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fasano.franceschini.test: An
Implementation of a Multivariate KS Test
in R
by Connor Puritz, Elan Ness-Cohn, and Rosemary Braun

Abstract The Kolmogorov–Smirnov (KS) test is a nonparametric statistical test used to test for dif-
ferences between univariate probability distributions. The versatility of the KS test has made it a
cornerstone of statistical analysis across many scientific disciplines. However, the test proposed by
Kolmogorov and Smirnov does not easily extend to multivariate distributions. Here we present the
fasano.franceschini.test package, an R implementation of a multivariate two-sample KS test described
by Fasano and Franceschini (1987). The fasano.franceschini.test package provides a test that is compu-
tationally efficient, applicable to data of any dimension and type (continuous, discrete, or mixed), and
that performs competitively with similar R packages.

1 Introduction

The Kolmogorov–Smirnov (KS) test is a nonparametric, univariate statistical test designed to assess
whether a sample of data is consistent with a given probability distribution (or, in the two-sample case,
whether the two samples came from the same underlying distribution). First described by Kolmogorov
and Smirnov in a series of papers (Kolmogorov, 1933a,b; Smirnov, 1936, 1937, 1939, 1944, 1948), the KS
test is a popular goodness-of-fit test that has found use across a wide variety of scientific disciplines,
including neuroscience (Atasoy et al., 2017), climatology (Chiang et al., 2018), robotics (Hahne et al.,
2018), epidemiology (Wong and Collins, 2020), and cell biology (Kaczanowska et al., 2021).

Due to its popularity, several multivariate extensions of the KS test have been described in literature.
Justel et al. (1997) proposed a multivariate test based on Rosenblatt’s transformation, which reduces to
the KS test in the univariate case. While the test statistic is distribution-free, it is difficult to compute
in more than two dimensions, and an approximate test with reduced power must be used instead.
Furthermore, the test is only applicable in the one-sample case. Heuchenne and Mordant (2022)
proposed to use the Hilbert space-filling curve to define an ordering in R2. The preimage of both
samples is computed under the space-filling curve map, and the two-sample KS test is performed on
the preimages. While it is theoretically possible to extend this approach to higher dimensions, the
authors note that this would be computationally challenging and leave it as an open problem. Naaman
(2021) derived a multivariate extension of the DKW inequality and used it to provide estimates of the
tail properties of the asymptotic distribution of the KS test statistic in multiple dimensions. While an
important theoretical result, it is of limited practical use absent a method for computing exact p-values.

Peacock (1983) proposed a test which addresses the fact that there are multiple ways to order
points in higher dimensions, and thus multiple ways of defining a cumulative distribution function.
In one dimension, probability density can be integrated from left to right, resulting in the canonical
CDF P(X < x); or from right to left, resulting in the survival function P(X > x). However, since
P(X < x) = 1 − P(X > x) (for continuous random variables), the KS test statistic is independent
of this choice. In two dimensions, there are four ways of ordering points, and thus four possible
cumulative distribution functions: P(X < x, Y < y), P(X > x, Y < y), P(X < x, Y > y), and
P(X > x, Y > y). Since any three of these are independent of one another, the KS test statistic will not
be independent of which ordering is chosen. To address this, Peacock (1983) proposed to compute a
KS statistic using each possible cumulative distribution function, and to take the test statistic to be the
maximum of those.

Peacock (1983) suggested that for a sample (X1, Y1), . . . , (Xn, Yn), each of the four KS statistics
should be maximized over the set of all coordinate-wise combinations {(Xi, Yj) : 1 ≤ i, j ≤ n}. The
complexity of computing Peacock’s test statistic thus scales cubically with sample size, which is
expensive and can become intractable for large sample sizes. Fasano and Franceschini (1987) proposed
a simple change to Peacock’s test: instead of maximizing each KS statistic over all coordinate-wise
combinations of points in the sample, the statistics should be maximized over just the points in the
sample itself. This slight change greatly reduces the computational complexity of the test while
maintaining a similar power across a variety of alternatives (Fasano and Franceschini, 1987; Lopes
et al., 2007). Fasano and Franceschini (1987) proposed both a one-sample and two-sample version of
their test, although we focus on the two-sample test here.

