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bayesassurance: An R Package for
Calculating Sample Size and Bayesian
Assurance
by Jane Pan and Sudipto Banerjee

Abstract In this paper, we present bayesassurance, an R package designed for computing Bayesian
assurance criteria which can be used to determine sample size in Bayesian inference setting. The
functions included in the R package offer a two-stage framework using design priors to specify the
population from which the data will be collected and analysis priors to fit a Bayesian model. We
also demonstrate that frequentist sample size calculations are exactly reproduced as special cases of
evaluating Bayesian assurance functions using appropriately specified priors.

1 Introduction

Power is an important feature of statistical tests that refers to the probability of correctly identifying
the occurrence of an event given the event is actually present. Specifically, in the frequentist setting,
the power of a test describes the probability that the test will correctly reject the null hypothesis, H0,
given that the alternative hypothesis, H1, is true. Conversely, β = 1− power represents the probability
that a test will fail to identify a true effect. For any given test, power is a function of the underlying
effect size, the significance level, α, and the sample size, n . While the underlying effect size is rarely
under the experimenter’s control, the significance level and the sample size are. Hence, it is important
to conduct power analysis to determine appropriate assignments of α and n for an experiment to have
a good chance of detecting an effect if one exists. Power curves serve as a useful tool in quantifying
the degree of assurance held towards meeting a study’s analysis objective across a range of sample
sizes. Formulating sample size determination as a decision problem so that power is an increasing
function of sample size, offers the investigator a visual aid in helping deduce the minimum sample
size needed to achieve a desired power.

The analogue of power in the Bayesian setting is assurance, which is based upon the probability
of meeting a desired analysis objective. As an example, our analysis objective could be to ascertain
if the difference between two population quantities, θ1 and θ2, exceeds a certain threshold θ0, i.e.,
θ1 − θ2 > θ0. We decide that our analysis objective is met if the posterior probability of the above
event given data we have observed exceeds ω, i.e., P(θ1 − θ2 > θ0 | y) > ω with y being the realized
data. Assurance is defined as the probability of the analysis objective being met under an assumed
distribution of the data, i.e., δ = Py {y : P (θ > θ0 | y) > ω}, where y denotes the observed data.
Several publications adopt a similar approach, where they determine sample size based upon some
criteria of analysis or model performance (Rahme et al., 2000; Gelfand and Wang, 2002; O’Hagan
and Stevens, 2001). Other proposed solutions of the sample size problem introduce frameworks
that prioritize conditions specific to the problem at hand, e.g. the use of Bayesian average errors to
simultaneously control for Type I and Type II errors (Reyes and Ghosh, 2013), the use of posterior
credible interval lengths to evaluate sample size estimates (Joseph et al., 1997), and the use of survival
regression models to target Bayesian meta-experimental designs (Reyes and Ghosh, 2013).

There are several R packages for Bayesian sample size determination using specified analytic
criteria. The SampleSizeMeans package contains a series of functions used for determining appro-
priate sample sizes based on various Bayesian criteria for estimating means or differences between
means of normal variables (Joseph and Belisle, 2012). Criteria considered include the Average Length
Criterion, the Average Coverage Criterion, and the Modified Worst Outcome Criterion (Joseph et al.,
1995; Joseph and Belisle, 1997). A supplementary package, SampleSizeProportions, addresses study
designs for estimation of binomial proportions using the same set of criteria (Joseph and Belisle, 2009).
Our package, bayesassurance calculates Bayesian assurance and sample sizes for analysis objectives
using normal and binomial models. We devise a two stage framework using possibly different sets
of prior distributions in the design and analysis stages. The prior in the design stage represents a
model that generates the data. The prior in the analysis stage represents the analyst’s beliefs about the
data. These two prior distributions are possibly different because the analyst does not usually have
enough prior information on the processes generating the data. We primarily demonstrate sample
size determination using conjugate Bayesian linear regression models as a prototype for this article,
although the R package offers functions for calculating Bayesian assurance for binary or binomial
models as well. In the current article, we focus on the flexibility of Bayesian linear regression models
and demonstrate determination of unequal sample sizes for two samples and longitudinal study
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Function Type Description
pwr_freq closed-form solution Computes the frequentist power of the

specified hypothesis test (either one or
two-sided z-tests).

assurance_nd_na closed-form solution Computes the exact Bayesian assurance
of attaining a specified analysis objective.

bayes_sim simulation Approximates the Bayesian assurance of
attaining a specified condition for a bal-
anced study design through Monte Carlo
sampling.

bayes_sim_unbalanced simulation Approximates the Bayesian assurance of
attaining a specified condition for an un-
balanced study design through Monte
Carlo sampling.

bayes_sim_unknownvar simulation Similar to bayes_sim but approximates
the assurance assuming unknown vari-
ance.

bayes_adcock simulation Approximates the probability (assur-
ance) that the absolute difference be-
tween the true population parameter and
the sample estimate falls within a margin
of error no greater than a pre-specified
precision level, d (Adcock, 1997).

bayes_sim_betabin simulation Approximates the probability (assur-
ance) that there exists a difference be-
tween two independent proportions
(Pham-Gia, 1997).

bayes_goal_func simulation Approximates the rate of correct classi-
fication using a utility-based approach
within a linear hypothesis testing setting
(Inoue et al., 2005).

pwr_curve visual tool Constructs a plot with the power and as-
surance curves overlayed on top of each
other for comparison.

gen_Xn design tool Constructs design matrix using given
sample size(s). Used for power and sam-
ple size analysis in the Bayesian setting.

gen_Xn_longitudinal design tool Constructs design matrix using inputs
that correspond to a balanced longitudi-
nal study design.

Table 1: Overview of the functions available for use within the package.

designs.

The bayesassurance package is available on CRAN (Pan and Banerjee, 2022) and contains a
collection of functions that can be divided into three categories based on design and usage. These
include closed-form solutions, simulation-based solutions, and visualization and/or design purposes.
All available functions are presented in Table 1. Fully worked-out examples and tutorials can be found
on our Github page at https://github.com/jpan928/bayesassurance_rpackage. This article describes
the basic underlying framework leading to analytically tractable expressions for Bayesian assurance.
We will also illustrate the relationship between Bayesian and frequentist sample size determination. In
addition, we briefly explore simulation-based assurance methods, outlining the statistical distribution
theory associated with each method, followed by examples worked out in R that users will be able to
replicate. Finally, we offer some useful graphical features and design matrix generators offered by the
package. In the following sections, we provide a detailed overview for each of the available functions
grouped by category followed with worked out examples in R.
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2 Closed-form Solution of Assurance

