the same column of the response, i.e., the model will include
a specific coefficient for each variable in the response. In the R code provided together with this
paper (as a supplementary material), we have provided function create_multivariate_data() that
will take a matrix or several vectors of data and create the appropriate matrix for R-INLA. When the
covariate is expected to have the same effect for all the response variables (i.e., the coefficient will be
the same), a single vector with the values of the covariates will be used. This is better explained in the
examples that follow.

3 Multivariate Lattice Data

Areal (or lattice) data are obtained when the spatial data are observed on regions with defined
boundaries. In this case, the domain is divided into (non-overlapping) areas in which the data are
collected. It is usually considered that two areas are neighbours if they share a common boundary.
This adjacency structure is often included to account for spatial autocorrelation (Banerjee et al., 2014).

When the values of several variables are recorded in each area the resulting data become a
multivariate lattice dataset. The joint analysis of the spatial distribution of several variables allows
to detect similar (spatial) patterns among some of these variables (Banerjee et al., 2014, Chapter 10)
while estimating the spatial effects. We will illustrate the analysis of this type of data using a Poisson
regression model, which is commonly employed in spatial epidemiology to analyse count data. Other
similar models can be proposed for binary or continuous outcomes.

Given the d-th variable of interest (with d = 1, . . . , D) and area i (with i = 1, . . . , n), the response of
interest Yd,i can be modeled using a Poisson distribution with mean µd,i:

Yd,i ∼ Po(µd,i).

The mean is usually modeled as a linear predictor made up of several terms and transformed via a
convenient link function. The choice of these terms depends on the available data and the analyst’s
understanding of the data generating process. For instance, one option can be described as

ψ(µd,i) = αd + ui + vd,i.

Here, ψ(·) is a link function (e.g., natural logartihm), αd is a variable-specific intercept, ui a shared
(between all or a group of variables) spatial term, and vd,i a variable-specific random effect. Note that
restrictions may be required on vd,i to make all effects identifiable (Rue and Held, 2005).

In the context of disease mapping, the usual variables of interest are the counts of mortality or
incidence of different diseases over the study region. Now d represents the specific disease, therefore,
following the above structure, the observed number of cases of disease d in area i, Yd,i, can be modeled
as
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Yd,i ∼ Po(µd,i = Ed,i · θd,i)

log(θd,i) = αd + ui + vd,i

where Ed,i and θd,i are the expected number of cases and the relative risk of disease d in area i,
respectively. As before, αd is a disease specific intercept (to account for differences in the total number
of observed cases), ui a shared spatial term (which does not depend on the disease) and vd,i a disease-
specific spatial random effect.

In the case of multivariate lattice data, a prior distribution should be assigned to the dispersion
parameter of each spatial effect. Some authors have discussed the most appropriate vague prior
distributions in these cases. For instance, Gelman (2006) suggests to avoid inverse Gamma distributions
on the precision and propose some alternatives. In this example, flat uniform prior distributions are
assigned to the standard deviation parameters (see Section 5.3 in Gómez-Rubio, 2020).

Several authors (see, for example, Martínez-Beneito, 2013, and the references therein) have pro-
posed different approaches for modelling multiple diseases in space and time. Gómez-Rubio et al.
(2019) propose a separable spatio-temporal model with weighted shared components that can be used
to detect diseases with similar patterns. In Palmí-Perales et al. (2021), the authors have developed
an R package (INLAMSM) which builds on top of R-INLA to provide some of the most common
multivariate model for lattice data.

3.1 Example: spatial analysis of several diseases

Gómez-Rubio and Palmí-Perales (2019) study the variation of spatial risk of three types of cancer in
peninsular Spain. In particular, they consider oral cavity, esophagus and stomach cancer, all at the
province level. In order to assess similar spatial variation that may lead to the identification of shared
risk factors, models with shared and disease specific spatial patterns can be proposed.

Data are available in a RData file available from GitHub at https://github.com/becarioprecario/
INLAMCMC_spatial_examples (see Gómez-Rubio and Palmí-Perales, 2019, for details). The following
code creates the response variable (by stacking the three vectors of observed cases) as well as the
expected counts. Note that due to the different structure of the variables involved, data are stored in a
list object instead of a data.frame. Function create_multivariate_data() used below is available
in the code provided as supplementary material.