In this article we present the fasano.franceschini.test package, an R implementation of the two-
sample Fasano–Franceschini test. Our implementation can be applied to continuous, discrete, or
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mixed datasets of any size and of any dimension. We first introduce the test by detailing how the test
statistic is computed, how it can be computed efficiently, and how p-values can be computed. We then
describe the package structure and provide several basic examples illustrating its usage. We conclude
by comparing the package to three other CRAN packages implementing multivariate two-sample
goodness-of-fit tests.

2 Fasano–Franceschini test

2.1 Two-sample test statistic

Let X = (X1, . . . , Xn1 ) and Y = (Y1, . . . , Yn2 ) be samples of i.i.d. d-dimensional random vectors
drawn from unknown distributions F1 and F2, respectively. The two-sample Fasano–Franceschini test
evaluates the null hypothesis

H0 : F1 = F2

against the alternative
H1 : F1 ̸= F2.

In their original paper, Fasano and Franceschini (1987) only considered two- and three-dimensional
random vectors, although their test naturally extends to arbitrary dimensions as follows.

For x ∈ Rd, we define the ith open orthant with origin x as

Oi(x) =
{

y ∈ Rd | eij(yj − xj) > 0, j = 1, . . . , d
}

where ei ∈ {−1, 1}d is a length d combination of ±1. For example, in two dimensions, the four
combinations e1 = (1, 1), e2 = (−1, 1), e3 = (−1,−1), and e4 = (1,−1) correspond to quadrants one
through four in the plane, respectively. In general there are 2d such combinations, corresponding to
the 2d orthants that divide Rd. Using the indicator function

Ij(x | y) =

{
1, x ∈ Oj(y)
0, x /∈ Oj(y)

we define

D(p |X, Y) = max
1≤j≤2d

∣∣∣∣∣ 1
n1

n1

∑
k=1

Ij (Xk | p)− 1
n2

n2

∑
k=1

Ij (Yk | p)

∣∣∣∣∣ . (1)

This is similar to the distance used in the two-sample KS test, but takes into account all possible ways
of ordering points in Rd. Note that this function does not depend on the enumeration of the orthants.
Maximizing D over each sample separately leads to the difference statistics

D1(X, Y) = max
1≤i≤n1

D(Xi |X, Y)

and
D2(X, Y) = max

1≤i≤n2

D(Yi |X, Y).

The two-sample Fasano–Franceschini test statistic, as originally defined by Fasano and Franceschini
(1987), is the average of the difference statistics scaled by the sample sizes:

D0(X, Y) =
√

n1n2
n1 + n2

(
D1(X, Y) + D2(X, Y)

2

)
. (2)

This test statistic is discrete, but in general is not integer-valued. Note that

n1n2D(p |X, Y) = max
1≤j≤2d

∣∣∣∣∣n2

n1

∑
k=1

Ij (Xk | p)− n1

n2

∑
k=1

Ij (Yk | p)

∣∣∣∣∣ ∈ Z,

and thus
n1n2Di(X, Y) ∈ Z, i ∈ {1, 2}.

Let
Cn1,n2 = 2

√
n1n2(n1 + n2).
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Then

Cn1,n2D0(X, Y) = 2
√

n1n2(n1 + n2)

√
n1n2

n1 + n2

(
D1(X, Y) + D2(X, Y)

2

)
= n1n2(D1(X, Y) + D2(X, Y)) ∈ Z.

To avoid comparing floating point numbers, it is preferable for the test statistic to be integer-valued,
and thus we use

D(X, Y) = Cn1,n2D0(X, Y) (3)

as our test statistic. As will be shown, the p-value of the test is independent of scalar rescaling of the
test statistic.