Bayesian assurance evaluates the tenability of attaining a specified outcome through the implementa-
tion of prior and posterior distributions. The assurance_nd_na function computes the exact assurance
using a closed-form solution. Classical frequentist (Neyman-Pearson) inference proceeds as follows.
Prior to an experiment, the analyst determines the sample size, as well as significance level (α), which
defines the maximum frequency of false positives (type I errors) they are willing to tolerate, if the null
hypothesis is true. Then, once the data has been collected, a statistical test is conducted which yields
the p-value or the probability of seeing the observed data under the null hypothesis. If the p-value is
lower than α, the null hypothesis is rejected. In contrast, in Bayesian inference refrains from “rejecting”
or “failing to reject the null hypothesis”. Instead, we look at the tenability of a hypothesis based upon
realized data. As an example, suppose we seek to evaluate the tenability of H : θ > θ0 given data from
a Gaussian population with mean θ0 and known variance σ2. We assign two sets of priors for θ, one at
the design stage and the other at the analysis stage. These two stages are the primary components that
make up the skeleton of our generalized solution in the Bayesian setting and will be revisited in later
sections. The analysis objective specifies the condition that needs to be satisfied. It defines a positive
outcome, which serves as an overarching criteria that characterizes the study. Our analysis objective
is to ascertain if P(θ > θ0 | ȳ) > 1 − α, where ȳ is the data average and α is a specified threshold.

Assuming the prior θ ∼ N
(

µ, σ2

na

)
, the posterior distribution of θ is

N
(

θ

∣∣∣∣ µ,
σ2

na

)
× N

(
ȳ
∣∣∣∣ θ,

σ2

n

)
∝ N

(
θ

∣∣∣∣ na

n + na
µ +

n
n + na

ȳ,
σ2

n + na

)
, (1)

where n denotes the sample size of the data, ȳ denotes the mean of the data, and na is specified by the
data analyst to quantify the prior degree of belief on θ.

The design objective is to find the sample size needed to ensure that the analysis objective is met
100δ% of the time, where δ denotes the assurance. At the design stage, we specify a model for the
underlying population from which the data is generated. Our belief about this population is quantified

using a design prior (we borrow this terminology from O’Hagan and Stevens, 2001), say θ ∼ N
(

µ, σ2

nd

)
,

where nd is specified by the user to quantify the degree of belief (or amount of confidence) on the
population parameters. Bayesian assurance is given by

δ = Pȳ {ȳ : P(θ > θ0 | ȳ) > 1 − α} , (2)

where Pȳ(·) denotes the marginal distribution of ȳ obtained from the design priors

∫
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Applying this to (2) we obtain

δ(∆, n) = Φ
(√

nnd
n + nd

[
n + na

n
∆
σ
+ Zα

n + na

n

])
, (3)

where Φ(·) is the standard normal CDF with Zα being its α-th quantile and ∆ = µ − θ0.

We remark that the above expression assumes that σ2 is known. This is a customary assumption
made about the population in sample size calculations and is usually based upon pilot studies or
historic data. Nevertheless, in theory we can relax this assumption and assign a prior distribution to
σ2. Conjugate priors include the inverse-Gamma family of distributions and analogous formulas to (3)
may be derived in terms of distribution functions of the (non-central) t-distribution. Nevertheless, we
do not pursue this development here but discuss the case of unknown σ2 later in the linear regression
setting. We now describe the function to compute (3). Table 2 lists the set of parameters used in
assurance_nd_na, with alpha taking a default value of 0.05.

The following code loads the bayesassurance package and assigns arbitrary parameters to
assurance_nd_na prior to executing the function.

R> library(bayesassurance)

R> n <- seq(100, 250, 10)
R> n_a <- 10
R> n_d <- 10
R> theta_0 <- 0.15
R> theta_1 <- 0.25
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assurance_nd_na: Parameters
Variable Description
n sample size (either scalar or vector)
n_a precision parameter within the analysis stage that quan-

tifies the degree of belief carried towards parameter θ
n_d precision parameter within the design stage that quan-

tifies the degree of belief of the population from which
we are generating samples from

theta_0 initial parameter value provided by the client
theta_1 prior mean of θ assigned in the analysis and design

stage
sigsq known variance
alt specifies alternative test case, where alt = "greater"

tests if θ1 > θ0, alt = "less" tests if θ1 < θ0, and alt =
"two.sided" performs a two-sided test for θ1 ̸= θ0. By
default, alt = "greater"

alpha significance level

Table 2: Parameter specifications needed to run assurance_nd_na.

Figure 1: Resulting assurance plot with specific points passed in marked in red.

R> sigsq <- 0.30

R> out <- assurance_nd_na(n = n, n_a = n_a, n_d = n_d,
theta_0 = theta_0, theta_1 = theta_1, sigsq = sigsq,
alt = "greater", alpha = 0.05)

R> head(out$assurance_table)
R> out$assurance_plot

n Assurance
1 100 0.5228078
2 110 0.5324414
3 120 0.5408288
4 130 0.5482139
5 140 0.5547789
6 150 0.5606632

Running this block of code will return a table of assurance values and a graphical display of the
assurance curve, shown in Figure 1. The first six rows of the table are reported in the outputs.

We make a few remarks pertaining to the functions in bayesassurance. First, we are passing a
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single value of sample size or a vector of sample sizes for n. We save the results as a variable out. n
can be either a scalar or vector. If n is a scalar, this tells the function that we only want to determine the
assurance for one particular sample size. When this is the case, out will return a single assurance value
with no plot. Alternatively, if a vector of sample sizes is passed in as n, as is the case of the example
above, assurance is computed for a list of sample sizes, and the function will produce both a table
and an assurance curve showing the results. As long as n is of length two or greater, assurance_nd_na
will plot the assurance curve with red points denoting user-specified assurance values and black
points denoting all other points outside those specified points. Figure 1 presents the assurance curve
resulting from the example. The graph is created using ggplot2 Wickham (2016) which is imported
into bayesassurance. Simply typing out$assurance_table and out$assurance_plot will display the
table and plot respectively in this particular set of examples.

2.1 Special case: convergence with the frequentist setting

Depending on how we define the parameters in assurance_nd_na, we can demonstrate a relationship
between the Bayesian and classical power analysis. In particular, the classical, or frequentist, power
function is a special case of Bayesian solution when letting nd → ∞ and na = 0 in (3). Therefore,
assigning a weak analysis prior and a strong design prior yields

Φ
(√

n
∆
σ
+ Zα

)
, (4)

which is equivalent to the frequentist power expression that takes the form

1 − β = P
(

ȳ > θ0 +
σ√
n

Z1−α

)
= Φ

(√
n

∆
σ
+ Zα

)
.