# Load data
load("dismap_sim_data.RData")

# Set shorter names
names(OyE.sim)[1:6] <- c("Obs.Cb", "Esp.Cb", "Obs.Eso", "Esp.Eso", "Obs.Est", "Esp.Est")

# Create a dataset for INLA (n x 3)
n <- nrow(OyE.sim)

d <- list(OBS =
create_multivariate_data(as.data.frame(OyE.sim)[, c("Obs.Cb", "Obs.Eso", "Obs.Est")])

)

# Expected cases
d$EXP <- c(OyE.sim$Esp.Cb, OyE.sim$Esp.Eso, OyE.sim$Esp.Est)

As an example, we will consider a model in which the log-relative risk of oral cavity cancer (θo,i) is
modeled as the sum of an intercept (αo), and a shared spatial term (ui). An intrinsic conditional auto-
regressive (ICAR, Banerjee et al., 2014) is assigned to this shared term following the model described
for areal (or lattice) data in the previous section. Furthermore, log-relative risks of esophagus (θe,i) and
stomach cancer (θs,i) are modeled using disease-specific intercepts (αe and αs, respectively) plus the
shared spatial term and cancer-specific ICAR spatial terms (ve,i and vs,i, respectively). Specifically, the
relative risks are defined as follows:
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log(θo,i) = αo + ui

log(θe,i) = αe + ui + ve,i

log(θs,i) = αs + ui + vs,i i = 1, . . . , n

The disease-specific spatial terms can be used to assess departures from the shared spatial term.
The chosen prior distributions for the standard deviation of all the effects are improper flat uniform
distributions.

The model formula is defined in the model below. The rf term represents the disease-specific
intercepts (the value of the above αs ). Latent effects of type copy (see, for example, Section 6.5.1 in
Gómez-Rubio, 2020) are used to define shared terms ui in the model. Furthermore, spatial latent effects
have the uniform prior for their standard deviation defined in object prior.prec.

# Formulas for the model
form <- OBS ~ -1 + rf +
f(copy1, model = "besag", graph = W, hyper = list(prec = prior.prec)) +
f(copy2, copy = "copy1", fixed = TRUE) +
f(copy3, copy = "copy1", fixed = TRUE) +
f(spatial2, model = "besag", graph = W, hyper = list(prec = prior.prec)) +
f(spatial3, model = "besag", graph = W, hyper = list(prec = prior.prec))

Finally the model is fit with R-INLA using the code below. Note how the family argument takes a
vector of three elements as this likelihood has three components (one for each disease).

res <- inla(formula = form, data = d, family = rep("poisson", 3), E = d$EXP)

Figure 1 shows the different spatial terms in the model. The shared term represents the spatial
variation in the risk of oral cavity cancer and also serves as a baseline for the other types of cancer. The
esophagus-specific spatial term is quite mild, which indicates that these two types of cancer have a
very similar spatial pattern. The stomach-specific spatial term shows that some provinces in the center
of the country have a higher mortality from stomach cancer as compared to oral cavity/esophagus
cancer.

Figure 1: Posterior means of the shared spatial pattern (left), the esophagus-specific spatial pattern
(middle) and stomach-specific spatial pattern (right).

4 Multivariate Continuous Data

Datasets for variables that vary continuously in space contain observations which are geographically
referenced, i.e., both the value and where it is collected (e.g., the coordinates) appear in the dataset.
Then, the spatial variation of the different variables is estimated using geostatistical models.

Similarly to lattice data, geostatistical multivariate models can be fit with R-INLA by sharing
common terms. Therefore, the first variable can be modelled so that the mean includes a shared spatial
term assumed to be a Gaussian process with a covariance defined using a Matérn function, and all the
other variables can depend on this shared spatial term plus specific spatial effects. Hence, for example,
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D variables of interest (Yd for d = 0, . . . , D − 1), with a general likelihood function P(·), measured at n
different locations can be written as:

Yi,d ∼ P(µi,d).