Figure 1: Illustration of the computation of the difference statistic D1 in two dimensions. Each point in
the first sample is used to divide the plane into four quadrants, and both samples are cumulated in
each of the four quadrants. The fraction of each sample in each quadrant is shown in the corresponding
plot corner, and the maximum difference over all four quadrants is shown above each plot. D1 is taken
as the maximum of these differences. To compute the test statistic, we would next compute D2 by
repeating the same procedure, but using points in the second sample to divide the plane instead.

2.2 Computational complexity

The bulk of the time required to compute the test statistic in (3) is spent evaluating sums of the form

∑
x∈S

Ij (x | y) ,

which count the number of points in a set S that lie in a given d-dimensional region. The simplest
approach to computing such sums is brute force, where every point x ∈ S is checked independently.
The orthant a point lies in can be determined using d binary checks, resulting in a time complexity of
O(N2), where N = max(n1, n2), to evaluate (3) for fixed d.

Alternatively, we can consider each sum as a single query rather than a sequence of independent
ones. Specifically, both sums in (1) are orthogonal range counting queries, which ask how many points
in a set S ⊂ Rd lie in an axis-aligned box (x1, x′1)× · · · × (xd, x′d). Range counting is an important
problem in the field of computational geometry, and as such a variety of data structures have been
described to provide efficient solutions (de Berg et al., 2008). One solution, first introduced by Bentley
(1979), is a multi-layer binary search tree termed a range tree. Other slightly more efficient data
structures have been proposed for range counting, but range trees are well suited for our purposes,
particularly because their construction scales easily to arbitrary dimensions (Bentley, 1979; de Berg
et al., 2008).

A range tree can be constructed on a set of n points in d-dimensional space using O(n logd−1 n)
space in O(n logd−1 n) time. The number of points that lie in an axis-aligned box can be reported
in O(logd n) time, and this time can be further reduced to O(logd−1 n) when d > 1 using fractional
cascading (de Berg et al., 2008). To compute (3), we construct one range tree for each of the two
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samples, and then query each tree 2d times. Thus the total time complexity to compute the test statistic
using range trees for fixed d is O(N logd−1 N), where N = max(n1, n2).

Figure 2: Time to compute the Fasano–Franceschini test statistic as a function of sample size, comparing
the brute force and range tree methods for data of dimensions two through five. Points represent
the mean time of 200 evaluations. Samples are taken to be of the same size and are drawn from
multivariate standard normal distributions.

As the range tree method has a better asymptotic time complexity, we expect it to outperform the
brute force method for larger sample sizes. However, for smaller sample sizes, the cost of building the
range trees can outweigh the benefit gained by more efficient querying. As exact computation times
can vary depending on the geometry of the samples, it is not possible to determine in general when one
method will outperform the other. Despite this, we sought to establish rough benchmarks. Drawing
equal sized samples from multivariate standard normal distributions, we sought to determine the
sample size N∗ at which the range tree method becomes more efficient than the brute force method
(Figure 2). For d = 2, N∗ ≈ 25; for d = 3, N∗ ≈ 200; for d = 4, 5, and presumably all higher dimensions,
N∗ > 4000. Based on these benchmarking results, our package automatically selects which of the two
methods is likely faster based on the dimension and samples sizes of the supplied data. If users are
interested in performing more precise benchmarking for their specific dataset, the argument nPermute
can be set equal to 0, which bypasses the permutation test and only computes the test statistic.

2.3 Significance testing

To the best of our knowledge, no results have been published concerning the distribution of the
Fasano–Franceschini test statistic. Any analysis would likely be complicated by the fact that, unlike the
KS test statistic, the Fasano–Franceschini test statistic is not distribution free (Fasano and Franceschini,
1987). In their original paper, Fasano and Franceschini (1987) did not attempt any analytical analysis
and instead performed simulations to estimate critical values of their test statistic for various two-
and three-dimensional distributions. By fitting a curve to their results, Press et al. (2007) proposed an
explicit formula for p-values in the two-dimensional case. However, this formula is only approximate,
and its accuracy degrades as sample sizes decrease or the true p-value becomes large (greater than
0.2). While this would still allow a simple rejection decision at any common significance level, it
is sometimes useful to quantify large p-values more exactly (such as if one was to do a cross-study
concordance analysis comparing p-values between studies as in Ness-Cohn et al. 2020). Effort could
be made to improve this approximation, however it is still only valid in two dimensions, and thus an
alternative method would be needed in higher dimensions.