The following code chunk demonstrates this special case in R using the assurance_nd_na function:

R> library(bayesassurance)

R> n <- seq(10, 250, 5)
R> n_a <- 1e-8
R> n_d <- 1e+8
R> theta_0 <- 0.15
R> theta_1 <- 0.25
R> sigsq <- 0.104

R> out <- assurance_nd_na(n = n, n_a = n_a, n_d = n_d,
theta_0 = theta_0, theta_1 = theta_1, sigsq = sigsq,
alt = "greater", alpha = 0.05)

R> head(out$assurance_table)
R> out$assurance_plot

n Assurance
1 10 0.2532578
2 15 0.3285602
3 20 0.3981637
4 25 0.4623880
5 30 0.5213579
6 35 0.5752063

The bayesassurance package includes a pwr_freq function that determines the statistical power of
testing the difference between two means given a set of fixed parameter values that yield a closed-form
solution of power and sample size. Continuing with the one-sided case, the solution is

1 − β = P
(

ȳ > θ0 +
σ√
n

Z1−α

)
= Φ

(√
n

∆
σ
+ Zα

)
, (5)

where ∆ = θ1 − θ0 is the critical difference and Φ denotes the cumulative distribution function of
the standard normal. Note this formula is equivalent to the special case of the assurance definition
expressed in Equation (4). Table 3 includes the set of parameters needed to run this function.
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pwr_freq: Parameters
Variable Description
n sample size (either scalar or vector)
theta_0 value specified in the null hypothesis; to be provided by

the user
theta_1 alternative value to test against the null value; this is the

assumed effect size in the population
alt specifies alternative test case, where alt = "greater"

tests if θ1 > θ0, alt = "less" tests if θ1 < θ0, and alt =
"two.sided" performs a two-sided test for θ1 ̸= θ0. By
default, alt = "greater"

sigsq known variance
alpha significance level

Table 3: Parameter specifications needed to run pwr_freq.

As a simple example, consider the following code segment that directly runs pwr_freq through
specifying the above parameters and loading in bayesassurance:

R> library(bayesassurance)
R> pwr_freq(n = 20, theta_0 = 0.15, theta_1 = 0.35, sigsq = 0.30,

alt = "greater", alpha = 0.05)

"Power: 0.495"

Running this returns the associated power printed as a statement rather than a table as we are only
passing in one sample size, n = 20, to undergo evaluation. Now consider the next code example.

R> library(bayesassurance)
R> n <- seq(10, 250, 5)
R> out <- pwr_freq(n = n, theta_0 = 0.15, theta_1 = 0.25, sigsq = 0.104,

alt = "greater", alpha = 0.05)

R> head(out$pwr_table)
R> out$pwr_plot

n Power
1 10 0.2532578
2 15 0.3285602
3 20 0.3981637
4 25 0.4623880
5 30 0.5213579
6 35 0.5752063

This code produces identical results as the assurance values obtained in the example using the
assurance_nd_na function, where we assigned a weak analysis prior and a strong design prior. This
demonstrates that under these conditions, Bayesian assurance converges to frequentist power. Figure 2
provides a side-by-side comparison of the resulting power and assurance curves, portraying identical
plots in this particular setting.

3 Simulation-based functions using conjugate linear models

Henceforth, we focus on computing assurance through simulation-based means and highlight the
common scenario of performing sample size analysis where closed-form solutions are unavailable. In
the following sections, we extend upon the two-stage design structure and discuss how the design
and analysis objectives are constructed based on the sample size criteria.

We seek to evaluate the tenability of a well-defined analysis objective using our simulation-based
functions. The functions take an iterative approach alternating between generating a dataset in the
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(a) Power curve (b) Assurance curve

Figure 2: Power and assurance curves are identical when the design priors are strong and the analysis
priors are weak.

design stage and evaluating whether or not the dataset satisfies the analysis objective. The assurance
equates to the proportion of datasets that meet the objective.

We start in the analysis stage. Consider a set of n observations denoted by y = (y1, y2, · · · , yn)⊤

that are to be collected together with p controlled explanatory variables, x1, x2, · · · , xp. Specifically,

y = Xnβ + ϵn,

where Xn is an n × p design matrix whose ith row x⊤i , and ϵn ∼ N(0, σ2Vn), where Vn is a known
n × n correlation matrix. We assume Xn has linearly independent columns. A conjugate Bayesian
linear regression model specifies the joint distribution of the parameters {β, σ2} and y as

IG(σ2|aσ, bσ)× N(β|µ(a)
β , σ2V(a)

β )× N(y|Xnβ, σ2Vn),

where superscripts (a) indicate parameters in the analysis stage. The objective is to find the assurance
of the realized data favoring H : u⊤β > C, where u is a p × 1 vector of fixed contrasts and C is a
known constant. Inference proceeds from the posterior distribution given by

p(β, σ2|y) = IG(σ2|a∗σ, b∗σ)× N(β|Mnmn, σ2 Mn), (6)

where

M−1
n = V−1(a)

β + X⊤
n V−1

n Xn; mn = V−1(a)
β µ

(a)
β + X⊤

n V−1
n y

a∗σ = aσ +
n
2

; b∗σ = bσ +
1
2

{
µ⊤

β V−1
β µβ + y⊤n V−1

n y − m⊤
n Mnmn

}
.

The posterior distribution helps shape our analysis objective.

If σ2 is known and fixed, then the posterior distribution of β is p(β|σ2, y) = N(β|Mnmn, σ2 Mn)
shown in the Equation (6). We use the posterior components of β to evaluate H : u⊤β > C, where
standardization leads to

u⊤β − u⊤Mnmn

σ
√

u⊤Mnu

∣∣∣∣∣ σ2, y ∼ N(0, 1) . (7)

Hence, to assess the tenability of H : u⊤β > C, we decide in favor of H if the observed data belongs in
the set

Aα(u, β, C) =
{

y : P
(

u⊤β ≤ C|y
)
< α

}
=

{
y : Φ

(
C − u⊤Mnmn

σ
√

u⊤Mnu

)
< α

}
.

This defines our analysis objective, which we will monitor within each sample iteration. Sample
generation is taken to account for in the design stage discussed in the next section.

In the design stage, the goal is to seek a sample size n such that the analysis objective is met at least
100δ% of the time, where δ is the assurance. This step requires determining the marginal distribution
of y, which is assigned a separate set of priors to quantify our belief about the population from which
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the sample will be taken. Hence, the marginal of y under the design priors will be derived from

y = Xnβ + ϵn; ϵn ∼ N(0, σ2Vn) ; β = µ
(d)
β + ω; ω ∼ N(0, σ2V(d)

β ) , (8)

where β ∼ N(µ
(d)
β , σ2V(d)

β ) is the design prior on β and (d) denotes parameters in the design stage.

Substituting the equation for β into the equation for y gives y = Xµ
(d)
β + (Xω + ϵn) and, hence,

y ∼ N
(

Xµ
(d)
β , σ2V∗

n

)
and V∗

n =
(

XV(d)
β X⊤ + Vn

)
.