Then, the mean of the baseline variable (µi,0) will be modelled as a sum of an intercept (α0) and a
shared spatial effect (ui,0). Furthermore, the mean of observation i and variable d (µi,d) will be modeled
through an intercept for each variable (αd), the shared spatial effect (ui,0) and a specific spatial effect
(ui,d) as follows:

µi,0 =α0 + ui,0; i = 1, . . . , n
µi,d =αk + ui,0 + ui,d i = 1, . . . , n; d = 1, . . . , D − 1

Here, ui,0 represents the shared (between variables) spatial term, while ui,d (d ≥ 1) represents specific
terms that can be used to assess departures from the shared spatial term. These random effect terms
are assumed to be Gaussian processes with covariance defined using a Matérn covariance function,
which for a generic spatial random effect u(s) is defined as:

Cov(up, ul) = Cov(u(sp), u(sl)) =
σ2

Γ(λ)2λ−1 (κ∥sp − sl∥)λKλ(κ∥sp − sl∥),

where ∥sp − sl∥ represents the Euclidean distance between points sp and sl , σ2 is the marginal variance
of the latent Gaussian process, κ is the scaling parameter, which is related to the range, Kλ represents the
modified Bessel function of the second kind, and λ is the order term, which measures the smoothness
of the process. Furthermore, this latent Gaussian field u(s) can be approximated using the stochastic
partial differential equation (SPDE) approach described in Lindgren et al. (2011). This approach relies
on expressing the random effect u(s) as the solution of an SPDE which is approximated through (an
appropriate choice of) deterministic basis functions defined in a triangulation of the domain:

u(s) =
m

∑
k=1

ϕk(s)wk.

Here, ϕk(s) are the basis functions (pairwise linear functions), m is the total number of nodes (triangle
vertices) and wk are zero-mean Gaussian distributed weights. For more details, the reader is referred
to Lindgren et al. (2011).

In this example, all the measurements of the different variables are obtained from the same n
locations. However, the measurements of each variable can be from different locations of the study
region. Furthermore, INLA is not able to estimate any cross-covariance using the proposed model
as dependence among the variables relies on the shared spatial term. A multivariate geostatistical
analysis can be performed using the R package gstat. However, the models implemented in this R
package are based on a classic and frequentist statistical approach.

Regarding the priors, the SPDE approximation requires setting a prior distribution to the nominal
range, r, and the nominal standard deviation, σ. The nominal range is the distance at which the
correlation is 0.1. Penalized complexity prior distributions (PC-priors, Simpson et al., 2017) can be
chosen for both parameters. In a nutshell, PC-priors are based on the idea of penalising the complexity
from a simple baseline model (that is, a model in which the parameter has been fixed to a particular
reference value), i.e., the prior density is related to the distance from a baseline model. A remarkable
benefit of the PC-priors are their high intuitiveness in their definition as they are set by stating values
for the probabilities of the parameters, in particular, P(r < r0) and P(σ > σ0) for certain values of r0
and σ0.

The prior on the range is set such that r is lower than half the maximum distance (dm) between
any two points in the study region, with high probability, i.e., P(r < dm/2) ≈ 1. As for the standard
deviation, following the example of Sørbye et al. (2019) we set an upper limit Uα such that σ is less
that this limit with high probability. Therefore, the probability that the standard deviation is greater
than this upper limit (P(σ > Uα)) is set to be almost 0.

4.1 Example: spatial distribution of heavy metals

The meuse dataset in the gstat package gives the locations and measurements of topsoil heavy metals
collected in a flood plain by the Meuse river close to the village of Stein (located in Netherlands). After
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loading the gstat package, the data can be loaded using the following code:

# Load the data
data(meuse)

# Create the spatial object
coordinates(meuse) <- ~ x + y
proj4string(meuse) <- CRS("+init=epsg:28992")

These measurements are highly correlated and we will explore in this example how to fit geosta-
tistical models with the SPDE approach. Note that observations do not need to be in a regular grid.
Instead of a grid, a mesh is defined to apply the SPDE approach. The boundary of the study region
is stored in object meuse.bdy (see accompanying code). The definition of the mesh is done using the
coordinates of the boundary of the area following the code below:

# Create the mesh
mesh <- inla.mesh.2d(boundary = meuse.bdy, loc = coordinates(meuse),
max.edge = c(250, 500), offset = c(250, 500), n = c(32, 32))

The left plot in Figure 2 shows the mesh built with the above code for this example.

Figure 2: Mesh used in the estimation of the concentration of heavy metals around river Meuse, only
with the boundary of the study region (left) and jointly with the survey locations (right).