To ensure the broadest applicability of the test, we assess significance using a permutation test. Let
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Z = (Z1, . . . , ZN) be defined by

Zi =

{
Xi, 1 ≤ i ≤ n1

Yi−n1 , n1 + 1 ≤ i ≤ N

where N = n1 + n2. The test statistic in (3) can then be written as

D(Z) = D(X, Y).

Denote the symmetric group on {1, . . . , n} ⊂ N by Sn. For x = (x1, . . . , xn) and σ ∈ Sn, define

xσ = (xσ(1), . . . , xσ(n)).

Under the null hypothesis, X and Y were drawn from the same distribution, and thus the elements of
Z are exchangeable. We can therefore compute the permutation test p-value

p =
∑σ∈SN

I(D(Zσ) ≥ D(Z))
N!

(4)

where I denotes the indicator function (Hemerik and Goeman, 2018; Ramdas et al., 2022). As it is
generally infeasible to iterate over all N! permutations, we can instead consider for M ∈ N

pM =
1 + ∑M

m=1 I(D(Zσm ) ≥ D(Z))
1 + M

(5)

where σ1, . . . , σM are independent permutations drawn uniformly from SN . This p-value is valid, as
under the null hypothesis

P(pm ≤ α) ≤ α ∀α ∈ [0, 1].

Moreover, pM → p almost surely. These results hold for any sampling distributions (continuous,
discrete, or mixed) and any valid test statistic (Hemerik and Goeman, 2018; Ramdas et al., 2022).

Figure 3: Type I error rate of the test using pM and p′M as dimension increases. Samples are both of
size 10 and are drawn from standard multivariate normal distributions of the specified dimension.
The number of permutations used is 100, and the error rate is estimated using 105 replications.

Under certain conditions (see Proposition 2 of Hemerik and Goeman 2018), the permutation test
using the p-value pM is exact, which is to say that under the null hypothesis

P(pm ≤ α) = α ∀α ∈ [0, 1].

However, when there is a nonzero probability of ties in the test statistic, this test can be quite conserva-
tive (Hemerik and Goeman, 2018). In such cases, the test can be made exact by instead using

p′M =
∑M

m=1 I(D(Zσm ) > D(Z))
1 + M

+ U
1 + ∑M

m=1 I(D(Zσm ) = D(Z))
1 + M

, (6)

where U ∼ Unif(0, 1) (Hoeffding, 1952; Hemerik and Goeman, 2018). The fact that p′M is randomized is
not inherently problematic, since it is already randomized due to the selection of random permutations
(Hemerik and Goeman, 2018).

As the test statistic in (3) is discrete, ties are possible, and thus the test using pM is generally
conservative. In high dimensions, ties can become quite prevalent, leading the type I error rate to
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decrease dramatically (Figure 3). We thus use p′M as our p-value instead of pM. As a final remark, we
note that if the test statistic is scaled by a constant scalar, p′M remains unchanged since both indicator
functions are invariant under scalar rescaling of D. Therefore, the outcome of the test does not depend
on our choice to use the integer-valued test statistic D in (3) over Fasano and Franceschini’s original
test statistic D0 in (2).

3 Package overview

The fasano.franceschini.test package is written primarily in C++, and interfaces with R using Rcpp
(Eddelbuettel et al., 2022). The C++ range tree class (Weihs, 2020) was based on the description
in de Berg et al. (2008), including an implementation of fractional cascading. The permutation
test is parallelized using RcppParallel (Allaire et al., 2022). The package consists of one function,
fasano.franceschini.test, for performing the two-sample Fasano–Franceschini test. The arguments
of this function are described below.

• S1 and S2: the two samples to compare. Both should be either numeric matrix or data.frame
objects with the same number of columns.

• nPermute: the number of permutations to use for performing the permutation test. The default
is 100. If set equal to 0, the permutation test is bypassed and only the test statistic is computed.

