Supplementary materials are available in addition to this article. It can be downloaded at
RJ-2023-068.zip
A. Baddeley, E. Rubak and R. Turner.
Spatial point patterns: Methodology and applications with R. London: Chapman & Hall/CRC Press, 2015. URL
http://www.crcpress.com/Spatial-Point-Patterns-Methodology-and-Applications-with-R/Baddeley-Rubak-Turner/9781482210200/.
H. Bakka, H. Rue, G.-A. Fuglstad, A. Riebler, D. Bolin, E. Krainski, D. Simpson and F. Lindgren. Spatial modelling with
R-INLA:
A review.
WIREs Comput Stat, 10(6): 1–24, 2018. URL
https://doi.org/10.1002/wics.1443.
S. Banerjee, B. P. Carlin and A. E. Gelfand. Hierarchical modeling and analysis for spatial data. CRC press, 2014.
M. Blangiardo and M. Cameletti. Spatial and spatio-temporal Bayesian models with R-INLA. John Wiley & Sons, 2015.
P. J. Diggle, P. Moraga, B. Rowlingson and B. M. Taylor.
Spatial and spatio-temporal log-Gaussian Cox processes: Extending the geostatistical Paradigm.
Statistical Science, 28(4): 542–563, 2013. URL
https://doi.org/10.1214/13-STS441.
A. O. Finley, S. Banerjee and B. P. Carlin.
spBayes: An
R package for univariate and multivariate hierarchical point-referenced spatial models.
Journal of Statistical Software, 19(4): 1, 2007. URL
https://www.jstatsoft.org/index.php/jss/article/view/v019i04.
A. O. Finley, S. Banerjee and A. E.Gelfand.
spBayes for large univariate and multivariate point-referenced spatio-temporal data models.
Journal of Statistical Software, 63(13): 1–28, 2015. URL
http://www.jstatsoft.org/v63/i13/.
A. Gelman.
Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper).
Bayesian Analysis, 1(3): 515–534, 2006. URL
https://doi.org/10.1214/06-BA117A.
W. R. Gilks, S. Richardson and D. J. Spiegelhalter. Markov chain monte carlo in practice. Chapman & Hall, 1995.
V. Gómez-Rubio. Bayesian inference with INLA. CRC Press, 2020.
V. Gómez-Rubio, M. Cameletti and F. Finazzi. Analysis of massive marked point patterns with stochastic partial differential equations.
Spatial Statistics, 14: 179–196, 2015. URL
https://doi.org/10.1016/j.spasta.2015.06.003.
V. Gómez-Rubio and F. Palmí-Perales.
Multivariate posterior inference for spatial models with the integrated nested Laplace approximation.
Journal of the Royal Statistical Society, Series C, 68(1): 199–215, 2019. URL
https://doi.org/10.1111/rssc.12292.
V. Gómez-Rubio, F. Palmí-Perales, G. López-Abente, R. Ramis-Prieto and P. Fernández-Navarro. Bayesian joint spatio-temporal analysis of multiple diseases.
SORT, 1: 51–74, 2019. URL
https://doi.org/10.2436/20.8080.02.79.
V. Gómez-Rubio, P. Zheng, P. Diggle, D. C. Sterratt, R. D. Peng, D. Murdoch and B. Rowlingson.
spatialkernel: Non-parametric estimation of spatial segregation in a multivariate point process. 2017. URL
https://CRAN.R-project.org/package=spatialkernel. R package version 0.4-23.
E. T. Krainski, V. Gómez-Rubio, H. Bakka, A. Lenzi, D. Castro-Camilo, D. Simpson, F. Lindgren and H. Rue. Advanced spatial modeling with stochastic partial differential equations using R and INLA. Boca Raton, FL: Chapman & Hall/CRC, 2019.
D. Lee.
CARBayes: An
R package for
Bayesian spatial modeling with conditional autoregressive priors.
Journal of Statistical Software, 55(13): 1–24, 2013. URL
https://www.jstatsoft.org/v55/i13/.
F. Lindgren, H. Rue, et al. Bayesian spatial modelling with
R-INLA.
Journal of Statistical Software, 63(19): 1–25, 2015. URL
https://doi.org/10.18637/jss.v063.i19.
F. Lindgren, H. Rue and J. Lindström.
An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73(4): 423–498, 2011. URL
https://doi.org/10.1111/j.1467-9868.2011.00777.x.