In particular, the model will consider concentrations of lead and zinc. Concentrations have been
measured at diferent locations which are displayed in the right plot in Figure 2. However, data on
the concentrations of other metals is also available within the same dataset. Then, a model with
all the metal concentrations could be handled following a similar structure. Values (in the original
dataset) are considered in the log-scale. These log-transformed concentrations (log(yl) and log(yz),
respectively) are assumed to be normally distributed. The mean of the log-concentration of lead is
modeled using an intercept αl plus a Gaussian process with a Matérn covariance, ui,s, while the mean
of the log-concentration of zinc is modeled using an intercept, αz, the shared spatial effect, ui,s, plus
another spatial Gaussian process with Matérn covariance, ui,z. This will allow us to assess differences
in the spatial distribution of the concentration of both heavy metals. Furthermore, the Euclidian
distance from the location of each measurement to the closest point of the river (dist) is included in
both linear predictors as a covariate, each with a different slope parameter (βl and βz).

Hence, the model can be written as:

log(yl) ∼ N(µi,l , σl)
log(yz) ∼ N(µi,z, σz)

where µi,l and µi,z represent the mean of the concentration of lead and zinc, respectively and which
are modelled as follows:
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µi,l =αl + βldisti + ui,s; i = 1, . . . , n
µi,z =αz + βzdisti + ui,s + ui,z i = 1, . . . , n

In this case, the prior choices for the nominal range (r) and standard deviation (r) for both the
shared and zinc-specific spatial random effects are:

P(r < 2394.16) = 0.95,

P(σ > 1000) = 0.05.

In plain words, this represents the belief that substantial correlations (> 0.1) between points more than
half the maximum distance (2394.16 meters) apart are unlikely, and so are standard deviations greater
than 1,000. These prior distributions are specified using the inla.spde2.pcmatern() function:

spde <- inla.spde2.pcmatern(mesh = mesh,
prior.range = c(2394.16, 0.95), prior.sigma = c(1000, 0.05))

The SPDE approximation estimates the spatial random effects at the vertices of the mesh, so that
estimates at any other point are based on the estimates at the vertices of the triangle that contains the
point. The position of this point inside the triangle is identified using barycentric coordinates (see
Krainski et al., 2019, for details). The projector matrix contains all these coordinates for all the points
in the dataset and it is obtained with function inla.spde.make.A():

A.m <- inla.spde.make.A(mesh = mesh, loc = coordinates(meuse))

In order to fit models using the SPDE approach, data must be stacked using the appropriate format.
Helper function inla.stack() can be used to build a stack object which contains the data (properly
structured), the effects considered in the model, and the projector matrix. Specifically, a stack object
will be built to model each variable. Then, all these objects will be put together into a single stack
object so that a joint model can be fit.

In all the stacks the name of the response variable will be the same. The values will be given
in a matrix with as many columns as the number of variables and as many rows as the number of
observations. In the first stack, the values of the first response variable will be in the first column and
the rest of columns will be filled with NA’s. The other stacks and corresponding response variables will
be defined analogously.

Regarding fixed and other latent effects included in the linear predictor, these can take the same
name across stacks when the effect is shared for different response variables. When the effect of the
same covariate or latent effect needs to be different across response variables, then different names
must be used. See the R code below for more details.

The data are structured using the inla.stack() function specifying three elements: the data, the
projector matrix, the different effects of the linear predictor and a tag to identify each part of the dataset
in the final stack. This tag is used when retrieving particular results from the output.

# Create the stack object for lead
stk.lead <- inla.stack(
data = list(log.y = cbind(log(meuse$lead), NA)),
A = list(A.m, 1),
effects = list(spatial.field.lead = 1:spde$n.spde,
data.frame(Intercept.lead = 1, dist.lead = meuse$dist)),

tag = "Lead")

# Create the stack object for zinc
stk.zinc <- inla.stack(
data = list(log.y = cbind(NA, log(meuse$zinc))),
A = list(A.m, A.m, 1),
effects = list(
spatial.field.zinc = 1:spde$n.spde, base.copy.zinc = 1:nv,
data.frame(Intercept.zinc = 1, dist.zinc = meuse$dist)),

tag = "Zinc")
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A projector matrix and a stack for the prediction grid have also been created as follows:

# Create the projector matrix for the prediction
A.pr <- inla.spde.make.A(mesh = mesh, loc = coordinates(meuse.grid))

# Prepare the data for the prediction
y.pred <- matrix(NA, nrow = nrow(meuse.grid), ncol = 2)

# Build predicting stack for lead
stk.lead.pr <- inla.stack(
data = list(log.y = y.pred),
A = list(A.pr, 1),
effects = list(spatial.field.lead = 1:spde$n.spde,
data.frame(Intercept.lead = 1, dist.lead = meuse.grid$dist)),

tag = "Lead.pred")