• threads: the number of threads to use when performing the permutation test. The default
is one thread. This parameter can also be set to "auto", which uses the value returned by
RcppParallel::defaultNumThreads().

• seed: an optional seed for the pseudorandom number generator (PRNG) used during the
permutation test.

• verbose: whether to display a progress bar while performing the permutation test. The default
is TRUE. This functionality is only available when threads = 1.

• method: an optional character indicating which method to use to compute the test statistic.
The two methods are 'r' (range tree) and 'b' (brute force). Both methods return the same
results but may vary in computation speed. If this argument is not passed, the sample sizes and
dimension of the data are used to infer which method is likely faster.

The output is an object of the class htest, and consists of the following components:

• statistic: the value of the test statistic.

• p.value: the permutation test p-value.

• method: the name of the test (i.e. 'Fasano-Franceschini Test').

• data.name: the names of the original data objects.

4 Examples

Here we demonstrate the basic usage and features of the fasano.franceschini.test package. We begin
by loading the necessary libraries and setting a seed for reproducibility.

> library(fasano.franceschini.test)
> library(MASS)
> set.seed(0)

Note that to produce reproducible results, we need to set two seeds: the set.seed function sets
the seed in R, ensuring we draw reproducible samples; and the seed passed as an argument to
the fasano.franceschini.test function sets the seed for the C++ PRNG, ensuring we compute
reproducible p-values.

As a first example, we draw two samples from the bivariate standard normal distribution. The
Fasano–Franceschini test fails to reject the null hypothesis — that the samples were drawn from the
same distribution — at an α = 0.05 significance level.

> S1 <- mvrnorm(n = 50, mu = c(0, 0), Sigma = diag(2))
> S2 <- mvrnorm(n = 75, mu = c(0, 0), Sigma = diag(2))
> fasano.franceschini.test(S1, S2, seed = 1, verbose = FALSE)

Fasano-Franceschini Test
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data: S1 and S2
D = 1425, p-value = 0.4653

We next draw two samples from bivariate normal distributions with identical covariance matrices
but different locations. The test rejects the null hypothesis at an α = 0.05 significance level.

> S3 <- mvrnorm(n = 40, mu = c(0, 0), Sigma = diag(2))
> S4 <- mvrnorm(n = 42, mu = c(1, 1), Sigma = diag(2))
> fasano.franceschini.test(S3, S4, seed = 2, verbose = FALSE)

Fasano-Franceschini Test

data: S3 and S4
D = 1932, p-value = 0.001832

The test can take a while to run when the sample sizes or the dimension of the data are large, in
which case it is useful to use multiple threads to speed up computation.

> S5 <- mvrnorm(n = 1000, mu = c(1, 3, 5), Sigma = diag(3) + 1)
> S6 <- mvrnorm(n = 600, mu = c(1, 3, 5), Sigma = diag(3))
> fasano.franceschini.test(S5, S6, seed = 3, threads = 4)

Fasano-Franceschini Test

data: S5 and S6
D = 263800, p-value = 0.0007002

Note that the number of threads used does not affect the results. In particular, as long as the same
seed is used, the same p-value is returned for any number of threads.

> fasano.franceschini.test(S5, S6, seed = 3, threads = 1)

Fasano-Franceschini Test

data: S5 and S6
D = 263800, p-value = 0.0007002

5 Comparison with other R packages

In this section, we compare the fasano.franceschini.test package with three other CRAN packages
that perform multivariate two-sample goodness-of-fit tests.

5.1 Peacock.test

The Peacock.test package (Xiao, 2016) provides functions to compute Peacock’s test statistic (Peacock,
1983) in two and three dimensions. As no function is provided to compute p-values, we cannot
directly compare the performance of this package with the fasano.franceschini.test package. However,
a treatment of the power of both Peacock and Fasano–Franceschini tests can be found in both the
primary literature (Peacock, 1983; Fasano and Franceschini, 1987) and in a subsequent benchmarking
paper (Lopes et al., 2007), which found that the two tests have similar power across a variety of
alternatives.