To summarize our simulation strategy for estimating the Bayesian assurance, we fix sample size
n and generate a sequence of J datasets y(1), y(2), ..., y(J). A Monte Carlo estimate of the Bayesian
assurance is computed as

δ̂(n) =
1
J

J

∑
j=1

I

y(j) : Φ

C − u⊤M(j)
n m(j)

n

σ

√
u⊤M(j)

n u

 < α


 ,

where I(·) is the indicator function of the event in its argument, M(j)
n and m(j)

n are the values of Mn

and mn computed from y(j).

3.1 Assurance computation with known variance

The simulation-based function, bayes_sim, determines the assurance within the context of conjugate
Bayesian linear regression models assuming known variance, σ2. The execution of bayes_sim is
straightforward. An important feature is that users are not required to provide their own design
matrix, Xn, when executing bayes_sim. When Xn = NULL, the function automatically constructs an
appropriate design matrix based on the specified sample size(s), using the built-in gen_Xn function.

Later sections discuss design matrix generators in greater detail. Setting Xn = NULL facilitates
calculation of assurances across a vector of sample sizes, where the function sequentially updates the
design matrix for each unique sample size undergoing evaluation. Table 4 lists the required set of
parameters.

Example 1: scalar parameter

This example computes the tenability of H : u⊤β > C in the case when β is a scalar. In the following
code block, we assign a set of values for the parameters of bayes_sim and saves the outputs as
assur_vals. The first ten rows of the table is shown.

R> library(bayesassurance)
R> n <- seq(100, 300, 10)
R> assur_vals <- bayes_sim(n, p = 1, u = 1,

C = 0.15, Xn = NULL, Vbeta_d = 0, Vbeta_a_inv = 0,
Vn = NULL, sigsq = 0.265, mu_beta_d = 0.25, mu_beta_a = 0,
alt = "greater", alpha = 0.05, mc_iter = 5000)

R> head(assur_vals$assurance_table)
R> assur_vals$assurance_plot

Observations per Group (n) Assurance
1 100 0.6162
2 110 0.6612
3 120 0.6886
4 130 0.7148
5 140 0.7390
6 150 0.7746

Each unique value passed into n corresponds to a separate balanced study design containing that
particular sample size for each of the p groups undergoing assessment. In this example, setting p = 1,
u = 1 and C = 0.15 implies that we are evaluating the tenability of H : β > 0.15, where β is a scalar.
Furthermore, Vbeta_d and Vbeta_a_inv are scalars to align with the dimension of β. A weak analysis
prior (Vbeta_a_inv = 0) and a strong design prior (Vbeta_d = 0) produces the classical power analysis.
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bayes_sim: Parameters
Variable Description
n Sample size (either vector or scalar). If vector, each value

corresponds to a separate study design.
p Number of explanatory variables being considered.

Also denotes the column dimension of design matrix
Xn. If Xn = NULL, p must be specified for the function to
assign a default design matrix for Xn.

u a scalar or vector included in the expression to be evalu-
ated, e.g. u⊤β > C, where β is an unknown parameter
that is to be estimated.

C constant to be compared to
Xn design matrix characterizing the observations given by

the normal linear regression model yn = Xnβ + ϵn,
where ϵn ∼ N(0, σ2Vn). See above description for de-
tails. Default Xn is an np × p matrix comprised of n × 1
ones vectors that run across the diagonal of the matrix.

Vbeta_d correlation matrix that characterizes prior information
on β in the design stage, i.e. β ∼ N(µ

(d)
β , σ2V(d)

β ).
Vbeta_a_inv inverse-correlation matrix that characterizes prior in-

formation on β in the analysis stage, i.e. β ∼
N(µ

(a)
β , σ2V(a)

β ). The inverse is passed in for compu-

tation efficiency, i.e. V−1(a)
β .

Vn an n × n correlation matrix for the marginal distribution
of the sample data yn. Takes on an identity matrix when
set to NULL.

sigsq a known and fixed constant preceding all correlation
matrices Vn, Vbeta_d and Vbeta_a_inv.

mu_beta_d design stage mean, µ
(d)
β

mu_beta_a analysis stage mean, µ
(a)
β

alt specifies alternative test case, where alt = "greater"
tests if u⊤β > C, alt = "less" tests if u⊤β < C, and alt
= "two.sided" performs a two-sided test for u⊤β ̸= C.
By default, alt = "greater".

alpha significance level
mc_iter number of MC samples evaluated under the analysis

objective

Table 4: Parameter specifications needed to run bayes_sim.

We revisit this example in a later section when reviewing features that allow users to simultaneously
visualize the Bayesian and frequentist power analyses. Finally, Xn and Vn are set to NULL, which means
they will take on the default settings described above.

Example 2: linear contrasts

In this example, we assume β is a vector of unknown components rather than a scalar. We use the
real-world example discussed in O’Hagan and Stevens (2001). Specifically, we consider a randomized
clinical trial that compares the cost-effectiveness of two treatments. Cost-effectiveness is evaluated
using a net monetary benefit measure expressed as

ξ = K(µ2 − µ1)− (γ2 − γ1),

where µ1 and µ2 denote the efficacy of treatments 1 and 2, and γ1 and γ2 denote the costs, respectively.
Hence, µ2 − µ1 and γ2 − γ1 correspond to the true differences in treatment efficacy and costs. The
threshold unit cost, K, represents the maximum price that a health care provider is willing to pay for a
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unit increase in efficacy.

In this setting,we seek the tenability of H : ξ > 0, which, if true, indicates that treatment 2 is more
cost-effective than treatment 1. To comply with the conjugate linear model framework outlined in (6),
we set u = (−K, 1, K,−1)⊤, β = (µ1, γ1, µ2, γ2)

⊤, and C = 0, giving us an equivalent form of ξ > 0
expressed as u⊤β > 0. All other inputs of this application were directly pulled from O’Hagan and
Stevens (2001). The following code sets up the inputs to be passed into bayes_sim.

R> n <- 285
R> p <- 4
R> K <- 20000 # threshold unit cost
R> C <- 0
R> u <- as.matrix(c(-K, 1, K, -1))
R> sigsq <- 4.04^2

## Assign mean parameters to analysis and design stage priors
R> mu_beta_d <- as.matrix(c(5, 6000, 6.5, 7200))
R> mu_beta_a <- as.matrix(rep(0, p))

## Assign correlation matrices (specified in paper)
## to analysis and design stage priors
R> Vbeta_a_inv <- matrix(rep(0, p^2), nrow = p, ncol = p)
R> Vbeta_d <- (1 / sigsq) * matrix(c(4, 0, 3, 0, 0, 10^7, 0,

0, 3, 0, 4, 0, 0, 0, 0, 10^7), nrow = 4, ncol = 4)

R> tau1 <- tau2 <- 8700
R> sig <- sqrt(sigsq)
R> Vn <- matrix(0, nrow = n*p, ncol = n*p)
R> Vn[1:n, 1:n] <- diag(n)
R> Vn[(2*n - (n-1)):(2*n), (2*n - (n-1)):(2*n)] <- (tau1 / sig)^2 * diag(n)
R> Vn[(3*n - (n-1)):(3*n), (3*n - (n-1)):(3*n)] <- diag(n)
R> Vn[(4*n - (n-1)):(4*n), (4*n - (n-1)):(4*n)] <- (tau2 / sig)^2 * diag(n)

The inputs specified above should result in an assurance of approximately 0.70 according to
O’Hagan and Stevens (2001). The bayes_sim returns a similar value, demonstrating that sampling
from the posterior yields results similar to those reported in the paper.