# Build predicting stack for zinc
stk.zinc.pr <- inla.stack(
data = list(log.y = y.pred),
A = list(A.pr, A.pr, 1),
effects = list(
spatial.field.zinc = 1:spde$n.spde, base.copy.zinc = 1:nv,
data.frame(Intercept.zinc = 1, dist.zinc = meuse.grid$dist)),

tag = "Zinc.pred")

Next, a stack object is built for the shared and zinc-specific effects in order to study the spatial
patterns of these effects:

# Stack for the shared effect
stk.shared <- inla.stack(
data = list(log.y = y.pred),
A = list(A.pr),
effects = list(spatial.field.lead = 1:spde$n.spde),
tag = "Shared")

# Stack for the specific sp effect zinc
stk.zinc.spec <- inla.stack(
data = list(log.y = y.pred),
A = list(A.pr),
effects = list(spatial.field.zinc = 1:spde$n.spde),
tag = "Zinc.spec")

All the stack objects are put together in a single joint stack object using the inla.stack() function:

# Put all the stacks together
join.stack <- inla.stack(
stk.lead, stk.zinc,
stk.zinc.pr, stk.lead.pr,
stk.shared, stk.zinc.spec)

The model formula is defined below. The latent effect of type copy is used to define the shared
term of the model.

# Formulas for the model
form <- log.y ~ -1 + Intercept.lead + Intercept.zinc + dist.lead + dist.zinc +
f(spatial.field.lead, model = spde) +
f(spatial.field.zinc, model = spde) +
f(base.copy.zinc, copy = "spatial.field.lead", fixed = TRUE)

Finally, the model is fit with R-INLA. Note how the family argument takes a vector of two
"gaussian" elements (one for each heavy metal concentration). Furthermore, note that the data are
obtained from the joint stack with the inla.stack.data() function and that the projector matrix A is
also obtained using the inla.stack.A() function.
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meuse.res <- inla(formula = form, verbose = FALSE,
data = inla.stack.data(join.stack, spde = spde),
family = rep("gaussian", 2),
control.family = list(zero.prec, zero.prec),
control.predictor = list(A = inla.stack.A(join.stack), compute = TRUE),
control.compute = list(dic = TRUE, waic = TRUE, cpo = TRUE, mlik = TRUE, po = TRUE))

Given that the structure of the data used for model fitting is a stack now, particular parameter
estimates can be accessed through function inla.stack.index(). This function can provide the
indices to access the entries of specific data or latent effects in the summaries provided by R-INLA. For
example, the following code can be used to obtain the posterior means of the fitted values obtained
with the effects in the 'Lead.pred' stack:

idx.lead <- inla.stack.index(join.stack, 'Lead.pred')$data
meuse.grid$lead.pr <- meuse.res$summary.fitted.values[idx.lead, 'mean']

Figure 3 shows point estimates (posterior means) of the log-concentration of lead and zinc; the
posterior mean of the shared and the zinc-specific effect are also shown. Note the similar spatial
pattern across both metals.

Figure 3: Estimates of the posterior means of the log-concentration of lead (top-left) and zinc (top-
right). Estimates of the posterior mean of the shared spatial effect (bottom-left) and the zinc-specific
spatial effect (bottom-right).

5 Multivariate point patterns

A point pattern is defined as a group of points (geographically located) which are a single realization
of a stochastic process called point process. A multivariate point pattern can be defined as a group of
several point patterns where each point pattern has a different origin, i.e., each point pattern is caused
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by different processes. These are also referred to a specific case of marked point pattern (Baddeley et al.,
2015) where each point pattern is labelled with a categorical mark.

In a completely random point process, points appear independently of each other and uniformly
over the study region. This is also known as a homogeneous Poisson process with (constant) intensity
λ, which measures the average number of points per unit area. It is also possible to consider a spatially
varying intensity, λ(s) (with s being a point of the study region), so that the process becomes an
inhomogeneous Poisson process. The model can be extended to more complex point patterns (see, for
example, Baddeley et al., 2015).

Several methods have been used to model the intensity function λ(s). A complete spatial ran-
domness scenario will not be considered here, that is, the intensity function of each point pattern
will not be considered as constant over the study area. Specifically, intensities will be considered as
continuous processes over the entire study region and they will be modeled using log-Gaussian Cox
processes (Møller et al., 1998; Diggle et al., 2013). Log-Gaussian Cox processes can be fit by including
spatial terms using the SPDE approach implemented in INLA (Simpson et al., 2016). The analysis
of the intensity as a continuous function over the study region is similar to the case of multivariate
geostatistics.