5.2 cramer

The cramer package (Franz, 2019) implements the two-sample test described in Baringhaus and Franz
(2004), which the authors refer to as the Cramér test. The Cramér test statistic is based on the Euclidean
inter-point distances between the two samples, and is given by

Tm,n =
mn

m + n

 2
mn

m

∑
i=1

n

∑
j=1

ϕ

(∥∥∥Xi − Yj

∥∥∥2

2

)
− 1

m2

m

∑
i,j=1

ϕ

(∥∥∥Xi − Xj

∥∥∥2

2

)
− 1

n2

n

∑
i,j=1

ϕ

(∥∥∥Yi − Yj

∥∥∥2

2

)
for samples X1, . . . , Xm and Y1, . . . , Yn. The default kernel function is ϕ(x) =

√
x/2, although several

other choices are implemented (see the documentation for more details). Several randomization
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methods are provided to compute p-values, including bootstrapping (the default) and a permutation
test.

5.3 diproperm

The diproperm package (Allmon et al., 2021) implements the DiProPerm test introduced by Wei et al.
(2016). A binary linear classifier is first trained to determine a separating hyperplane between the two
samples. The data are then projected onto the normal vector to the hyperplane, and the test statistic is
taken to be a univariate statistic of the projected data (by default the absolute difference of means). As
in the fasano.franceschini.test package, significance is determined using a permutation test.

5.4 Power comparison

To compare the fasano.franceschini.test package with the cramer and diproperm packages, we
performed power analyses using three classes of alternatives: location alternatives, where the means
of the marginals are varied; dispersion alternatives, where the variances of the marginals are varied;
and copula alternatives, where the marginals remain fixed but the copula joining them is varied.

Figure 4: Visualization of the distributions used in power analyses. Each plot shows two samples
consisting of 10000 points each. The first sample S1 is shown in blue, and the second sample S2 is
shown in red. (a) S1 ∼ N2(0, I2) and S2 ∼ N2(0.4, I2). (b) S1 ∼ N2(0, I2) and S2 ∼ N2(0, I2 + 1.5). (c)
S1 ∼ G2(0) and S2 ∼ G2(0.6). (d) S1 ∼ C2(1) and S2 ∼ C2(8).

For location and dispersion alternatives, we used multivariate normal distributions. We denote the
d-dimensional normal distribution with mean µ ∈ Rd and covariance matrix Σ ∈ Rd×d by Nd(µ, Σ),
and sample from it using the MASS package (Ripley, 2021). The d × d identity matrix, which is
sometimes used as a covariance matrix, is denoted by Id. For copula alternatives, we consider the
Gaussian copula with correlation matrix

[P(ρ)]ij =

{
ρ, i ̸= j
1, i = j

and the Clayton copula with parameter θ ∈ [−1, ∞) \ {0}. We denote the d-dimensional distribution
with standard normal marginals joined by a Gaussian copula with correlation matrix P(ρ) by Gd(ρ).
We denote the d-dimensional distribution with standard normal marginals joined by a Clayton copula
with parameter θ by Cd(θ). Both distributions are sampled from using the copula package (Hofert
et al., 2022). Examples of distributions in each of these four families are shown in Figure 4.
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In the following analyses, power was approximated using 1000 replications, a significance level of
α = 0.05 was used, all samples were of size 40, and all R functions implementing tests were called
using their default arguments. Although we aimed to cover a wide range of distributions in this
analysis, absent any theoretical results concerning these three tests, we cannot guarantee that the
results here are generalizable to different sampling distributions or sample sizes.

Figure 5: Comparison of power of the Fasano–Franceschini, Cramér, and DiProPerm tests on various
bivariate alternatives. (a) Location alternatives, with S1 ∼ N2(0, I2) and S2 ∼ N2(µ, I2). (b) Dispersion
alternatives, with S1 ∼ N2(0, I2) and S2 ∼ N2(0, I2 + ε). (c) Gaussian copula alternatives, with
S1 ∼ G2(0) and S2 ∼ G2(ρ). (d) Clayton copula alternatives, with S1 ∼ C2(1) and S2 ∼ C2(θ).