R> library(bayesassurance)

R> assur_vals <- bayes_sim(n = 285, p = 4, u = as.matrix(c(-K, 1, K, -1)),
C = 0, Xn = NULL, Vbeta_d = Vbeta_d,Vbeta_a_inv = Vbeta_a_inv,
Vn = Vn, sigsq = 4.04^2, mu_beta_d = as.matrix(c(5, 6000, 6.5, 7200)),
mu_beta_a = as.matrix(rep(0, p)), alt = "greater", alpha = 0.05, mc_iter = 10000)

R> assur_vals

## [1] "Assurance: 0.722"

3.2 Assurance computation in the longitudinal setting

We demonstrate an additional feature embedded in the function tailored to longitudinal data. In
this setting, n no longer refers to the number of subjects but rather the number of repeated measures
reported for each subject, assuming a balanced study design. Referring back to the linear regression
model discussed in the general framework, we can construct a longitudinal model that utilizes this
same linear regression form, where yn = Xnβ + ϵn.

Consider a group of subjects in a balanced longitudinal study with the same number of repeated
measures at equally-spaced time points. In the base case, where time is treated as a linear term, subjects
can be characterized as

yij = αi + βitij + ϵi,

where yij denotes the jth observation on subject i at time tij, αi and βi denote the intercept and slope
terms for subject i, respectively, and ϵi ∼ N(0, σ2

i ) is an error term.
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In a simple case with two subjects, we can individually express the observations as

y11 = α1 + β1t11 + ϵ1

...

y1n = α1 + β1t1n + ϵ1

y21 = α2 + β2t21 + ϵ2

...

y2n = α2 + β2t2n + ϵ2,

assuming that each subject contains n observations. The model can also be expressed using matrices:

y11
...

y1n
y21

...
y2n


︸ ︷︷ ︸

yn

=



1 0 t11 0
...

...
...

...
1 0 t1n 0
0 1 0 t21
...

...
...

...
0 1 0 t2n


︸ ︷︷ ︸

Xn


α1
α2
β1
β2


︸ ︷︷ ︸

β

+



ϵ1
...

ϵ1
ϵ2
...

ϵ2


︸ ︷︷ ︸

ϵn

(9)

bringing us back to the linear model structure. If higher degrees are to be considered for the time
variable, such as the inclusion of a quadratic term, the model would be altered to include additional
covariate terms that can accommodate these changes. In the two-subject case, incorporating a quadratic
term for the time variable in (9) will result in the model being modified as follows:

y11
...

y1n
y21

...
y2n


︸ ︷︷ ︸

yn

=



1 0 t11 0 t2
11 0

...
...

...
...

...
...

1 0 t1n 0 t2
1n 0

0 1 0 t21 0 t2
21

...
...

...
...

...
...

0 1 0 t2n 0 t2
2n


︸ ︷︷ ︸

Xn


α1
α2
β1
β2
ϕ1
ϕ2


︸ ︷︷ ︸

β

+



ϵ1
...

ϵ1
ϵ2
...

ϵ2


︸ ︷︷ ︸

ϵn

In general, for m subjects who each have n repeated measures, a one-unit increase in the degree of the
time-based covariate will result in m additional columns being added to the design matrix Xn and m
additional rows added to the β vector.

When working in the longitudinal setting, additional parameters need to be specified in the
bayes_sim function, which can be found in Table 5. By default, longitudinal = FALSE and ids,from,
and to are set to NULL when working within the standard conjugate linear model. When longitudinal
= TRUE, n takes on a different meaning as its value(s) correspond to the number of repeated measures
for each subject rather than the total number of subjects in each group. When longitudinal = TRUE
and Xn = NULL, bayes_sim implicitly relies on a design matrix generator, gen_Xn_longitudinal, that
is specific to the longitudinal setting to construct appropriate design matrices.

Example 3: longitudinal setting

The following example uses similar parameter settings as the cost-effectiveness example we had
previously discussed in Example 2, now with longitudinal specifications. We assume two subjects and
want to test whether the growth rate of subject 1 is different from that of subject 2. Figure 3 displays
the estimated assurance points given the specifications.

Assigning an appropriate linear contrast lets us evaluate the tenability of an outcome. Let
us consider the tenability of u⊤β ̸= C in this next example that uses simulated data, where u =
(1,−1, 1,−1)⊤ and C = 0. There are 120 arbitrary timepoints. The number of repeated measurements
per subject to be tested includes values 10 through 100 in increments of 5. This indicates that we are
evaluating the assurance for 19 study designs in total. n = 10 divides the specified time interval into
10 evenly-spaced timepoints between 0 and 120.

For a more complicated study design comprised of more than two subjects that are divided into
two treatment groups, consider testing if the mean growth rate is higher in the first treatment group
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bayes_sim: Additional Parameters used in the Longitudinal Setting
Variable Description
longitudinal logical that indicates the simulation will be based in

a longitudinal setting. If Xn = NULL, the function will
construct a design matrix using inputs that correspond
to a balanced longitudinal study design.

ids vector of unique subject ids.
from start time of repeated measures for each subject
to end time of repeated measures for each subject
num_repeated_measures desired length of the repeated measures sequence.This

should be a non-negative number, will be rounded up
otherwise if fractional.

num_repeated_measures desired length of the repeated measures sequence.This
should be a non-negative number, will be rounded up
otherwise if fractional.

poly_degree degree of polynomial in longitudinal model, set to 1 by
default.

Table 5: Additional parameter specifications needed to run bayes_sim in the longitudinal setting.
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Figure 3: Estimated assurance points for longitudinal example.

than that of the second, e.g. if we have three subjects per treatment group, the linear contrast would
be set as u = (0, 0, 0, 0, 0, 0, 1/3, 1/3, 1/3,−1/3,−1/3,−1/3)⊤.