Y. C. MacNab.
Some recent work on multivariate Gaussian Markov random fields.
Test, 27(3): 497–541, 2018. URL
https://doi.org/10.1007/s11749-018-0605-3.
M. Martínez-Beneito. A general modelling framework for multivarite disease mapping.
Biometrika, 100(3): 539–553, 2013. URL
https://doi.org/10.1093/biomet/ast023.
M. A. Martínez-Beneito, P. Botella-Rocamora and S. Banerjee. Towards a multidimensional approach to
Bayesian disease mapping.
Bayesian analysis, 12(1): 239, 2017. URL
https://doi.org/10.1214/16-BA995.
M. A. Martı́nez-Beneito and P. Botella-Rocamora. Disease Mapping: From Foundations to Multidimensional Modeling. CRC Press, 2019.
J. Møller, A. R. Syversveen and R. P. Waagepetersen.
Log Gaussian Cox Processes.
Scandinavian Journal of Statistics, 25(3): 451–482, 1998. URL
https://doi.org/10.1111/1467-9469.00115.
F. Palmí-Perales, V. Gómez-Rubio, G. López-Abente, R. Ramis, J. M. Sanz-Anquela and P. Fernández-Navarro. Approximate
Bayesian inference for multivariate point pattern analysis in disease mapping.
Biometrical Journal, 63(3): 632–649, 2021a. URL
https://doi.org/10.1002/bimj.201900396.
F. Palmí-Perales, V. Gómez-Rubio and M. A. Martínez-Beneito.
Bayesian Multivariate Spatial Models for Lattice Data with INLA.
Journal of Statistical Software, 98(2): 1–29, 2021b. URL
https://www.jstatsoft.org/index.php/jss/article/view/v098i02.
E. J. Pebesma. Multivariable geostatistics in S: The gstat package. Computers & Geosciences, 30(7): 683–691, 2004.
E. J. Pebesma and C. G. Wesseling. Gstat: A Program for Geostatistical Modelling, Prediction and Simulation. Computers & Geosciences, 24(1): 17–31, 1998.
R Core Team.
R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing, 2022. URL
https://www.R-project.org/.
H. Rue and L. Held. Gaussian markov random fields. Theory and applications. New York: Chapman & Hall, 2005.
H. Rue, F. Lindgren, D. Simpson, S. Martino, E. Teixeira Krainski, H. Bakka, A. Riebler and G.-A. Fuglstad. INLA: Full bayesian analysis of latent gaussian models using integrated nested laplace approximations. 2020. R package version 20.03.17.
H. Rue, S. Martino and N. Chopin.
Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations.
Journal of the royal statistical society: Series b (statistical methodology), 71(2): 319–392, 2009. URL
https://doi.org/10.1111/j.1467-9868.2008.00700.x.
D. Simpson, J. Illian, F. Lindgren, S. H. Sørbye and H. Rue.
Going off grid: Computationally efficient inference for log-Gaussian Cox processes.
Biometrika, 103(1): 49–70, 2016. URL
https://doi.org/10.1093/biomet/asv064.
D. Simpson, H. Rue, A. Riebler, T. G. Martins and S. H. Sørbye. Penalising model component complexity: A principled, practical approach to constructing priors.
Statistical Science, 32(1): 1–28, 2017. URL
http://www.jstor.org/stable/26408114.
S. H. Sørbye, J. B. Illian, D. P. Simpson, D. Burslem and H. Rue.
Careful prior specification avoids incautious inference for log-Gaussian Cox point processes.
Journal of the Royal Statistical Society: Series C (Applied Statistics), 68(3): 543–564, 2019. URL
https://doi.org/10.1111/rssc.12321.
M. N. M. Van Lieshout and A. J. Baddeley. Indices of dependence between types in multivariate point patterns.
Scandinavian Journal of Statistics, 26(4): 511–532, 1999. URL
https://doi.org/10.1111/1467-9469.00165.
R. Waagepetersen, Y. Guan, A. Jalilian and J. Mateu.
Analysis of multispecies point patterns by using multivariate log-Gaussian Cox processes.
Journal of the Royal Statistical Society. Series C (Applied Statistics), 65(1): 77–96, 2016. URL
http://www.jstor.org/stable/24773017.