Given K point patterns in a region D, an example of how to structure a multivariate point patterns
model is:

log(λ0(s)) =α0 + u0(s); s ∈ D
log(λj(s)) =αj + u0(s) + uj(s) s ∈ D; j = 1, . . . , K − 1

where λ0(s) is the intensity of the baseline point pattern and λj(s) the intensity function of the jth
point pattern. Moreover, α0, αj terms represent the intercepts and u0(s), uj(s) are the spatial effects.
Specifically, u0(s) is the shared (by the different point patterns) spatial term and uj(s) are the specific
spatial terms which model the differences between each point pattern and the baseline.

In spatial epidemiology, the goal is often to discern whether a distribution of cases follows the
spatial distribution of a set of controls, or whether it depends on exposure to pollution sources or
other risk factors such as pollution (Palmí-Perales et al., 2021). This is an application of the model
described here, in which the log-intensity of the controls can be modeled using a shared spatial term
and the log-intensity of the cases can include this shared spatial term plus a disease-specific spatial
term. Furthermore, the linear predictor can include other terms to account for risk factors.

Priors are set similarly as in the example for continuous spatial data as the spatial random effects
uj(s), j = 0, . . . , K− 1 are actually modeled as SPDE latent effects. Other parameters of effects included
in the model (e.g., fixed effects) will be asssigned priors accordingly.

5.1 Example: forest fires in Castilla-La Mancha (Spain)

The spatstat package contains the clmfires dataset. This dataset records the occurrence of forest
fires in the region of Castilla-La Mancha (Spain) from 1998 to 2007. These forest fires are classified by
four different causes: lightning, accidental, intentional, and other fires (Figure 4). After loading the
packages, the data are accessed using the data() function:

#Load and display the data
data("clmfires")

Specifically, in this example, the intensities of the different types of forest fires are estimated by
considering lightning fires as the baseline pattern. Furthermore, INLA is used to assess the similarities
or differences among their spatial patterns. First of all, the mesh is built using the coordinates of the
boundary of the dataset (bdy.SP) using the code below.

mesh <- inla.mesh.2d(
boundary = list(bdy.SP, NULL), cutoff = 2, max.edge = c(20, 50),
min.angle = 27, offset = c(1, 50), n=c(16,16))

Following the model structure for multivariate point patterns detailed above, the log-intensity
of the lightning fires λl(s) will be modeled using an intercept, αl , and a spatial Gaussian effect with
Matérn covariance, ul(s) as follows
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Figure 4: The mesh used is shown alone (top-left) and with all the fire types (bottom-left). Furthermore,
the mesh is also displayed for each fire type separately: lightning fires (top-middle), accidental fires
(bottom-middle), intentional fires (top-right), and other fires (bottom-right).

log λl(s) = αl + ul(s); s ∈ D

Spatial effect ul(s) will also be shared in the linear predictor of the other types of fire. Similarly,
the log-intensity of the accidental, intentional, and other fires (which includes unknown cause) will be
modeled using specific intercepts, plus the shared spatial effect, plus a specific spatial effect as follows:

log λa(s) = αa + ul(s) + ua(s); s ∈ D

log λi(s) = αi + ul(s) + ui(s); s ∈ D

log λo(s) = αo + ul(s) + uo(s) s ∈ D

Following the prior specification section, the chosen PC-priors in this example are:

P(r < 200) = 0.95

P(σ > 100) = 0.05

where a nominal range higher than half the maximum distance (e.g., 200 kilometres) of the domain
is unlikely. Similarly for the nominal standard deviation, its prior assumes that it is really unlikely
that it is higher than 100 in this context. These prior distributions have been specified using function
inla.spde2.pcmatern():

spde <- inla.spde2.pcmatern(mesh = mesh,
prior.range = c(200, 0.95), prior.sigma = c(10, 0.05))

Here, argument prior.range sets the prior for the range and the argument prior.sigma sets the prior
for the standard deviation of the spatial effect.

As this model includes SPDE latent effects, data must be put together using stack objects. In
the case of point patterns, the data included in the stack function is different from the geostatistical
example as point pattern data has to be detailed following a specific structure (see below). Model
fitting now relies on the methods described in Simpson et al. (2016). In this case, two elements will be
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included in a list for storing the data of each point pattern.