R> n <- seq(10, 100, 5)
R> ids <- c(1,2)
R> Vbeta_a_inv <- matrix(rep(0, 16), nrow = 4, ncol = 4)
R> sigsq <- 100
R> Vbeta_d <- (1 / sigsq) * matrix(c(4, 0, 3, 0, 0, 6, 0, 0, 3, 0, 4, 0, 0, 0, 0, 6),

nrow = 4, ncol = 4)

R> assur_out <- bayes_sim(n = n, p = NULL, u = c(1, -1, 1, -1), C = 0, Xn = NULL,
Vbeta_d = Vbeta_d, Vbeta_a_inv = Vbeta_a_inv,
Vn = NULL, sigsq = 100,
mu_beta_d = as.matrix(c(5, 6.5, 62, 84)),
mu_beta_a = as.matrix(rep(0, 4)), mc_iter = 5000,
alt = "two.sided", alpha = 0.05, longitudinal = TRUE, ids = ids,
from = 10, to = 120)

R> head(assur_out$assurance_table)
R> assur_out$assurance_plot

Observations per Group (n) Assurance
1 10 0.6922
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bayes_sim_unbalanced: Parameters for Unbalanced Study Designs
Variable Description
n1 first sample size (either vector or scalar).
n2 second sample size (either vector or scalar).
repeats an integer denoting the number of c(n1,n2) pairs we

we are considering. For example, if repeats = 2, this
means we will compute the assurance corresponding
to the sample size set of c(n1,n2,n1,n2). By default,
repeats = 1. See Example 5.

surface_plot logical parameter that indicates whether a contour plot
is to be constructed. When set to TRUE, and n1 and n2
are vectors, a contour plot (i.e. heat map) showcasing
assurances obtained for all unique combinations of n1
and n2 is produced.

Table 6: Parameter specifications needed to run bayes_sim_unbalanced.

2 15 0.8056
3 20 0.8810
4 25 0.9244
5 30 0.9478
6 35 0.9626

3.3 Assurance computation for unbalanced study designs

The bayes_sim_unbalanced function operates similarly to bayes_sim but estimates the assurance of
attaining u⊤β > C specifically in unbalanced design settings. Users provide two sets of sample
sizes of equal length, whose corresponding pairs are considered for each study design case. The
bayes_sim_unbalanced function provides a higher degree of flexibility for designing unbalanced
studies and offers a more advanced visualization feature. Users have the option of viewing assurance
as a 3-D contour plot and assess how the assurance behaves across varying combinations of the two
sets of sample sizes that run along the x and y axes.

The bayes_sim_unbalanced function is similar to bayes_sim in terms of parameter specifications
with a few exceptions. Parameters unique to bayes_sim_unbalanced are summarized in Table 6. Here,
Xn = NULL, Vn = NULL, repeats = 1 and surface_plot = TRUE by default.

As in bayes_sim, it is recommended that users set Xn = NULL to facilitate the automatic construction
of appropriate design matrices that best aligns with the conjugate linear model. Recall that every
unique sample size (or sample size pair) passed in corresponds to a separate study that requires a
separate design matrix. Should users choose to provide their own design matrix, it is advised that
they evaluate the assurance for one study design at a time, in which a single design matrix is passed
into Xn along with scalar values assigned for the sample size parameter(s).

Saved outputs from executing the function include

1. assurance_table: table of sample size and corresponding assurance values

2. contourplot: contour map of assurance values if surface.plot = TRUE

3. mc_samples: number of Monte Carlo samples that were generated for evaluation

Example 4: unbalanced assurance computation with surface plot

The following code provides a basic example of how bayes_sim_unbalanced is executed. It is important
to check that the parameters passed in are appropriate in dimensions, e.g. mu_beta_a and mu_beta_d
should each contain the same length as that of u, and the length of u should be equal to the row and
column dimensions of Vbeta_d and Vbeta_a_inv.

A table of assurance values is printed simply by calling assur_out$assurance_table, which
contains the exact assurance values corresponding to each sample size pair. The contour plot, shown
in Figure 4, is displayed using assur_out$contourplot, and offers a visual depiction of how the
assurance varies across unique combinations of n1 and n2. Areas with lighter shades denote higher
assurance levels. The next example implements the function in a real-world setting that offers more
sensible results.
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Figure 4: Contour map of assurance values with varying sample sizes n1 and n2.

R> library(bayesassurance)

R> n1 <- seq(20, 75, 5)
R> n2 <- seq(50, 160, 10)

R> assur_out <- bayes_sim_unbalanced(n1 = n1, n2 = n2, repeats = 1, u = c(1, -1),
C = 0, Xn = NULL, Vbeta_d = matrix(c(50, 0, 0, 10),nrow = 2, ncol = 2),
Vbeta_a_inv = matrix(rep(0, 4), nrow = 2, ncol = 2),
Vn = NULL, sigsq = 100, mu_beta_d = c(1.17, 1.25),
mu_beta_a = c(0, 0), alt = "two.sided", alpha = 0.05, mc_iter = 5000,
surface_plot = TRUE)

R> head(assur_out$assurance_table)
R> assur_out$contourplot

n1 n2 Assurance
1 20 50 0.9504
2 25 60 0.9584
3 30 70 0.9508
4 35 80 0.9616
5 40 90 0.9624
6 45 100 0.9634

Example 5: cost-effectiveness application

We revisit the cost-effectiveness problem discussed in Example 2. In addition to providing a 3-D
graphical display of the assurance, this example also demonstrates how the repeats parameter is
applied.

Recall from Example 2 that two distinct sets of efficacy and cost measures are used to compare the
cost-effectiveness of treatments 1 and 2. The efficacy and costs are denoted by µi and γi for i = 1, 2
treatments. Hence, the parameter we want to estimate contains four elements tied to the unknown
efficacy and costs of treatments 1 and 2, i.e. β = (µ1, γ1, µ2, γ2)

⊤. It was previously assumed that the
treatments contain an equal number of observations, suggesting that the sample sizes across each of
the four explanatory variables are also equal. Using bayes_sim_unbalanced offers the added flexibility
of constructing an unbalanced study design between treatments 1 and 2. Since the two treatments each
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contain two components to be measured, we use the repeats parameter to indicate that we want two
sets of sample sizes, c(n1,n2), passed in, i.e. c(n1,n2,n1,n2). It then becomes clear that our study
design consists of n1 observations for the efficacy and cost of treatment 1, and n2 observations for
those of treatment 2. Figure 5 displays a contour plot with a noticeable increasing trend of assurance
values across larger sets of sample sizes.