We first examined the power of the tests on various bivariate alternatives (Figure 5). All three
tests had similar power across location alternatives, although the Cramér and DiProPerm tests did
outperform the Fasano–Franceschini test. Across dispersion alternatives, the Cramér and Fasano–
Franceschini tests had very similar powers. On Gaussian copula alternatives, the Fasano–Franceschini
test had a consistently higher power than the Cramér test. This was also the case with Clayton copula
alternatives, although none of the tests were able to achieve high power. The DiProPerm test was
unable to achieve a power above the significance level of α = 0.05 on any of the dispersion or copula
alternatives. This is likely due to the fact that in these instances, there is significant overlap between
the high density regions of the two sampling distributions, making it difficult to find a separating
hyperplane between samples drawn from them.

We next examined how the power of the three tests varied when the two sampling distributions
were kept fixed but the dimension of the data increased (Figure 6). On the location alternative, the
Cramér and DiProPerm tests again outperformed the Fasano–Franceschini test. In particular, for d > 5,
the Fasano–Franceschini steadily lost power as the dimension increased whereas the other tests gained
power. On the dispersion alternative, the Cramér and Fasano–Franceschini tests had nearly identical
powers through to d = 5, but for higher dimensions the Cramér test consistently outperformed the
Fasano–Franceschini test. On the other hand, for both the Gaussian and Clayton copula alternatives
the Fasano–Franceschini test had a much higher power than the Cramér test. The DiProPerm test was
still unable to attain a power above the significance level on the dispersion alternatives or either of the
copula alternatives.

Overall, the Cramér and DiProPerm tests performed better than the Fasano–Franceschini test
on location alternatives, especially as dimension increased. On dispersion alternatives, the Fasano–
Franceschini and Cramér tests had comparable performance for low dimensions, but the Cramér test
maintained a higher power for high dimensions. However, in these cases the marginal distributions
differ, and thus a multivariate test is not strictly necessary as univariate tests could be applied to
the marginals independently (with a multiple testing correction) to detect differences between the
multivariate distributions. On copula alternatives, where a multivariate test is necessary, the Fasano–
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Figure 6: Comparison of power of the Fasano–Franceschini, Cramér, and DiProPerm tests on fixed
alternatives as the dimension of the data increases. (a) Location alternative, with S1 ∼ Nd(0, Id)
and S2 ∼ Nd(0.4, Id). (b) Dispersion alternative, with S1 ∼ Nd(0, Id) and S2 ∼ Nd(0, Id + 1.5). (c)
Gaussian copula alternative, with S1 ∼ Gd(0) and S2 ∼ Gd(0.6). (d) Clayton copula alternative, with
S1 ∼ Cd(1) and S2 ∼ Cd(8).

Franceschini test consistently outperformed both the Cramér and DiProPerm tests. Thus while the
Fasano–Franceschini did not achieve the highest power in every case, we believe it to be the best
choice as a general purpose multivariate two-sample goodness-of-fit test.

6 Summary

This paper introduces the fasano.franceschini.test package, an R implementation of the multivariate
two-sample goodness-of-fit test described by Fasano and Franceschini (1987). We provide users
with a computationally efficient test that is applicable to data of any dimension and of any type
(continuous, discrete, or mixed), and that demonstrates competitive performance with similar R
packages. Complete package documentation and source code are available via the Comprehensive
R Archive Network (CRAN) at https://cran.r-project.org/web/packages/fasano.franceschini.
test and the package website at https://braunlab-nu.github.io/fasano.franceschini.test.

7 Computational details

The results in this paper were obtained using R 4.2.0 with the packages fasano.franceschini.test 2.2.1,
diproperm 0.2.0, cramer 0.9-3, MASS 7.3-60, copula 1.1-2, and microbenchmark 1.4.10 (Mersmann,
2023). Plots were generated using ggplot2 3.4.2 (Wickham et al., 2023) and patchwork 1.1.1 (Ped-
ersen, 2020). All computations were done using the Quest high performance computing facility at
Northwestern University.
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