The first element of the list will be a matrix with Nv + Ni rows and K columns where Nv is the
number of vertices of the SPDE mesh, Ni is the total number of points of the i-th point pattern and K is
the number of different point patterns. The matrix of the stack of the i-th point pattern will be filled
with NA’s except for the i-th column. This i-th column will contain firstly Nv zeros corresponding to
the points of the mesh. After these zeros, there will be Ni ones corresponding to the Ni points of the
i-th point pattern.

The second element of the list will be a vector containing an offset. Specifically, the length of this
vector is also Nv + Ni where the first Nv elements will contain the "weights" of the mesh points. The
reader is referred to Simpson et al. (2016) for more details about this approximation. The rest of the
values will be zeros.

These two elements have to be created for each stack of each point pattern. Then, as before, the
stacks are combined in a single stack object. As a toy example, consider a mesh with Nv = 3, two point
patterns (K = 2) with three and four points, respectively (N1 = 3 and N2 = 4). The weights associated
to the three mesh points will be 2.3, 4.3 and 6.2. Then, the data passed to the first and second stack are:


0 NA
0 NA
0 NA
1 NA
1 NA
1 NA

 ,


2.3
4.3
6.2
0
0
0

 ;



NA 0
NA 0
NA 0
NA 1
NA 1
NA 1
NA 1


,



2.3
4.3
6.2
0
0
0
0


.

As stated above, when analysing point patterns it is necessary to assign some weights to the points
of the mesh. This is done by creating a Voronoi tesselation using these points, so that the area of the
associated polygon becomes the associated weight. The following code illustrates how to obtain the
Voronoi tesselation and the associated weights:

library(deldir)
dd <- deldir(mesh$loc[, 1],mesh$loc[, 2])
# Create a list of tiles in a tessellation
mytiles <- tile.list(dd)

# Boundary as a polygon
pl.study <- as(bdy, "gpc.poly")
# Area of the study area
area.poly(pl.study)

# Compute weights as the area of the polygon given as an
# intersection between Voronoi tiles and domain polygon
w <- unlist(lapply(mytiles,
function(p) area.poly(
intersect(as(cbind(p$x,p$y), "gpc.poly"), pl.study)
)

)
)

These computed weights are introduced as the expected weights on the mesh points. Furthermore,
the data should be structured as follows:

# Data for the stack function: lightning fires
e.lig <- c(w, rep(0, n.lig))
y.lig <- matrix(NA, nrow = nv + n.lig, ncol = n.pp)
y.lig[, 1] <- rep(0:1, c(nv, n.lig))

# Data for the stack function: accidental fires
e.acc <- c(w, rep(0, n.acc))
y.acc <- matrix(NA, nrow = nv + n.acc, ncol = n.pp)
y.acc[, 2] <- rep(0:1, c(nv, n.acc))

# Data for the stack function: intentional fires
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e.int <- c(w, rep(0, n.int))
y.int <- matrix(NA, nrow = nv + n.int, ncol = n.pp)
y.int[, 3] <- rep(0:1, c(nv, n.int))

# Data for the stack function: other fires
e.oth <- c(w, rep(0, n.oth))
y.oth <- matrix(NA, nrow = nv + n.oth, ncol = n.pp)
y.oth[, 4] <- rep(0:1, c(nv, n.oth))

Another element of the SPDE approach is the projector matrix that represents each point using
barycentric coordinates from the mesh points (as explained above). When analysing multivariate point
patterns, this matrix has two parts: one for the mesh points (named imat), which is a diagonal matrix
as every mesh point matches itself when using barycentric coordinates, and the other for the points of
the point pattern (named lmat). Then, the projector matrix is the combination of these two matrices:

#imat: define imat
imat <- Diagonal(nv, rep(1, nv))

#lmat: define lmat
lmat.lig <- inla.spde.make.A(mesh, pts.lig)
lmat.acc <- inla.spde.make.A(mesh, pts.acc)
lmat.int <- inla.spde.make.A(mesh, pts.int)
lmat.oth <- inla.spde.make.A(mesh, pts.oth)

#Projector matrix: Put together imat and lmat
A.lig <- rbind(imat, lmat.lig)
A.acc <- rbind(imat, lmat.acc)
A.int <- rbind(imat, lmat.int)
A.oth <- rbind(imat, lmat.oth)