R> library(bayesassurance)
R> n1 <- c(4, 5, 15, 25, 30, 100, 200)
R> n2 <- c(8, 10, 20, 40, 50, 200, 250)

R> mu_beta_d <- as.matrix(c(5, 6000, 6.5, 7200))
R> mu_beta_a <- as.matrix(rep(0, 4))
R> K = 20000 # threshold unit cost
R> C <- 0
R> u <- as.matrix(c(-K, 1, K, -1))
R> sigsq <- 4.04^2
R> Vbeta_a_inv <- matrix(rep(0, 16), nrow = 4, ncol = 4)
R> Vbeta_d <- (1 / sigsq) * matrix(c(4, 0, 3, 0, 0, 10^7, 0, 0,
3, 0, 4, 0, 0, 0, 0, 10^7),nrow = 4, ncol = 4)

R> assur_out <- bayes_sim_unbalanced(n1 = n1, n2 = n2, repeats = 2,
u = as.matrix(c(-K, 1, K, -1)), C = 0, Xn = NULL,
Vbeta_d = Vbeta_d, Vbeta_a_inv = Vbeta_a_inv,
Vn = NULL, sigsq = 4.04^2,
mu_beta_d = as.matrix(c(5, 6000, 6.5, 7200)),
mu_beta_a = as.matrix(rep(0, 4)),
alt = "greater", alpha = 0.05, mc_iter = 5000,
surface_plot = TRUE)

R> assur_out$assurance_table
R> assur_out$contourplot

n1 n2 Assurance
1 4 8 0.1614
2 5 10 0.1724
3 15 20 0.3162
4 25 40 0.3942
5 30 50 0.4440
6 100 200 0.6184
7 200 250 0.7022

4 Bayesian assurance using other conditions

The bayesassurance R package contains several other assurance functions characterized by analysis
stage objectives that are dependent on fixed precision levels (Adcock, 1997) and posterior cred-
ible intervals (Pham-Gia, 1997). These functions are denoted respectively as bayes_adcock and
bayes_sim_betabin. The package also includes a bayes_goal_func function framed under a utility-
based setting (see, e.g., Raiffa and Schlaifer, 1961; Berger, 1985; Lindley, 1997; Müller and Parmigiani,
1995; Parmigiani, 2002; Inoue et al., 2005) that determines sample size in relation to the rate of correct
classification (Inoue et al., 2005). Since the simulation-based assurance functions all follow a similar
format, for the sake of brevity, we will not include detailed descriptions of them in this article. Vi-
gnettes outlining detailed descriptions and walkthrough tutorials can be found on our Github page
(https://github.com/jpan928/bayesassurance_rpackage), which contains examples that users can
easily follow along and reproduce on their own machines.

5 Visualization Features and Useful Tools

5.1 Overlapping power and assurance curves

To facilitate an understanding of the relationship held between Bayesian and frequentist power
analysis, the pwr_curves function produces a single plot displaying both power and assurance points.
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Figure 5: Contour map of assurance values in cost-effectiveness application.

Recall that the primary difference held between pwr_freq and assurance_nd_na is the need to specify
additional precision parameters, na and nd, in assurance_nd_na. Knowing that power and sample size
analysis in the frequentist setting is essentially a special case of the Bayesian assurance with precision
parameters tailored to weak analysis priors and strong design priors, the pwr_curves function serves
as a visualization tool in seeing how varying precision levels affect assurance values and how these
assurance values compare to those we would expect under classical/frequentist power analysis (strong
design priors, weak analysis priors).

The pwr_curves function takes the combined set of parameters presented in pwr_freq and assurance_nd_na,
which includes n,n_a,n_d,theta_0,theta_1,sigsq, and alpha. For further customization, users have
the option to include a third set of points in their plot along with the power and assurance curves. These
additional points would correspond to the simulated assurance results obtained using bayes_sim.
Optional parameters to implement this include

1. bayes_sim: logical that indicates whether the user wishes to include simulated assurance results
obtained from bayes_sim. Default setting is FALSE.

2. mc_iter: specifies the number of MC samples to evaluate given bayes_sim = TRUE.

The following code segment runs the pwr_curves function using a weak analysis stage prior (n_a is
set to be small) and a strong design stage prior (n_d is set to be large). Implementing this produces a
plot where the assurance points lay perfectly on top of the power curve as shown in Figure 6. The
simulated assurance points obtained from bayes_sim are also plotted as we set bayes_sim = TRUE.
These points are highlighted in blue, which lie very close in proximity to those of the exact assurance
points highlighted in red. We can also view individual tables of the three sets of points by directly
calling them from the saved outputs, e.g. out$power_table shows the individual frequentist power
values for each sample size. The output we provide shows the first ten rows.

R> library(bayesassurance)

R> out <- pwr_curve(n = seq(10, 200, 10), n_a = 1e-8, n_d = 1e+8,
sigsq = 0.104, theta_0 = 0.15,theta_1 = 0.25, alt = "greater", alpha = 0.05,
bayes_sim = TRUE, mc_iter = 5000)

R> head(out$power_table)
R> head(out$assurance_table)
R> out$plot

n Power
1 10 0.2532578
2 20 0.3981637
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Figure 6: Power curve with exact and simulated assurance points for weak analysis prior and strong
design prior.

0.4

0.6

0.8

1.0

50 100 150 200
Sample Size (n)

P
ow

er
/A

ss
ur

an
ce colour

Assurance

Power

Simulated Assurance

Power Curves of Frequentist and Bayesian Methods

Figure 7: Power curve with exact and simulated assurance points for weak analysis and design priors.

3 30 0.5213579
4 40 0.6241155
5 50 0.7080824
6 60 0.7754956

n Assurance
1 10 0.2532578
2 20 0.3981637
3 30 0.5213579
4 40 0.6241155
5 50 0.7080824
6 60 0.7754956

The next code segment considers the scenario in which both analysis and design stage priors are
weak (n_a and n_d are set to be small). This special case shows how the assurance behaves when
vague priors are assigned. Substituting 0 in for both na and nd in Equation (3) results in a constant
assurance of Φ(0) = 0.5 regardless of the sample size and critical difference. Figure 7 illustrates these
results, where we have the regular power curve and the flat set of assurance points at 0.5 for both
exact and simulated cases.

R> library(bayesassurance)
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R> pwr_curve(n = seq(10, 200, 10), n_a = 1e-8, n_d = 1e-8,
sigsq = 0.104, theta_0 = 0.15,theta_1 = 0.25, alt = "greater", alpha = 0.05,
bayes_sim = TRUE, mc_iter = 5000)

5.2 Design matrix generators

In the last few sections, we go over design matrix generators that are used inside functions within
the bayesassurance package when the Xn parameter is set to NULL. We include these functions in case
users wish to see how design matrices are constructed under this particular setting.

Standard design matrix generator

The standard design matrix generator, gen_Xn, is relevant to a majority of the simulation-based
assurance functions discussed throughout the paper. It should be noted that all simulation-based
functions available in this package do not require users to specify their own design matrix Xn. Users
have the option of leaving Xn = NULL, which prompts the function to construct a default design matrix
using gen_Xn that complies with the general linear model yn = Xnβ + ϵ, ϵ ∼ N(0, σ2Vn). The function
runs in the background while bayes_sim is used.

When called directly, the gen_Xn function takes in a single parameter, n, which can either be a
scalar or vector. The length of n corresponds to the number of groups being assessed in the study
design as well as the column dimension of the design matrix, denoted as p. Therefore, in general, the
resulting design matrix is of dimension n × p. If a scalar value is specified for n, the resulting design
matrix carries a dimension of n × 1.

In the following example, we pass in a vector of length p = 4, which outputs a design matrix
of column dimension 4. Each column is comprised of ones vectors with lengths that align with the
sample sizes passed in for n. The row dimension is therefore the sum of all the entries in n. In this case,
since the values 1, 3, 5, and 8 are being passed in to n, the design matrix to be constructed carries a row
dimension of 1 + 3 + 5 + 8 = 17 and a column dimension of 4.

R> n <- c(1,3,5,8)
R> gen_Xn(n = n)

[,1] [,2] [,3] [,4]
[1,] 1 0 0 0
[2,] 0 1 0 0
[3,] 0 1 0 0
[4,] 0 1 0 0
[5,] 0 0 1 0
[6,] 0 0 1 0
[7,] 0 0 1 0
[8,] 0 0 1 0
[9,] 0 0 1 0

[10,] 0 0 0 1
[11,] 0 0 0 1
[12,] 0 0 0 1
[13,] 0 0 0 1
[14,] 0 0 0 1
[15,] 0 0 0 1
[16,] 0 0 0 1
[17,] 0 0 0 1

The bayes_sim function and its related family of functions generate design matrices using gen_Xn
in the following way. Each unique value contained in n that is passed into bayes_sim corresponds to a
distinct study design and thus requires a distinct design matrix. The gen_Xn function interprets each
ith component of n as a separate balanced study design comprised of ni participants within each of the
p groups, where p is a parameter specified in bayes_sim. For example, if we let Xn = NULL and pass in
n <-2, p <-4 for bayes_sim, gen_Xn will process the vector n <-c(2,2,2,2) in the background. Hence,
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we’d obtain an 8 × 4 matrix of the form

Xn =



1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1


.

Design matrix generator in longitudinal setting

Example 3 demonstrates how the linear model is extended to incorporate time-based covariates within
the context of a longitudinal setting. For this special case, a separate function is used to generate design
matrices that are appropriate for this setting. The genXn_longitudinal constructs its design matrices
differently than gen_Xn and therefore requires a different set of parameter specifications. When the
longitudinal parameter is set to TRUE in bayes_sim, the user is required to specify the following set
of parameters, which are directly passed into genXn_longitudinal:

1. ids: vector of unique subject ids, usually of length 2 for study design purposes

2. from: start time of repeated measures for each subject

3. to: end time of repeated measures for each subject

4. num_repeated_measures: desired length of the repeated measures sequence. Should be a non-
negative number, will be rounded up if fractional.

5. poly_degree: degree of polynomial in longitudinal model, set to 1 by default.

Referring back to the model that was constructed for the case involving two subjects, we observe
in Equation (9) that the design matrix contains vectors of ones within the first half of its column
dimension and lists the timepoints for each subject in the second half. Constructing this design matrix
requires several components. The user needs to specify subject IDs that are capable of uniquely
identifying each individual in the study. Next, the user needs to specify the start and end time as
well as the number of repeated measures reported for each subject. The number of repeated measures
denotes the number of evenly-spaced timepoints that take place in between the start and end time.
Since we are assuming a balanced longitudinal study design, each subject considers the same set
of timepoints. Finally, if the user wishes to consider time covariates of higher degrees, such as a
quadratic or cubic function, this can be altered using the poly_degree parameter, which takes on a
default assignment of 1.

In the following code, we pass in a vector of subject IDs and specify the start and end timepoints
along with the desired length of the sequence. The resulting design matrix contains vectors of ones
with lengths that correspond to the number of repeated measures for each unique subject.

R> ids <- c(1,2,3,4)
R> gen_Xn_longitudinal(ids, from = 1, to = 10, num_repeated_measures = 4)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] 1 0 0 0 1 0 0 0
[2,] 1 0 0 0 4 0 0 0
[3,] 1 0 0 0 7 0 0 0
[4,] 1 0 0 0 10 0 0 0
[5,] 0 1 0 0 0 1 0 0
[6,] 0 1 0 0 0 4 0 0
[7,] 0 1 0 0 0 7 0 0
[8,] 0 1 0 0 0 10 0 0
[9,] 0 0 1 0 0 0 1 0
[10,] 0 0 1 0 0 0 4 0
[11,] 0 0 1 0 0 0 7 0
[12,] 0 0 1 0 0 0 10 0
[13,] 0 0 0 1 0 0 0 1
[14,] 0 0 0 1 0 0 0 4
[15,] 0 0 0 1 0 0 0 7
[16,] 0 0 0 1 0 0 0 10
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The next code block modifies the previous example to incorporate a quadratic term. Notice there
are four additional columns being aggregated to the design matrix. These four columns are obtained
from squaring the four columns of the linear term.

R> ids <- c(1,2,3,4)
R> gen_Xn_longitudinal(ids, from = 1, to = 10, num_repeated_measures = 4,
poly_degree = 2)

1 2 3 4 1 2 3 4 1 2 3 4
[1,] 1 0 0 0 1 0 0 0 1 0 0 0
[2,] 1 0 0 0 4 0 0 0 16 0 0 0
[3,] 1 0 0 0 7 0 0 0 49 0 0 0
[4,] 1 0 0 0 10 0 0 0 100 0 0 0
[5,] 0 1 0 0 0 1 0 0 0 1 0 0
[6,] 0 1 0 0 0 4 0 0 0 16 0 0
[7,] 0 1 0 0 0 7 0 0 0 49 0 0
[8,] 0 1 0 0 0 10 0 0 0 100 0 0
[9,] 0 0 1 0 0 0 1 0 0 0 1 0
[10,] 0 0 1 0 0 0 4 0 0 0 16 0
[11,] 0 0 1 0 0 0 7 0 0 0 49 0
[12,] 0 0 1 0 0 0 10 0 0 0 100 0
[13,] 0 0 0 1 0 0 0 1 0 0 0 1
[14,] 0 0 0 1 0 0 0 4 0 0 0 16
[15,] 0 0 0 1 0 0 0 7 0 0 0 49
[16,] 0 0 0 1 0 0 0 10 0 0 0 100

6 Discussion

This article introduced bayesassurance, a new R package for computing Bayesian assurance under
various conditions using a two-stage framework. The goal of this package is to provide a convenient
and user-friendly interface to statisticians and data scientists who seek sample size calculations using
the assurance function in Bayesian data analysis. We have attempted to provide an organized, well-
documented open-source code that can be used to address a wide range of study design problems,
such as in the case of clinical trials, and demonstrate the feasibility of applying Bayesian methods to
such problems.
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