Once all the elements of the stack object are set, the inla.stack() function is used to build the
different stack objects. For instance, the stack objects of two (out of four) types of forest fires are
shown here below:

# Create the stack for the lighting fires
stk.lig <- inla.stack(
data = list(y = y.lig, e = e.lig),
A = list(A.lig, 1),
effects = list(spatial.field.lig = s.index.lig,
data.frame(Intercept.lig = rep(1, n.lig))
),

tag = "Lighting")

# Create the stack for the accidental fires
stk.acc <- inla.stack(
data = list(y = y.acc, e = e.acc),
A = list(A.acc, A.acc, 1),
effects = list(
base.copy.acc = 1:nv,
spatial.field.acc = s.index.acc,
data.frame(Intercept.acc = rep(1, n.acc))
),

tag = "Accidental")

As in the example for continuous spatial data, the stack objects for the predictions have to be
built following the same structure (their name will end with ".pr" in the R code). Finally, all the stack
objects are joined into a single joint stack object as follows:

# All stacks together
join.stack <- inla.stack(
stk.lig, stk.acc, stk.int, stk.oth,
stk.lig.pr, stk.acc.pr, stk.int.pr, stk.oth.pr,
stk.shared, stk.acc.spec, stk.int.spec, stk.oth.spec)
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Note that in this example separate stack objects have been created for estimating the intensity of
each of the different types of forest types, the shared spatial pattern (stack stk.shared) and the three
different specific spatial effects (stacks stk.acc.spec, stk.int.spec and stk.oth.spec).

The model formula is defined here below, where the latent effects of type copy are used to define
the shared terms of the model:

form <- y ~ -1 + Intercept.lig + Intercept.acc + Intercept.int + Intercept.oth +
f(spatial.field.lig, model = spde) +
f(spatial.field.acc, model = spde) +
f(base.copy.acc, copy = "spatial.field.lig", fixed = TRUE) +
f(spatial.field.int, model = spde) +
f(base.copy.int, copy = "spatial.field.lig", fixed = TRUE) +
f(spatial.field.oth, model = spde) +
f(base.copy.oth, copy = "spatial.field.lig", fixed = TRUE)

The model is fit with R-INLA using the code below. Note how the family argument takes a vector
of four "poisson" elements (one for each fire type).

pp.res <- inla(formula = form, verbose = FALSE,
data = inla.stack.data(join.stack, spde = spde),
family = rep("poisson", 4),
control.predictor = list(A = inla.stack.A(join.stack), compute = TRUE, link = 1),
control.compute = list(dic = TRUE, waic = TRUE, cpo = TRUE, mlik = TRUE, po = TRUE)

)

Figure 5 shows the posterior mean of the intensity of each type of the forest fires. A different
spatial pattern can be seen for each fire type. Lightning fires mostly appear in the east part of the
region, while the other three types of forest fires are more likely to appear in the west and the central
parts of the region. Additionally, the posterior means of the shared and specific spatial effects can also
be seen in Figure 6.

6 Discussion

In this paper, we have shown how to fit multivariate spatial models using the R-INLA package.
In particular, the details of how to analyse each spatial data type (lattice, continuous, and point
patterns) have been given. Furthermore, we have illustrated the application of these models using
three datasets: simulated data on mortality by three types of cancer (available from https://github.
com/becarioprecario/INLAMCMC_spatial_examples), the clmfires dataset in the spatstat package
and the meuse dataset in the gstat package. Furthermore, more complex spatial and spatio-temporal
models to multivariate data can be fitted with R-INLA (see, for example, Palmí-Perales et al., 2021).

The main goal of this work has been to illustrate how to perform multivariate spatial Bayesian
inference using R-INLA. In particular, we have paid attention to the different steps required to create
the necessary data structures for model fitting. The advantage of R-INLA compared with alternatives
is its computational efficiency; particularly, MCMC-based methods can struggle in the computationally
demanding high-dimensional setting of spatial data sets. Hence, it has been shown that R-INLA is a
useful and a worthwhile toolbox for fitting multivariate spatial models. Additionally, the necessary
R scripts to reproduce the examples are available at https://github.com/FranciscoPalmiPerales/
Mult-Sp-INLA.
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Figure 5: Posterior mean of the intensity of the lightning (top-left), accidental (top-right), intentional
(bottom-left) and other (bottom-right) fires.
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